Sergei Kuksin

Non-Autonomous Schrödinger Equation on d-torus
(Orsay, 09.11.2009)

§1. Introduction

Consider non-autonomous Schrödinger equation on $\mathbb{T}^{d}, d \geq 1$:

$$
\begin{equation*}
\dot{u}=-i(\Delta u+V(t, x) u), \quad u=u(t, x) \in \mathbb{C}, \quad x \in \mathbb{T}^{d}=\mathbb{R}^{d} / 2 \pi \mathbb{Z}^{d} \tag{1}
\end{equation*}
$$

Here $V(t, x) \in \mathbb{R}$ is sufficiently smooth. Multiplying (1) by \bar{u} and integrating over \mathbb{T}^{d} we get that

$$
\begin{equation*}
|u(t)|_{L_{2}}^{2}=\text { const } . \tag{2}
\end{equation*}
$$

Write $u(t, x)=\sum_{s} u_{s}(t) e^{i s \cdot x}$. Relation (2) does not rule out that

$$
\begin{align*}
& \left|u_{s}(t)\right| \text { decays when } t \rightarrow \infty \text { if }|s| \sim 1, \\
& \left|u_{s}(t)\right| \text { grows when } t \rightarrow \infty \text { if }|s| \gg 1 . \tag{3}
\end{align*}
$$

That is, that 'energy goes to high modes'. If (3) holds, then

$$
\begin{equation*}
\|u(t)\|_{s}:=\|u(t)\|_{H^{s}} \quad \text { grows with } t \text { for } s \geq 1 \tag{4}
\end{equation*}
$$

Question: Is (4) possible? Is it typical?
\diamond This question is physically relevant.
\diamond It models the same question for solutions of NLS, which now is a popular open problem.

Physical predictions:

T. Spencer (early 90's): If $V(t, x)$ is smooth and time-periodic, then

$$
\begin{equation*}
\|u(t)\|_{s} \leq(\ln t)^{a_{s}}\|u(0)\|_{s} \quad \text { for } \quad t \gg 1 \tag{5}
\end{equation*}
$$

for each s with a suitable $a_{s}>0$.
V. Zakharov (early 2000's ?): If $V(t, x)$ is random and mixing, then

$$
\begin{equation*}
\|u(t)\|_{1} \sim \text { const } \sqrt{t} \tag{6}
\end{equation*}
$$

No proof for (5) or (6) was given.

Inspired by T. Spencer's prediction, in late 90 's J. Bourgain started to work on Question. He proved that

1) if $V(t, x)$ is smooth and all its C^{k}-norms are bounded uniformly in t, x, then for any $s \in \mathbb{N}$ and any $a>0$

$$
\|u(t)\|_{s} \leq t^{a}\|u(0)\|_{s} \quad \text { for } \quad t \gg 1
$$

(cf. the talk by J.-M.Delort at this workshop).
2) if $V(t, x)$ is smooth and time-quasiperiodic, then for any s there exists $c(s)$ such that

$$
\|u(t)\|_{s} \leq(\ln t)^{c(s)}\|u(0)\|_{s} \quad \text { for } \quad t \gg 1
$$

W.-M. Wang: same is true if V is analytic in t and x, "uniformly in t ".
§2. Schrödinger equations with time-quasiperiodic potentials.
See [EK1] H. Eliasson and S. Kuksin, CMP 286 (2009), 125-136.
1d case is due to Bambusi-Graffi (2001).
Consider eq. (1) with a time-quasiperiodic potential:

$$
\begin{equation*}
\dot{u}=-i\left(\Delta u+\varepsilon V\left(\phi_{0}+t \omega, x\right) u\right), \quad V=V(\phi, x), \phi \in \mathbb{T}^{n}, x \in \mathbb{T}^{d} \tag{7}
\end{equation*}
$$

Potential $V(\phi, x) \in \mathbb{R}$ is real-analytic. Vector ω is a parameter of the problem,

$$
\omega \in U \Subset \mathbb{R}^{n} .
$$

Denote $L^{2}=L^{2}\left(\mathbb{T}^{d}, \mathbb{C}\right)$. Provide it with the exponential basis $\left\{e^{i s \cdot x}, s \in \mathbb{Z}^{d}\right\}$. For any linear operator $B: L^{2} \rightarrow L^{2}$ let ($B_{a b}, a, b \in \mathbb{Z}^{d}$) be its matrix in this basis.

We speak about eq. (7): $\dot{u}=-i\left(\Delta u+\varepsilon V\left(\phi_{0}+t \omega, x\right) u\right)$.
Main Theorem. If $\varepsilon \ll 1$, then for most ω we can find an ϕ-dependent complex-linear isomorphism $\Psi(\phi)=\Psi_{\varepsilon, \omega}(\phi)$

$$
\Psi(\phi): L^{2} \rightarrow L^{2}, \quad u(x) \mapsto \Psi(\phi) u(x),
$$

and a bounded Hermitian operator $Q=Q_{\varepsilon, \omega}$ such that a curve $u(t) \in L^{2}$ solves (7) if and only if $v(t)=\Psi\left(\phi_{0}+t \omega\right) u(t)$ satisfies

$$
\dot{v}=-i(\Delta v+\varepsilon Q v) .
$$

The matrix $\left(Q_{a b}\right)$ is block-diagonal, i.e. $Q_{a b}=0$ if $|a| \neq|b|$, and it satisfies

$$
Q_{a b}=(2 \pi)^{-n-d} \iint V(\phi, x) e^{1(a-b)} d x d \phi+O\left(\varepsilon^{\gamma}\right), \quad \gamma>0
$$

("averaging"). Moreover, for any $p \in \mathbb{N}$ we have $\|Q\|_{H^{p}, H^{p}} \leq C_{1}$ and $\|\Psi(\phi)-\mathrm{id}\|_{H^{p}, H^{p}} \leq \varepsilon C_{2}$.
"For most" means "for all $\omega \in U_{\varepsilon} \subset U$, where mes $\left(U \backslash U_{\varepsilon}\right) \leq \varepsilon^{\kappa}$ for some $\kappa>0$ ".

Corollary. For ω as in the theorem and for any p solutions of (7) satisfy

$$
(1-C \varepsilon)\|u(0)\|_{p} \leq\|u(t)\|_{p} \leq(1+C \varepsilon)\|u(0)\|_{p}, \quad \forall t \geq 0
$$

(this is the "dynamical localisaton").
Proof. Since Q is block-diagonal, then $\|v(t)\|_{p}=$ const. Since $v(t)=\Psi(t) u(t)$ and $\|\Psi-\mathrm{id}\|_{H^{p}, H^{p}} \leq \varepsilon C_{2}$, then the estimate follows.
Remarks. 1) Let $n=0$. Then (7) is $\dot{u}=-i(\Delta u+\varepsilon V(x) u)$. Theorem states that this equation may be reduced to a block-diagonal equation $\dot{u}=-i A u$, where $A_{a b}=0$ if $|a| \neq|b|$. This is a well known fact.
2) For $n=1$ the theorem's assertion is the Floquet theorem for the time-periodic equation (7). In difference with the finite-dimensional case, this is a perturbative result, valid only for 'typical' frequencies $\omega \in \mathbb{R}$ and small ε.
3) Theorem's claim is not true for all frequencies ω. For exceptional ω 's we expect indefinite growth of Sobolev norms with time.
4) Proof uses essentially that V is analytic both in t and x.

Proof. Eq. (7) is a non-autonomous linear Hamiltonian system in L^{2} :
$\dot{u}=i \frac{\delta}{\delta \bar{u}} H_{\varepsilon}(u), \quad H_{\varepsilon}(u)=\frac{1}{2}\langle\nabla u, \nabla \bar{u}\rangle+\frac{1}{2} \varepsilon\left\langle V\left(\phi_{0}+t \omega, x\right) u, \bar{u}\right\rangle$.
Consider the extended phase-space $L^{2} \times \mathbb{T}^{n} \times \mathbb{R}^{n}=\{(u, \phi, r)\}$.
In this space the equation above can be written as the autonomous system

$$
\begin{aligned}
\dot{u} & =i \frac{\delta}{\delta \bar{u}} h_{\varepsilon}(u, \phi, r) \\
\dot{\phi} & =\nabla_{r} h_{\varepsilon}=\omega \\
\dot{r} & =-\nabla_{\phi} h_{\varepsilon}
\end{aligned}
$$

where $h_{\varepsilon}(u, \phi, r, \varepsilon)=\omega \cdot r+\frac{1}{2}\langle\nabla u, \nabla \bar{u}\rangle+\frac{1}{2} \varepsilon\langle V(\phi, x) u, \bar{u}\rangle$.
h_{ε} is a small perturbation of the integrable quadratical hamiltonian $h_{0}=\omega \cdot r+\frac{1}{2}\langle\nabla u, \nabla \bar{u}\rangle$. To perturbations of h_{0} applies the KAM-theorem from [EK2] Eliasson-Kuksin, "KAM for nonlinear Schrödinger equation".

How the theorem from [EK2] implies Main Theorem? Let us write h_{ε} as

$$
h_{\varepsilon}(u, \phi, r, \varepsilon)=\omega \cdot r+\frac{1}{2}\langle\nabla u, \nabla \bar{u}\rangle+\varepsilon f(u, \phi, r) .
$$

In our case $f=\frac{1}{2}\langle V(\phi, x) u, \bar{u}\rangle$.
KAM Theorem from [EK2]: There exists domain $\mathcal{O}=\{\|u\|<\delta\} \times \mathbb{T}^{n} \times\{|r|<\delta\}$ and symplectic transformation $\Phi: \mathcal{O} \rightarrow L^{2} \times \mathbb{T}^{n} \times \mathbb{R}^{n}$ which transforms h_{ε} to

$$
h_{0}=\omega^{\prime} \cdot r+\frac{1}{2}\langle\nabla u, \nabla \bar{u}\rangle+\varepsilon\langle Q u, \bar{u}\rangle+f^{\prime}(u, \phi, r),
$$

where $f^{\prime}=O\left(|u|^{3}\right)+O\left(|r|^{2}\right)$.
Torus $T_{0}=0 \times \mathbb{T}^{n} \times 0$ is invariant for the transformed system, so $\Phi\left(T_{0}\right)$ is invariant for the original equation. This is the usual KAM statement. NOW it is trivial: it simply states that $u(t) \equiv 0$ is a solution on the original equation.

But KAM theorem above tells more! Simple analysis of the proof (see a Remark in [EK2]) shows that if the perturbation εf is quadratic in u and r-independent, then the KAM-transformations are linear in u and do not change ω.

So the transformed hamiltonians stay quadratic in u. Hence, the transformed hamiltonian h_{0} is such that $f^{\prime}=0$. That is,

$$
h_{0}=\omega^{\prime} \cdot r+\frac{1}{2}\langle\nabla u, \nabla \bar{u}\rangle+\varepsilon\langle Q u, \bar{u}\rangle
$$

This proves Main theorem.

§3. Digression on classical systems.

The Hamiltonian operator $\Delta+\varepsilon V(\phi+t \omega, x)$ is a quantisation of the classical hamiltonian $|\xi|^{2}+\varepsilon V(\phi+t \omega, x),(x, \xi) \in \mathbb{T}^{n} \times \mathbb{R}^{n}$. It is quasiperiodic in time. Fix any initial data $\left(x_{0}, \xi_{0}\right)$. Then
i) by KAM, for a typical ω a solution such that $(x(0), \xi(0))=\left(x_{0}, \xi_{0}\right)$ is time-quasiperiodic;
ii) for exceptional ω we "should" have diffusion: solution $(x(t), \xi(t))$ grows to infinity with t (reference ???).

Accordingly, for solutions of (7) with exceptional ω we expect indefinite growth of high Sobolev norms as $t \rightarrow \infty$.

Main Theorem and Remark 3 are the quantum versions of i) and ii).

§4. Perturbed unharmonic oscillator.

* Consider Schrödinger equation in \mathbb{R}^{1} :

$$
\dot{u}=-i\left(-u_{x x}+\left(x^{2}+\mu x^{2 m}\right) u+\varepsilon V\left(\phi_{0}+t \omega, x\right) u\right),
$$

where $\mu>0, m \in \mathbb{N}, m \geq 2 ; V(\phi, x)$ is C^{2}-smooth in ϕ, x and analytic in ϕ, bounded uniformly in ϕ, x. An analogy of Main Theorem holds. See [SK] LNM 1556 (Section 2.5) for the needed KAM-theorem.

* Due to Bambusi-Graffi (CMP 219 (2001), 465-480) the result holds for non-integer m. That is, for equations

$$
\dot{u}=-i\left(-u_{x x}+Q(x) u+\varepsilon V\left(\phi_{0}+t \omega, x\right) u\right),
$$

where $Q(x) \sim|x|^{\alpha}, \alpha>2$ as $|x| \rightarrow \infty$. Moreover, they allow $V \rightarrow \infty$ as $|x| \rightarrow \infty$. * Liu-Yuan (CPAM, to appear) allow faster growth of V in x. They proved reducibility of the quantum Duffing oscillator

$$
\dot{u}=-i\left(-u_{x x}+x^{4} u+\varepsilon x V\left(\phi_{0}+t \omega, x\right) u\right) .
$$

Problem. The assertion holds for the perturbed harmonic oscillator

$$
\dot{u}=-i\left(-u_{x x}+x^{2} u+\varepsilon V\left(\phi_{0}+t \omega, x\right) u\right)
$$

This may follow from [EK2].

What happens in higher dimensions? - Nobody knows.

§5. Other equations on d-tori, $d \geq 2$.

The approach of [EK1] applies to non-linear wave equations. The corresponding KAM-theorem (under preparation) implies reducibility to constant coefficients for non-autonomous wave equation

$$
\ddot{u}=\Delta u+\varepsilon V\left(\phi_{0}+t \omega, x\right) u, \quad x \in \mathbb{T}^{d}, \quad \phi \in \mathbb{T}^{n} .
$$

