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Abstract

We introduce a class of Hilbert matrices (Ass′ , s, s′ ∈ Zd), which are
asymptotically (as |s| + |s′| → ∞) close to Hankel–Töplitz matrices. We
prove that this class forms an algebra, and that flow-maps of nonau-
tonomous linear equations with coefficients from the class also belong to
it.

0 Introduction.

In this work we suggest a new algebra of infinite matrices (Ass′ , s, s′ ∈ Zd) with
exponential decay of elements off the diagonals. The latter means that

i) |Ass′ | ≤ const e−γ min{|s−s′|,|s+s′|}

(we treat the set {s = −s′} as the second diagonal).
It is not hard to see that matrices, satisfying i) with various γ > 0, form an

algebra. The matrices of our class, apart from i), satisfy two more properties.
Namely, they are

ii) asymptotically Töplitz : matrix elements Ass′ converge to limits when
(ss′) → ∞ along one of the diagonals. That is, the limits

lim
t→∞

A(ta+b1)±(ta+b2)

exist for all a, b1, b2 ∈ Zd, a &= 0.
iii) Lipschitz at infinity: the matrix elements under the limit–sign in ii) make

a Lipschitz function of the argument t−1 for t in the vicinity of infinity.
We call the matrices, satisfying i)-iii), the Töplitz–Lipschitz (TL) matrices.
A delicate point, related to this definition, is to introduce a right Lipschitz–

norm to control the convergence in iii), i.e. to find right neighbourhoods of
t = ∞, depending on a, b1, b2, where the Lipschitz constant is to be calculated.
The neighbourhoods, suggested in our work, are complicated sets, depending on
a parameter Λ ≥ 6. They allow to prove the properties of TL matrices, given
below, and insure that the matrices possess some additional properties, needed
in applications. These sets were found by trials and errors. It may be that our
choice of them is not optimal.

The set of TL matrices is bi-stratified by the exponent γ in i) and by the pa-
rameter Λ ≥ 6, characterising the neighbourhoods of infinity in iii). Accordingly
the space of TL matrices is given the family of norms ‖| · ‖|γ,Λ, γ > 0,Λ ≥ 6.
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We prove that this space is an algebra. Moreover, multiplication of TL matrices
is continuous in the sense that

‖|AB‖|γ′,Λ′ ≤ C ‖|A‖|γ1,Λ1‖|B‖|γ2,Λ2

for γ′ ≤ γ1 ∧ γ2, γ
′ < γ1 ∨ γ2 and Λ′ ≥ Λ1 ∨ Λ2 + 3

(the constant C explicitly depends on γ’s and Λ’s). See section 2.2.
Second important property of the space of TL matrices is that it is invariant

with respect to taking a non-commutative exponent. Namely, if A(t) is a TL
matrix, continuous it t, then the fundamental matrix of the linear differential
equation

Ẋs =
∑

s′

A(t)ss′Xs′(t)

also is TL. Its norms ‖| · ‖|γ,Λ are estimated via norms of the matrix A(t), see
section 3.2.

The basic definition i)-iii) above admits variations. Some of them are dis-
cussed in our paper since they are needed for applications; see section 1.4 + end
of section 2.1, and section 2.4.

The algebra of TL matrices contains
a) matrices {Ass′} with finitely many non-zero elements;
b) Töplitz matrices (where a matrix element Ass′ depends on s − s′)

and
c) Hankel matrices (where an element Ass′ depends on s + s′).
In a number of situations a perturbative infinite–dimensional problem is resolved
by an iterative procedure which starts with a linear operator, satisfying a), b) or
c), or with a functional whose Hessians are linear operators of this form. Then
in interesting situations the iterative procedure pushes us outside the class a)-
c) (since this is not an algebra), but still we often stay in the TL algebra.
Controlling iteratively TL norms of the involved linear operators we get better
control for the procedure. This allows to establish its convergence in a number
of important situations which do not yield traditional techniques.

The infinite–dimensional KAM theory gives examples of such iterative pro-
cedures. In [EK05] we crucially use the algebra of TL matrices to prove KAM–
persistence of time–quasiperiodic solutions of the linear Schrödinger equation

−iu̇ = ∆u + V (x) ∗ u; u = u(t, x), x ∈ Td, d ≥ 1; V (x) =
∑

V̂ (a)eia·x ,

under small (non-linear) Hamiltonian perturbations of the equation, for a typical
potential V (x).

Notations. By C, C1 etc we denote various constants, independent of the
parameters γ and Λ, by a ∨ b and a ∧ b – maximum and minimum of real
numbers a and b; for any subset F ⊂ Zd by 1F we denote the indicator function
of F (which equals one on F and vanishes outside F ). By O(1) we denote
various functions, bounded in modulus by one on their domains of definition.
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1 Weighted l2-spaces and infinite matrices with
exponential decay of elements off diagonals.

1.1 Weighted l2-spaces.

Let us take any real number γ such that

|γ| ≤ 1,

fix any m∗ ≥ 0 and consider the following weighted l2-space:

Yγ = Yγ,m∗ = {y = (ys, s ∈ Zd) | ‖y‖γ < ∞}.

Here
‖y‖2

γ = ‖y‖2
γ.m∗ =

∑

s∈Zd

|ys|2e2γ|s|〈s〉2m∗ sgn γ (1.1)

if γ &= 0, where 〈s〉 = |s| ∨ 1 for any d-vector s. If γ = 0, then we consider two
spaces, Y+0 and Y−0. The norms in these spaces are defined by the relations
(1.1), where we set sgn+0 = 1, sgn−0 = −1.

For any γ we have the pairing

Yγ × Y−γ → R, (y, y′) 0→
∑

ys y′
s, (1.2)

which identifies Y−γ with the space, dual to Yγ :

(Yγ)∗ = Y−γ ∀γ.

Here and below in this subsection ‘for any γ’ means ‘for any γ from the set
[−1, 0) ∪ (0, 1] ∪ {+0,−0}’.

By Y c
γ we denote the complexification of a space Yγ . The pairing (1.2)

extends to a complex–bilinear map Y c
γ × Y c

−γ → C.

Lemma 1.1. If m∗ > 1
2d, then each space Yγ , γ ∈ (0, 1] ∪ {+0}, is a Banach

algebra with respect to the convolution:

‖p ∗ q‖γ ≤ C(m∗, d) ‖p‖γ‖q‖γ ∀ p, q ∈ Yγ , (1.3)

where (p ∗ q)s =
∑

a∈Zd ps−aqa.

Proof. For γ = +0 the estimate is a classical property of Sobolev spaces. If
γ > 0, we note that

‖Q‖+0 = ‖q‖γ , ‖P‖+0 = ‖p‖γ,
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where Qs = qseγ|s|, Ps = pseγ|s| for each s. Therefore,

‖p ∗ q‖2
γ =

∑

s

〈s〉2m∗e2γ|s|
( ∑

j

pjqs−j

)2

=
∑

s

〈s〉2m∗

( ∑

j

eγ(|s|−|j|−|s−j|PjQs−j

)2

≤
∑

s

〈s〉2m∗

( ∑

j

PjQs−j

)2

= ‖P ∗ Q‖2
+0

≤ C2(m∗, d)‖P‖2
+0‖Q‖2

+0 = C2(m∗, d)‖p‖2
γ‖q‖2

γ ,

as stated.

1.2 Matrices with exponential decay off the diagonals.

In Rd and Zd we introduce a quasidistance which (with some abuse of notations)
will be denoted [x − y]:

[x − y] = min{|x − y|, |x + y|}.

Obviously, [x− y] = [y−x], [0−x] = |x|, [x− y] = 0 if and only if x = ±y, and

[x − y] = |x − y| iff 〈x, y〉 ≥ 0.

Moreover, the triangle inequality holds:

[x − y] ≤ [x − z] + [z − y]. (1.4)

Indeed, [x − y] equals the Hausdorff distance between the sets {x,−x} and
{y,−y}, so (1.4) follows from the triangle inequality for the Hausdorff distance.

Let A = (Ass′ , s, s′ ∈ Zd), be an infinite matrix with complex or real entries.
For |γ| ≤ 1 we set

‖|A‖|γ = sup
s,s′

{eγ[s−s′]|Ass′ |},

and denote
Mγ = {A | A is real and ‖|A‖|γ < ∞},

M c
γ = Mγ ⊗ C = {A | A is complex and ‖|A‖|γ < ∞}.

Obviously, Mγ and M c
γ are Banach spaces. They are formed by matrices which

decay exponentially outside the union of the diagonal {s = s′} and the ‘anti-
diagonal’ {s = −s′}. Clearly, ‖ id ‖|γ = 1 for any γ. So the identity matrix
belongs to all spaces Mγ .

Let Y c0
γ be the set of vectors y ∈ Y c

γ with finitely many non-zero coefficients.
Then any A ∈ M c

γ′ defines a linear map

A : Y c0
γ → Y c

γ , y → Ay, (Ay)s =
∑

Ass′ys′ .

The main result of this section is that the map A is bounded in the ‖ · ‖γ-norm
if γ′ > |γ|. Accordingly, it extends to a bounded map A : Y c

γ → Y c
γ :

4



Theorem 1.2. Let 1 ≥ γ′ > |γ|. Then

‖Ay‖γ ≤ C(d, m∗)(γ′ − |γ|)−d−m∗‖|A‖|γ′‖y‖γ, (1.5)

for any y ∈ Y c0
γ . Hence, A defines a bounded linear operator in Y c

γ and (1.5)
holds for each y ∈ Y c

γ .

Proof. Without lost of generality we assume below that ‖|A‖|γ′ = 1.
For any s ∈ Zd let us denote by ls the vector

ls = {lsa = δs,a, a ∈ Zd}. (1.6)

Then the vectors

fs = e−γ|s|〈s〉−mγ ls, mγ = m∗ sgnγ,

form a Hilbert basis of the space Yγ . In this basis the matrix of the operator A
is

{Bab = 〈a〉mγ 〈b〉−mγ eγ(|a|−|b|)Aab}
(see [HS78]). Let us first assume that γ > 0 and denote γ∆ = γ′−γ, γ∆ ∈ (0, 1].
For any a ∈ Zd we have:

∑

b

|Bab| ≤ eγ|a|
∑

b∈Zd

( 〈a〉
〈b〉

)m∗
e−γ|b|e−γ′[a−b].

To bound the r.h.s. we need

Lemma 1.3. For any x, y ∈ Zd we have
( 〈y〉
〈x〉

)m∗
≤ Cγ−m∗

∆ e
1
2γ∆[y−x]. (1.7)

Proof. We may assume that |y| > |x| > 1 since otherwise the estimate is obvious.
Also, it is easy to see that the estimate for 0 ≤ m∗ < 1 follows from the one for
m∗ ≥ 1. Below we assume that

|y| > |x| > 1, m∗ ≥ 1,

and prove the estimate with C = 2m∗em∗(lnm∗+1). Denoting r = 1
2γ∆/m∗ and

taking logarithm of (1.7), we rewrite it as

ln |y| − ln |x| ≤ − ln r + r[y − x] + 1.

By the triangle inequality (1.4) (with y = 0 and z re-denoted as y), [y − x] ≥
|y| − |x|. So it suffice to check that

ln
|y|
|x| ≤ − ln r + r(|y| − |x|) + 1,

where |y| > |x| > 1 and 0 < r < 1. For |x| < |y| ≤ 2|x| the estimate follows from
the inequality ln 2 < 1. For |y| ≥ 2|x| it follows from the estimate ln t ≤ 1

2 t,
valid for t ≥ 1.
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Due to (1.7),
∑

b

|Bab| ≤ C1e
γ|a|γ−m∗

∆

∑

b∈Zd

e−γ|b|−(γ+1
2 γ∆)[a−b].

To estimate the sum in the r.h.s. we use the following lemma:

Lemma 1.4. For any a ∈ Zd and any 0 ≤ γ ≤ 1, γ∆ ∈ (0, 1] we have
∑

b∈Zd

e−γ|b|−(γ+γ∆)[a−b] ≤ C1e
−γ|a|γ−d

∆ . (1.8)

and ∑

a∈Zd

eγ|a|−(γ+γ∆)|a−b| ≤ C2e
γ|b|γ−d

∆ . (1.9)

The lemma is proved in Appendix.
Due to (1.8), we have

∑

b

|Bab| ≤ Cγ−d−m∗
∆ . (1.10)

Similar arguments show that

∑

a

|Bab| ≤ Ce−γ|b|γ−m∗
∆

∑

a

eγ|a|−(γ+
1
2 γ∆)[a−b] ≤ Cγ−d−m∗

∆ . (1.11)

The estimates (1.10), (1.11) and the Schur criterion (see [HS78]) imply (1.5) for
the case when γ > 0; these relations with γ = 0 imply (1.5) with γ = +0.

If γ ≤ 0, we re-denote γ = −γ̂, γ̂ ≥ 0. Now mγ = −m∗, so the Hilbert basis
is formed by the vectors fs = lseγ̃|s|〈s〉m∗ and the matrix elements Bab are

Bab = 〈a〉−m∗〈b〉m∗eγ̂(|b|−|a|)Aab.

Therefore,

∑

b

Bab ≤ e−γ̂|a|
∑

b

( 〈b〉
〈a〉

)m∗
eγ̂|b|−γ′[a−b]

≤ C1e
−γ̂|a|γ−m∗

∆

∑

b

eγ̂|b|−(γ̂+
1
2γ∆)[a−b] ≤ C2γ

−d−m∗
∆ ,

where we use (1.9) to get the last inequality. Similar
∑

a

Bab ≤ C2γ
−d−m∗
∆ .

So (1.5) is also proved for γ ≤ 0.
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1.3 Multiplication of the matrices.

The set of all matrices with exponential decay off diagonals ∪0<γ<1Mγ obvi-
ously is a linear space. Here we show that this is an algebra. More precisely ,
the following result holds:

Theorem 1.5. Let |γ| < γ′ ≤ 1. Then

‖|AB‖|γ + ‖|BA‖|γ ≤ C(γ′ − |γ|)−d‖|A‖|γ ‖|B‖|γ′. (1.12)

for any A ∈ M c
γ , B ∈ M c

γ′.

Proof. We start with a lemma:

Lemma 1.6. If |γ| < γ′, then
∑

s∈Zd

e−γ[a−s]−γ′[s−b] < C(γ′ − |γ|)−de−γ[a−b],

for any a, b ∈ Zd.

Proof. Noting that

e−γ[a−s]−γ′[s−b] <
∑

σ1,σ2=±1

e−γ|σ1a−s|−γ′|s−σ2b|,

we get ∑

s∈Zd

e−γ[a−s]−γ′[s−b] <
∑

σ1,σ2=±

∑

s∈Zd

e−γ|σ1a−s|−γ′|s−σ2b|. (1.13)

Let us fix any choice of σ1, σ2 and denote a′ = σ1a, b′ = σ2b. We have
∑

s

e−γ|a′−s|−γ′|s−b′| =
∑

s′

e−γ|s′|−γ′|(a′−b′)−s′|. (1.14)

By (1.8) this sum is bounded by C′e−γ|a′−b′|(γ′−|γ|)−d. Since |a′−b′| ≥ [a−b],
then

(1.14) ≤ C′e−γ[a−b](γ′ − |γ|)−d

for any choice of the signs σ1, σ2. Now the estimate follows.

Since

|(AB)ab| ≤
∑

s

|Aas| |Bsb| ≤ ‖|A‖|γ ‖|B‖|γ′

∑

s∈Zd

e−γ[a−s]−γ′[s−b],

then Lemma 1.6 implies the estimate for the first term in the r.h.s. of (1.12).
To estimate the second term we note that ‖|A‖|δ = ‖|At‖|δ for any δ, where At

is the transposed matrix, and that (BA)t = AtBt.

Remark. The estimate (1.12) remain true if we replace the norm ‖|A‖|γ by
the simpler and more tradition norm

sup
s,s′

{eγ|s−s′||Ass′ |}.

Proof remains the same (and even simplifies).
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1.4 Infinite matrices, formed by 2 × 2-blocks

Let X be a Banach algebra over reals, such that its complexification Xc = X⊗C,
is a complex Banach algebra. For an infinite matrix A = (Ass′ ∈ X , s, s′ ∈ Zd),
we define its norm ‖|A‖|γ by the same relation as in the section 1.3, and define
the spaces Mγ = MX

γ and M c
γ = MXc

γ accordingly. Straightforward analysis
of arguments in section 1.3 shows that they apply to matrices from the spaces
MXc

γ . Therefore the assertion of Theorem 1.5 remains true if A ∈ MXc
γ and

B ∈ MXc
γ′ .

Now let X be the algebra of real 2 × 2-matrices, and Xc be the algebra of
complex matrices. The matrices from the space M c

γ = MXc
γ naturally act on

spaces Y c
γ̂ = Y R2c

γ̂ = Y C2

γ̂ , formed by vectors y = (ys ∈ C2, s ∈ Zd). An obvious
version of Theorem 1.2 holds for this action. Let us consider the four classical
matrices:

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
0 1
1 0

)
,

and set
Xp = Rσ0 + Rσ2 ⊂ X, Xq = Rσ1 + Rσ3 ⊂ X.

Clearly, Xp ⊕ Xq = X . We denote by p : X → Xp the projection to Xp along
Xq, and by q : X → Xq – the projection to Xq along Xp.

Noting that σ2
2 = − id, we introduce in R2 a complex structure by means of

the operator σ2. With respect to this structure Xp is the algebra of complex-
linear operators, while Xq is the linear space of complex-antilinear operators.
This observation makes it obvious that the multiplication of matrices defines
the maps

Xp × Xp → Xp, Xq ×Xq → Xp, Xp × Xq → Xq, Xq × Xp → Xq. (1.15)

We define the following norms ‖| · ‖|+γ and ‖| · ‖|−γ on the spaces MX
γ and

MXc
γ :

‖|A‖|+γ = sup
s,s′

{|qAss′ |eγ|s+s′| ∨ |pAss′ |eγ|s−s′|}

and
‖|A‖|−γ = sup

s,s′
{|pAss′ |eγ|s+s′| ∨ |qAss′ |eγ|s−s′|.

Clearly, ‖|A‖|γ ≤ ‖|A‖|±γ and ‖| id ‖|+γ = 1, ‖| id ‖|−γ = ∞ for each γ. We set

M±
γ = {A ∈ MX

γ | ‖|A‖|±γ < ∞},

and define the complexified spaces M±c
γ accordingly.

The spaces Y R2

γ̂ inherit the complex structure which we have introduced
in R2. Let us take any A ∈ MX

γ , |γ| > γ̂, and denote by pA and qA the
matrices with the elements pAss′ and the elements qAss′ , respectively. Clearly,
the matrix pA defines a complex-linear transformation of the space Y R2

γ̂ , while
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qA defines its complex-antilinear transformation. We shall call pA the complex-
linear part of A, and qA – its complex-antilinear part. The space M+

γ is formed
by matrices such that their complex-linear parts decay exponentially ‘along the
anti-diagonal {s = −s′}’, while their complex-antilinear parts decay ‘along the
diagonal {s = s′}’. The space M−

γ can be interpreted similar.
All assertions below are made for the real spaces M±

γ . Their reformulations
for the complex spaces are straightforward.

The transposition of matrices preserves the norms ‖|·‖|±γ . So it also preserves
the spaces M±

γ .
Denoting by Υ the matrix of complex conjugation (formed by the 2×2 blocks

δs,s′ σ1), we have the following isometries:

M±
γ → M∓

γ , A → ΥA,

M±
γ → M∓

γ , A → AΥ.
(1.16)

Example 1.7. For any vectors y1, y2 ∈ Y X
γ the tensor product y1 ⊗ y2 is a

2 × 2-matrix with entries in X . If γ ≥ 0, then we have

|(y1 ⊗ y2)ss′ | ≤ ‖y1‖γ‖y2‖γe−γ(|s|+|s′|).

Since |s| + |s′| ≥ |s ± s′|, then

‖|y1 ⊗ y2‖|±γ ≤ ‖y1‖γ‖y2‖γ if γ ≥ 0. (1.17)

So y1 ⊗ y2 ∈ M+
γ ∩ M−

γ if y1, y2 ∈ Y X
γ and γ ≥ 0.

Multiplication of matrices from the spaces M±
γ agrees with Theorem 1.5, as

specifies the following

Theorem 1.8. Multiplication of infinite matrices defines the following contin-
uous maps, where |γ| < γ′ ≤ 1:

M+
γ′ × M+

γ → M+
γ , M−

γ′ × M−
γ → M+

γ , (1.18)

M+
γ′ × M−

γ → M−
γ , M−

γ′ × M+
γ → M−

γ .

Moreover, ‖|AB‖|+γ ≤ C(γ′ − |γ|)−d‖|A‖|+γ′‖|B‖|+γ , and similar estimates hold
for other multiplications.

Proof. To check the first relation in (1.18) we take any ‖|A‖|+γ′ = 1, ‖|B‖|+γ = 1
and denote D = AB. Then, due to (1.15) and Lemma 1.6,

|pDij | ≤
∑

s

(
|pAis| |pBsj | + |qAis| |qBsj |

)

≤
∑

s

(
e−γ′|i−s|−γ|s−j| + e−γ′|i+s|−γ|s+j|) ≤ C(γ′ − |γ|)−de−γ|i−j|,

and similar

|qDij | ≤
∑

s

(
|pAis| |qBsj | + |qAis| |pBsj |

)
≤ C(γ′ − |γ|)−de−γ|i+j|.
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So ‖|D‖|+γ ≤ C(γ′ − |γ|)−d.
The three remaining estimates follow from this one and (1.16). For example,

if A ∈ M+
γ and B ∈ M−

γ , then we write AB as Υ
(
(ΥA)B

)
. We see that

AB ∈ M−
γ and satisfies the desired estimate.

2 Töplitz–Lipschitz matrices and operators

2.1 Definitions and examples

In this section we study operators A = (Aab) ∈ M c
γ which possess additional

properties TL1 – TL3:
TL1. For any a, b1, b2 ∈ Zd, a &= 0, the two limits

A∞±
a,b1,b2

= lim
t→∞, ta∈Zd

A(ta+b1)±(ta+b2) (2.1)

exist and are finite.
TL2. There exists Λ ≥ 6 such that

A(a, b1, b2; Λ) = max
(
A+(a, b1, b2; Λ), A−(a, b1, b2; Λ) < ∞,

where
A±(a, b1, b2; Λ) = sup{t|A(ta+b1)±(ta+b2) − A∞±

a,b1,b2
|} ,

and the supremum is taken over all t > 0 such that

|ta + bj | ≥ Λ(1 + |a| + |bj|)|a|, j = 1, 2. (2.2)

Let us define

〈A〉γ, Λ = sup eγ|b1−b2|A(a, b1, b2; Λ) ,

where the supremum is taken over all a, b1, b2 ∈ Zd, a &= 0.
TL3. For some |γ| ≤ 1 we have

‖|A‖|γ,Λ := ‖|A‖|γ + 〈A〉γ, Λ < ∞ .

We denote

M c
γ,Λ = {A ∈ M c

γ | ‖|A‖|γ,Λ < ∞} , Mγ,Λ = M c
γ,Λ ∩ Mγ .

These are a complex and a real Banach spaces. The norm ‖|A‖|γ,Λ grows when
γ increases or Λ decreases. So

M c
γ1, Λ1

⊂ M c
γ2, Λ2

if γ1 ≥ γ2, Λ1 ≤ Λ2

Remark. For infinite matrices whose entries are elements of a Banach algebra,
the spaces M c

γ,Λ are defined by the same relations. All properties of the spaces
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M c
γ,Λ which we discuss below, remain true under this generalisation, with the

same proof.

Clearly, if A ∈ M c
γ,Λ and sj = ta + bj satisfies (2.2) for j = 1, 2, then

As1±s2 = A∞±
a, b1, b2

+ t−1O(1)A(a, b1, b2; Λ). (2.3)

Here and below O(1) stands for a function of t, a, b1 and b2, bounded by one in
modulus if (2.2) holds. The first term in the r.h.s. may be bounded in terms of
‖|A‖|γ,Λ. Indeed, since for t 6 1 we have [(ta+ b1)± (ta+ b2)] = |b1 − b2|, then

|A∞±
a,b1,b2

| = lim
t→∞

|A(ta+b1)±(ta+b2)| ≤ e−γ|b1−b2|‖|A‖|γ ∀ 0 &= a, b1, b2 ∈ Zd .

(2.4)
For a ∈ Zd \ {0}, Λ ≥ 6 and t ≥ 0 we set

Oa
t (Λ) =

⋃

b∈Zd

{(ta + b) | |ta + b| ≥ Λ(1 + |a| + |b|)|a|}.

Note that sets Oa
t1 , Oa

t2 with t1 &= t2 may intersect each other.
We have

(ta + b) ∈ Oa
t (Λ) ⇒ t ≥ (Λ− 1)(1 + |a| + |b|) (2.5)

and
Oa

t (Λ1) ⊂ Oa
t (Λ2) if Λ1 > Λ2. (2.6)

If s = ta + b ∈ Oa
t (Λ), then |b| ≤ |s|

Λ|a| ≤
t|a|+|b|

Λ|a| . Therefore,

|b| ≤ t

Λ− 1
. (2.7)

Let ta + bj ∈ Oa
t (Λ), j = 1, 2. Then

|ta| ≥ Λ(1 + |a| + |bj |)|a| − |bj | > |bj |(Λ− 1),

and 2|ta| > (Λ− 1)(|b1| + |b2|. Hence,

|2ta + b1 + b2| > (Λ− 2)(|b1| + |b2|). (2.8)

Since |b1− b2| ≤ |b1|+ |b2| and Λ ≥ 3, then |2ta+ b1 + b2| > |b1− b2|. Therefore,

[(ta + b1) − (ta + b2)] = [(ta + b1) − (−ta − b2)] = |b1 − b2|
∀(ta + b1), (ta + b2) ∈ Oa

t (Λ). (2.9)

Similar,
〈(ta + b), ta〉 ≥ |ta|(|ta| − |b|) > 0 (2.10)

if ta + b ∈ Oa
t (Λ).
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Lemma 2.1. Let Λ1 − 3 ≥ Λ2 ≥ 6 and s1 = ta + b1 ∈ Oa
t (Λ1), s2 = ta + b2 &∈

Oa
t (Λ2). Then

|s1 − s2| ≥ t

(
1

Λ2 + 1
− 1
Λ1 − 1

)
> t

Λ1 − Λ2 − 2
Λ2

1

. (2.11)

Proof. Let us denote Λ′
1 = Λ1 − 1 and Λ′

2 = Λ2 + 1. Since s1 ∈ Oa
t (Λ1) and

Λ1|a| − 1 ≥ Λ′
1|a|, then

|b1| ≤
t|a| − Λ1|a|(1 + |a|)

Λ1|a| − 1
≤ t − Λ1(1 + |a|)

Λ′
1

≤ t

Λ′
1

− (1 + |a|).

Since s2 /∈ Oa
t (Λ2) and Λ2|a| + 1 ≤ Λ′

2|a|, then

|b2| ≥
t|a| − Λ2|a|(1 + |a|)

Λ2|a| + 1
≥ t − Λ′

2(1 + |a|)
Λ′

2

≥ t

Λ′
2

− (1 + |a|).

As |s1 + s2| ≥ |b2| − |b1|, then (2.11) follows.

Lemma 2.2. If under the assumptions of Lemma 2.1 〈a, s2〉 ≥ 0, then

[s1 − s2] ≥ tΛ−2
1 . (2.12)

Proof. Due to (2.11), |s1 − s2| ≥ r.h.s. of (2.12), so we only have to estimate
from below |s1 + s2|. Let us set m = 8|b1||a|−19, where 8x9 stands for the
smallest integer ≥ x. We rewrite s1 as

s1 = (t − m)a + b′1, b′1 = b1 + ma.

Clearly,
〈a, b′1〉 ≥ 0. (2.13)

Due to (2.7), |b1| ≤ t
Λ−1 . Therefore

m ≤
⌈ t

|a|(Λ− 1)

⌉
<

2t

|a|(Λ− 1)
≤ t

4

(we use (2.5) to get the second inequality and use that Λ ≥ Λ′ +Λ∆ ≥ 9 to get
the third one). Hence, t − m ≥ 3

4 t. We have

|s1 + s2|2 = |s2|2 + |(t − m)a|2 + |b′1|2 + 2t〈a, s2〉 + 2〈b′1, s2〉 + 2t〈b′1, a〉.

Since 〈a, s2〉 ≥ 0 by assumption, then using (2.13) we get that

|s1 + s2|2 ≥ |s2|2 + |(t − m)a|2 + |b′1|2 + 2〈b′1, s2〉 = (t − m)2|a|2 + |s2 + b′1|2.

Using that t − m ≥ 3
4 t we get (2.12).
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Elements of the space

M c
TL =

⋃

|γ|≤1,Λ≥6

M c
γ,Λ

are called Töplitz–Lipschitz matrices.1 The linear operators which they define
are called Töplitz–Lipschitz operators.

Example 2.3. (Töplitz matrices, see [HS78].) Let A : Zd → R be a function
with compact support, and

As1 s2 = A(s1 − s2).

Then A(ta+b1)−(ta+b2) = A(2ta+b1+b2) vanishes if t 6 1, and A(ta+b1) (t a+b2) =
A(b1 − b2). So TL1 holds and

A∞−
a,b1,b2

= 0, A∞+
a,b1,b2

= A(b1 − b2).

The properties TL2 and TL3 obviously hold, so Töplitz matrices belong to all
spaces Mγ,Λ.

In particular, the identity matrix is Töplitz with A = 1{0}. In this case
A(ta+b1) (ta+b2) − A∞+

a,b1,b2
= 1{0}(2ta + b1 + b2) = 0 since |2ta + b − 1 + b2| > 0.

This inequality is obvious if b1 = b2 = 0, otherwise it follows from (2.8). So,
〈id〉γ,Λ = 1 for any |γ| ≤ 1,Λ ≥ 6.
Example 2.4. (Hankel matrices, see [HS78].) Let As1s2 = A(s1 + s2), where A
is a function on Zd with compact support. Now

A∞+
a,b1,b2

≡ 0, A∞−
a,b1,b2

= A(b1 − b2).

Again, relations TL1-TL3 hold for all (admissible) γ and Λ, so the Hankel
matrices also belong to all spaces Mγ,Λ.

Example 2.5. (Compactly supported matrices). Let As1 s2 be a matrix such
that As1 s2 = 0 if |s1|+ |s2| ≥ CA for a suitable constant CA. This is a Töplitz–
Lipschitz matrix such that 〈A〉γ, Λ = 0, if Λ is sufficiently large.

Example 2.6. (Tensor product of vectors). Let y1, y2 ∈ Yγ = Yγ,m∗ , where γ ≥ 0
and m∗ ≥ 1. We define A = y1 ⊗ y2, i.e. Ass′ = y1

sy2
s′ . Then

|Ass′ | ≤ ‖y1‖γ‖y2‖γe−γ(|s|+|s′|)〈s〉−m∗〈s′〉−m∗ .

So A∞±
a,b1,b2

= 0. Due to (2.2), (2.5) and (2.9), for any ta + bj ∈ Oa
t (Λ), j = 1, 2,

Λ ≥ 6, we have

|ta + bj | ≥ t

(
1− 1

Λ− 1

)
≥ 1

2
t, t ≥ 2(Λ− 1), |ta + b1|+ |ta + b2| ≥ |b1 − b2|.

1It would be more consistent to call these matrices Hankel–Töplitz–Lipschitz (see below
Examples 2.3, 2.4), reserving the name Töplitz–Lipschitz for the matrices, defined below in
Section 2.3. Unfortunately, the former name is hardly acceptable.
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So we get the estimate

|A(ta+b1)±(ta+b2)| ≤ ‖y1‖γ‖y2‖γ4t−2e−γ(|ta+b1|+|ta+b2|)

≤ ‖y1‖γ‖y2‖γt−12(Λ− 1)−1e−γ|b1−b2|.

That is,
〈A〉γ,Λ ≤ 2(Λ− 1)−1‖y1‖γ‖y2‖γ . (2.14)

For matrices, formed by 2×2–blocks, the right definition of Töplitz–Lipschitz
matrices in the spaces M±

γ (see section 1.4) is the following. Take any A ∈ M+
γ .

Then
(pA)∞−

a,b1,b2
≡ 0 , (qA)∞+

a,b1,b2
≡ 0 .

Accordingly, for A ∈ M+
γ we define

〈A〉+γ, Λ = max
(

sup
a*=0,b1,b2∈Zd

eγ|b1−b2|(pA)+(a, b1, b2; Λ) ,

sup
a*=0,b1,b2∈Zd

eγ|b1−b2|(qA)−(a, b1, b2; Λ)
)
,

and
‖|A‖|+γ,Λ = ‖|A‖|+γ + 〈A〉+γ, Λ .

Finally, we set

M+c
γ,Λ = {A ∈ M+c

γ | ‖|A‖|+γ,Λ < ∞} , M+
γ,Λ = M+c

γ,Λ ∩ Mγ .

More on the spaces M+c
γ, Λ see in [EK05], section on the Töplitz–Lipschitz natri-

ces.

2.2 Multiplication of the Töplitz–Lipschitz matrices

The space M c
TL is linear. In this section we show that M c

TL also is an algebra.
The corresponding result follows from

Theorem 2.7. Let A ∈ M c
γ′,Λ′ and B ∈ M c

γ′,Λ for some γ′ > 0, γ ∈ [−1, 1] and
Λ′ ≥ 6. Then

‖|AB‖|γ,Λ ≤ C‖|A‖|γ′,Λ′ ‖|B‖|γ,Λ′γ−d−1
∆ Λ2, (2.15)

‖|BA‖|γ,Λ ≤ C‖|A‖|γ′,Λ′ ‖|B‖|γ,Λ′γ−d−1
∆ Λ2, (2.16)

provided that
γ′ ≥ |γ| + 2γ∆, Λ ≥ Λ′ + 3 , (2.17)

where γ∆ > 0. Moreover,

(AB)∞+
a, b1b2

=
∑

c

(A∞+
a, b1, cB

∞+
a, c, b2

+ A∞−
a, b1, cB

∞−
−a,−c,−b1

), (2.18)

and the elements (AB)∞−
a, b1, b2

are given by similar formulas.
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Remark. Note that in difference with Theorem 1.5, now we estimate the
product AB in a norm, which is strictly weaker than both the norm, used for
A and the norm, used for B.

Proof. We may assume that

‖|A‖|γ′,Λ′ = ‖|B‖|γ,Λ′ = 1 , (2.19)

We have to estimate the matrix elements (AB)s1±s2 , where

sj = ta + bj ∈ Oa
t (Λ), j = 1, 2. (2.20)

Since the cases s1 + s2 and s1 − s2 are similar, we restrict ourselves to the sign
plus.

We have
(AB)s1s2 =

∑

s∈Zd

Ds, Ds = As1sBss2 .

Let us denote by Σ+
a and Σ−

a the half-spaces

Σ+
a = {s | |s − ta| ≤ |s + ta|} = {s | 〈s, a〉 ≥ 0}, (2.21)

Σ−
a = {s | |s − ta| > |s + ta|} = {s | 〈s, a〉 < 0}, (2.22)

By (2.10)
Oa

t := Oa
t (Λ′) ⊂ Σ+

a , O−a
t := O−a

t (Λ′) ⊂ Σ−
a .

Then
(AB)s1s2 =

∑

s∈Oa
t

Ds +
∑

s∈O−a
t

Ds +
∑

s∈Σt

Ds, (2.23)

where Σt = Zd \ (Oa
t ∪ O−a

t ) = (Σ+
a \ Oa

t ) ∪ (Σ−
a \ O−a

t ). Writing s ∈ Oa
t as

s = at + c and using (2.3), (2.19) we get

Ds = A∞+
a, b1, cB

∞+
a, c, b2

+ 3t−1O(1)e−γ′|b1−c|−γ|c−b2|

(note that t > 1 due to (2.5)). Hence,
∑

s∈Oa
t

Ds =
∑

{c|at+c∈Oa
t }

A∞+
a, b1, cB

∞+
a, c, b2

+ Cγ−d
∆ t−1O(1)e−γ|b1−b2|. (2.24)

Let c ∈ Zd be such that at + c &∈ Oa
t . Then, by Lemma 2.1,

|c − bj | ≥ tΛ−2, j = 1, 2. (2.25)

Therefore, using (2.4) and Lemma 1.4 we get
∣∣∣∣

∑

{c|at+c *∈Oa
t }

A∞+
a, b1, cB

∞+
a, c, b2

∣∣∣∣ ≤ e−γ∆tΛ−2 ∑

c

e−(|γ|+γ∆)|b1−c|−γ|c−b2|

≤ Ct−1γ−1
∆ Λ2γ−d

∆ e−γ|b1−b2| . (2.26)
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So we can replace in (2.24) the summation over {c | at + c ∈ Oa
t } by the

summation over Zd:
∑

s∈Oa
t

Ds =
∑

c∈Zd

A∞+
a, b1, cB

∞+
a, c, b2

+ C1t
−1O(1)γ−d−1

∆ Λ2e−γ|b1−b2|. (2.27)

Similar,
∑

s∈O−a
t

Ds =
∑

c∈Zd

A∞−
a, b1, cB

∞−
−a,−c,−b2

+ C1t
−1O(1)γ−d−1

∆ Λ2e−γ|b1−b2|. (2.28)

It remains to estimate the third sum in (2.23). Let us consider a term Ds

with s ∈ Σt. We assume first that s ∈ Σ+
a \ Oa

t and write it as s = at + c. By
Lemma 2.2, [s − s1] ≥ tΛ2. This estimate and (2.19), (2.17) imply that

|Ds| ≤ e−γ′[s1−s]−γ[s−s2] ≤ e−γ∆tΛ−2
e−(|γ|+γ∆)[s1−s]−γ[s−s2].

Estimating similar the terms Ds with s ∈ Σ−
a \ O−a

t and using Lemma 1.6 we
get that

∣∣
∑

s∈Σt

Ds

∣∣ ≤ e−γ∆tΛ−2 ∑

s∈Zd

e−(|γ|+γ∆)[s1−s]−γ[s−s2] (2.29)

= Ct−1O(1)γ−d−1
∆ e−γ[s1−s2]Λ2.

Due to (2.27), (2.28) and (2.29) the limit (AB)∞+
a, b1, b2

exists and is given by the
formulas (2.18). Moreover,

(AB)s1s2 = (AB)∞+
a, b1, b2

+ C1t
−1O(1)γ−d−1

∆ Λ2e−γ|b1−b2| .

So
〈AB〉γ, Λ ≤ C‖|A‖|γ′,Λ′ ‖|B‖|γ,Λ′ γ−d−1

∆ Λ2 .

This estimate and (1.12) imply (2.15).
The estimate (2.16) follows from (2.15) since 〈Ct〉γ,Λ = 〈C〉γ, Λ and ‖|Ct‖|γ

=‖|C‖|γ for any matrix C and its transposed matrix Ct, and since (AB)t =
BtAt.

Relations (2.18) (and their analogy for the limits (AB)∞−
a, b1, b2

) immediately
imply the following corollaries:

Corollary 2.8. If A∞±
a, b1, b2

and B∞±
a, b1, b2

are independent of a, then (AB)∞±
a, b1, b2

are independent of a as well.

Corollary 2.9. If A∞±
a, b1,b2

and B∞±
a, b1, b2

depend on b1, b2 only through b1 − b2,
then (AB)∞±

a, b1, b2
also possesses this property.

Theorem 2.7′. Assertions of Theorem 2.7 remain true if the spaces M c
γ,Λ are

replaced by M+c
γ,Λ and the norms ‖| · ‖|γ,Λ – by the norms ‖| · ‖|+γ,Λ.
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Proof. Let us write A and B as A = pA + qA and B = pB + qB. To estimate,
say, the norm of (pA)(pB) we repeat the proof of Theorem 2.7, simplifying it a
bit. Namely, we write

(
(pA)(pB)

)
s1s2

=
∑

s∈Oa
t

Ds +
∑

s/∈Oa
t

Ds .

Any s = at + c /∈ Oa
t satisfies the estimate (2.25). So we can replace the second

sum by (2.27) and proceed as in the proof of Theorem 2.7 (omitting the sum
(2.28)). Other three terms in AB can be estimates similar.

2.3 A version of the construction.

Let Mc
γ be the set of complex matrices with exponential decay of elements off

the diagonal. I.e., A ∈ Mc
γ if

|A|γ := sup
s,s′

eγ|s−s′||Ass′ | < ∞.

Clearly, Mc
γ ⊂ M c

γ . If A ∈ Mc
γ , then A∞−

a,b1,b2
≡ 0. For any Λ ≥ 6 we define the

spaces Mc
γ,Λ as in TL1–TL3, but removing the ‘-’ case. That is, now

A(a, b1, b2; Λ) = sup{t|A(ta+b1) (ta+b2) − A∞+
a,b1,b2

|},

etc. We define the norm in Mc
γ,Λ as | · |γ + 〈·〉γ,Λ, where the quasi-norm 〈·〉γ,Λ

is defined as in TL3 with the case ‘-’ being dropped.
Straightforward analysis of the proof of Theorem 2.7 shows that its asser-

tions remain true for matrices from the spaces Mc
γ,Λ. Evoking the Remark in

Section 1.3 we get that

|AB|γ,Λ + |BA|γ,Λ ≤ Cγ−d−1
∆ Λ2|A|γ′,Λ′ |B|γ,Λ′ , (2.30)

provided that (2.17) holds.
Similar, the assertions of Theorem 3.4 below remains true if we replace the

spaces M c
... by Mc

..., and the norms ‖| · ‖|... by | · |....

2.4 Double Töplitz–Lipschitz spaces.

We define the space M(M c
γ,Λ) as the set of all matrices A ∈ M c

γ,Λ such that the
limiting matrices A∞+

a and A∞−
a with the elements A∞±

a,b1,b2
belong to the space

Mc
γ,Λ for all a &= 0, and

∣∣ ‖|A‖|γ,Λ

∣∣ := ‖|A‖|γ,Λ + max
±

sup
a*=0

〈A∞±
a 〉γ,Λ < ∞. (2.31)

Elements of the space M(M c
TL) = ∪|γ|≤1,Λ≥6M(M c

γ,Λ) are called double Töplitz–
Lipschitz matrices.
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Example 2.10. Let y1, y2 ∈ Yγ and A = y1 ⊗ y2 (see Example 2.6). Then
A ∈ M(M c

γ,Λ) for each Λ since A∞±
a = 0.

Remark. A natural generalisation of the construction above allows to define
the spaces M c

γ1,Λ1
(M c

γ,Λ). Theorems 2.11 and 3.8, dealing with the double
Töplitz–Lipschitz matrices, admit obvious reformulations for the matrices from
these new spaces.

Theorem 2.11. If A ∈ M(M c
γ′,Λ′), B ∈ M(M c

γ,Λ′) and (2.17) holds, then
∣∣ ‖|AB‖|γ,Λ

∣∣ +
∣∣ ‖|BA‖|γ,Λ

∣∣ ≤ C1γ
−d−1
∆ Λ2

∣∣ ‖|A‖|γ′,Λ′
∣∣ ×

∣∣ ‖|B‖|γ,Λ′
∣∣. (2.32)

Proof. The assertion follows from Theorem 2.7 and (2.18), (2.30).

Finally, we note that we can define in a similar way the spaces of n-times
Töplitz–Lipschitz matrices. As for the cases n = 1 and n = 2, these spaces
are invariant with respect to multiplication of matrices as well as with respect
to taking the flow-maps of the nonautonomous linear systems with coefficients
from these spaces.

3 Differential equations with
the Töplitz–Lipschitz coefficients

3.1 Equations with coefficients in M c
γ .

For some 0 < γ′ ≤ 1, let A(t) ∈ M c
γ′ , t ≥ 0, be a linear operator which

continuously depends on t, and

‖|A(t)‖|γ′ ≤ µ ∀ t, (3.1)

where 0 < µ ≤ 1. We consider the linear equation

ẏ(t) = A(t)y(t), (3.2)

and denote by St2
t1 the corresponding flow-maps:

St2
t1 y(t1) = y(t2),

where y(t) is a solution of (3.2). If t1 = 0, we abbreviate St
0 = St.

By Theorem 1.2, A(t) is a bounded linear operator in any space Y c
γ , 0 <

γ < γ′, continuous in t. So St
t1 is a bounded linear operator in each space Y c

γ as
above, C1-smooth in t. Let us denote S̃(t) = St

t1− id. The operator S̃ satisfies
the operator equation

d

dt
S̃(t) = A(t)(S̃(t) + id), S̃(t1) = 0. (3.3)
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By Theorem 1.5, the map S → A(t)S defines a bounded linear operator in the
space M c

γ . Accordingly, we will view (3.3) as a linear differential equation in
this matrix space.

The function t 0→ ‖S̃(t)‖|γ is Lipschitz as a composition of two Lipschitz
maps. So it is differentiable at almost every point. At such a point t, by the
triangle inequality we have

∣∣‖S̃(t + ε)‖|γ − ‖S̃(t)‖|γ
∣∣ ≤ ‖S̃(t + ε) − S̃(t)‖|γ .

Dividing this relation by ε and sending ε to zero we get that

∣∣ d

dt
‖|S̃(t)‖|γ

∣∣ ≤ ‖| d

dt
S̃(t)‖|γ a.e.

Due to (3.1), (3.3), the last inequality and Theorem 1.5 we have

∣∣ d

dt
‖|S̃(t)‖|γ

∣∣ ≤ ‖|A(t)
(
S̃(t) + id

)
‖|γ ≤ µ + Cµγ−d

∆ ‖|S̃(t)‖|γ , γ∆ = γ′ − γ.

Since S̃(t1) = 0, then the Granwall inequality implies the estimate

‖|S̃(t)‖|γ ≤ C−1γd
∆

(
exp

(
Cµγ−d

∆ |t − t1|
)
− 1

)
.

Assuming that Cµγ−d
∆ ≤ 1 and |t − t1| ≤ 1, we have ‖|S̃(t)‖|γ ≤ C1µ|t − t1|.

We have got the following result:

Theorem 3.1. Let a linear operator A(t) ∈ M c
γ′ be continuous in t and satisfies

(3.1), and let γ ∈ [0, γ′) satisfies

Cµ(γ′ − γ)−d ≤ 1, (3.4)

where C is a sufficiently large constant. Then for any t1, t2 ≥ 0 such that
|t2 − t1| ≤ 1 we have

‖|St2
t1 − id ‖|γ ≤ Cµ|t2 − t1|.

Repeating the arguments above and using the remark to Theorem 1.5, we
get the following result which we will need later:

Theorem 3.2. Let us assume that |Ass′ (t)| ≤ µe−γ′|s−s′| for all s and s′, where
γ′ > γ > 0 and (3.4) holds. Then for |t2 − t1| ≤ 1 we have

|(St2
t1 )ss′ − δs,s′ | ≤ Cµ|t1 − t2|e−γ|s−s′| ∀ s, s′.

Let X be the algebra of m×m real matrices (m ≥ 2), and Xc be the algebra
of complex matrices. Let A(t) ∈ MXc

γ be a linear operator which continuously
depends on t. Then it defines the linear differential equation (3.2), where y(t)
is an element of the space of sequences (ys ∈ Cm, s ∈ Zd). Again, it is easy to
see that the arguments above apply to prove that the assertions of Theorem 3.1
remain true if A(t) ∈ MXc

γ′ , and St2
t1 is an operator in MXc

γ . If A(t) is a matrix,
formed by 2 × 2-blocks (see section 1.4), we can specify the result:
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Theorem 3.3. Let in equation (3.1) the operator A(t) is such that ‖|A(t)‖|+γ′ ≤
µ for all t, for some 0 < γ′ ≤ 1. Let γ ∈ [0, γ′) satisfies Cµ(γ′−γ)−d ≤ 1, for a
sufficiently large constant C. Then for t1, t2 ≥ 0 such that |t1 − t2| ≤ 1 we have

‖|St2
t1 − id ‖|+γ ≤ C1µ|t2 − t1|.

Proof. It is sufficient to repeat the proof of Theorem 3.1, using Theorem 1.8
instead the Theorem 1.5.

3.2 Equations with the Töplitz–Lipschitz coefficients

Let A(t) ∈ M c
γ′, Λ′ , where γ′ ∈ (0, 1], Λ′ ≥ 3, be a linear operator, continuous

in t and such that
‖|A(t)‖|γ′, Λ′ ≤ µ ∀t. (3.5)

We continue the study of equation (3.2). Due to Theorem 1.4 the flow-maps St,
corresponding to this equation, are bounded linear operators in any space M c

γ ,
0 ≤ γ < γ′. Now we show that they also are bounded in the Töplitz–Lipschitz
norms ‖| · ‖|γ,Λ, where Λ > Λ′:

Theorem 3.4. Let the operator A(t) satisfies (3.5), and

γ ≥ 0, γ∆ > 0, γ′ = γ + 2γ∆ ; Λ′ ≥ 6 , Λ ≥ Λ′ + 6 . (3.6)

Then for t1, t2 such that |t1 − t2| ≤ 1 we have

‖|St2
t1 − id ‖|γ,Λ ≤ Cµ|t1 − t2|γ−d−1

∆ Λ2,

provided that
C1µγ

−d
∆ ≤ 1 (3.7)

for a sufficiently large constant C1.

Proof. To simplify notations we assume that t1 = 0 and re-denote t2 by t, |t| ≤ 1.
Now we cannot repeat the simple proof of Theorem 3.1 since the assertion of
Theorem 2.7 on multiplication of Töplitz–Lipschitz matrices is weaker than that
of Theorem 1.5 (see the remark to the former theorem). Instead we estimate
directly the quasinorm 〈St − id〉γ,Λ. To do this we have to study the matrix
elements

(St − id)±s1 s2 , sj = τa + bj ∈ Oa
τ (Λ), τ 6 1.

Let us consider a solution y(t) of (3.2) such that

y(0) = y0 = ls2 ,

(the vectors ls are defined in (1.6)). Then

y(t) = (ys(t), s ∈ Zd), ys(t) = (St)ss2 . (3.8)

20



As |t| ≤ 1, then by Theorem 3.1 we have |ys(t)− δs, s2 | ≤ Cµe−(γ+γ∆)[s−s2] . In
particular, since s1, s2 ∈ Oa

τ (Λ), then
∑

s/∈Oa
τ (Λ′)∪O−a

τ (Λ′)

∣∣∣A(t)±s1sys

∣∣∣ ≤ Cµ
∑

s/∈Oa
τ (Λ′)∪O−a

τ (Λ′)

e−γ′[±s1−s]−(γ+γ∆)[s−s2]

≤ Cµe−τγ∆Λ−2 ∑

s∈Zd

e−(γ+γ∆)([s1−s]+[s−s2])

≤ Cµγ−d
∆ e−τγ∆Λ−2

e−γ|b1−b2| =: Φ(τ, b1, b2).(3.9)

Here we used Lemmas 2.2 and 1.6 to get, respectively, the second and the third
inequality, and used (2.9) to replace [s1 − s2] by |b1 − b2|.

We define sets Σ+ and Σ− by relations (2.21) and (2.22) with t replaced by
τ , and represent any s ∈ Zd in the form

s =

{
τa + b if s ∈ Σ+,

−τa − b if s ∈ Σ−.

Noting that Σ+ = −Σ− ∪ Σ0, where Σ0 = {s | 〈s, a〉 = 0}, we define y(t) =
{ys(t) ∈ R2, s ∈ Σ+} as follows:

ys(t) =

{
(ys(t), y−s(y))t, s ∈ −Σ−,

(ys(t), 0)t, s ∈ Σ0.

We denote by A = {As1s2 , s1, s2 ∈ Σ+} the matrix, formed by the 2 × 2-
blocks

As1s2 =
(

As1s2 As1−s2

A−s1s2 A−s1−s2

)
,

and re-write the equation for y(t) as

ẏs1 =
∑

s∈Σ+

As1sys, s1 ∈ Σ+.

By the assumptions TL2 and TL3 there exist block-matrices, formed by 2 × 2-
blocks, A∞(a) = {A∞(a)b1b2} and A∆(τ, a) = {A∆(τ, a)b1b2}, such that

As1s2 = A∞(a)b1b2 + τ−1A∆(τ, a)b1b2 ,

and
∣∣∣A∞(a)b1b2

∣∣∣,
∣∣∣A∆(τ, a)b1b2

∣∣∣ ≤ 〈A〉γ′,Λ′e−γ′|b1−b2| ≤ µe−γ′|b1−b2|, (3.10)

if s1, s2 ∈ Oa
τ (Λ′) (cf. (2.3)).

Let us set
zs1 =

∑

s∈Σ+\Oa
τ (Λ′)

As1sys.
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By (3.9) we have
|zs1(t)| ≤ Φ(τ, b1, b2). (3.11)

Using the introduced notations we write the equation for y as

ẏs1 =
∑

s=τa+c∈Oa
τ (Λ′)

(
A∞(a)b1c + τ−1A∆(τ, a)b1c

)
ys + zs1 , y(0) = ls2

(
1
0

)
.

Let us seek the solution y of this equation as an ansatz

yτa+b1(t) = y0
b1(t) + τ−1y1

b1(t), (3.12)

where y0
b1

= y0(a)b1 , y1
b1

= y1(a, τ)b1 , and y0 = {y0
b(t), b ∈ Zd} satisfies

ẏ0 = A∞(a)y0, y0(0) = lb2
(

1
0

)
. (3.13)

Due to (3.10), (3.5) and Theorem 3.2,

∣∣∣y0
c(t) − δc,b2

(
1
0

) ∣∣∣ ≤ Cµ|t|e−γ|c−b2|, c, b2 ∈ Zd (3.14)

(as before, |t| ≤ 1).
For y1 we get the equation

ẏ1
b1 =

∑

c

(
A∞(a)b1c + τ−1A∆(τ, a)b1c

)
1Oa

τ (Λ′)(τa + c)y1
c

+
∑

c

A∆(τ, a)b1c1Oa
τ (Λ′)(τa + c)y0

c + τzs1 , y1(0) = 0. (3.15)

Due to (3.10), (3.14) and (1.9),
∣∣∣
∑

c

A∆(τ, a)b1c1Oa
τ (Λ′)(τa + c)y0

c

∣∣∣ ≤ Cµe−γ|b1−b2|γ−d
∆ ,

and due to (3.11),
|τzs1 (t)| ≤ Cµγ−d−1

∆ Λ2e−γ|b1−b2|.

So denoting by Zb1(t) the sum of the last two terms in the r.h.s. of equation
(3.15), we have from the last two estimates that

|Zb1(t)| ≤ CµΛ2γ−d−1
∆ e−γ|b1−b2|. (3.16)

We re-write (3.15) as

ẏ1
b =

∑

c

((
A∞(a)bc + τ−1A∆(τ, a)bc

)
1Oa

τ (Λ′)(τa + c)
)
y1

c + Zb, y1(0) = 0.

(3.17)
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Let St2
t1 be the flow-maps of the homogeneous version of this equation (i.e., of

equation (3.17) with Z = 0). Then due to (3.10), (3.7) and Theorem 3.2,
∣∣∣
(
St2

t1 − id
)

b1b2

∣∣∣ ≤ Cµ|t|e−(γ+γ∆)|b1−b2|.

Since by (3.17) y1(t) =
∫ t
0 St

θZ(θ) dθ, then due to (3.16), the remark to Theo-
rem 1.5 and (3.7) we have

|y1
b1(t)| ≤ Cµ|t|(1 + µγ−d

∆ )γ−d−1
∆ Λ2e−γ|b1−b2| ≤ C1µ|t|γ−d−1

∆ Λ2e−γ|b1−b2|.
(3.18)

By (3.8), (St − id)±s1s2 = y±s1(t)− δ±s1,s2 . Using (3.12), (3.14) and (3.18)
we get that

(
(St − id)s1s2

(St − id)−s1s2

)
= y0(a)b1(t) − δb1,b2

(
1
0

)
+ τ−1y1(a, τ)b1 (t), (3.19)

where
∣∣∣y0(a)b1(t) − δb1,b2

(
1
0

) ∣∣∣ ,
∣∣y1(a, τ)b1 (t)

∣∣ ≤ Cµ|t|γ−d−1
∆ Λ2e−γ|b1−b2|,

if s1, s2 ∈ Oa
τ (Λ′). So the quasinorm 〈St − id〉γ,Λ is bounded by Cµ|t|γ−d−1

∆ Λ2.
This estimate and Theorem 3.1 imply the desired upper bound for ‖|St2

t1 −
id‖|γ,Λ.

The relation (3.19), satisfied by the matrix St, implies

Proposition 3.5. The limit (St − id)∞+
a,b1,b2

is given by the first component of
the vector y0(a)b1(t) minus δb1,b2 , while the limit (St − id)∞−

a,b1,b2
is given by the

second component of y0(a)b1(t), provided that we replace a, b1 and b2 by −a,−b1

and −b2, respectively.

Since y0(a)(t) is a solution of linear equation (3.13), then we have the fol-
lowing corollaries:

Corollary 3.6. If A(t)∞±
a, b1, b2

is independent of a, then for any t1, t2 the limits
(St2

t1 )∞±
a, b1, b2

are independent of a as well.

Corollary 3.7. If A(t)∞±
a, b1,b2

depends on b1, b2 only through b1 − b2, then
(St2

t1 )∞±
a, b1, b2

also possesses this property.

For Töplitz–Lipschitz matrices, formed by 2 × 2–blocks, we have
Theorem 3.4′. The assertion of Theorem 3.4 remain true if we replace the
norms ‖| · ‖|γ,Λ by the norms ‖| · ‖|+γ,Λ.

Proof. Let us write A(t) = pA(t)+ qA(t), and denote by {Spt2
t1 } (by {Sqt2

t1 }) the
flow–maps, corresponding to the operator pA(t) (qA(t)). Repeating the proof
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of Theorem 3.4 (cf. the proof of Theorem 2.7′), we see that the maps Spt2
t1 and

Sqt2
t1 satisfy the desired estimate. Writing St2

t1 in terms of the maps Spt
τ and Sqt

τ

using the Trotter formula, e.g.

S1
0 = lim

N→∞

N−1∏

j=0

(
Sp (j+1)N−1

jN−1 · Sq (j+1)N−1

jN−1

)
,

we see that the maps St2
t1 also satisfy the estimate.

Now let us consider equation (3.2) with a double Töplitz–Lipschitz operator.

Theorem 3.8. Let the operator A(t) ∈ M(M c
γ′Λ′) is continuous in t and satis-

fies
∣∣ ‖|A(t)‖|γ′,Λ′

∣∣ ≤ µ . Then for t1, t2 such that |t1 − t2| ≤ 1 we have
∣∣ ‖|St2

t1 − id ‖|γ,Λ

∣∣ ≤ Cµ|t1 − t2|γ−d−1
∆ Λ2,

provided that (3.6) and (3.7) hold.

Proof. Due to Theorem 3.4, we only have to estimate the limiting matrices
(St2

t1 − id)∞±
a . By Proposition 3.5 the matrices (St

0)∞±
a are submatrices of the

matrix of flow-maps of the limiting equation (3.13). So the needed estimate
follows from Theorem 3.2.

4 Appendix: Estimates for certain Laplace
transforms.

In this appendix we prove inequalities (1.8) and (1.9) by majorasing their l.h.s.’s
by some Laplace integrals and next estimating these integrals. We start with
the first inequality.

Since 0 ≤ γ, γ∆ ≤ 1, then

∑

b

eγ|b|−(γ+γ∆)[a−b] ≤ C

∫

Rd

e−γ|z|−(γ+γ∆)[a−z] dz .

Denoting K = γ+γ∆
γ > 1 and arguing as in (1.13) (with a = 0), we estimate the

r.h.s. by

2C

∫

Rd

e−γ(|a−z|+K|z|) dz =: 2Cϕ(γ) .

Next, denoting by Φ(z) the function Φ(z) = |a − z| + K|z|, and denoting by
Φ∗(dz) the push-forward of the Lebesgue measure dz under the mapping Φ :
Rd → R+, we see that

ϕ(γ) =
∫ ∞

0
e−γt

(
Φ∗(dz)

)
(dt) .
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I.e., ϕ is the Laplace transform of the measure Φ∗(dz). Considering the distri-
bution function F ,

F (τ) = mes Qτ , Qτ = {z | Φ(z) ≤ τ} ,

we write this measure as Φ∗(dz) = dF (·). So

ϕ(γ) =
∫ ∞

0
e−γτ dF (τ) = γ

∫ ∞

0
e−γτF (τ) dτ . (4.1)

Let us first assume that a &= 0 and γ > 0. Then L := |a| ≥ 1. Introducing
in Rd a coordinate system such that the first orth is parallel to a, for any
z = (x, y) ∈ Rd = R × Rd−1 we have

Φ(z) = K|z| + |z − a| = Kr + |(x − L, y)| = Kr +
√

r2 + L2 − 2Lx, r = |z|.

Now let us write the set Qτ as

Qτ =
⋃

0≤t≤τ

Ot, Ot = {z | Φ(z) = t}.

A hypersurface Ot is formed by points z = (x, y), satisfying
√

r2 + L2 − 2Lx
= t − Kr. For any such a point z we have

t ≥ Kr , (4.2)

and
2Lx = r2 + L2 − (t − Kr)2 .

Since −r ≤ x ≤ r, then

−2Lr ≤ r2 + L2 − (t − Kr)2 ≤ 2Lr.

The second inequality implies (r−L)2 ≤ (t−Kr)2, and using (4.2) we get that

−(t − Kr) ≤ r − L ≤ t − Kr.

By the first of these inequalities, Kr − r ≤ t − L. Or

r ≤ t − L

K − 1
, (4.3)

since K > 1. Therefore Ot = ∅ if t < L. Accordingly,

F (τ) = 0 if τ < L.

If τ ≥ L, then (4.3) implies that Qτ ⊂ {|z| ≤ (τ − L)/(K − 1)}. So

F (τ) = mes Qτ ≤ κd (K − 1)−d(τ − L)d ,
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where κd is the volume of a 1-ball in Rd. Due to this estimate and (4.1) we
have

ϕ(γ) ≤ κd γ(K − 1)−d

∫ ∞

L
e−γτ (τ − L)d dτ

= κd γ(K − 1)−de−γL

∫ ∞

0
e−γxxd dx

= κd γ
−d(K − 1)−de−γL

∫ ∞

0
e−yyd dy .

That is
ϕ(γ) ≤ Cdγ

−d
∆ e−γ|a|.

This estimate was proved for a &= 0 and γ > 0. By continuity it also holds for
γ = 0. So (1.8) is proved if a &= 0.

If a = 0, then the l.h.s. in (1.8) is bounded by

C

∫

Rd

e−γ|z|−(γ+γ∆)|z| dz =C1

∫ ∞

0
rd−1e−(2γ+γ∆)r dr

=C1(2γ + γ∆)−d

∫ ∞

0
xd−1e−x dx,

and (1.8) also holds.

To prove (1.9) we first estimate the l.h.s. by the integral

C1

∫
eγ|z−b|−(γ+γ∆)|z| dz = C1

∫
e−γ(K|z|−|z−b|) dz =: C1ψ(γ) .

Denoting

Φ(z) = K|z| − |z − b|, F (τ) = mes {z | Φ(z) ≤ τ} ,

we see that Φ ≥ −|b| and that

ψ(γ) = γ

∫ ∞

−|b|
e−γτF (τ) dτ .

Analysis of this Laplace integral is similar to that of (4.1) an we omit it.
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