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Abstract

We prove that a linear d-dimensional Schrödinger equation with an x-
periodic and t-quasiperiodic potential reduces to an autonomous equation
for most values of the frequency vector. The reduction is made by means
of a non-autonomous linear transformation of the space of x-periodic func-
tions. This transformation is a quasiperiodic function of t.

-

1 Results.

We consider a linear Schrödinger equation on a d-dimensional torus with a non-
autonomous potential which is a quasiperiodic function of time:

u̇ = −i
(
∆u− εV (ϕ0 + tω, x;ω)u

)
, u = u(t, x), x ∈ Td = Rd/2πZd. (1.1)

Here 0 ≤ ε ≤ 1 and the frequency vector ω is regarded as a parameter: ω ∈ U ⊂
Rd, where U is an open subset of the cube {y ∈ Rd | |y| ≤ C}. The function
V (ϕ, x;ω), (ϕ, x, ω) ∈ Tn × Td × U , is C1-smooth in all its variables and is
analytic in (ϕ, x). For some ρ > 0 it analytically in ϕ, x extends to the domain

Tn
ρ × Td

ρ × U, Tn
ρ = {(a + ib) ∈ Cn/2πZn | |b| < ρ},

where it is bounded by C1, as well as its gradient in ω. We regard (1.1) as a linear
non-autonomous equation in the complex Hilbert space L2(Td) = L2(Td; C). By
〈·, ·〉 we denote the Hermitian L2-scalar product in L2(Td).

In this work we prove that eq. (1.1) reduces to constant coefficients for ‘most
values of the parameter ω’. The result is stated in the theorem below. There by
Hp(Td) and Hp(Td; R), p ∈ R, we denote the complex and real Sobolev spaces
with the norm ‖ · ‖p , where

‖u‖2
p =

∫
|(−∆ + 1)p/2u(x)|2 dx = 〈(−∆ + 1)pu, u〉,

and by ‖ · ‖p,p denote the norm in the space of linear operators in Hp. The
exponential functions {es | s ∈ Zd}, es(x) = (2π)−d/2eis·x, form a Hilbert
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basis of the space L2(Td) and form an orthogonal basis of each Sobolev space.
For any linear operator B between Sobolev spaces (real or complex) we denote
by (Bab, a, b ∈ Zd) its matrix with respect to this basis. By | · | we denote the
Euclidean norm and the operator-norms of finite-dimensional matrices.

Theorem 1.1. For any 0 < ε ≤ ε0, where ε0 > 0 is sufficiently small, there
exists a Borel set Uε ⊂ U , mes(U \ Uε) ≤ Kεκ, such that for ω ∈ Uε, ϕ ∈
Tn in the space L2(Td) exist a complex-linear isomorphism Ψ(ϕ) = Ψ(ϕ)ε,ω

which analytically depends on ϕ ∈ Tn
ρ/2 and a bounded Hermitian operator Q =

Qε,ω with the following property: a curve v(t) = v(t, ·) ∈ L2(Td) satisfies the
autonomous equation

v̇ = −i∆v + iεQv (1.2)

if and only if u(t, ·) = Ψ(ϕ0 + tω)v(t, ·) is a solution of (1.1).
The matrix (Qab) of operator Q satisfies

Qab = 0 if |a| 6= |b|. (1.3)

For any p ∈ N operators Q and Ψ(ϕ) meet the estimates

‖Q‖p,p = ‖Q‖0,0 ≤ K1 , (1.4)

‖Ψ(ϕ)− id ‖p,p ≤ εK2 ∀ϕ ∈ Tn
ρ/2. (1.5)

Moreover, Qε,ω and Ψ(ϕ)ε,ω are operator-valued Lipschitz functions of ω ∈ Uε

and
‖∇ωQ‖p,p ≤ K1 , ‖∇ωΨ(ϕ)‖p,p ≤ εK2, (1.6)

for all ϕ ∈ Tn
ρ/2 and a.a. ω ∈ Uε.

The positive constants ε0, K and k depend only on n, d, C, C1 and ρ, while
K1 and K2 also depend on ω and K2 depends on p.

Since operator Q is Hermitian and satisfies (1.3), then spectrum of the linear
operator in the r.h.s. of (1.2) is pure point and imaginary. So all solutions
v(t) ∈ L2(Td) of (1.2) are almost-periodic functions of t. Estimates (1.4), (1.5)
imply that these solutions are well localised in the Fourier presentation:

Corollary 1.2. For any p there exists ε′0 > 0 and K3 > 0 such that for ω ∈ Uε

every solution u(t) of (1.1) with ε ≤ ε′0 satisfies

(1−K3ε)‖u(0)‖p ≤ ‖u(t)‖p ≤ (1 + K3ε)‖u(0)‖p ∀ t . (1.7)

Apart from p, the constant ε′0 depends on n, d, C, C1 and ρ, while K3 also de-
pends on ω.

In particular, if u(0) = u(0, x) is a finite trigonometrical polynomial and
u(t, x) =

∑
us(t)eis·x, then

sup
t
|us(t)| ≤ Cp|s|−p ∀ s, ∀ p . (1.8)
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Such behaviour of solutions for a dynamical equation is called dynamical local-
isation.

Remark 1. The linear operators in the r.h.s. of linear Hamiltonian equations
(1.1) and (1.2) are complex-linear Hermitian transformations. So the flow-maps
of these equations are complex-linear, symplectic and unitary. The conjugating
transformations Ψ(ϕ) are complex linear. It can be shown that they also are
symplectic. Hence, they are unitary. So the conjugations respect all the three
structures, preserved by equations (1.1) and (1.2).

Remark 2. In fact, the constant K1 does not depend on ω. Moreover, if we
replace (1.5) by the weaker estimate

‖Ψ(ϕ)− id ‖p,p ≤
√

ε K ′
2 ∀ϕ ∈ Tn

ρ/2,

and similar with (1.6), then the constant K ′
2 can be chosen ω-independent. See

below footnote 3.

Remark 3 . The estimates (1.5)–(1.7) remain true with arbitrary p ≥ 0 if we
replace the Sobolev norms ‖ · ‖p and the operator norms ‖ · ‖p,p by the stronger
norm [·]p, where

[u]2p =
∑
s∈Zd

|us|2e2
(

ln(|s|+1)
)p

, u(x) =
∑
s∈Zd

use
is·x ,

and by the corresponding operator-norm [·]p,p. Again the constants K2,K3 and
ε′ depend on p. In particular, (1.8) remains true if we replace its r.h.s. by
C ′

p exp
(
−
(
ln(|s|+ 1)

)p) (p > 0 is any).

In the next section we derive Theorem 1.1 from an abstract theorem in [EK],
prove Corollary 1.2 and discuss Remark 3.

Related results. It was observed by N. Bogolyubov in 1960’s (see in [BMS69])
that KAM-technique apply to prove reducibility of non-autonomous finite-di-
mensional linear systems to constant coefficient equations. Such results are
also contained in [Mos67]. Since then establishing the reducibility of finite-
dimensional systems by means of the KAM tools is an active field of research.
For the case of partial differential equations the techniques from ‘KAM for PDE’
theory were used by Bambusi and Graffi in [BG01] to prove reducibility of one-
dimensional Schrödinger equation (1.1) to constant in time coefficients. Their
results are similar to those in Theorem 1.1 with d = 1.

The problem of growth of solutions for linear Schrödinger equation with time-
quasiperiodic and with smooth bounded potentials was considered by J. Bour-
gain in [Bou99a] and [Bou99b], respectively. In the first work it is shown that
for a Diophantine frequency vector ω Sobolev norms of any solution for (1.1)
growth with t at most logarithmically, while results of the second work imply
that for any ω each Sobolev norm growths slower than any positive degree of t.
Corollary 1.2 specify these results for ‘typical’ vectors ω.
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Corollary 1.2 shows that Sobolev norms of solutions for eq. (1.1) remain
bounded in time, provided that the frequency vector ω is ‘typical’. In partic-
ular, it should be non-resonant with the numbers {|s|2 | s ∈ Zd}, forming the
spectrum of the operator −∆. It turns out that the norms of the solutions
may stay bounded also in the opposite case when ω is completely resonant with
the spectrum. Namely, W.-M. Wang [Wan07] proved this for eq. (1.1) where
n = d = 1 and ω = 1.

2 Proofs.

Proof of Theorem 1.1. The operator ∆ on torus has zero in its spectrum.
This is inconvenient for some technical reasons. So we make the substitution
u := e−it/2u and re-write eq. (1.1) as

u̇ = −i
((

∆− 1
2

)
u− εV (ϕ0 + tω, x;ω)u

)
. (2.1)

Below we usually do not indicate dependence of functions on the parameter ω.
Firstly we re-interpret eq. (2.1) as an autonomous Hamiltonian system in an

extended phase-space. To do this we write u(x) =
(
ξ(x) + iη(x)

)
/
√

2, where ξ
and η are real functions. Then (2.1) becomes

ξ̇ = −
(
(−∆ + 1

2 )η + εV (ϕ0 + tω, x)η
)
,

η̇ =
(
−∆ + 1

2

)
ξ + εV (ϕ0 + tω, x)ξ .

(2.2)

Let us consider the space

Z = H1(Td; R)×H1(Td; R)× Tn × Rn = (ξ, η, ϕ, r).

We provide it with a symplectic structure, given by the two-form α2⊕(dr∧dϕ),
where α2[(ξ1, η1), (ξ2, η2)] = 〈η1, ξ2〉 − 〈ξ1, η2〉 and 〈·, ·〉 stands for the usual
L2-scalar product.

The function hε
ω(ξ, η, ϕ, r),

hε
ω = ω · r +

1
2

∫ (
(|∇ξ|2 + |∇η|2) + 1

2 (|ξ|2 + |η|2) + εV (ϕ, x)(ξ2 + η2)
)

dx

(2.3)
is analytic in Z. The symplectic structure above corresponds to the function
hε

ω the Hamiltonian equation

ξ̇ = −∇ηhε
ω = −

(
(−∆ + 1

2 )η + εV (ϕ)η
)
,

η̇ = ∇ξh
ε
ω =

(
(−∆ + 1

2 )ξ + εV (ϕ)ξ
)
,

ϕ̇ = ∇rh
ε
ω = ω,

ṙ = −∇ϕhε
ω.

(2.4)

The first three equations are independent from r and are equivalent to eq. (2.2).
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The Hamiltonian hε
ω is a perturbation of the integrable Hamiltonian h0

ω

(which corresponds to the Schrödinger equation iu̇ = (∆ − 1/2)u) by the
quadratic in (ξ, η) function εf . The function f is the quadratic form, corre-
sponding to the linear operator 1

2Fϕ, where

Fϕ : (ξ(x), η(x)) 7→ (V (ϕ, x)ξ(x), V (ϕ, x)η(x))

(this operator depends on the parameter ω). Write V (ϕ, x) as V =
∑

Vs(ϕ)eis·x.

Then Fϕ, regarded as an operator on vectors ζ =
(

ξ
η

)
∈ L2(Td; R)×L2(Td; R)

(or on complex vectors ζ ∈ L2(Td)×L2(Td)) has a matrix, formed by 2×2-blocks

Fab(ϕ) = Vb−a(ϕ)
(

1 0
0 1

)
. By the analyticity assumption,

|Vs(ϕ)|, |∇ωVs(ϕ)| ≤ C1e
−ρ|s| ∀ s, ∀ϕ ∈ Tn

ρ , ∀ω ∈ U.

We see that F = (Fab) is a Töplitz matrix, formed by diagonal 2 × 2-blocks,
which has finite exponential norm |F |ρ,

|F |ρ = sup
a,b

∣∣∣eρ|a−b||Fab|
∣∣∣ . (2.5)

In the space of complex 2 × 2-matrices, provided with the scalar product
Tr (tĀB), consider the orthogonal projection π on the subspace, generated by

the matrices
(

1 0
0 1

)
and

(
0 1
−1 0

)
. For a matrix G, formed by 2 × 2-

blocks Gab, we define πG as the matrix

(πG)ab = (πGab).

Note that a real matrix G, operating on vectors ζ =
(

ξ
η

)
, corresponds to a

complex-linear transformation, operating on complex vectors u = (ξ + iη)/
√

2,
if and only if πG = G. In particular, the matrix F satisfies πF = F .

These properties of matrix F imply that it is a special case of the Töplitz–
Lipschitz matrices, defined in [EK08, EK], and that for any Λ ∈ N its Töplitz–
Lipschitz norm 1 satisfies the estimates

〈F 〉Λ,ρ, 〈∇ωF 〉Λ,ρ ≤ C1 ∀ϕ ∈ Tn
ρ , ω ∈ U. (2.6)

1For reader’s convenience we now define the Töplitz-Lipschitz norm 〈X〉Λ,ρ of a matrix X,
assuming for simplicity that d = 2 and X satisfies πX = X. A matrix X is called Töplitz at
∞ if the limit Xab(c) = limt→∞ Xa+tc, b+tc exists for all a, b, c ∈ Zd. Let DΛ(c) be the set of

all (a, b) ∈ Zd × Zd such that

|a = a′ + tc| ≥ Λ(|a′|+ |c|)|c| , |b = b′ + tc| ≥ Λ(|b′|+ |c|)|c|

and
|a|
|c| ,

|b|
|c| ≥ 2Λ2. If X is Töplitz at ∞, we define

〈X〉Λ,ρ = sup
c 6=0

sup
(a,b)∈DΛ(c)

|Xab −Xab(c)| ·max

„
|a|
|c|

,
|b|
|c|

«
eρ|a−b| + |X|ρ.

Note that if X is Töplitz, then it is Töplitz at infinity and the first term in the r.h.s. vanishes.
So in this case 〈X〉Λ,ρ = |X|ρ.
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In [EK] we study nonlinear Hamiltonian perturbations of infinite-dimensi-
onal linear systems. Results of that work apply to perturbations of Hamiltonian
h0

ω of the form

Hε
ω(ζ, ϕ, r;ω) = h0

ω(ζ, r) + εf(ζ, ϕ, r;ω), ζ =
(

ξ
η

)
.

The real valued function f is C1-smooth in (ζ, ϕ, r;ω), is analytic in h = (ζ, ϕ, r)
and analytically in h extends to the complex domain O0(σ, ρ), where it is
bounded by a constant C1. Here for κ ≥ 0 and σ, ρ > 0 we denote

Oκ(σ, ρ) = {h | ‖ζ‖′κ < σ , |Im ϕ| < ρ , |r| < σ2},

where ‖η =
∑

ηses‖′κ =
(∑

|ηs|2e2κ|s|〈s〉2
)1/2 with 〈s〉 = max{|s|, 1}. It is as-

sumed that there exists γ > 0 such that for any 0 ≤ γ′ ≤ γ and any h ∈ Oγ′
(σ, ρ)

we have ‖∇ζf(h;ω)‖γ′ ≤ C1 and that the Hessian ∇2
ζf satisfies 〈∇2

ζf〉Λ,γ′ ≤ C1

for some Λ ≥ 3. Moreover it is also assumed that each component of the gradient
∇ωf possesses the same properties.

For Hamiltonians of the form Hε
ω the results of Theorem 7.1 in [EK] may be

stated as follows:2

Theorem 2.1. There is ε0 > 0 and for every ε ≤ ε0 there is a Borel set Uε ⊂ U ,
satisfying mes (U \Uε) ≤ Kεκ, such that for all ω ∈ Uε the following holds: there
exists an analytical symplectic diffeomorphism Φ : O0(σ/2, ρ/2) → O0(σ, ρ) and
a vector ω′ such that (h0

ω + εf) ◦ Φ equals (modulo a constant)

h0
ω′(ζ, r) +

1
2
ε〈H̃(ω′)ζ, ζ〉+ f ′(h, ω′) =: h̃ε

ω′ .

Here
∇ζf

′ = ∇rf
′ = ∇2

ζf
′ = 0 for ζ = r = 0 , (2.7)

and H̃ =
(

Q1 Q2

Qt
2 Q1

)
, where the operator Q = Q1 + iQ2 is a Hermitian oper-

ator in the space L2(Td) such that its matrix satisfies (1.3). The transformation
Φ = (Φζ ,Φϕ,Φr) satisfies

‖Φζ − ζ‖′0 + |Φϕ − ϕ|+ |Φr − r| ≤ βε (2.8)

for all h ∈ O0(σ/2, ρ/2), and

‖H̃‖0,0 ≤ β.

2The theorem is applied with H = 0, |A| = n, L = Zd, Ωa(ω) = |a|2 + 1
2
, m∗ = 1 and

µ = σ2. It is assumed in Theorem 7.1 that the eigenvalues Ωa are exponentially close to the
numbers |a|2, but all arguments in the proof hold if they are close to the numbers |a|2+ const
(e.g., to the numbers |a|2+ 1

2
). Indeed, the assumption is needed to examine cluster properties

of the eigenvalues {Ωa} and to control their growth as |a| → ∞. For both these goals the
assumption Ωa ∼ |a|2+const is as good.
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The positive constants ε0, κ,K depend on n, d, C, C1, σ and ρ, while β also de-
pends on ω.3

The transformation Φ is obtained as a composition of infinitely many sym-
plectic transformations Φj : h 7→ h which iteratively put the Hamiltonian Hε

ω

to forms, more and more close to h̃ε
ω′ , and change a bit the original frequency

vector ω. Each transformation Φj(h) = (Φj
ζ(h),Φj

ϕ(h),Φj
r(h) has the form

Φj
ζ(h) = zj(ϕ) + Dj(ϕ)ζ ,

Φj
ϕ(h) = aj(ϕ) ,

Φj
r(h) = bj(ζ, ϕ) + cj(ϕ)r ,

(2.9)

where b(ζ, ϕ) is quadratic in ζ and Dj(ϕ) and cj(ϕ) are linear operators which
are real for real ϕ. The composition Φ = Φ1 ◦ Φ2 ◦ . . . also has the form (2.9).
So

Φζ(h) = z(ϕ) + D(ϕ)ζ.

Estimate (2.8) implies that z(ϕ) ∈ H1(Td; R) and that D(ϕ) is a bounded
linear operator in H1 (note that the norm ‖ · ‖′0 is equivalent to the Sobolev
norm ‖ · ‖1). In fact, z(ϕ) and D(ϕ) are smoother than that:

Lemma 2.2. For any integer p ≥ 0 there exists K = K(p) (depending on ω)
such that for any ϕ ∈ Tn

ρ/2 the maps z(ϕ) and D(ϕ) from the representation
(2.9) for the map Φ satisfy

‖z(ϕ)‖p, ‖D(ϕ)− id ‖p,p, ‖πD(ϕ)− id ‖p,p ≤ Kε; (2.10)

and
‖∇ωz(ϕ)‖p, ‖∇ωD(ϕ)‖p,p, ‖∇ωπD(ϕ)‖p,p ≤ Kε . (2.11)

Remarks. 4) As in Theorem 2.1, if we replace the r.h.s’s of the two estimates
by K

√
ε, then K may be chosen ω-independent.

5) Due to (2.7) the analytical torus Φ({0}×Tn×{0}) ⊂ O0(σ, p) is invariant
for the Hamiltonian system with the Hamiltonian Hε

ω. Since (2.10) holds for any
p ∈ N, then this torus is smooth in x. That is, it lies in C∞(Td; R2)×Tn ×Rn.

Proof of the lemma. The maps Dj(ϕ), zj(ϕ) and other maps, entering the
decomposition (2.9) for Φj are analysed in Proposition 8.1, Corollary 8.2 and
Proposition 8.4 of [EK]. Let us define inductively the sequences εj → 0, σj → 0,
ρj → ρ/2 and γj → 0 as follows

ε1 = ε, σ1 = σ, ρ1 = ρ, γ1 = γ := ρ/2

and for j ≥ 1

εj+1 = exp(−τ
(
log ε−1

j )2
)
, σj+1 = ε

1/3+τ
j+1 σj ,

γj+1 = (log ε−1
j )−c1γc2

j , ρj = (2−1 + 2−j)ρ ,

3β may be chosen ω-independent if in the r.h.s.’s of (1.8) we replace βε by β
√

ε. This is a
well known property of the KAM arguments and it follows directly from the proof in [EK].
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where τ = 1/30 and c1, c2 are some positive constants. Also for j ≥ 1 we set
Λj = const γ−2

j . It is equivalent, up to constant factors, to the definition of
these constants in Section 8.3 of [EK], where µj = σ2

j for all j. These relations
easily imply that for any M ∈ N and k > 0 we have

exp(ln γ−1
j )M ≤ C(M,k)ε−k

j ∀ j ≥ 1, (2.12)

We want to estimate the maps Φj
ζ .

For any j ≥ 1 the map Φj is constructed in Proposition 8.1 of [EK] as a
composition of nj = [log ε−1

j ] canonical transformations which are time-1-maps
for additional Hamiltonians sl(h), l = 1, . . . , nj . The Hamiltonians are functions
of h, quadratic in ζ. Norms of these functions, of their gradients and Hessians
in ζ are estimated in Proposition 8.1. The ζ-components of flow-maps of such
Hamiltonians are affine functions of ζ and are studied in Section 8.1 of [EK]
(see there estimates (49) and (50)). Combining of these results implies that the
map Φj

ζ(h) = zj(ϕ) + Dj(ϕ)ζ satisfies

‖zj(ϕ)‖′γj
≤ const γ−1

j σ−1
j εj ≤

{
Cεj , j = 1,

Cε
1/2
j , j ≥ 2,

(2.13)

and ∣∣Dj(ϕ)− id
∣∣
1
2 γj

≤ const Λ2
jγ

−1
j σ−2

j εj ≤
{

Cεj , j = 1,
Cε

1/4
j , j ≥ 2,

(2.14)

for any ϕ ∈ Tn
ρ/2 (we use (2.12) and notation (2.15)). The matrix-norm | · |γ

majorises the Sobolev operator-norms up to a factor:

‖G‖m,m ≤ Cmγ−m−d|G|γ ∀m ≥ 0 (2.15)

(see [EK08] and estimate (2) in [EK], where γ′ = 0). Combining (2.14), (2.12)
and the last inequality we get that

‖Dj(ϕ)− id ‖p,p ≤
{

Cpεj , j = 1,
Cpε

1/5
j , j ≥ 2,

(2.16)

for any ϕ ∈ Tn
ρ/2. Since ‖u‖p ≤ Cpγ

2(1−p)‖u‖′γ for any γ > 0, then, similar,

‖zj(ϕ)‖p ≤
{

Cpεj , j = 1,

Cpε
1/3
j , j ≥ 2,

(2.17)

for any ϕ ∈ Tn
ρ/2. Since clearly |πG|γ ≤ C|G|γ , then the matrix πDj(ϕ) also

satisfies estimates (2.16).
As

Φζ(h) = z(ϕ) + D(ϕ)ζ = Φ1
ζ ◦ Φ2

ζ ◦ . . . , Φj
ζ = zj(ϕ) + Dj(ϕ)ζ
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and
π(AB) = πAπB + (1− π)A(1− π)B, (2.18)

then (2.16), its analogy for πDj(ϕ) and (2.17) imply (2.10). The maps Dj(ϕ)
and the map D(ϕ) are real for real ϕ.

Relations (2.11) follow from similar estimates on ∇ωzj and ∇ωDj(ϕ) which
can be derived from the corresponding results in [EK] in the same way as above.

It was pointed out in a remark to Theorem 7.1 in [EK] that if the perturba-
tion f is independent from r and is quadratic in ζ (e.g. if Hε

ω = hε
ω, see (2.3)),

then
i) vector ω stays constant during the transformations Φj ;
ii) in formula (2.9) for Φj we have zj = 0, aj = 0 and cj = 0. So each

transformation Φj has the form

(ζ, ϕ, r) 7→
(
Dω(ϕ)ζ, ϕ, r +

1
2
〈ζ, Bω(ϕ)ζ〉

)
(2.19)

with suitable linear operators Dω(ϕ) and Bω(ϕ).
Accordingly the limiting transformation Φ = Φ1 ◦Φ2 ◦ . . . also has the form

(2.19) and ω′ = ω. So the transformed Hamiltonian h̃ε
ω = h̃ε

ω′ , as well as
the original Hamiltonian Hε

ω, is linear in r and quadratic in ζ. Hence, in the
expression for hε

ω we have f ′ = 0.
The equation with the Hamiltonian h̃ε

ω implies for v(t) =
(
ξ(t) + iη(t)

)
/
√

2
equation

v̇ = −i(∆− 1
2 )v + iεQv . (2.20)

That is, we established reducibility of eq. (2.1) to equation (2.20) by means of
the linear over real numbers operator Ψ0(ϕ), defined as the composition

Ψ0(ϕ) : u(x) =
ξ + iη√

2
7→ Dω(ϕ)

(
ξ
η

)
=
(

ξ′

η′

)
7→ ξ′ + iη′√

2
= v(x).

Next we replace the maps Ψ0(ϕ) by complex-linear transformations which
still conjugate equations (2.20) and (2.1). Let us rewrite these two equations as

Ẋ = QX

and
Ẏ = PtY,

respectively. Now we regard them as equations on operator-valued curves X(t)
and Y (t), formed by linear isomorphisms of the space L2(Td). Consider the
third equation

Ẇ = PW −WQ. (2.21)

Let X, Y,W be three operator-valued curves, formed by isomorphisms of L2(Td),
satisfying

Y X−1 = W.
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Then if any two of them satisfy the corresponding equations, then the third one
satisfies the third equation.

Let X(t) be the fundamental solution of the first equation (i.e., X(0) = id)
and W 0(t) = Ψ0(ϕt), where ϕt = ϕ0 + ωt. Then Y = W 0X satisfies the second
equation. So W 0 satisfies (2.21). Let us apply operator π (written in terms of
the complex variable u = (ξ + iη)/

√
2) to (2.21). Since the operators Q and

Pt are complex linear, then πQ = Q, πPt = Pt and (2.18) implies that the
complex-linear operator

W (t) := πW 0(t) = πΨ0(ϕ0 + ωt)

also satisfies (2.21). Relations (2.10) imply that the operator Ψ(ϕ) = πΨ0(ϕ)
satisfies (1.5) for any integer p ≥ 0. In particular, the operator Ψ(ϕ) : L2(Td) →
L2(Td) is invertible since ε is small. We have seen that Ψ(ϕ) is a complex-
linear transformation which reduces equation (2.1) to (2.20). Inverting the
substitution u := e−it/2u we see that Ψ(ϕ) also reduces (1.1) to (1.2).

Estimate (1.4) with p = 0 follows from the estimate for H̃ in Theorem 2.1.
Since the operator Q satisfies (1.3), then ‖Q‖p,p = ‖Q‖0,0 for each p and (1.4)
follows.

The estimates for ∇ωQ and ∇ωΨ follow from Theorem 2.1 by the same
arguments.

Proof of Corollary 1.2. For any v =
∑

vses ∈ L2(Td) and k = 0, 1, 2, . . . denote
Vk =

∑
|s|2=k vses (if d ≤ 2, then Vk = 0 for some k). Then v =

∑
Vk and

‖v‖2
p =

∞∑
k=0

(1 + k)p‖Vk‖2
0

for each p. Since the operator Q is block-diagonal, then

〈QVk, Vl〉 = 0 if k 6= l . (2.22)

Let v(t) be a solution of (1.2) and u(t) = Ψ(ϕ0+tω)v(t) be the corresponding
solution of (1.1). Take the 〈·, ·〉–scalar product of (1.2) with Vk. The imaginary
part of the obtained relation implies that

1
2

d

dt
‖Vk‖2

0 = Im

(
〈∆v, Vk〉 − ε

∑
s

〈QVs, Vk〉

)
= Im (〈∆Vk, Vk〉 − ε〈QVk, Vk〉)

(we use (2.22)). Since the operators ∆ and Q are Hermitian, then the r.h.s.
vanishes. So ‖Vk(t)‖0 = const for each k. Accordingly ‖v(t)‖p = const for each
p and (1.7) follows from (1.5) if we choose ε′0 ≤ 1/2K2.

On Remark 3 . Estimate (1.4) is valid for the norm [·]p,p since the operator Q
is block-diagonal. Estimate (1.5) holds for the same reason as before if instead
of inequality (2.15) we use its counterpart for the norms [·]p,p:

[A]p,p ≤ c1 exp
(
c2(ln γ−1)p

)
|A|γ ∀ p , γ > 0,

10



where c1, c2 are independent from γ. Finally, estimate (1.7) follows from (1.4)
(1.5).
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