
Sergei Kuksin

Non-Autonomous Schrödinger Equation on d-torus

(Orsay, 09.11.2009)

1



§1. Introduction

Consider non-autonomous Schrödinger equation on Td, d ≥ 1:

(1) u̇ = −i
(
∆u+ V (t, x)u

)
, u = u(t, x) ∈ C, x ∈ Td = Rd/2πZd.

Here V (t, x) ∈ R is sufficiently smooth. Multiplying (1) by ū and integrating over Td we

get that

(2) |u(t)|2L2
= const .

Write u(t, x) =
∑
s us(t)e

is·x. Relation (2) does not rule out that

|us(t)| decays when t→∞ if |s| ∼ 1,

|us(t)| grows when t→∞ if |s| � 1.
(3)

That is, that ‘energy goes to high modes’. If (3) holds, then

(4) ‖u(t)‖s := ‖u(t)‖Hs grows with t for s ≥ 1.
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Question: Is (4) possible? Is it typical?

� This question is physically relevant.

� It models the same question for solutions of NLS, which now is a popular open problem.

Physical predictions:

T. Spencer (early 90’s): If V (t, x) is smooth and time-periodic, then

(5) ‖u(t)‖s ≤ (ln t)as‖u(0)‖s for t� 1,

for each s with a suitable as > 0.

V. Zakharov (early 2000’s ?): If V (t, x) is random and mixing, then

(6) ‖u(t)‖1 ∼ const
√
t.

No proof for (5) or (6) was given.
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Inspired by T. Spencer’s prediction, in late 90’s J. Bourgain started to work on Question. He

proved that

1) if V (t, x) is smooth and all its Ck-norms are bounded uniformly in t, x, then for any

s ∈ N and any a > 0

‖u(t)‖s ≤ ta‖u(0)‖s for t� 1

(cf. the talk by J.-M.Delort at this workshop).

2) if V (t, x) is smooth and time-quasiperiodic, then for any s there exists c(s) such that

‖u(t)‖s ≤ (ln t)c(s)‖u(0)‖s for t� 1.

W.-M. Wang: same is true if V is analytic in t and x, “uniformly in t”.
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§2. Schrödinger equations with time-quasiperiodic potentials.

See [EK1] H. Eliasson and S. Kuksin, CMP 286 (2009), 125-136.

1d case is due to Bambusi-Graffi (2001).

Consider eq. (1) with a time-quasiperiodic potential:

(7) u̇ = −i
(
∆u+ εV (φ0 + tω, x)u

)
, V = V (φ, x), φ ∈ Tn, x ∈ Td.

Potential V (φ, x) ∈ R is real-analytic. Vector ω is a parameter of the problem,

ω ∈ U b Rn.

Denote L2 = L2(Td,C). Provide it with the exponential basis {eis·x, s ∈ Zd}. For any

linear operator B : L2 → L2 let (Bab, a, b ∈ Zd) be its matrix in this basis.
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We speak about eq. (7): u̇ = −i
(
∆u+ εV (φ0 + tω, x)u

)
.

Main Theorem. If ε� 1, then for most ω we can find an φ-dependent complex-linear

isomorphism Ψ(φ) = Ψε,ω(φ)

Ψ(φ) : L2 → L2, u(x) 7→ Ψ(φ)u(x),

and a bounded Hermitian operator Q = Qε,ω such that a curve u(t) ∈ L2 solves (7) if

and only if v(t) = Ψ(φ0 + tω)u(t) satisfies

v̇ = −i
(
∆v + εQv

)
.

The matrix (Qab) is block-diagonal, i.e. Qab = 0 if |a| 6= |b|, and it satisfies

Qab = (2π)−n−d
∫ ∫

V (φ, x)e1(a−b) dxdφ+O(εγ), γ > 0

(“averaging”). Moreover, for any p ∈ N we have ‖Q‖Hp,Hp ≤ C1 and

‖Ψ(φ)− id ‖Hp,Hp ≤ εC2.

“For most” means “for all ω ∈ Uε ⊂ U , where mes (U \ Uε) ≤ εκ for some κ > 0”.
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Corollary. For ω as in the theorem and for any p solutions of (7) satisfy

(1− Cε)‖u(0)‖p ≤ ‖u(t)‖p ≤ (1 + Cε)‖u(0)‖p, ∀ t ≥ 0

(this is the “dynamical localisaton”).

Proof. Since Q is block-diagonal, then ‖v(t)‖p = const. Since v(t) = Ψ(t)u(t) and

‖Ψ− id ‖Hp,Hp ≤ εC2, then the estimate follows. �

Remarks. 1) Let n = 0. Then (7) is u̇ = −i
(
∆u+ εV (x)u

)
. Theorem states that this

equation may be reduced to a block-diagonal equation u̇ = −iAu, where

Aab = 0 if |a| 6= |b|. This is a well known fact.

2) For n = 1 the theorem’s assertion is the Floquet theorem for the time-periodic equation

(7). In difference with the finite-dimensional case, this is a perturbative result, valid only for

‘typical’ frequencies ω ∈ R and small ε.

3) Theorem’s claim is not true for all frequencies ω. For exceptional ω’s we expect

indefinite growth of Sobolev norms with time.

4) Proof uses essentially that V is analytic both in t and x.
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Proof. Eq. (7) is a non-autonomous linear Hamiltonian system in L2:

u̇ = i δδūHε(u), Hε(u) = 1
2 〈∇u,∇ū〉+ 1

2ε〈V (φ0 + tω, x)u, ū〉.

Consider the extended phase-space L2 × Tn × Rn = {(u, φ, r)}.
In this space the equation above can be written as the autonomous system

u̇ = i
δ

δū
hε(u, φ, r),

φ̇ = ∇rhε = ω,

ṙ = −∇φhε,

where hε(u, φ, r, ε) = ω · r + 1
2 〈∇u,∇ū〉+ 1

2ε〈V (φ, x)u, ū〉.

hε is a small perturbation of the integrable quadratical hamiltonian

h0 = ω · r + 1
2 〈∇u,∇ū〉. To perturbations of h0 applies the KAM-theorem from

[EK2] Eliasson-Kuksin, “KAM for nonlinear Schrödinger equation”.
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How the theorem from [EK2] implies Main Theorem? Let us write hε as

hε(u, φ, r, ε) = ω · r +
1
2
〈∇u,∇ū〉+ εf(u, φ, r).

In our case f = 1
2 〈V (φ, x)u, ū〉.

KAM Theorem from [EK2]: There exists domain O = {‖u‖ < δ} × Tn × {|r| < δ}
and symplectic transformation Φ : O → L2 × Tn × Rn which transforms hε to

h0 = ω′ · r +
1
2
〈∇u,∇ū〉+ ε〈Qu, ū〉+ f ′(u, φ, r),

where f ′ = O(|u|3) +O(|r|2).

Torus T0 = 0×Tn × 0 is invariant for the transformed system, so Φ(T0) is invariant for

the original equation. This is the usual KAM statement. NOW it is trivial: it simply states

that u(t) ≡ 0 is a solution on the original equation.
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But KAM theorem above tells more! Simple analysis of the proof (see a Remark in [EK2])

shows that if the perturbation εf is quadratic in u and r-independent, then

the KAM-transformations are linear in u and do not change ω.

So the transformed hamiltonians stay quadratic in u. Hence, the transformed hamiltonian

h0 is such that f ′ = 0. That is,

h0 = ω′ · r +
1
2
〈∇u,∇ū〉+ ε〈Qu, ū〉.

This proves Main theorem.
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§3. Digression on classical systems.

The Hamiltonian operator ∆ + εV (φ+ tω, x) is a quantisation of the classical

hamiltonian |ξ|2 + εV (φ+ tω, x), (x, ξ) ∈ Tn × Rn. It is quasiperiodic in time. Fix

any initial data (x0, ξ0). Then

i) by KAM, for a typical ω a solution such that (x(0), ξ(0)) = (x0, ξ0) is

time-quasiperiodic;

ii) for exceptional ω we “should” have diffusion: solution (x(t), ξ(t)) grows to infinity with t

(reference ???).

Accordingly, for solutions of (7) with exceptional ω we expect indefinite growth of high

Sobolev norms as t→∞.

Main Theorem and Remark 3 are the quantum versions of i) and ii).
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§4. Perturbed unharmonic oscillator.

> Consider Schrödinger equation in R1:

u̇ = −i
(
− uxx + (x2 + µx2m)u+ εV (φ0 + tω, x)u

)
,

where µ > 0, m ∈ N, m ≥ 2; V (φ, x) is C2-smooth in φ, x and analytic in φ,

bounded uniformly in φ, x. An analogy of Main Theorem holds. See [SK] LNM 1556

(Section 2.5) for the needed KAM-theorem.

> Due to Bambusi-Graffi (CMP 219 (2001), 465-480) the result holds for non-integer m.

That is, for equations

u̇ = −i
(
− uxx +Q(x)u+ εV (φ0 + tω, x)u

)
,

where Q(x) ∼ |x|α, α > 2 as |x| → ∞. Moreover, they allow V →∞ as |x| → ∞.

> Liu-Yuan (CPAM, to appear) allow faster growth of V in x. They proved reducibility of

the quantum Duffing oscillator

u̇ = −i
(
− uxx + x4u+ εxV (φ0 + tω, x)u

)
.
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Problem. The assertion holds for the perturbed harmonic oscillator

u̇ = −i
(
− uxx + x2u+ εV (φ0 + tω, x)u

)
.

This may follow from [EK2].

What happens in higher dimensions? – Nobody knows.
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§5. Other equations on d-tori, d ≥ 2.

The approach of [EK1] applies to non-linear wave equations. The corresponding

KAM-theorem (under preparation) implies reducibility to constant coefficients for

non-autonomous wave equation

ü = ∆u+ εV (φ0 + tω, x)u, x ∈ Td, φ ∈ Tn.
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