KAM FOR THE NON-LINEAR SCHRODINGER
EQUATION

L. H. ELIASSON AND S. B. KUKSIN

ABSTRACT. We consider the d-dimensional nonlinear Schrodinger
equation under periodic boundary conditions:
oF
—it = —Au+V(x) * u+€F(x,u, @), u=u(tx), xrecT?
U
where V(z) = 3. V(a)e!™® is an analytic function with V real,
and F is a real analytic function in Ru, Su and z. (This equation
is a popular model for the ‘real’ NLS equation, where instead of
the convolution term V * u we have the potential term Vu.) For
e = 0 the equation is linear and has time—quasi-periodic solutions

u(t,z) = Y afa)elleTVateias )| > 0,
acA
where A is any finite subset of Z?. We shall treat w, = |a|?+V (a),
a € A, as free parameters in some domain U C RA.

This is a Hamiltonian system in infinite degrees of freedom, de-
generate but with external parameters, and we shall describe a
KAM-theory which, under general conditions, will have the follow-
ing consequence:

If |e| is sufficiently small, then there is a large subset U' of U
such that for all w € U’ the solution u persists as a time—quasi-
periodic solution which has all Lyapounov exponents equal to zero
and whose linearized equation is reducible to constant coefficients.

CONTENTS

1. Introduction

2. Toplitz-Lipschitz matrices

2.1. Spaces and matrices

2.2.  Matrices with exponential decay

2.3.  Toplitz-Lipschitz matrices (d = 2)

2.4. Toplitz-Lipschitz matrices (d > 2)

3. Functions with Toplitz-Lipschitz property
3.1. Toplitz-Lipschitz property

3.2.  Truncations

Date: September 25, 2007.

O N

12
20
20
20
23

L. H. ELIASSON AND S. B. KUKSIN

3.3. Poisson brackets

3.4. The flow map

3.5.  Compositions

4. Decomposition of £

4.1. Blocks

4.2.  Neighborhood at co.

4.3. Lines (a + Rc) N Z4

5. Small Divisor Estimates

5.1. Normal form matrices

5.2.  Small divisor estimates

6. The homological equations
6.1. A first equation

6.2. Truncations

6.3. A second equation, k # 0
6.4. A second equation, k=0
6.5. A third equation.

6.6. The homological equations.
7. A KAM theorem

7.1. Statement of the theorem
7.2.  Application to the Schrodinger equation
8. Proof of theorem

8.1. Preliminaries

8.2. A finite induction

8.3. The infinite induction

9. Appendix A - Some estimates
References

1. INTRODUCTION

We consider the d-dimensional nonlinear Schrodinger equation

—it=—Au+V(x)*xu+ egi(x,u,ﬂ), u=u(t,z) (x)
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under the periodic boundary condition z € T?. The convolution po-
tential V : T¢ — C must have real Fourier coefficients V (a), a € Z¢,
and we shall suppose it is analytic. F' is an analytic function in Ru,
Su and .

The non-linear Schrédinger as an co-dimensional Hamiltonian sys-

tem. If we write

{ u(®) =X gega Ua€’ "

’U,(I) — Zand ,Uaei<fa,x>
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ga (Ua + Uﬂ)
<a = = ] o )
Na (g — va)
then, in the symplectic space

{(6arma) s @ € Z} = C¥ x %', 3" dg, Adns,

acZd

and let

SIS

the equation becomes a real Hamiltonian system with an integrable
part

5 (e + V(@) +12)

plus a perturbation.
Let A be a finite subset of Z¢ and fix

0<ps acA
The (#.A)-dimensional torus
%(€2+772) =Pa QE A
§a=n,=0 a€L=7%\A,
is invariant for the Hamiltonian flow when € = 0. Near this torus we
introduce action-angle variables (¢q,7,), a € A,

ga =V 2(pa + Ta) COS(()@a)
Na = V 2(pa + ra) Sin((pa)-

The integrable Hamiltonian now becomes (modulo a constant)

h=> wara+ %ZQa(fg +n2),

acA acl
where
we = |al* +V(a), a€ A,

are the basic frequencies, and
Q= la?+V(a), acL,

are the normal frequencies (of the invariant torus). The perturbation
ef(&,n, ¢, r) will be a function of all variables (under the assumption,
of course, that the torus lies in the domain of F').

This is a standard form for the perturbation theory of lower-dimensio-
nal (isotropic) tori with one exception: it is strongly degenerate. We
therefore need external parameters to control the basic frequencies and
the simplest choice is to let the basic frequencies (i.e. the potential
itself) be our free parameters.
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The parameters will belong to a set
Uc{weR*: |w|<C}.
The normal frequencies will be assumed to verify
Q| >C" >0 Vae L,
Q0 + Q| > Va,be L,
Qe — Q| >C" Ya,be L, al # 0]
This will be fulfilled, for example, if A is sufficiently large, or if V is

small and A > 0.
We define the complex domain

o | |HC§||0| = V2 aec(€al® + [na|) (@)™ <o
o,p, ) =14 IS¢l <p
Il < u,

(a) = max(|a|,1). We assume m, > £ because in this space h + ¢ is
analytic and the Hamiltonian equations have a well-defined local flow.
By <, > we denote the usual paring

<C 0= Lokl
Theorem A. Under the above assumptions, for € sufficiently small
there exist a subset U' C U, which is large in the sense that

Leb (U \ U') < cte.e®? |

and for each w € U’', a real analytic symplectic diffeomorphism ®

0% P K 0
o (2,2,2)—>0 (0, p, 1)

and a vector w' such that (hy +ef) o ® equals (modulo a constant)

1 1
<, 1> 4 <6 QuE> + <€ Qun> + <0, Q> +ef

where

Fre o, Irllcly lichio)

and Q = Q1+1iQ5 is a Hermitian and block-diagonal matriz with finite-
dimensional blocks.
Moreover ® = (¢, @, ®,) verifies, for all (¢, ¢,7) € O%%,5,%),

[D¢ = Cllg + [Py — | + [Pr — [ < B,
and the mapping w — w'(w) verifies
|(JJ/ — id|C1(U’) S ﬁ&-.

0 is a constant that depends on the dimensions d, #A, m,, on the con-
stants C,C" and on V and F.
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The consequences of the theorem are well-known. The dynamics of
the Hamiltonian vector field of h, + ef on ®({0} x T¢ x {0}) is the
same as that of

1 1
<w,r> +§<§7 Q16> + <€, Qan> +§<777 Q> .

The torus {¢ = r = 0} is invariant, since the Hamiltonian vector field
on it is

¢=0
p=w
i =0,

and the flow on the torus is linear
t— ¢+ tw.

Moreover, the linearized equation on this torus becomes

p_ g @ilw) @a(w) ) - .
¢ = J( Qr(w) Q) >C+Ja(<p+tw,w)r

d
dt
%@ =<a(p + tw,w), f> +b(p + tw,w)7

where a = 0,0, f" and b = €d?f’. Since Q1 + iQ2 is Hermitian and
block diagonal the eigenvalues of the (-linear part are purely imaginary

+iQ, a€L.

The linearized equation is reducible to constant coefficients if the
imaginary part €, of the eigenvalues are non-resonant with respect to
w, something which can be assumed if we restrict the set U’ arbitrarily
little. Then the é—component (and of course also the 7-component)
will have only quasi-periodic (in particular bounded) solutions. The
¢-component may have a linear growth in ¢, the growth factor (the
“twist”) being linear in 7.

Reducibility. Reducibility is not only an important outcome of KAM
but also an essential ingredient in the proof. It simplifies the iteration
since it makes it possible to reduce all approximate linear equations to
constant coefficients. But it does not come for free. It requires a lower
bound on small divisors of the form

(x%)  |<k,w>+Q, —Q|, ke€ZA abe L.

The basic frequencies w will be kept fixed during the iteration — that’s
what the parameters are there for — but the normal frequencies will
vary. Indeed €, (w) and €} (w) are perturbations of 2, and €2, which are
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not known a priori but are determined by the approximation process.
1

This is a lot of conditions for a few parameters w. It is usually
possible to make a (scale dependent) restriction of (k%) to

|k‘7 |a_b|§A:Ae

which improves the situation a bit. Indeed, in one space-dimension (d =
1) it improves a lot, and (*x) reduces to only finitely many conditions.
Not so however when d > 2, in which case the number of conditions in
(#%) remains infinite.

To cope with this problem we shall exploit the T&plitz-Lipschitz-
property which allows for a sort of compactification of the dimensions
and reduces the infinitely many conditions (%) to finitely many. These
can then be controlled by an appropriate choice of w.

The Toplitz-Lipschitz property. The Toplitz-Lipschitz property is
defined for infinite-dimensional matrices with exponential decay. We
say that a matrix

A LxL—-C
is Toplitz at oo if, for all a, b, c € Z? the limit

lim A% 3 = A’(c).

t—o0o attc
The Toplitz-limit A(c) is a new matrix which is c-invariant
Adie(e) = Agl0).

So it is a simpler object because it is “more constant”.

The approach to the Toplitz-limit in direction c is controlled by a
Lipschitz-condition. This control does not take place everywhere, but
on a certain subset

Dy (C) CLxL
— the Lipschitz domain. A is a parameter which, together with ||,
determines the size of the domain.

The Toplitz-Lipschitz property permits us to verify certain bounds
of the matrix-coefficients or functions of these, like determinants of
sub-matrices, in the Toplitz-limit and then recover these bounds for
the matrix restricted to the Lipschitz domain.

The matrices we shall consider will not be scalar-valued but gi(2, C)-
valued

A:LX L —gl(2,C)

LA lower bound on (¥#), often known as the second Melnikov condition, is strictly
speaking not necessary for reducibility. It is necessary, however, or reducibility with
a reducing transformation close to the identity.
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and we shall define a Toplitz-Lipschitz property for such matrices also.
These matrices constitute an algebra: one can multiply them and solve
linear differential equations. A function f is said to have the Toplitz-
Lipschitz property if its Hessian (with respect to () is Toplitz-Lipschitz.
If this is the case, as it is for the perturbation f of the non-linear
Schrodinger, then this is also true for the linear part of our KAM-
transformations and for the transformed Hamiltonian. This will permit
us to formulate an inductive statement which, as usual in KAM, gives
Theorem A.

Some references. For finite dimensional Hamiltonian systems the
first proof of persistence of stable (i.e. vanishing of all Lyapunov expo-
nents) lower dimensional invariant tori was obtained in [Eli85, Eli8§]
and there are now many works on this subjects. There are also many
works on reducibility (see for example [Kri99, Eli01]) and the situation
in finite dimension is now pretty well understood in the perturbative
setting. Not so, however, in infinite dimension.

If d = 1 and the space-variable x belongs to a finite segment supple-
mented by Dirichlet or Neumann boundary conditions, this result was
obtained in [Kuk88| (also see [Kuk93, P6s96]). The case of periodic
boundary conditions was treated in [Bou96], using another multi-scale
scheme, suggested by Frohlich-Spencer in their work on the Anderson
localization [FS83]. This approach, often referred to as the Craig-
Wayne scheme, is different from KAM. It avoids the, sometimes, cum-
bersome condition (**) but to a high cost: the approximate linear
equations are not of constant coefficients. Moreover, it gives persis-
tence of the invariant tori but no reducibility and no information on
the linear stability. A KAM-theorem for periodic boundary conditions
has recently been proved in [GY05] (with a perturbation F' indepen-
dent of x) and the perturbation theory for quasi-periodic solutions of
one-dimensional Hamiltonian PDE is now sufficiently well developed
(see for example [Kuk93, Cra00, Kuk00]).

The study of the corresponding problems for d > 2 is at its early
stage. Developing further the scheme, suggested by Frohlich-Spencer,
Bourgain proved persistence for the case d = 2 [Bou98]. More recently,
the new techniques developed by him and collaborators in their work
on the linear problem has allowed him to prove persistence in any
dimension d [Bou04]. (In this work he also treats the non-linear wave
equation.)

Description of the paper. The paper is divided into three parts. The
first part deals with linear algebra of Toplitz-Lipschitz matrices and the
analysis of functions with the Toplitz-Lipschitz property. In Section 2
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we introduce ToOplitz-Lipschitz matrices and prove a product formula.
This part is treated in greater generality in [EKO07]. In Section 3 we
analyze functions with the Toplitz-Lipschitz property.

The second part deals with the bounds on the small divisors ()
which occurs in the solution of the homological equation. In Section 4
we analyze the block decomposition of the lattice Z¢ and in Section
5 we study the small divisors. In Section 6 we solve the homological
equations. This part is independent of the first part except for basic
definitions and properties given in Sections 2.3 and 2.4.

The third part treats KAM-theory with Toplitz-Lipschitz property
and contains a general KAM-theorem, Theorem 7.1. This theorem is
applied to the non-linear Schrodinger to give Theorem 7.2 of which the
theorem above is a variant.

Notations. <, > is the standard scalar product in R%. || || is an
operator-norm or [?-norm. | | will in general denote a supremum norm,
with a notable exception: for a lattice vector a € Z? we use |a| for the
[2-norm.

A is a finite subset of Z¢ and £ is the complement of a finite subset of
Z%. For the non-linear Schrodinger equation £ will be the complement
of A, but this not assumed in general.

A matrix on £ is just a mapping A: Lx L — C or gl(2,C). Its
components will be denoted A®.

The dimension d will be fixed and m, will be a fixed constant > %.

< means < modulo a multiplicative constant that only, unless oth-
erwise specified, depends on d, m, and #A.

The points in the lattice Z¢ will be denoted a, b, c,.... Also d will
sometimes be used, without confusion we hope.

For a vector ¢ € Z4, ¢t will denote the L complement of ¢ in Z¢ or
in R?, depending on the context. If ¢ # 0, for any a € Z? we let

a. € (a+Re)N2?

be the lattice point b on the line a + Rec with smallest norm, i.e. that
minimizes |<b, ¢>| — if there are two such b’s we choose the one with
<b,c>> 0. It is the“L projection of a to ¢*”.

Greek letter a, G, ... will mostly be used for bounds. Exceptions are
© which will denote an element in the torus — an angle — and w, Q.

For two subsets X and Y of a metric space,

dist(X,Y)= inf d )
ist(X,Y) ze}(r,ler ()

(This is not a metric.) X, is the e-neighborhood of X, i.e.
{y : dist(y, X) < e}.



KAM FOR NLS 9

Let B.(x) be the ball {y : d(z,y) < ¢}. Then X, is the union, over
z € X, of all B.(x).
If X and Y are subsets of R? or Z¢ we let

X-Y={zr—y:zeX, yeY}
— not to be confused with the set theoretical difference X \ Y.

Acknowledgment. This work started a few years ago during the Con-
ference on Dynamical Systems in Oberwolfach as an attempt to try
to understand if a KAM-scheme could be applied to multidimensional
Hamiltonian PDE’s and in particular to the non-linear Schrodinger.
This has gone on at different place and we are grateful for support
from ETH, TAS, IHP and from the Fields Institute in Toronto, where
these ideas were presented for the first time in May 2004 at the work-
shop on Hamiltonian dynamical systems. The first author also want
to acknowledge the hospitality of the Chinese University of Hong-Kong
and the second author the support of EPSRC, grant S68712/01.

PART I. THE TOPLITZ-LIPSCHITZ PROPERTY

In this part we consider
LcC7?

and matrices A : L x L — gl(2,C). We define: the sup-norms | - | ;
the notion of being Toplitz at oo; the Lipschitz-domains DX (c); the
Lipschitz- norm < - >, and the notion of being Toplitz-Lipschitz.
(For a more general exposition see [EK07].) We define the Toplitz-
Lipschitz property for functions and the norms [ - |5 40-

2. TOPLITZ-LIPSCHITZ MATRICES

2.1. Spaces and matrices.
We denote by lg(ﬁ, C?), v > 0, the following weighted ly-spaces:

B(L,C%) ={¢=(&n) € C- x C* - [[¢]l,, < oo},
where

ICI2 =D~ (I&al® + Inal?)e 1 (@)>™ - (a) = max(|a], 1),
acl
We provide 12(£, C?*) with the symplectic form
> déo Adn,.

acl
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Using the pairing
<C, 5= (Eall + narlh)

acl
we can write the symplectic form as
<, J>

where J : I2(£,C%) — I2(£,C?) is the standard involution, given by
the component-wise application of the matrix

(%)

We consider the space gl(2, C) of all complex 2 x 2-matrices provided
with the scalar product

Tr(*AB),
and consider the orthogonal projection
7:9l(2,C) - M, M=CI+CJ.
It is easy to verify that

M x M, M*x M+cM
M x M+ M+ x M c M+

and
n(AB) =mAnB+ (I —m)A(I —7)B
{ (I —m)(AB)=(I —m)AnB +7A(I —7)B.

It A= (Az)z%j:l B = (35)31-:1 we define
[A] = (JAID? -y,

and
A<B < |A|<B Vij

Since any Euclidean space E is naturally isomorphic to its dual E*,
the canonical relations

EQE~FE ®FE" ~Hom(E,E*)~ Hom(E, E)
permits the identification of the tensor product (®¢’ with a 2 x 2-matrix

€)=
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2.2. Matrices with exponential decay.
Consider now an infinite-dimensional gl(2, C)-valued matrix
A:LxL—gl(2,C), (a,b)+— AL

We define matrix multiplication through

= _AB

d
and, for any subset D of £ x L, the semi-norms
[Alp = sup | Aq]

(a,b)eD

(here || || is the operator-norm).
We define mA through
(rAY =7Ab Va,b.

Clearly we have

m(A+ B)=nA+ 7B
(1) m(AB) =mAnB+ (I —m)A(I —7)B
(I —m)(AB) = (I —m)ArB + 7A(I — 7)B.
We define
A< B <= A" < B’ Va,b,
and
(EXA), = [Ab)e ¥ Va,b.
All operators Evi commute and we have
{ EXNA+B)<EAHEB, we{+,—}
Exy(AB) (EA)(EYB), =y € {+ —}

We define the norm
|Aly = max(|EF T AL | our, €5 (1 —7) AL 2ur).
We have, by Young’s inequality (see [Fol76]), that

1 m. /
(2) HACIIMS(W)‘” AL, v <

(Take for example A = 1A and apply Young’s inequality to the matrix
A defined by
Ab = e”lla‘<a)m*Az<b>7m*677"b|.)

2We use the sign convention that zy = + whenever z and y are equal and zy = —
whenever they are different.
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It follows that if [A| < oo, then A defines a bounded operator on any
2(L,C%), v <7,
Truncations. Let

A iflaFb <A
+ b __ a —
(T3)Aa = { 0  if not,
and
TAA=TITA+ T, (I —m)A.
It is clear that
(3) ITaAl, < JA, and  |A—-TaAl, <e207]4] .

Tensor products. For any two elements ¢, (' € l?/(ﬁ, C?), their tensor
product ¢ ® ¢’ is a matrix on £ x L, and it is easy to verify that

! !/
(4) Q= S 14/ 1
Multiplication. We have

1
(5) |AB|, +[BA[, < (7 — ,y,)d AL, B, Vv <.
Linear differential equation. Consider the linear system
X' =At)X
X(0)=1.

It follows from (5) that the series

I+Z/ / / Alty) ... A(tn)dt, . . . dtydty,

as well as its derivative with respect to ¢y, converges to a solution which
verifies, for v/ < 7,

©) X -1, (- 7’)d(exp(cte-(7

where

1, -
77,) [tla(t)) — 1),

aft) = sup |A(s)], .

0<|s|<lt|

2.3. Toplitz-Lipschitz matrices (d = 2).
A matrix
A:Lx L —gl(2,C)
is said to be Toplitz at oo if, for all a, b, ¢, the two limits

hm Abtie 3 = Ab(£ ¢).

a-+tc
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It is easy to verify that if [A| < oo and |B|, < oo, then
(WA)(_v C) = (I - W)A(—F, C) =0

and

T(AB)(+,¢) =

(7) TA(+, )t B(+,¢) + (I — m)A(—,¢)(I — m)B(—, —c¢)
(I —m)(AB)(—,¢c) =
(I —m)A(—, )7rB( ,—¢) + A+, ¢)(I —m)B(—,c).

In the rest of this section we assume that

c# 0.
We define
m«m%wmmﬂ¢$+nmm Va,b.

The operators M, and Svi all commute and
M (AB) < (M A)(M.B).
Lipschitz domains. For a non-negative constant A, let
Di(c)c Lx L

be the set of all (a,b) such that there exist a/, ¥ € Z¢ and t > 0 such
that

la=d +tc] > A(ld]+]c|) ]
b=0+tc| > A(V]+]c])|c]
and
M, Ll > 2A%
le| ™ e

We give here some elementary properties of the Lipschitz domains.
They will be studied further in Section 4.
Lemma 2.1. Lett > 0.
(i) For A > 1,
t>Alc) > A
if la=d +te| > A|d| + |]) |¢|.
(i) For A >1,
{ 0| < 555 =l if la=a'+tc| = Ala'| + |c]) |c|

'] > g5 — le| if not.
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(iii) For A > 1,

lal_ ] <
|c] “A-1

if la=d +tc| > A(ld'| + |¢]) |¢]-
(iv) For Q> (A+1)(la —b| + 1) we have

|b="0"+tc| > A(|b'| + |c|)|c| with b =d' +b—a,
if |la=a +tc| > Q]|+ e el

<a,c>

and‘ —t‘g—

]

Proof. This is a direct computation. 0

Corollary 2.2. Let A > 3.
(i)

(avb)EDX(C):H H ’C|2 ‘ ‘ Z | |
(i)
(a,b) € Df(c) = (a+tc,b+tc) € Di(c) Vt>0.
(iii)
(a,b) € D{(c) = (a.b) € Dg(o),
where
Q=A—max(|a—al, |b—0|)—
(iv)
(@0) € Diyy(0) (ad) ¢ DY) = la—dl. Ib=dIZ g1t

Proof. (i) follows from Lemma 2.1 (i)+(iii) if we just observe that
batp
A-1 A-1
In order to see (ii) we write a = a’ + sc, s > 0, with |a| > A(|a’| +
lc]) |¢|. Then
la+ te|* = |af? + £3|c? + 2t <a, > |al® + t2|c]* + 2ts|c|® + 2t <d',c> .

By Lemma 2.1(ii)

1
2ts|c|* + 2t <d’, c>> 2ts(1 — i 1)|c\2 > 0.

Hence
o+t > |af* + £]c* > |al* > A(ld| + |c]) |] -
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Moreover, for all t > 0

la + tc > ]a|

> 2A2%,
|c| [E]

The same argument applies to b.
To see (iii), let A = max(|a — al, |b —b|) + 2 and write a = o’ + tc
with |a] > A(|d| + |¢|)|c|. Then a = a' +a — a + te, and if

la| < Q(|a" 4+ a—a| + |¢])|c]
then by Lemma 2.1(ii)

tA
la —al > ————.
Q+1)(A-1)
This implies that ¢ < (2 + 1)(A — 1) and, hence,
lal _ 9y
]

which is impossible. Therefore
la] > Q(la" +a — a| + |¢|)|c]-

Moreover
Mz‘———ZQA?—Azm?.
e[ 7 el e
The same argument applies to b.

To see (iv), assume that ‘|d|| < 2A%. As

b—d|
]

> 2(A + 3)? it follows that

> 12A.

So |b—d| > A2 ‘|“||, unless

In this case due to Lemma 2.1.(iii) B> Atllal > 1972 So we must
have

which implies that
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Therefore we can assume that % > 2A?. Since (a,b) € Dyys(c),
then b = b + tc, where

[b] = (A +3)(|t'] + e])]e].
Let us write das d = b+ (d—b) = d +te, d = + (d —b). Since
(a,d) ¢ Df(c) while (a,b) € D{ 4(c) C D{(c) and {4 > 2A% then
|d| < A(|d'| + |¢]) + |¢|]. Applying Lemma 2.1.(ii) we ge that

V] < —lel, |d

t t
o | > = le|.
A+2 A+1

t t 1 |a

Hence, [b—d| = |d = V| > f5 -~ 15 2 12 2 &2 > Where we used
Lemma 2.1.(iii).

Now the required estimate for |b — d| is established. Similar argu-
ments apply to |a — d|. O

Lipschitz constants and norms. Define the Lipschitz-constants

Lip} ,A = sup \SiMC(A — Az, C))|Dx(c), re{+ -}

(see the notations of Section 2.2) and the Lipschitz-norm
<A>,,=max(Lipy wA, Lipy (1 —m)A) + |A] .
Here we have defined
(a,b) € Dy (c) < (a,—b) € D;(c).

The matrix A is Toplitz-Lipschitz if it is Toplitz at oo and <A >, < 00
for some A, 7.
Truncations. It is easy to see that

(8) <TAA>A,~/ < <A>A,’Y
<A—TaA>pr, < R0 <A>, .
Tensor products. It is easy to verify that
(9) <CR ¢ >anS IS IS, -

Multiplications and differential equations are more delicate and we
shall need the following proposition.

Proposition 2.3. For all x,y € {+,—}, ally <~ and any ¢ # 0
(i)
£V M.(AB)

D* (c) & B‘sz:
AQ( . d+1‘ A‘Lxl) 5 B‘Exﬂ’

D 5(e) ™~ ‘

where one of 1,7, is =7y and the other one is = ~'. The same

bound holds for BA.
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(i)
’5$/szc(ABO)|nyz )S (ylry 2d| A|L><£|
A2(L)2t e A!M|

where two of y1,7v2,7v3 are = v and the third one is = v'. The
same bound holds if we permute the factors A, B and C.

Proof. To prove (i), let first © = y = 4. We shall only prove the
estimate for AB — the estimate for BA being the same. Notice that
for (a,b) € Dy, 4(c) we have, by Corollary 2.2(i), that

la] [0l lal
Moo, b) = max( Py py o 9y
el el ]
Now, for (a,b) € Dy, 4(c) we have
(ESM(AB)); < 324 Me(a, b)[Af][Bgle”* ™" =
D (adente) T 2aaygnt( - = L)+ ().
In the domain of (I) we have, by Corollary 2.2(i), that

M.(a,b) =~ ’|‘ + 1=~ M.(a,d),

SO

I) S [EEM A|D+(0)| B|£XEZ ~(n=)a—d|~(v2=7")|d=b|

Since one of v; — 7' and 75 —«' is v — ' the sum is
<)
7=
In the domain of (II) we have, by Corollary 2.2(iv), that
L |a]
AZ|d]’

la—d|, [b—dl 2
o (II)is

| A|E><E | BT|‘£><£ , ,
Z|a dl b33 el (ICI +1)e” (n—=7)la—d|=(v2—7")ld—b|

RAZTel
Since one of v; — 4’ and 3 — ' is v — ' the sum is
< AQ(L
7=
The three other cases of (i) are treated in the same way.

)d+1.

|Dy | C|£><£

B|£><L| C|L><L’
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To prove (ii), let first © = y = z = +. Notice that for (a,b) € D} 4(c)
we have, by Corollary 2.2(i), that
lal o] lal
M.(a,b) = max(—,—)+ 1~ —+ 1.
el [l ]
Now
(EFMAABO), < T, Moo DA B <
2adzlel T Llelzial

We shall only consider the first of these sums — the second one being
analogous. We decompose this sum as

o+ D+ DY =M+ UD+ ).

(a,d)eDY, 5(c) (a, )DL, 5(c) (a,d) DY, 5(c)
(d,e)eDj (c) (d,e)g D (c)

In the domain of (I) we have, by Corollary 2.2(i), that
M.(d,e) ~ M.(a,b),
so (I) is

< e+

S P [

Sy e~ =7)la—d|—(v2—7")ld—e|—=(v3—7")le—b|
,€

6+MCB|DI(C) |57_‘;C

Since two of 4 — ', 72 — 7' and 3 — ' are v — 4/ the sum is

S (=™
7=
By Corollary 2.2(iv) we have, in the domain of (II),

1 Ja

’(I—d‘, ‘d_(i’ ~ AQ‘ ’

and, in the domain of (III),

1

ja—dl, [d—b 2 "“

Hence in both these domains we have
1 |a

s(d,€) = masx(la ], d —cl, e = bl) 2 g7

o ([I)+ (III)is
S'|(S‘—"_A|/$><E| +B|£><£{ +C|£><£
S ey o (8 1)emn =1t == ldel =)kt

>3 1y
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Since two of v, — ', v — 4/ and 3 —«' are v — 7' the sum is

5 AZ( 1 )2d+1.
7=
The seven other cases of (ii) are treated in the same way, as well as
the case when the factors A, B and C' are permuted. O

We give a more compact and slightly weaker formulation of this
result.

Corollary 2.4. For all x,y € {+,—}, all ' <~ and any ¢ # 0
(i)
&5 M (AB)

AQ( 1 d+1[| A‘/;X/;+
| 'n DI(C)]| 72B|L'><L"

where one of y1,7v2 is = v and the other one is = ~'. The same

bound holds for BA.
(i)
|E57 M(ABC)

D/I\%(C) ~

AQ( 1 2d+1| A‘Lxg ‘532/\/10(3)
’ B‘Lxl) | C‘[Lxl)’

where two of v1,7Y2,7v3 are = v and the third one is = v'. The
same bound holds when the factors A, B and C are permuted.

+

Dy¥(e) ~ oy

Multiplication. Using relations (1) and (7) we obtain from Corol-
lary 2.4.(i) that a product of two Toplitz-Lipschitz matrices is again
Toplitz-Lipschitz and for all 4" < ~

(10) L <AB>A+57 N
AQ( ) +1[ <A>A71 |B| |A|»y1 <B>A,"/2 ]7

=

where one of 7,2 is = v and the other one is = /.

This formula cannot be iterated without consecutive loss of the Lip-
schitz domain. However Corollary 2.4(ii) together with (5) gives for all
V<~

<A1 . An >A+6,'y’§
(1) (ete A2 () Dty ngﬁ" 1A, <Ar>am];
J

where all 1, ...,7, are = v except one which is = ~'.
Linear differential equation. Consider the linear system

LX =A@)X
{ X(0)=1.
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where A(t) is Toplitz-Lipschitz with exponential decay. The solution
verifies

0 to 11 th—1
X (to) :I+Z/O /0 /O A A() . At)db, . . dbsdts.
n=1

Using (11) we get for o' <

<X(1) = I>pr0,S

(12) [t explcte. (=) ta(t)) supjyey < Als) >,

A (2

where

a(t) = sup [A(s)|

0<|s|<lt !

2.4. Toplitz-Lipschitz matrices (d > 2).
Let

A:Lx L —gl(2,C)

be a matrix. We say that A is 1-Toplitz if all Toplitz-limits A(+, ¢)
exist, and we define, inductively, that A is n-Toplitz if all Toplitz-
limits A(&,c¢) are (n — 1)-Toplitz. We say that A is Taplitz if it is
(d — 1)-Toplitz.

In Section 2.3 we have defined < A>, , which we shall now denote
by

1<A>A7,}, .

We define, inductively,

"< A>p = sup (T A+ ) >a . "TI<A(— ) >0 )
ceZd

(¢ =0 is allowed and A(£,0) = A) and we denote
<A>p =< Ay, .

The matrix A is Toplitz-Lipschitzif it is Toplitz at oo and <A>, < 00
for some A, 7.

Proposition 2.3, Corollary 2.4 and (9-12) remain valid with this norm
in any dimension d.

3. FuNCTIONS WITH TOPLITZ-LIPSCHITZ PROPERTY

3.1. Toplitz-Lipschitz property.
Let O7(0) be the set of vectors in the complex space I2(£, C?) of norm
less than o, i.e.

O"(0) ={¢ € C- x C-: [[¢]l, < o}
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Our functions f : O%0) — C will be defined and real analytic on the
domain 0%). *
Its first differential

1B(£,C?) 3 ¢ <, O f(O)>

defines a unique vector J f(¢) (the gradient with respect to the paring
<,>), and its second differential

3(£,C%) 3 ¢ =<C R F(C)¢>
defines a unique symmetric matrix 92f(¢) : £ x L — ¢l(2,C) (the
Hessian with respect to the paring <,>). A matrix A : LxL — gl(2,C)
is symmetric if
A = Ag
We say that f is Toplitz at oo if the matrix 07 f(¢) is Téplitz at oo
for all ¢ € 0% ). We define the norm

e
to be the smallest C such that
fOl<C V(€ O%o
10 f(Ol, < 2C V(€O (a), ¥y <7,
<O >an< HC Ve O (o), Vo <.

(Notice that this requires that the vector d; f(¢) lies in I2(£, C?).)
Proposition 3.1. (i)

[fg}l\,’y,(r 5 [f}A,’y,u’[g]A,’y,(r
(ii) If g(¢) =<c, Oc f(Q)>, then

[g]A,v,o” SJ T — o ~y [f]A,"hU

foro' <o.

(iil) If g(¢) =<CC, 0 f(¢)>, then

[g]AJr&W/’U, 5 ((1 + ag;/)(vjw/)d+m* C"Y
+A2( 1 /)d+1 <C>p, )[f]/\ma

for o' <o and vy <.

3The space l%(ﬁ,(ﬁ) is the complexification of the space l%(ﬁ,R) of real se-
quences. “real analytic” means that it is a holomorphic function which is real on
O%0o) N l?Y(E,R)‘
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Proof. We have

f9(Q) = f(Q)g(<)
9 f9(¢) = f(Q)cg(C) + A f(¢)g(C)
Dfg(C) = f(¢)02g(¢) + A2 f(€)g(C) +2(0: f(€) @ Deg(()).

(i) now follows from (9).
For ¢ € ©°(0’) we have

90)] < llell 10Ol < ey~

where o = [f]r .0
Let ¢ € O (0") and h(2) = O f(¢ + 2c). h is a holomorphic function

(with values in the Hilbert-space 2,(£, C?)) in the disk |2| < 7 ”C” and

1
h , < —a.
Bl < ~a
Since 0¢g(¢) = 0.h(0), we get by a Cauchy estimate that

1o, < (21

ooo—

= llell, ).

Let ¢ € 0 (¢') and k(z) = 82 f(C+ zc). k is a holomorphic function
(with values in the Banach—space of matrices with the norm <->. )
in the disk 2] < £ H and

1
<k(z)>r,< o

Since 8?9(() = 0ck(0), we get by a Cauchy estimate that

5 < 1.,,,0, 1
<0c9(C) >y (;) ((;) p— ell., a).-
This proves (ii).

To see (iii) we replace ¢ by C'¢ and notice that

9cg(¢) = 9.h(0) +'COf(C)
and
929(C) = 9.k(0) +COZF(¢) + A2 f(Q)C.

9.h(0) and 9,k(0) are estimated as above and [[C(]|, with Young’s
inequality (2). The matrix products are estimated by (10). O
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3.2. Truncations.
Let T'f be the Taylor polynomial of order 2 of f at ( = 0.

Proposition 3.2. (i)
[Tf]A,’y,o 5 [f]/\,'y,a~
(i)

o, o

= Thrner S (2P =T lare

Proof. Let ¢ € O%0’) and let g(z) = f(zg) Then g is a real holo-
morphic function in the disk of radius % and bounded by o = [f]a 5,0
Since T f(2¢) = ¢g(0) + ¢'(0)z + %g”(O)z we get by a Cauchy estimate
that

O—0

1 o’ o

T ! — 1) — ) R/ < (Z 3

(=T OI=19(1) = 9(0) = ¢'(0) = 5 9" (0) < (Z)"—

Let ¢ € O (¢') and let h(z) = 9 f(2¢). Then h is a holomorphic

function in the disk of radius % and bounded by <. Since 9:Tf(¢) =
h(0) + R'(0)z we get by a Cauchy estimate that

o o«

-7 < (22 e

j0(s = TRl < (D20

Let ¢ € O (¢’) and let k(z) = 92f(2¢). Then k is a holomorphic

function in the disk of radius & and bounded by %. Since ZT f(¢) =
k(0) we get by a Cauchy estimate that

o. o «

<G(f = TH)>an< (=)

oclo—o o?

This gives (ii).

The first statement is obtained by taking o' = %a. Since f is a
quadratic polynomial it satisfies the same (modulo a constant) estimate
on o as on io. [

2

3.3. Poisson brackets.
The Poisson bracket of two functions f and ¢ is defined by

{/,9}(C) =<0 f(¢), JO.g9(¢)>
(i) If g is a quadratic polynomial, then

1
+ A¥( -
0102 Y= 0102

Proposition 3.3.

{f: 9} avsy0r S|

for0< o, —oc' =0y, 0<0y—0 ~oy andy <.

/
L vawi, 0

)2] [f]A,’Y,Ul [Q]A,’Y,Uzv
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(i) If g is a quadratic polynomial and f(() =<(, AC>, then
1 d+mes 1 2 1 d+1 1
{f g ats00 S [(m) " U—%‘*‘A (W) " U—%)][ﬂAmm [9)A,7,02
forO0< oy —0' =01, 0<o09—0 ~oy and~ <.

Proof. We have

Oc{f. g}(¢) = B2 F(Q)Tdcg(¢) — 92g(C)TOf (€)
and 9Z{f,g}(¢) is the symmetrization of the infinite matrix

O f(€)T0cg(C) — Zg(Q)TAf(C) + 92 f(C)JDZg(C) + OZ F(C) Tz g(C)-
For ¢ € O%’) we get, by Cauchy-Schwartz, that
90O < 10Ol 09Ol < (20,
where a = [f]r.0, and 8 = [g]a400-
For ¢ € O (o), let h(z) = O f(C + 2J0:g(C)). For |z| <

we have

TocsOT, ||

«
h ;<=
Al < =

Since 0,h(0)92f(¢)J0cg(¢) and o1 — o' =~ 0y, we get by a Cauchy
estimate that

1
LS ap.

|2 ()70, < 2

The same estimate holds with f and g interchanged.
For ¢ € O (0"), let k(z) = 8?f(§+zJ8<g(C)). By a Cauchy-estimate
we get as above that
1
<O >0 % ol
The same estimate holds with f and g interchanged.
Finally, for ¢ € O (¢0') we get by (10) that

<TF(OIRI(Q) >nrayS N (v =) <OZF(C) >ay<82g(C) >as -
By hypothesis we have

<R9(()>nns 2
%)

for ¢ only in O?(0’). But since g is quadratic, 825]({) is independent
of ¢ and, hence, this also holds in the larger domain ¢ € O (o). The
symmetrized matrices satisfy the same estimates, and (i) is established.

The second part follows directly from Proposition 3.1(iii). O
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3.4. The flow map.
Consider the linear system

¢ =JOfi(¢)
where f,(¢) =<, a;> —|—l <(, AyC>, and let

a(t) = sup [As[, and  [(t) = sup [asl,,
sI<I jsI<It

Consider the non-linear system

z= g(gv Z)
where g(, 2) is real analytic in O°(o) x D(p). D(u) is the disk of radius
pwin C. Let 0 < g/ < p.

Proposition 3.4.
form

(i) The flow map of the linear system has the

G: (= C+ b+ BiC,
and for v <~y

() ~cll %
(Lyme [ MO 3(g) 4 et 10O _ ] ¢l )
and

<Bi>atey S

AQ( )Mecte /) [tle(t)

5up|s|g‘t| <A9 >A,’y .

(i) For |z| < 1/, the flow of the non-linear system is defined for
It < 552 and

/
,uilu(cte. 1,5
— (e M=

: - 1),

(2, 2) = 20 S (1

where

e= sup [g(-2)Jane < 1.
z€D(p)

Proof. (i) We have

b t tn—1
bt:Z/ / ‘]Atl"'JAtnflJatndtndtnfl-~-dt1
n=1 0 0
and

oo t tnh—1
Btzz/o”'/o JA, .. JAdt, .. dty.
n=1

By (5) we have
|Bel,y S (v =)' (0(t) = 1), 5(t) = exp(cte.(y —7)~[t|a(t)
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and by (2) we have

1
1Bl S (m)m* (6(t) = D [ICll,

By (2+5) we have

uwus<7fywwawm@»

By (12) we have

< Bi>pu6 ’Y/< A? ( ) 15(t) lsllillbl <A, >Ny -
s|<|t

The proof of (ii) easier. We have
6C2t = (9@(](. . ) + 829(. . .)8(2}
which implies that
¢
Oczy :/ els BZQ(C’Z")drﬁgg(C,zs)ds

0

This is easy to estimate.
We also have

822'3 = 829(. )+ 0:0:9(...) ® Ocz + 0.9(.. .)8?4
which is treated in the same way. O

Remark. The same result holds for z = (zy,...,2,) € D(p)" and g =
(gla D )gn)

Remark. If |t| <1 and
sup A, < (v =",

[s|<[t|
then
1 Mk mx+d
1G:(€) CH”’S(W—W/) |S‘ul‘>ﬂ|!as|| (,y_,y,) ‘S‘ulﬁ‘lz‘ll 1<,
and
<Bi>pp64S A¥( —— ) sup <A;>p, .
T sI<h
If |t| <1 and
e= sup [g(, 2)|ane S =4,
z€D()
then

(2, 2) = 2]an0 S
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3.5. Compositions.
Let f(C,2) be a real analytic function on O%(o) x D(u) and

sup [f(+, 2)]a,0 < 00.
z€D(p)

Let 0 <o’ <o,0< p' < pand
®(¢, 2) = C+b(2) + B(2)¢
with
Ib(2) + B(2)¢ ||, <o =o', V(¢ 2) € OV (o) x D(i)
for all v/ <. This implies that
B(-,2): O (") = O (0), VA <n, VzeDQ).

Let ¢(¢, z) be a real holomorphic function on O°(¢’) x D(x') such that
1
9] < 5 (u—u).

Proposition 3.5. For all z € D(y') and v <~

(@ 2), 2+ 9(, 2)]as600 S
max(1, a, AQ(WEW,)QQ) SUPep(y f( s 2) A0

where

! (90, 2)]amer + (——)™ sup <B>
sup |g(-, Z)]A,y,0! sup Ay -
= 1 en) B Y= D) K

a =

Proof. Let € = sup,ep,, [f(-, 2)]An,0 and = supzeD(u,)[g(-, 2)| A0
Let h(C,2) = f(®(¢, 2),2 +g(¢, 2)). Then

Och = 0.f(.. )0 +'BO.f(...)

and
Rh= 2f(...)(0cg®dg)+0.f(.. )09+
2'B(0c0.f(...) ® Ocg) +'BIEf(...)B.
For (¢,2) € O°0c’) x D(i) we get: |h(¢)| <e.
For (¢, 2) € OV (o)) x D(i) we get:

B
102 £(--)0cgll, 10-f (.. ) NOcgll, ( ) S
t 1 d+mes €
['Bacs o, & (B,
by Young’s inequality (2).
For (¢,2) € OV (o) x D(i') we get:
2 < 2 B2
<Of(.)0g @ Icg>nay S (M — /L,) ()
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by (9);
) < (2 b,
<0.f(...) g9>AwN(m)5(W);

'B(9.0 0 < A? Ly B ! b
<" B(0c0: f(...) ® 0cg) >at3y S (7_7,) <B>pq ( /L’)gﬁ
by (9-10);

t o a2 2 2d+1 2 €
<'BOf(...)B>r6yS A (ﬁ) T <B>%, =
by (11). O

Remark. The same result holds for z = (21,...,2,) € D(u)" and g =
(G155 9n)-

PART II. THE HOMOLOGICAL EQUATIONS

In this part we consider scalar-valued matrices @) : £ x £ — C which
we identify with ¢l(2, C)-valued matrices through the identification

Qa = Qul.
We will only consider the Lipschitz domains D} (¢) which we denote
by DA(C).
We define the block decomposition Ea together with the blocks [ - ]a

and the bound da of the block diameter. We consider parameters
UcCRA A=7%\ L, and define the norms | - |{vU} and < - >{A,7}.
U

4. DECOMPOSITION OF L

In this section d > 2. For a non-negative integer A we define an
equivalence relation on L generated by the pre-equivalence relation
2 2
|a|” = o]
la —b] <A.
Let [a]a denote the equivalence class (block) of a, and let £ be the

set of equivalence classes. It is trivial that each block [a] is finite with
cardinality

a~b<:>{

d—1
< lal
that depends on a. But there is also a uniform A-dependent bound.

Indeed, let da be the supremum of all block diameters. We will see
(Proposition 4.1)

(d+1)'

da SA T
A will be fixed in this section and we wﬂl write [ - ] for [ - ]a.
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4.1. Blocks.
For any X C Z% we define its rank to be the dimension of the smallest
affine subspace in R? containing X.

Proposition 4.1. Let ¢ € Z¢ and ranklc) = k, k =1,...,d. Then the
diameter of [c] is
(k+41)!
< A"
Proof. Let A;, j > 1 be an increasing sequence of numbers.
Assume that for any 1 <[ <k

(%) rank(Ba,(c) N [c]) > 1 Ve € [,

where B,(c) is the ball of radius r centered at c¢. This means that for
any ¢ € [c|, there exist linearly independent vectors ai,...,a; in Z2
such that

c+a; €[ and |a;| <A, 1<j5<I

(%), implies that the L projection ¢ of ¢ onto ) Ra; verifies

. A l=1
) @S] M 13
Proof. In order to see this we observe that, since |c + a;|> = |¢|* for

each j, the (row) vector ¢ verifies
1
cM = 75(]a1|2 o al?),

where M is the d x l[-matrix whose columns are ‘aq,...%;. Now there
exists an orthogonal matrix () such that

QM=<§)

where B is an invertible [ x [-matrix. We have

(det B)? = det(*BB) = det(tMM) > 1,
and (the absolute values of) the entries of B are bounded by < A;.

Define now z by
{ (z1...1) = —3(aif* .. Ja|) B
Ty = =x4=0,

and y = xQ. Then ¢ —y L > Ray, so |¢| < |y|. An easy computation
gives

ly| = |z| S A and <A (if 1 =1).
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We shall now determine A; so that (x); holds. This will be done by
induction on . For [ =1 A; = A works, so let us assume that (x),
holds for some 1 <[ < k. If (%);41 does not hold, it is violated for some
c. Let us fix this ¢ € [¢], and let X be the real subspace generated by
(Bay,,(¢)) Ne]) = . X has rank = [.

For any b € [c] with |b—¢| < Ajy1 — A; we have

Ba,(b) N[ € Bay,(e)Nd:

By the induction assumption the | projection b of b onto X verifies
Take now b € [¢] such that A — A — A < |b—¢| < (A1 — 4A))

— such a b exists since rank of [¢] is > [ + 1. Since b — ¢ is parallel to

X we have

A =1

AT 1> 2.

So if we take Ay &~ the RHS, then the assumption that (x);1; does
not hold leads to a contradiction. Hence with this choice (x); holds for
all [ < k.

To conclude we observe now that [c¢] C ¢+ X where X is a subspace
of dimension k. Clearly the diameter of [¢] is the same as the diameter

of its L projection onto X, and, by (#x), the diameter of the projection
is S Ak. O

Az+1A1A§\bC]=|1~)E|§{

We say that [a] and [b] have the same block-type if there are a’ € [a]
and b’ € [b] such that
[a] —a = [b] =¥
It follows from the proposition that there are only finitely many block-
types. We say that the block-type of [a] is orthogonal to c if

[a] —a L c.

Description of blocks when d = 2,3. For d = 2, we have outside
{la] :< da ~ A3}
* rank[a]=1 if, and only if, a € £ + b* for some 0 < [b] < A -
then [a] = {a,a — b} ;
* rank[a]=0 — then [a] = {a}.
For d = 3, we have outside {|a| :< da ~ A2}
* rank[a]=2 if, and only if, a € &+ b* N £ + ¢ for some 0 <
6], || < 2A linearly independent — then [a] D {a,a —b,a — c};
* rank[a]=1 if, and only if, a € £ + b* for some 0 < [p] < A -
then [a] = {a,a — b};
* rank[a]=0 — then [a] = {a}.
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4.2. Neighborhood at oo.
Proposition 4.2. For any |a| = A?7Y, there exist c € 7,
0 <l < AT,
such that
la| > A(Jac| + |c]) |c|, <a,e>>0.
(a. is the lattice element on a + Re closest to the origin.)

Proof. For all K > 1 there is a ¢ € Z4 N {|x| < K} such that

: T, 1
d = dist(c,Ra) < C’l(E)dfl
where C only depends on d.
To see this we consider the segment I' = [0, £a] in R? and a tubular

|al
neighborhood T'; of radius e:

vol(T,) ~ K&,

The projection of R? onto T? is locally injective and locally volume-
1

preserving. If ¢ 2 (%)ﬂ, then the projection of I'. cannot be injective

(for volume reasons), so there are two different points x, 2’ € I'. such

that

r—1 =ce Z%\0.

Then

lal

| C‘ ~ 76

]

Now
A
A(la] + |e]) || < 2AK? + Co——|a] .
Kt
If we choose K = (2C5A)4~!, then this is < |al. O

Corollary 4.3. For any A, N > 1, the subset
{lal + o] Z A** 'y {la—b] < N} C 27 x Z¢

U  Dalo)

0<e|<Ad—1

is contained in

for any

A

Q<
“N+1
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Proof. Let |a] 2 A?*~!. Then there exists 0 < |c| < A% such that
la|] > A(Jac| + |¢|) |¢|. Clearly (because d > 2)

lal > 277 > 20°.

]

If we write a = a, + tc then b = a. + b — a + tc. According to
Lemma 2.1(iv)
6] > Q|a +b—a| + |c])|c],
and moreover
o  la]

> 1 - N>2A%— N >20°
lc| el

Remark. This corollary is essential. It says that any neighborhood
{(a,b) : la—b| < N} c 2% x 7¢

of the diagonal, outside some finite set, is covered by finitely many
Lipschitz domains.

4.3. Lines (a + Rc) N Z4.

Proposition 4.4. (i) If [a + tc] = [b+ tc] for all t > 1, then
[a +tc] = [b+tc] for allt.
(ii) [a + tc] — (a + te) is constant and L to ¢ for all t such that

la+ te] > dA(lac| + Ic]) ]
Proof. To prove (i) we observe that
la+te| = |b+tc] Vt>1,
which clearly implies that
la +tc| = [b+te| Vi

If |a — b| < A then this implies that [a+tc] = [b+tc] for all £. Otherwise,
for all ¢ >> 1 there is a d; ¢ {a,b} such that

[di + tc] = [a + tc].

Since the diameter of each block is < da, it follows that |d; — a| < da.
Since there are infinitely many ¢:s and only finitely many dy:s, there is
some d such that d = d; for at least three different ¢:s. Then

|d +tc| = la+tc| V.

If now |a —d| < A and |d — b| < A, then [a + tc] = [b+ tc] for all ¢.
Otherwise, for all ¢ >> 1 there is a e; ¢ {a,b, d} such that

le: + tc] = [a + tc],
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and the statement follows by a finite induction.

To prove (ii) it is enough to consider a = a.. Let b € [a + tc] —
(a + tc) for some t = to, such that |a + te| > di(|ac| + |¢|) |c|. Then
la +tc+b]* = |a+tc]?, i

o <b,c> +2 <b,a> + |b|* =

If <b,c>+# 0, then
1
la + te| < la| + [t <b, c>||c| < |a| + (|<b, a>| + 5 |b|2) |c|

which is less than
1
((da + 1) lal + 5d3) le].
But this is impossible under the assumption on a + tc. Therefore <
b,c>=0, ie. [a+tc] — (a+tc) L toc.

Moreover it follows that |a + tc + b| = |a + te| for all ¢. If [b] < A it
follows that [a+ b+ tc] = [a+tc] for all ¢. If not, there is a sequence of
points 0 = by, by, ..., by = bin [a+tc]—(a+tc) such that [b;4 — b;| < A
for all j. By a finite induction it follows that [a + b + tc] = [a + tc] for
all t. Hence

la + tc] = (t — to)c+ [a + toc]
for all t > t,. O

More on Téplitz-Lipschitz matrices. For a matrix @ : L x L — C we
denote by Q(tc) the matrix whose components are

Qq(te) =: Q(te), = Qol.
4 Clearly for any subset I,.J of £

Q7 (te) = Q(te)] = Q¢
in an obvious sense.

Corollary 4.5. Let A > dA. If (a,b) € Dy(c), then
b b+tcla
Quia (1) = Qe
for allt > 0. In particular, if Q is Toplitz at oo, then

b b
hm HQa]]i Q%a]ﬁ(ooc)H =0.
Proof. This follows immediately from Proposition 4.4(ii). O

4Notice the abuse of notation. In order to avoid confusion we shall in this section
denote the Toplitz-limit in the direction ¢ by Q(ooc).
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5. SMALL DIVISOR ESTIMATES

Let w € U C RA be a set contained in

If A: L x L — gl(2,C) depends on the parameters w € U we define
Ay = s, 0.A)],)

where the derivative should be understood in the sense of Whitney. °

If the matrices A(w) and 0, A(w) are Téplitz at oo for all w € U, then
we can define

<A>{A’Y}_ sup <A( )>A”Y? <0WA(QJ) >A»V)'

welU

(This Lipschitz-norm is defined in section 2.3-2.4.) When v = 0 we
shall also denote these norms by |A|,, and <A>{A}.
U

It is clear that if < A >y, .\ is finite, then the convergence to the

U
Toplitz-limit is uniform in w both for A and 0, A.

5.1. Normal form matrices.
A matrix A: L x £ — gl(2,C) is on normal form — denoted N Fa — if

(i) A is real valued;
(ii) A is symmetric, i.e. A? =t(A%);
(ii) TA=A (m is defined in section 2.1);
(iv) A is block-diagonal over En, i.e. A% = 0 for all [a]a # [b]a.
For a normal form matrix A the quadratic form % <(, AC> takes the
form

1 1
2 <€, Aé> + <€, Agnp> +§ <n, Ayn>

where A; +iA, is a Hermitian (scalar-valued) matrix.

Let
o= ()-(5) e
and define 'CAC : L x L — gl(2,C) through
((CAC) = ‘CAC.

Then A is on normal form if, and only if,

SIS
SIS
N————

1 1
3 <w,'CACw>= 3 <u, Qu>,

SThis implies that < A>{%} bounds a C!-extension of A(w) to a ball containing
U.
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where Q : L x L — C is
(i) Hermitian, i.e. Q¢ = Q¢,

(ii) block-diagonal over En.

We say that a scalar-valued matrix ) with this property is on normal
form, denoted N Fa.

Remark. Notice that a scalar valued normal form matrix ¢ will in gen-
eral not become a gl(2, R)-valued normal form matrix through the iden-
tification Q% = Q% 1, because the identification with ‘CAC' is different.
However, the Toplitz properties are the same and the two Lipschitz-
norms (obtained by these two different identifications) are equivalent.

We denote for any subset I of £
Qr= Qf = Q‘IXI'
5.2. Small divisor estimates. Let 2 = Q(w) : £ x L — R be a real
scalar valued diagonal matrix with diagonal elements
Qu(w), weU.
Consider the conditions
14 02(9(w) — o) < Coe €541, Cy >0
(a,w)e LxU, v=0,1,
and
(15)
<0 (<k,w> +Q4(w)), gg>= Ca > 0
<O (<k,w> +Qq(w) + Qp(w)), \_Z|>Z Cy a,beLl, keZA\O, welU
<0 (<k, w> +Q0(w) = Y(w)), > Ca
Let H=H(w): L x L — C and consider
Cy

(16) loHW) < - wel

(Here || || is the operator norm.)
Let us first formulate and prove the easy case.

Proposition 5.1. Let A’ > 1 and 1 > k > 0. Assume that U verifies
(13), that 2 is real diagonal and verifies (14)+(15) and that H verifies
(16). Assume also that H(w) is NFa for allw € U.

Then there exists a closed set U' C U,

Leb(U \ U') < cte. max(A’, d3)*H#A-1(Cy + sup | H (w)|)¢sCFA!

such that for allw € U', all 0 < |k| < A’ and for all
(17) [a]a, [b]a
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we have

(18) |<k,w>| > K,

(19) |<k,w>+a(w)| >k Vaw)eo((Q+H)(w),)
and

a(w) € o((Q+ H)(w)ia)s)

Bw) € o((Q+ H)(w)ps)-

Moreover the k-neighborhood of U C U satisfies the same estimate.
The constant cte. depends on the dimensions d and #A and on Cy.

(20) |<k,w> +a(w) + Bw)| > K V{

Proof. Tt is enough to prove the statement for A’ > d4. Let us prove
the estimate (20), the other two being the same, but easier. Let Cy =
supy || H (w)]- \

Since |k| < A, |<k,w>| < C1A’. © If the block [ intersects {|c| >
VC1 A" + C5}, then any eigenvalue « of (Q + H)(w); verifies

(0% Z ClA/.
Hence
|<kw>+a+p] 21

So it suffices to consider pair of eigenvalues a € o((2+ H)(w);) and
B €ao((Q+ H)(w),) with blocks

LJ c {le] S VO + G5}
(Here we used that A’ > d%.) These are at most
S (CIA" + Cy)*
many possibilities.

Now, (<k,w> 4a + () is an eigenvalue of the Hermitian operator
<k,w>+H(w),
Hw): X — (Q+ H)(w) X+ Q4+ H)(w),;X
which extends C! to a ball around U in {|w| < C}}. Assumptions (15)
and (16), via Proposition 9.3 (Appendix), now imply that the inverse

of H(w) is bounded from above by < — this gives a lower bound for its
eigenvalues — outside a set of Lebesgue measure

Sdapet

Summing now over all these blocks 7,.J and all |k| < A’ gives the
result. 0

We now turn to the main problem.

6In this proof < depends on d, #A and on Cjy.
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Proposition 5.2. Let A’ > 1 and 0 < k < 1. Assume that U verifies
(13), that 2 is real diagonal and verifies (14)+(15) and that H verifies
(16). Assume also that H(w) and J,H (w) are Toplitz at oo and N Fa
forallw e U.

Then there exists a subset U' C U,

Leb(U\U') <
cte. max(A',dQA, A)ezp+#A71(Cl+ <H>{{}})d,§(ﬁ)dcz¢é,4717

such that, for allw € U', 0 < |k| < A" and all
(21) dist([a]a, [b]a) < A

we have

(22) |<k,w>4a(w) - Bw)| >k V{ ggi; E Zéggigggg;{;ﬁ;

Moreover the k-neighborhood of U \ U’ satisfies the same estimate.
The exponent exp depends only on d. The constant cte. depends on
the dimensions d and #A and on Cs, C3, Cy.

Proof. The proof goes in the following way: first we prove an estimate
in a large finite part of £ (this requires parameter restriction); then we
assume an estimate “at oo” of £ and we prove, using the Lipschitz-
property, that this estimate propagate from “oco” down to the finite
part (this requires no parameter restriction); in a third step we have
to prove the assumption at oo. This will be done by a finite induction
on the “Toplitz-invariance” of H.

Let us notice that it is enough to prove the statement for A’ >
max(A, d%). We let [ ] denote [ Ja. Let Q ~ (A’)%

1. Finite part. For the finite part, let us suppose a belongs to
1
2 Hal S —d} <H Q!
@) {a€Lilal S (Cur ok <H>()0 ),

" where k; = k1. These are finitely many possibilities and (22),
is fulfilled, for all [a] satisfying (23), all [b] with |a — b < A’ and all
0 < |k] < A, outside a set of Lebesgue measure
(24) S dA(C1+dh <H> ) QD () S o,
U K

(This is the same argument as in Proposition 5.1.)

Let us now get rid of the diagonal terms V(a,w) = Q,(w) — |a|?
which, by (14), are

< CQQ—WC:&'

In this proof < depends on d, #A and on Cy, Cs, Cy.
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We include them into H. Since they are diagonal, H will remain on
normal form. Due to the exponential decay of V, H and J,H will re-
main Toplitz at co. The Lipschitz norm gets worse but this is innocent
in view of the estimates. Also the estimate of 0,H (w) gets worse, but if
a is outside (23) then condition (16) remains true with a slightly worse
bound, say

3C.
lo.Hw)| < == wel.

So from now on, a is outside (23) and

Qu = |a®.

2. Condition at co. For each vector ¢ € Z% such that 0 < |c| < Q471
we suppose that the Toplitz limit H(c,w) verifies (22),, for (21) and
for
(25) (fa] — ) Le
It will become clear in the next part why we only need (22),, and (21)
under the supplementary restriction (25).

3. Propagation of the condition at oo. We must now prove that for
|b—a|l < A" and an a € £ outside (23), (22), is fulfilled.
By the Corollary 4.3 we get

Q
@b)e |J Dalo) N

0<¢|<Qd—1

Fix now 0 < |c| < Q%! and (a,b) € Dg/(c). By Proposition 4.4 (ii) —
notice that ' > d% —

[a+tc] =[a] +tc and [b+tc] = [b] 4 tc
for ¢ > 0 and
[a| —a, [b]—b L c.
It follows (Corollary 4.5) that
Jim H(W)arig = H(e,w)a) and - Im H(w)pyig = H(e,w)p)-
The matrices Qq44q and 44 do not have limits as ¢ — oco. How-
ever, for any (#[a] x #[b])-matrix X,
Q[a+tc]X — XQ[bthc] = Q[G]X — XQ[b] +2t<a—0b,c>X

for t > 0, and we must discuss two different cases according to if
< ¢,b—a >=0 or not.
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Consider for t > 0 a pair of continuous eigenvalues

{ oy € o((Q+ H(w))a+ta)
Brea((Q+ H(w))p+)

Case I: <¢,b— a>= 0. Here
(Q+ H@)asiaX — X(Q+ H@))pres
equals
(Jaf* + H(@)) X = X([o1* + H(W))ps1q
— the linear and quadratic terms in ¢ cancel!
By continuity of eigenvalues,

thl?o(o‘t = Bt) = (@ — Boo),
where
{ o € o((|al” + H(e,w)) )
Bre € a((IB” + H (e, w))
Since [a] and [b] verify (25), our assumption on H(c,w) implies that
(oo — Boo) verifies (22),,.
For any two a,a’ € [a] we have |a| = |a’|. Hence

\a| d
HH(W[al—H(C’w)[a]HH < di <H>gpy,

because A’ > A, and the same for [b]. Recalling that a and, hence, b
violate (23) this implies

[ H (@) = H(e,w

K1
all < 7 d=ab
By Lipschitz-dependence of eigenvalues (of Hermitian operators) on
parameters, this implies that

(a0 = o) = (0o = Bo) | <

and we are done.
Case II: <¢,b — a># 0. We write a = a, + Tc. Since

lal = Q(Jac| + lc]) |e],

it follows that
1 |a

S
Now, a — 3y differs from |a|* — |b|> by at most
2|Hw)|| Sdi <H
@) S dh<H>pyy,
and

la|* — b = =27 <¢,b— a> =2 <a, b —a> —|b—al*.
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Since | <¢,b—a> | > 1 it follows that

7 Sl = Bol + lac| A"+ (A")? + d <H>ppy
If now |ag — Go| S C1A’ then |a| < ac| + |7 | is

< cte.(Jac| A |c| + C1(A)? || + d% <H>{A} |c])

jal + cte. (C1(A)?[e] + dj <H>gay e]).

l\D|H

Since a violates (23) this is impossible. Therefore |ag — fo| 2 C1 A
and (22), holds.
Hence, we have proved that (22), holds for any

{ ac (23)H1 U { (av b) € U0<\c|§ﬂd—1 DQ’(C)
(a,b) € (21) (a,b) € (21)

under the condition at co. Therefore (22), holds for any (a,b) € (21).

4. Proof of condition at oo — induction. Let ¢; be a primitive vector
in 0 < || £ Q%Y and let G be the Téplitz limit H(c;). Then G
verifies (16), G(w) and 9,G(w) are Toplitz at co and

<G>{g}§<H>{{}} .

Clearly G(w) is Hermitian and, by Proposition 4.4 (i), G(w) and 0,G(w)
are block diagonal over Ea, i.e. G(w) and 9,,G(w) are N Fa. Moreover
G is Toplitz in the direction ¢,

GZitthi GZ) VCL, b7 tcl-
= |a|? for all a, so ) verifies (14+15).

We want to prove that G verifies (22),, for all (a,b) € (21) + (25),,,

i.e. for all
la—b <A and ([a] —[b]) L 1.

Since G is Toplitz in the direction ¢; it is enough to show this for
(26) |pr0jLin(cl)a| S Qdil'
To prove this we repeat the previous arguments

Finite part. In the set (23),,, ko = /@1“ there are only finitely many

possibilities and (22),, will be fulfilled outside a set of w of Lebesgue
measure (24)x .
2

A second condition at co. For each vector ¢ € Z% such that 0 < |c| <
Q4! and ¢ and ¢; being linearly independent, we suppose that the
Toplitz limit G(c,w) verifies (22),, for all (a,b) € (21) + (25), + (25).,
i.e. for all

la—b <A and ([a] — [b]) L c1,ec.
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Propagation of condition at co. The same argument as before shows
that (22),, holds for any

{ Q€ (), { (a,b) € Ug@qgnd% Dar(c)
(a,0) € (21) (a,b) € (21) + (25)r

under the condition at oo.
Since a verifies (26), it follows that a € (23),, or

(a,b) & Doy (ca)-
Indeed, if (a,b) € Dgo/(c1), then (Corollary 2.2 (i))
|<a, 1>
|1

which implies that a € (23),,. Therefore (22),, holds for any (a,b) €
(21) + (25),.

5. The first inductive step. Suppose we have a matrix G verifying
(16) and such that G(w) and 9,G(w) are Toplitz at co and N Fa and

lal = <o

<G>;m<<H> .
{t}= {0}
Suppose also that there are primitive and linearly independent vectors
ci, ..., cq—1 of norm < Q9! such that G is Toplitz in these directions,
ie.

Goit? =Gh Nabite, j=1,...,d—1.

_1
We want to prove that G verifies (22),, ,, ka—1 = K3 5, for all (a,b) €
(21) 4+ (25)¢; + -+ + (25).,,. Since G is Toplitz in the directions
c1,...,cq—1 it suffices to prove this for a € (26)c,, ¢, ,, i€

: d—1
prOJLin(cl ..... cd,l)a rs Q .

1

If (a,b) € (23)y,, ka = K5 ], then (22)
set of w of Lebesgue measure (24) Sa-1-

will be fulfilled outside a

Kd—1

By assumptions (25)., + --- + (25)%71, [a] and [b] are contained in
one and the same affine line, so #[al, #[b] < 2. If now (a,b) & (23).,,,
then

‘a” z prOjLin(cl ..... cd_l)a’ )
and the same for b. Therefore #[a] = #[b] = 1 and
la+ 0] Z (Cy + sup [|G(w) [ )2* .
U
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Since a and b are parallel it follows that
lla)? = 62| = (Cy + sup |G (w)|)Q%,

unless [a] = [b] = {a}. In the first case we are done because | <k,w>
| S C1A’ and in the second case condition (22),, , reduces to
|<k,w>| > k.

This completes the proof of the first inductive step and, hence, of

the proposition. O

6. THE HOMOLOGICAL EQUATIONS

6.1. A first equation.
For k € Z" consider the equation

(27) i <k,w>S+i(Qw) + H(w))S = F(w),
where F(w) and 0,F(w) are elements in 2(£,C) = {§ = (§a)acr -
€]l < oo},

lell, = /D leal? el (a2

acel

((a) = max(1, |al)). Denote
17l gy = supIF @I [ F ).
Let U" C U be a set such that for all w € U, the small divisor
condition (19) holds for all a, i.e.
|<k,w>t+a(w)| >k, Vaw)ea(Q+H)w)).

Proposition 6.1. Let 0 < k < 1. Assume that Q is real diagonal
and verifies (14) and that H verifies (16). Assume also that H(w) and
0,H(w) are NF for allw e U.

Then the equation (27) has for all w € U" a unique solution S(w)
such that

1
< — 214 2"/dA .
151 g2y < cte—dx™ e (L + kD) 1 Flly 4
The constant cte. only depends on d, #A, m, and Cy, Cs, Cy.

Proof. This is a standard result. The equation (27) has a unique solu-
tion verifying
1 m
IS, 5 —dZ e [|[F W),

The factor d{*e?¥ comes in because the block-diagonal character of
Q(w) + H(w) interferes with the polynomial and exponential decay.
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If we differentiate equation (27) with respect to w we get
i <k,w> 0,5 +i(Qw) + H(w))d,S
= 0,F(w) — (0, <k,w>)S —i0,(Qw) + H(w))S.
If we apply the same estimate to this equation we get the result on U’.
In order to extend S from U’ to a ball we take a C' cut off function
x which is 1 on U" and 0 outside U}. We now first solve the equation
on U], as above to get a solution S and then we define S = xS. ]

6.2. Truncations.
For a matrix @) : £ x £ — C consider three truncations

TaQ = Q restricted to {(a,b) : |a —b] < A’}
P.Q = Q restricted to {(a,b) : (a —b) L c}
DaQ = Q restricted to {(a,b) : |a —b| < A" and |a| = [b]}.

These truncations all commute. Moreover,

Lemma 6.2. (i)

7aQlgy < @l
<TrQ >{A,’y} < <Q>{A77}
and
(TaQ)(c) = Tar(Q(c))
for all c.

(ii) The same result holds for P,.

(iid)
Da@lpy < QG
DR I A
for any A > (da)?. Moreover
(P-Dar@Q)(c) = (PDar)(Q(c))
for all c.
Proof. (i) and (ii) are obvious. Let us consider (iii).
We have (Da/Q)%(c) is = Q4(c) if
la—b <A, |a|=|b, (a—b) Lc

and is = 0 otherwise. This gives immediately the last statement.
If |a — b| < A, then

la] = [b] = [a]ar = [b] -
Hence, if (a,b) € Dx(c) and |a — b| < A/, then
la| = b = (a —b) L c.
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;From this we derive that (Da/Q)% — (DaQ)2(c) is = Q% — Q% (c) or
= 0. U

6.3. A second equation, k£ # 0.
For k € Z™ \ {0} consider the equation
(28) i <k,w> S +i[Qw) + H(w),S] = Ta F(w)

where F'(w) : £ x £ — C and 9, F'(w) are T6plitz at oo.
Let U" C U be a set such that for all w € U, the small divisor
condition (21)ary24, + (22) holds, i.e.

SPRS
S—
= 5
bop
S—

|<k,w> ta(w) — Bw)| = & V{ ggz; E Zgggig))g

for
dist([a]A, [b]A) S A/ + QdA.

Proposition 6.3. Let A’ > 1 and 0 < k < 1. Assume that U verifies
(13), that Q is real diagonal and verifies (14), and that H verifies (16).
Assume also that H(w) and 9, H(w) are Toplitz at oo and N Fa for all
weU.

Then the equation

(28) and S =Trri24,5
has for allw € U" a unique solution S(w) verifying
(i) )
< p— 2d Q'YdA .
51,y < ctedxe™ (L+[R)) [Fl v s
(ii) S(w) and 0,S(w) are Tdplitz at oo and the Tdplitz-limits verify

i <k,w> S +i[Qw) + H(c,w), S| = TaPF(c,w)
S = TA/-‘erAS;

(ii)
< S>{A’+dA+2,«/} <
U/
1
te Ed%e%dﬁ(l + k| + <H>{A ) <F> xo)
for any

A 2 max(, d, & sup | ().

The constant cte. only depends on the dimensions d and #A and on
Cl7 CQ; 037 C(4~
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Proof. Let us first get rid of the diagonal terms V (a,w) = Qq(w) — |al?
which by (14) are
5 Cge_la‘CS.

8 We include them into H — in view of the estimates of the proposition
this is innocent. Let us also notice that it is enough to prove the
statement for A > di. We first assume that F = Tx/ F

So from now on we assume Q, = |a]? and A > d}. We shall denote

the blocks [ ]a by [ ].

We first block decompose the equation (28) over £ taking into ac-
count the truncation of S and the small divisor condition. It becomes

i <k,w> S +i(Q+ H(w))wS,— if dist([a], [o]) < A’
(20) zs“mw( i = Fig) ()
S[b] =0 if not.

Since 2 + H is Hermitian, under the small divisor condition the
equation (29) has a unique solution which is C! in w and verifies

st < st < < 178

(|l | is the operator norm), hence
1
(30) SI, < -diens |,

The factor d% comes from the two different matrix norms used here,
and the exponential factor occurs because the block character of Q-+ H
interferes with the exponential decay.

In order to estimate the derivatives in w we just differentiate (29)

with respect to w:
1) (i <h,w> +i(Q+ H(w))w)0uSk — 0,2+ H(w))y =
= 0,F)(w) — (0, <k,w> +awH(w)[a]s[[§] S0 H (w)p).

If GF;]] is the matrix on RHS, then
et < fo.ma] +
(1] + || 0. Hia)|| + 1|00 Hyg|]) HS

and &,Sm is now estimated like S[[s].
We do now the same thing on U], and then we extend S from U’ to
be 0 outside U’ by a C' cut-off. This gives (i).

8In this proof < depends on d, #A and on Cy,Cy, Cs,Cy.
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Téplitz at co. Let @ be a matrix on £ and denote by Q(tc) the
matrix whose elements are

Qa(te) = Qg

By Proposition 4.4 (ii), for (a,b) € Dys(c) — notice that A’ > d% —
[a+tc] =[a] +tc and [b+tc] = [b] 4 tc
for t > 0 and
[a| —a, [b]—b L c.
It follows that

i <k,w> Spl(te) +i(Q + H)[a](tc)S[[ﬂ( c)—

32
(32) ISPl (te)(Q + H)y(te) = Fl(tc)
for all ¢t > 0.

Moreover Hi(tc), Hy(tc) and F, [Ef]] (tc) have limits as t — oo (Corol-
lary 4.5). Qg (tc) and Qp(tc) do not have limits, and we must analyze
two different cases according to if <c,a — b>= 0 or not.

Case I: <c,a — b>= 0. We have that Q(tc)X — XQp)(tc) (for any
(#]a] x #[b])-matrix X) equals

ja* X — X [b]”

— the linear and quadratic terms in ¢ cancel! Therefore equation (32)
has a limit as ¢ — oo:

i <k,w> X +i(Qu + Hig(000) X — iX (Qy) + Hy(ooc)) = Flyj (0oc).

Since eigenvalues are continuous in parameters we have

oe J(|a|22 + Hig(ooc))

g e O’<|b| + H[m(OOC))

Therefore the limit equation has a unique solution X which is C! in w
and verifies

|<k,w> +a — 8| >k v{

| X <= HFb] ooc H
Since S[[ﬁ (tc) is bounded, it follows from uniqueness that
b b
S(te) — Spl(coc) = X

as t — 00.

Case I1I: <c,a — b># 0. We have that Q(tc) X — XQp)(tc) equals
(2t <a,c> + |a]) X — X (2t <b, > |b]?)

9n order to avoid confusion we shall denote the Téplitz-limit in the direction ¢

by Q(coc).
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— only the quadratic terms in ¢ cancell Dividing (32) by t and letting
t — 00, the limit equation becomes

2 <c,a—b>X=0.

It has the unique solution X = 0. For the same reason as in the
previous case we have that

S[[ﬂ (te) — S[[ﬂ(ooc) =0

as t — o0.
We have thus shown that, for any ¢, the solution S has a Toplitz-limit
S(ooc) which verifies, for (a,b) € Da/(c),
(33)
i <k,w> SP4+i(Q+ H(coc,w)) g Sy~ if dist([a], [o]) <
ZS[[S%(Q + H(ooc,w))p = F[Ef]](ooc,w) and (a —b) L ¢
S[[ﬂ =0 if not.

Since S(ooc¢) is invariant under c-translations, this implies that S(ococ)
verifies the equation in (ii).
Moreover

1
|S(c0c)|, < Edc‘iehdA | F(coc)l,, -

T

Estimate of Lipschitz norm. Consider the “derivative” 0O.:

al b
el 1el”

(Notice that the definition does not depend on the choice of represen-
tatives a and b in [a] and [b] respectively.) We shall “differentiate”
equation (32) and estimate the solution of the “differentiated” equa-
tion over [a] x [b] C Da/(c) which is C Da(c) because A’ > A. By
Corollary 2.2(iii) this will provide us with an estimate of the Lipschitz
constant Lipy,, 4. 4o

So we take [a] x [b] C Dy/(c). Since S is 0 at distances 2 A’ + da
from the diagonal we only need to treat |a — b] < A’ + da. Again we
must consider two cases.

Case I: <c,a — b>= 0. Subtracting the equation (33) for S[[ﬁ(ooc)
lal 1ol
lel? el

0.Q}1) (te) = (QP)(te) — Q[l} (c0c)) max(

from the equation (29) for S[[ and multiplying by max(i, 1) gives

i <k, w> 081 +i(Q + H)igd.S — 8.50(Q+ H)py =
8CF[[5]] - ac-[——][a] S[[b ( ) + S[a](OOC)aCH[b]-
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Now we get as for equation (29) that

0 1 0
S < sdleeri] + ¢ 1
Case II: <c,a — b>%# 0. Then
b
|\a\2—b2\%%] <c,a—b>|%H\ <c,a—b> |2 N
c c

Indeed |a|* — ||| can be written
a4+ 1cf = |V + 7| |d|? = V) + 27 <¢,a — b>,
and (recalling Lemma 2.1(ii))

[0 = | < la = bl (1] + [¥]) < cte.(& + da)
and this is < 17, since A’ > 2cte.(A’ 4+ da). Moreover (Lemma
2.1(1)+(iii))

lal 1ol

> A,
le] el ™

Since A’ > ||H||, assuring that ||H|| is small compared with |a|®
b]* |, we have

a€o((Q+ H)y)

—0l=2|<a—bc>>2 V
ol m2la-ne 22 v G ETHET )
Since S[[ﬂ(ooc) = 0, multiplying (28) by = max(‘#’l‘ %) gives

% (b K3 [
L <k, w> 0S| + L(Q+ H) (0.8 — 0.5 L(Q+ H)py =
b] 1y (Ia\ M) ~ pll

le] 7 Ic]
Since A" > C1 A/, the absolutc value of the eigenvalues of the LHS-
operator is > 1 and it follows that

(0] [b]
loesid]| < || =]

If (a,b) € Dprjan12(c), then both (a, a) and (b, b) belongs to Daryg, +2(c)

and, by Corollary 2.2 (iii),
[a] x [b], [a] x [a], [b] x [b] € Dar(c) € Da(c).
Therefore

| < dt <H>, .

Using this, the estimates (in Case I and II) for ‘ [a% H and the estimate

(30) we obtain

1 1
<S>A’+da+2’y< de Z’YdA( <F>A’7’Y —‘r—2 <H>, |F|,y)
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(This norm is defined in section 2.4.) The estimate of <.S>pr14,42,4
is obtained by a finite induction using this estimate and the equation
(ii) for the Toplitz-limits.

Estimate of w-derivatives. In order to estimate the derivatives in w
we consider the differentiated equation (31). The RHS G E’l]] verifies

Al =

0.0,F || + (k1 + |0 Hia | + ([0 Hyy ) || S22
8c8wH[a] ” + | acawH[b] H) HS[[Z%

+(|

and acaws[[ﬂ is now estimated like 805’[[2% but with G instead of F.
Combining these estimates now gives the result when F' = 7o/ F. By
Lemma 6.2(i) we get the result for a general F'. O

6.4. A second equation, k£ = 0.
Consider the equation

(35) iQw) + H(w), 5] = (Tar = Dar) F(w)

where F(w) : £L x L — C and 0,F(w) are Toplitz at oco.

Let U" C U be a set such that for all w € U, the small divisor
condition
a(w) € o((Q2+ H)(w)qa)
aw)—-pw)| >k V 4
)= P25 Y 50 € o((0+ H)w)a)
dist([a]a, [b]a) < A" +2da and |a| # |b].

(36)

holds.

Proposition 6.4. Let A’ > 1 and 0 < k < 1. Assume that U verifies
(13), that Q is real diagonal and verifies (14), and that H verifies (16).
Assume also that H(w) and 9, H (w) are Toplitz at oo and N Fa for all
weU.

Then the equation

(35) and S -— Tar+20,5DarS =0
has for allw € U" a unique solution S(w) verifying
(i)
1 2d 2vA .
‘S‘{'[y]/} < cte. EdAe ‘F|{'[yj,},
(ii)) S(w) and 0,S(w) are Toplitz at oo and the Toplitz-limits verify

i <k,w> S +i[Qw) + H(c,w), S| = (Tar — Dar)P.F(c,w)
S = Tar42a, S = DarS = 0;
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(iii)
1 2d 2vA
<S>{/[>//+dﬁ2ﬁ} < cte. EdAe (1+ <H>{/&/}) <F> 22,7}
for any

A > max(A, dA, (dar)?, SII}p [ H (w)]])-

The constant cte. only depends on the dimensions d and #A and on

Ch 027 037 C(4'

Proof. We first assume that F' = (7as — Das)F. The proof is the same
as in Proposition 6.3, with £ = 0. Notice that the limit equation in (ii)
is invariant under c-translations, due to Lemma 6.2 (iii).

The proof gives a

A 2> max (A, dy, A, sgp | H(w)]]).

In order to get the result we need to estimate (7a — Da/)F' in terms
of F. This is done by Lemma 6.2(i)+(iii) and requires a larger A’. O

6.5. A third equation.
Consider the equation

(37) i <k,w> S +i(Qw) + H(w))S +iST(Qw) + 'H(w)) = F(w)
where F(w) : L x L — C and 0,F(w) are Toplitz at co and ZQ is
defined by

(ZQ)a = Q-
(This equation will be motivated in the proof of Proposition 6.7.)

Let U" C U be a set such that for all w € U, the small divisor
condition (20) holds for all a, b, i.e.

a(w) € o((2+ H)(w))

Bw) € o((+ H)(w))).

Proposition 6.5. Let 0 < k < 1. Assume that U wverifies (13), that

Q s real diagonal and verifies (14), and that H verifies (16). Assume

also that H(w) and J,H (w) are Toplitz at oo and N Fa for allw € U.
Then the equation (37) has for all w € U’ a unique solution S(w)

verifying

(1)

|<k,w> +a(w) + B(w)| > K V{

1 2d 2vA .
|S|{z/],} < cte. ?dAe (1+ |k|) |F’{z/],},

(i) S(w) and 0,S(w) are Téplitz at oo and all Toplitz-limits S(c,w), ¢
0, are =0;

7
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(iii)
<S>{A/+dA+27} < cte. —d2d 27A(1+|]€|+<H>{A ) <F> N

for any

A 2 max(h, i, & sup [H@)]).

The constant cte. only depends on the dimensions d and #A and on

Cl; 027 037 C4-

Proof. As before we reduce to 2, = |a|> and we block decompose the
equation over Ea:

i <k,w> Si +i(Q+ H)wS +iSi(Q +"H)_y Fly.

We then repeat the proof as for Proposition 6.3. There is a difference
in the computation of the T6plitz limits. The equation (32) becomes
i <k, w> SP(te) +i(Q + H)jy(te) Sy (te)+
+iSIA(te)(Q + H) _y (—te) = Fl (te)
and now
Q[a] (tC)X + XQ[fb](—tC)
equals
(2 |c|* + 2t <a,c> + |al ) X + X (£ |c|* + 2t <b, > + |b]*)

— the quadratic terms in ¢ do not cancel! Dividing the equation by 2
and letting ¢ — oo, the limit equation becomes

2|’ X =0,
which has the unique solution X = 0. Therefore
b
Sjaj(tc) — Spj(00c) =0

as t — oo, i.e. the Toplitz limits are always 0.

In order to estimate the Lipschitz-norm we only need to consider
the analogue of Case II (even when <c¢,a — b>= 0). We have for
[a] x [b] C Dar(c)
lalve o (10lya < he

)~ () 2 ()2
] ]

To avoid any problems with <k,w> and H it is sufficient that (A)? i
> C1A" and 2 || H]|. O

22

jal* + b* 2 (7
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6.6. The homological equations.
Let Q(w) : L x L — gl(2,C) be a real diagonal matrix, i.e.

0 (w) = { Qu()] a=b

0 a#b
Consider
[Q(w)] > C5 >0
(38) (W) + Q(w)| = C5 a,beLl, wel
Qa(w) = Q(w)| = Cs, |a] # ||

Let H(w) : L x L — ¢l(2,C) and 0, H(w) be Toplitz at oo for all
w € U and consider

) <G weu
<H>{/[>}§ CG
(Here || || is the operator norm.)

Proposition 6.6. Let A’ > 0 and 0 < k < . Assume that U verifies
(13), that Q is real diagonal and verifies (14) (15) + (38), and that
H werifies (16) + (39). Assume also that H(w) and 0,H (w) are N Fa
forallw e U.

Then there is a subset U' C U,

Leb(U\ U’) < cte.max(A/, d3)*+#4- 1k,

such that for all w € U’ the following hold:
(i) for any 0 < |k| < A’

|<k,w>| > k.

(ii) for any |k| < A" and for any vector F(w) € I2(L,C?) there
exists a unique vector S(w) € I2(L, C?) such that

i <k,w>S+JQ+H)S=F
and satisfying
1
< cte. 5 A'dX" e ||F :
1517y = ctem Ad™ e (|l 3y
The constants cte. only depend on d,#A, m, and on C4,...,Cs.

Proof. (i) holds outside a set of w of Lebesgue measure < (A')#4x, so
it suffices to consider (ii). Let

‘

NN
SI=S-
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and define 'CAC : L x L — gl(2,C) through
(fCAC): ='CALC.

We change to complex coordinates S = C~'S and F = C~'F.
Then the equation becomes

¢4w>ﬁu< 0 Q+H>~ ;

v o )°°F
where Q, H : £ — C are the scalar-valued normal form matrices associ-
ated to Q, H (see section 5.1) — Q is real symmetric and H is Hermitian.

This equation decouples into two equations for (scalar-valued) ma-
trices of type

i <k,w>R+i(Q+ Q)R =G,
where Q = H or 'H. By Proposition (6.1) we can solve these equations
uniquely for all w € U’ such that
| <k,w>+a(w)] >k Va(w) €a((Q+ H)(w)), |k <A

If k = 0 this follows from (38)+ (39) since k < <. If k # 0 this follows
from Proposition 5.1. O

Proposition 6.7. Let A’ >0 and 0 < k < 2 . Assume that U verifies
(13), that Q2 is real diagonal and verifies (14) (15) + (38), and that
H wverifies (16) + (39). Assume also that H(w) and 0,H (w) are N Fa
forallw e U.
Then there is a subset U' C U,
Leb(U — U") < cte. max(A, A, Aol
such that for all w € U’ the following hold:
for any |k| < A" and for any matrix
F(w): Lx L — gl(2,C)
F(w) symmetric, i.e. F* ='F?
(7F)’ =0 when \afb] > A’
there exist symmetric matrices S(w) and H'(w) such that
i <k,w>S+(Q+H)JS—SJQ+H)=F—H'
and satisfying — for any
AI Z cte. maX(A, dQA, (dA/)2) —
(i)

1
<S>{A/+dﬁ27} < Cte,i Ad2d 2vyda <F>{$// }
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(ii) for k # 0 H'(w) = 0 and for k = 0 H'(w) and 0,H'(w) are
block diagonal over Enr and

H' / < <F .
< >{A+dA+2} < >U/}

Moreover, if F is real then H'(w) and 0,H'(w) are N Fa

The exponent exp only depends on d, #A and the constants cte. also
depend on C4,...,Cs.

Proof. We change to complex coordinates S=1CSC and F='CFC.
Then the equation becomes F' — H' =

. 5. 0 Q+H 5 . 0 Q+H
z<k;,w>Sz<Q+tH 0 >JSZSJ<Q+tH 0 )

where ), H : £ — C are the scalar-valued normal form matrices associ-
ated to €2, H (see section 5.1) — €2 is real symmetric and H is Hermitian.

If we write
(B
F=(im 7))
then

ot (B = F) —i(F+ Fy) (Fy+ Fs) +i(Fy — 'F)
(Fi+ F3) —i(Fy —'Fy)  (Fy — Fy) +i(Fy + 'Fy)
the diagonal parts coming from (I — m)F and the off-diagonal parts
from 7 F.
The equation decouples into four (scalar-valued) matrices of the
types
i <k,w>R+i(Q+Q)R—-RQ+Q) =GP,
for the off-diagonal terms, and
i <k,w>R+i(Q+ QR+ R(Q+Q)=G— P,

for the diagonal terms. Here Q = H or 'H.
Let us first consider the off-diagonal equations. By the assumption
on ', Th/G =G, G is Toplitz at oo and

<G> A/ }<<F>{A/ } .
Moreover, GG is Hermitian if F is real.

If k £ 0 we take P = 0 and we can solve the equation by Proposition
6.3 for all w such that

|<k,w> +a(w) — Bw)| > K V{ ggz; E ZEEgig

S—
—
€
=
>
-

for

dist([a]a, [b]a) < A + 2da.
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The set of such w is estimated in Proposition 5.2. The solution is
unique if we impose 7ar424, R — R = 0.

If £ = 0 we take P = Da/G and we can solve the equation by
Proposition 6.4 for all w such that

a(w) e o((Q+ H)(wW)aa)
la(w) = B(w)| > V{ B(w) € a((2+ H)(W){b]]A)

for
dist([a]a, [b]a) < A’ +2da and |a| # |b].

This condition on w holds by assumptions (38) 4 (39) since x < <.
The solution is unique if we impose Zary99, R — R = DaR = 0. P is
estimated by Lemma 6.2(iii).

To treat the diagonal equations let us consider the operators

(RG)! = G, and (ZG)? =GP,
Now RG, G coming from (I — m)F, is T6plitz at co and
<RG>n\S<E >0
{o7} o'}
With T'= R R the equation takes the form
i <k,w>T+i(Q+ QT +TI(Q+'Q)) =RG — RP.

We take RP = 0 and then the result follows from Proposition 6.5 under

the assumption (20) on w. This assumption holds for k£ = 0 by (38) +

(39) and for k # 0 on a set U’ which is estimated in Proposition 5.1.
By construction H’ is symmetric. Moreover, for k = 0

(7S)2 =0 when |a—b| > A’ +2da or [a]a = [b]a;
and for k& # 0
(78)2 =0 when |a—b| > A’ + 2da.

These conditions determine S uniquely and symmetry follows from
this. O

PART III. KAM
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7. A KAM THEOREM

7.1. Statement of the theorem.
Let

(0, p.1) = 07(0) x T x D(j)*
be the set of all (, ¢, r such that
(=(&m) €0(0), [Spal <p, [ral <p Vae A
Let

holG7) = h(G, 7o) =<, > + <, (w) + H(w))C>

where Q(w) is a real diagonal matrix with diagonal elements §2,(w)]
and H(w) and 9, H (w) are Toplitz at oo and N Fp for all w € U. We
recall (section 5.1) that a matrix H : £ x £ — gl(2,C) is N Fp if it is
real, symmetric and can be written

i-(3 %)

with Q = Q1 + iQ)2 Hermitian and block-diagonal over the decomposi-
tion Ea of L.
We assume (13-15)+(38), i.e.

U is an open subset of {|w| < C1} € R#A,

105 (Qu(w) — |a?)] < Coe kel C3 >0
(a,w)e LXxU, v=0,1,

<0, (<k,w> +Q4(w)), &>> Oy > 0

<O (<k,w> +Q,(w) + W(w)), ﬁ>2 Cy a,bel, keZA\O, weU
<0 (<k,w> +Q0(w) = (W), 1g>= Ca

|Q(w)] > C5 >0

|Q(w) + Qp(w)] > Cs abe L, welU

[Qa(w) = Y (w)| = Cs, |a| # b].

Remark. The conditions on the directional derivative hold trivially for
Cy=3if

[0, (w)| < Y(a,w) € L x U.

e~ =
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We also assume (16)+(39), i.e.

10, H ()] < S
1H (@) < 4

for some A. (Here || || is the operator norm.)

Remark. For simplicity we shall assume that ~, o, p, 0 are < 1 and that

A, A are > 3.
Let
f:0%o,p,p) xU — C
be real analytic in ¢, p, 7 and C! in w € U and let

[f]{/w,a sup [f(-, .7, ')}{Amo}-
Upnt  peTh U
reD(u)A

Theorem 7.1. Assume that U verifies (13), that Q is real diagonal
and verifies (14) + (15) + (38), that H(w) and 0,H (w) are Toplitz at
o0 and NFa for allw € U, and that H verifies (16)+(39).

Then there is a constant Cte. and an exponent exp such that, if

11
o = € < Cte. min(v, p, —, — )P min(o?, jt)?

then there is a U' C U with
Leb(U \ U') < cte.e™

such that for all w € U’ the following hold: there is an analytic sym-
plectic diffeomorphism

g
:0°(2,5.5) = 0% pn)

and a vector w' such that (hy + f) o ® equals (modulo a constant)
1
<w,r> +5<C (Q+ H)(W)C> +1(C o w)

where

Of =0, =f =0 for (=r=0

[ Q) @ >
H —
( Ry Q)
with Q" = Q) +1Q),, Hermitian and block diagonal

(@)a=0 Vlal #1b.

and
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Moreover, ® = (O, O, ;) verifies
Q¢ = Cllg + [Py — ] + [®r — 7| < cte.fe
for all (C,ip,7) € O%(3, 2, 2),
|1H'(w) — H(w)|| < cte.fe
and the mapping w — w'(w) verifies

5
|w' —1d]| g1 < cte.—.
cL U m

The exponents exp,exp’ only depend on d,#.A, m., the constants
Cte., cte. also depends on C4,...,Cs and B = (7,0, p, 1, A, A, w)

Remark. Each block-component of 2+ H(w) is of finite dimension but
in general there is no uniform bound — they may be of arbitrarily large
dimension. Due to this lack of uniformity we loose, in our estimates,
all exponential decay in the space modes. However, if there were a
uniform bound — as happens in some cases [GY06] — we would retain
some exponential decay.

Remark. Tt follows from the proof that & is of the form

(¢ 0,m) = 2(p) + Z(9)C
(bAP(Cv 2 T) =@ + a(@)
(¢, 1) =14+ b(C, ) + c(p)r

where b((, ¢) is quadratic in ¢, because ® is a composition of mappings

of this form.
If f does not depend on r, then

a=c=0 and o' =w,

because ® is a composition of mappings of this form, and it preserves
Hamiltonians of this form.

If £(¢, %) = 5 <C, F(®)¢>, then also
1
2=0 and b(C,¢) =5 <C Blp)¢>,
because ® is a composition of mappings of this form, and it preserves

Hamiltonians of this form.

Since the consequences of the theorem are discussed in the intro-
duction, let us instead here discuss a special case. Consider a linear
non-autonomous Hamiltonian system with quasiperiodic coefficients

(=J(Q+Hw)+eF(p,w))¢, p=w
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where Q and H(w) are as in Theorem 7.1 and F is symmetric and
Toplitz at oo and

<F(p,") Z A<
U
for |Sp| < p and for some v > 0. Then, by Young’s inequality (2),

1 m
1E (s, w)Cll,, < (m)dJr E(,w)l K, ¥ <y

and

1
| <¢ Flp,w)¢> | < (;)dm* F(p,w)l, lI¢ll5 -

Therefore we can apply Theorem 7.1+Remark to the Hamiltonian

h+ef =<w,r> —|—% <(, Q4+ H(w) + F(p,w))>

If € is sufficiently small, it gives a mapping ® such that

(h-+2f) 0 B(Coip,7) =<7 3 <G (O 4 H/(w))C>

with
Z(e)¢
(¢, o,r) = | r+3 <¢.Blp)>
12
. From this form and from the symplectic character of ® we derive that
<0, Z(p),w>=J(Q+ H + F()Z(p) — Z(¢)J(Q+ H').
This implies that the mapping

(€, ) = (w = Z(p)C, )
reduces the linear non-autonous system to autonomous system
=J(Q+H W) ¢=w.

Notice also that J(Q2+ H'(w)) is block-diagonal with purely imaginary
eigenvalues.

7.2. Application to the Schrodinger equation.
Consider a non-linear Schrédinger equation

—it=—Au+V(x)*xu+ sg—lf(:p, w, @), u=u(t,x), r€ T (%)
u

where V(z) = . V(a)e"®® is an analytic function with V real and
where F is real analytic in Ru, Su and in = € T9.
Let A C Z% be a finite set and consider a function

Uy 907 Z \/—el%z Z@ba Pa > 07

acA
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such that (z,u1(p,x),41(p,z)) belongs to the domain of F for all
(z,¢) € T¢ x TA. Then

ul(t> I) = ul(@ +tw, .I‘)

is a solution of (x) for € = 0.
Let £ be the complement of A and let

w={w,=la>+V(a):a e A}
Q={w, =la*+V(a):a € L}
Let V depend C! on a parameter w € W C R#4 and assume that it
satisfies conditions analogous to (13-15 )+(38), i.e
W is an open subset of {jw| < C;} € R#4,

10,(Qu(w) — |af?)] < Coe™ 4, C5 >0
w)eLx W, v=0,1,

<O (<k, w(w)> +Qq(w)), W>Z Cy>0
<O (<k, w(w)> +Q(w) + Qp(w)), %>2 Ci abe L, keZ*\0, w
<O (<k,w(w)> +Q,(w) — Qb(w)),%>2 Cy

Q0 (w)] = C5 >

[€0a(w) + € ()IZC5 abel, wel

Q2 (w) = Q(w)| > Cs, |af # |b].
We also assume that the mapping
W o w— ww) = {w, = |a)* + V(e,w);a € Ay CU
is a diffeomorphism whose inverse is bounded in the C!-norm, i.e.

(40) w1 < Ce.

Theorem 7.2. For ¢ sufficiently small, there is a subset W' C W,
Leb(W \ W') < cte.e™P

such that on W' there is an u(p,x), analytic in ¢ € T‘é and of class

Cm=d in x € T, with

sup H’LL(QD, )_Ul(@a )”Hm*(']rd <BE

[Sel<§
and there is a ' : W' — U,
|w/ _ w|(C1(W’) < e,
such that
u(t, z) = u(p + tw'(w), z)
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is a solution of (%) for any w € W".
Moreover, the linearized equation

—i0 =Av+ V() v+ E%(m, u(t, z),u(t, x))v+

el (z,ult, x), ult, x))v

1s reducible to constant coefficients and has only time-quasi-periodic
solutions — except for a (#.A)-dimensional subspace where solutions
may increase at most linearly in t.

0 is a constant that depends on the dimensions d, #A, m,, the con-
stants C1,...,Cg and on w and F.

Proof. We write

{ u(®) = Ygeza tat’""
2

and let

In the symplectic space
{(€asma) s a € Zd} =R x RZda Z d&a N dna,
acZd

the equation becomes a Hamiltonian equation in infinite degrees of
freedom. The Hamiltonian function has an integrable part

5 (ol + V(@) (€& + )

plus a perturbation.
In a neighborhood of the unperturbed solution

1
5(524'772) = Pa; a€A,

we introduce the action angle variables (¢q, 7,) (notice that each p, > 0
by assumption), defined through the relations

& = /2(rq + pa) cos(pq)
Nla = \/2(ra + pa) sin ().

The integrable part of the Hamiltonian becomes

A(G 1, w0) =<, > g 3 0 (W)(E + 1),

acl
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while the perturbation

ef(u,u) = &?/ F(z,u(x)u(x))dz
Td
will be a function of (, ¢, r. If we write
G(z,uy,uy,u, ) = F(z,uy +u,uy + )

then G is an analytic function in x, u, % which depends analytically on
@,r. Then one verifies (see Lemma 1 in [EKO07]) that, since m, > g,
there exist 7, o, p, pu such that f is real analytic on O (o, p, 1) and that
f has the To6plitz-Lipschitz-property:
(41) [f]{A,W} <y

U,p,p
for some constant C7.

The assumptions of Theorem 7.1 are now fulfilled and gives the re-
sult. (]

8. PROOF OF THEOREM

8.1. Preliminaries.
Let

f:0%o,p,p) xU —C
be real analytic in ¢, p,7 and C! in w € U and consider

f Ayy,0 -
g
Notation. We let
(3 7)
p
and we write this norm as
[f]{{}a}

Remark. We shall assume that all v, 0, p, u are < 1, that 0 < 0 — o’ =
o, 0 <p—p' =~ pand that A, A > 3.

Cauchy estimates. It follows by Cauchy estimates that
< _1_
O flipay S oy lfl{aa)

1

(42) 0 flfray S 7l (a0}

Truncation. We obtain 7a f from f by: 1) truncating the Taylor
expansion in ¢ at order 2; 2) truncating the Taylor expansion in r at
order 0 for the first and the second order term in ¢ and at order 1 for
the zero’th order term in (; 3) truncating the Fourier modes at order
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A; 4) truncating the space modes of the second order term in ¢ at order
A. Formally 7x f is

S i<alf (0, k,0,w) + 0, fA(o, k,0,w)r+ <0 f(0,k,0,w), >
+5<C, TadZ £ (0, k, 0, w)(>]er 4.

We have

(43) Zaflipar S A flr 0y

and

(44) If = TAf]{ga/} S A(Oé,a/7A)[f]{/[>a},

where A(a, o/, A) is
o . o Wl 1
P+ (=+5)E+ (——
(=)"+( i e

o o Z
This follows from Proposition 3.2, from Cauchy estimates in r and
¢, and from formula (8).
Poisson brackets. The Poisson bracket is defined by

{f7 g} :<8Cf7 J8<g> +atpfarg - arfatpg
If g is a quadratic polynomial in ¢, then

45) {9l aesay S BO =700 =0 MIfl sy loliaay

)#AefA(pfp') + A0,

where ) ) L1
B = AQ—(—/ S—.
7= pP—pH
If also f is a quadratic polynomial in ¢ and, moreover, independent
of ¢ and of the form

)d+m*

<a,r> —|—%<C,A(>,
then
(46) [{fag}}{11>+3a/} 5 B(ﬁl - ’}/,,Ul,ﬁ - pla,UflaA)[f}{l[}al}[g]{/&az}a

ai—<7 "i>, i=1,2.
P Hi

and 7 = min(y,7,), p = min(py, pa).

In both cases, the first term to the right (in the expression for { f, g}
above) is estimated by Proposition 3.3 and the other two terms by
Cauchy estimates.

101 the expression for B we have assumed that 0 < 0;—0’ ~ 0. 0 < pj—p' ~ i},
j=12.
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We shall use both these estimates. Notice that (46) is much better
than (45) when o9, 15 are much smaller than oy, y;.
Flow maps. Let

1
s = TAS = SQ(QD,?",(U)‘I‘ <Ca Sl((p,W)> +§ <§7 SZ(QO7W)<> .

Notice that, since s = 7a, Sy is of first order in r. Consider the
Hamiltonian vector field

S (< Jocs JSi(p,w) + JSa(p,w)C
al v ]= 0,5 = 0,-So(p,0,w)
E\ —0,5 —0,5(C, 0,7, w)
and let

o, G _ < C+bi(z,w) + Bi(z,w)¢ >

ft Z+gt(C,Z,W)
t

be the flow. Here we have denoted ¢ and r by z.
Assume that

(47) [slfa 0y = Smin((p = ), (v = 7)™ 0%).
Then for [t| < 1 we have:

&, 0" (o' 0 1) = O (0,0, 1), WY <A

€ €
) ey S50 =
depending on if g is an ¢-component or a r-component;
9l Blllge ) £ (G S ) )
for all 4" < +/;
(50) <Bi> S A——) .
{va’ : } Us

Moreover, for 1 > & > ¢’ and 1 > i > ¢/, ®; has an analytic (because
polynomial in ¢ and p) extension to OV (7, p/, i) for all 4" < ' and
verifies on this set

o < 1 \d+ms« (T =
Hgt C”’y” r;./ ('Y—’\{’) (0' + 1)0'
(51) loe— ol S 5

Ire =l S GL)(E + (2 + e,
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Proof. We have ¢; = ¢ + a;(¢,w) and since
\&So(go, 07 (x})’ 5

€ A
o VQ)O € Tp )
i
¢ remains in T4 for [¢] < 1 if = S (p—p'). The w-derivative verifies

%(aw@t) = aw8r50(<p7 Oa w) + atparSO((Pa 07 w)(awgpt)
and can be solved explicitly by an integral formula. This gives (48) for
z = ¢ and the p-part of (51).

For a fixed w (49) follows from the first part of Proposition 3.4(i) if
|JSa], S (v =44, ie. if e S (v —9')40% This also gives the (-part
of (51). In order to get ||, — (||, < o0 — 0" ~ o for [[(][,, < o we need
e < (v —+)¥m=g2. (50) follows from the second part of Proposition
3.4(i). The w-derivative of (; satisfies

d
%(awgf) = aszl(([), 07 W) + 840‘]52(()07 07 W)Ct + JSQ((pa 07 w)(awgt)

which is solved in the same way.

e =1+ &(C, p,w) + di(p, w)r and for a fixed w (48) follows from
Proposition 3.4(ii) if ¢ < (p—p')(p— ') = (p— p')p. The w-derivative
satisfies a similar equation which is solved in the same way. The r-part
of (51) follows from these estimates since r; is linear in r. O

Composition. Consider now the composition f(®y,w). If
(52) e Smin((p— p ), (y =)o)y =
then
. < A4
(53) (@0 gyers .y S Ay
Proof. Consider first a fixed w. We have
16:(¢,2) = Cll,y <o =o' V(¢ 2) € OV (0") x Ty x D(u')*
by (49)+(52), and we have
1 N1 /
0C A < 2= i) or 3(0— ) VIC.2) € O°0") x T x D)™
depending on if g is an r-component or a ¢-component, by (48)+(52).
By Proposition 3.5 we get
[f(q)t('7w)7w)]{A+12,7”,a’} 5 A [f(vw)] A+6,’y',o}>

o Pt

where
1

A =max(1, o, A? —
Y=

a?)
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and

@ = u—lu/ [Tt - T]{A—i—ﬁ,'y’,a’} + ﬁ[@t - @}{A-i-ﬁ,'y’,o’}
it B &4 o
Mx < t> A+6’ , .
{ ’ }
If we C?OOSG v —~" =~—7/, then (48)+(50) and the bound (52) gives
A< AS,

Consider now the dependence on w. We have

Ou(f(®1)) = Ouf(Pr)+ <O0.f(Dr), 009:> + <O f(Pr), 0>
The first term is a composition and we get the same estimate as
above but with f replaced by J,f.

The second term is a finite sum of products, each of which is esti-
mated by Proposition 3.1(i), i.e.

+(

v —

Al VA VA

P Pk P

[<3Zf(¢>t,w), aw9t>]{/\+12,y",a'} 5 sz(q)tv wﬂ{A«HQ,v”,a’}[awgt]{A+12,v”,a’}‘

The first factor is a composition which is estimated as above: if we
take p) — p" = p—p' and ' — " = p — 1/, then we get
6
Sj A [azf(v w)]{A-‘,—G;’y/;o'} [awgt}{/\-f-l?,'y/”,o’}'
" P
Using Cauchy estimates for the first factor and (48)+(50) for the second
factor gives

S Af(w)] At )

pitt
The third term is a composition of the function

f=<0cf,(0uG) 0 D>

with ®,. Evaluating f we find that it has the form <0, f, ?)t + BtC >
where ~

b~t = 0,bi(0—t) + 0, Bi(p_i)b_y

By = 0,B(¢0—¢) + 0,B(¢o—) B_.

For ¢ € T4, we get by (48)+(52) that
lp =@l <p —p" =p—1,
so by and B, are defined on T4.. By (49)+(52)
b

So-*o-la

/

Y

and by (50)+(52) and the product formula (10)
1 ) €
v=v"0%

<B >{A+977/}§ A%(
p//



KAM FOR NLS 67

m{/\+9,7 g} § Ag[f] A+670}

1/ ’ i

Pl Pk
Finally by the same argument as above we get
[F(@(-,w),w )]{A+15'y” g 5A6[f(ww)]{A+w 7}

i 7]

pHH Pk

if we choose p/ —p" =p' —p', 0/ —0c"=0c—0c" and ) — ' = pu— .
This completes the proof. ]
8.2. A finite induction.
Let 1

(G, 1) =<, 7> +3.<C, () + Hw))C>
satisfy

(13-16)+(38-39) and let H(w) and 9,H (w) be N Fa. Let
[ Oo,pp) x U —C

be real analytic in ¢, p, 7 and C! in w € U and consider

== e=(5 1)

Besides the assumption that all constants v, o, p, 4 are < 1 and that
A, A are > 3, we shall also assume that

p=0> and day<1.

The first assumption is just for convenience, but the second is forced
upon us by the occurrence of a factor e?27 in the estimates of Propo-
sitions 6.6 and 6.7 which we must control.

Fix p/ < p, 7 <~vyand 0 <k <1 and let

, | 1 |
N = (o)t = gL
Define for 1 <j<n
Ej+1 = (ﬁ)é‘j €1=¢,
Ajyr=Aj+da+23, Ay = cte. max(A, d%, (da)?)
%= ( DEX p=p- (-1
01 = (5)30; o=0
Hjr1 = (gzns)%l‘j H1 = [

11

We have the following proposition.

HThe constant in the definition of A; is the one in Proposition 6.7.
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Proposition 8.1. Under the above assumptions there exist a constant
Cte. and an exponent exp, such that if

f , 111
e < &Ctemin(y —v.p =9’ 1 1 log(l)) Prmin(o®, ),

then there is a subset U' C U,
Leb(U \ U') < cte.c™P2,

such that for all w € U’ the following holds for 1 < j < n: there is an
analytic symplectic diffeomorphism

®; 0 0" (0411, pjy1s 1) = O (05,055 115), YY" <,
such that
(el A1+ f) 0@ = ht byt .ot by + i
(fr=1) with
(i)
hy = )+ <xw), 7> +3 <G, Hjw)C>,
Hj(w) and 9,H;(w) in N Fas, and
[hj]{/[}; o) < e
(ii)
[f]+1]{ . < Feji,
for some

1 1
- A, A log(— ))CXP?*.

B < cte. max(
Y="p—

Moreover, for 1 > 6 > 041 and 1 > i > pjp1, ®; = ({5, 95,75) has
an analytic extension to OV (7, pyyj, i) for all v" < ;41 and verifies
on this set

1 \d+m.( & j—1&5
16 = ¢l S G=7)™ (F + D

o = &l < ”ﬁ
ry =1l S G )( L+ (2)+1D)F e

The exponents exp;, eXps, €XPs only depend on d,#A, m, while the
constants Cte. and cte. also depend on C4, ..., Cs.

P]+1

Proof. We start by solving inductively
{h,sj} = =T fj + hy,
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where 7a/f; is the truncation (section 8.1) and s; and h; are to be
found using Propositions 6.6 and 6.7. To see how this works, write
s; = So+ <(, 51> +35 <C Sa(>
TA/f] o+ <, F1> + <C (>
hj = cj(w)+ <x;(w), 7">+ <(, Hj(w)¢>
The equation written in Fourier modes becomes

—i <k, w> So(k) = —Fp(k) + 65(cj(w)+ <x;(w), >)
—i <k,w> Sy (k) + J(Qw) + H(w))S1(k) = —Fy (k)
—i <k,w> Sy(k) + (Qw) + H(w))JSay(k) — Sa(k)J(Qw) + H(w))
= —Fy(k) + 05 H;(w).
Using Propositions 6.6 and 6.7 these equations can now be solved for
w in a set U; with

Leb(U;—1 \ U;) < cte.e®™  (Uy =U).
Indeed with

¢j(w) = Fp(0) and x;(w) = Fi(0)
the first equation follows from Proposition 6.6(i). The second equation
follows from Proposition 6.6(ii) and the third from Proposition 6.7.

(H;(w) is not the full mean value F5(0) but only the part 7F5(0).)
This gives, after summing up the (finite) Fourier series,

[Sj]{Aj+dA+2a_ S Cte.(A/A)eXp%ﬁjflgj = é]
. J
J .
[hj]{Aj+dA+2 a-} S Cte.(A’A)expﬁjflgj
' J

If the solutions s; and h; were non-real (they are not because the
construction gives real functions) then their real parts would give real
solutions.

In a second step, for 0 <t < 1 we estimate

fi=hi+{h+hi+...+hjia+ (1 —t)h +1f; s}
which is equal
(fi—=Taf;)+t{fj 85 +{h+...+hj1+ (1 —1t)hj,s;} = g1 + g2+ g3
According to (44) we have

[91]{Aj+dA+2 de} S Alay, dpa, AN I ey,

Uj

Vi —Vi+1
Qjpr = ( VT T 205m )
J+1 — Pi—Pi+1
pi — F= 254

where
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By our choice of constants and the assumption on € we have

1 1
A< #A
N(0253 (p—p’) e 3

According to (45) we have

[92]{A RN }5 Bj(A'A)T = /32] 2

Q41

~ A14/8

J
where
Bj = B(v; = 7j+1: 05, pj — Pi+1, 1y, Aj).
[ takes care of this when j = 1 and when j > 2 we have the factor z—i
that controls everything, and we get the bound

€
< anl s
According to (46) we have

. 1 .
[93] Aj+da+s - S Z Bi(AIA)eXpﬂl_15iCte-(AIA)eijﬂJ_lQ',
{ J ]+1} 1<i<n k
where

B; = B(vj — Yj+1, 0is pj — Pjt1s Hir Aj)-
The same argument applies again: (3 takes care of this when ¢ = 1 and
when ¢ > 2 we have the factor that controls everything. We get as

before the bound

~ A14B]

02 350
In a third step we construct the time-t-map, |t| < 1, ®; of the Hamil-
tonian vector field J0s;. Condition (47),

d+m

&y Smin((pj1 — i) s (T — 1) ™ 6740,

is fulfilled for all j by assumption on &, so
D, : OW”(UJ'H; Pi+1s fj41) — Ov,l(a—jJrlwa]#la fij+1)
for all v < 7;41, and it will verify conditions (48-51) with o, o/, A
replaced by &ji1, @j1, Aj + da + 2. Then the time-1-map &, t =1,
will be our ®; and do what we want — this is a well-known relation.
Finally we define

1
firni= / (91 + g2 + g3) o Pyd.
0
It only remains to verify the estimate for f;,;. Condition (52),

& Smin((pi1 — pjr0) s, Fiar — Vi)™ 070V Tt — Vit
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is fulfilled for all j by assumption on &, so we get by (53)
{fj+1} {AJ.'H s

14
5 Aj [g] Aj+da+5 - )
U; J+1 . Qj41

UJ
and we are done. O

Corollary 8.2. There exist a constant Cte. and an exponent exp, such
that, if
e < Cte.min(y —+',p—//, i, l)e"pl min(c?, ,u)ﬁ (r= i)7
ATA 30
12 then there is a subset U' C U,
Leb(U \ U') < cte.e™Pz,

such that for all w € U’ the following hold: there is an analytic sym-
plectic diffeomorphism

©:0" (o p ) = O (0o ), W <A,
and a vector w' such that
(he + flod=H +f
with
(i)
h =<w,r> +% <(, (QUw) + H'(w))¢>  (modulo a constant),
H'(w) and O,H'(w) in NFas, and

3
! !

i o < < erlond?
U’ O"} -

r_ 11\2 1
A= (IOg(e)) min(y—y,p—p’)’
A’ = cte. max(A, d3, (dar)?) + log(2)(da + 23)
o =()it"o
Nl _ (5/)§+2Tﬂ~

12The bound on ¢ in Proposition 8.1 is implicit due log(%)) and depends on k.
Here we have an explicit bound, but the price for taking x to be fractional power
of ¢ is that the bound must depend on max(c?, it) to a power larger than 1. The
choice of 7 is only for convenience.
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Moreover, for 1> 6 > o' and 1> p > p/', & = (¢, Py, @) has an
analytic extension to OV (G, p', i) for all " < ~' and verifies on this
set

D¢ = ¢l < (2 +1)82
‘q)w - ‘P‘ < ﬁ_ﬁ )
90— o] < (£ (27 + 1)

for some

B < cte. max(

1 1
IEENNE A7 A7 log(_))exp37
T=7"p—p 5

and the mapping w — W' verifies

€
|w' —1d]| 1 < cte.—.
cHu) L

The exponents expy, €xXpy, exps only depend on d,#.A, m, while the
constants Cte. and cte. also depend on C4,...,Cs.

Proof. Take k* = €. Then

1 2
6n€n+1 = 517 On+1 2 (5/)3+TJ7 Hn+1 Z (5l)3+2‘r:u7
and
o < —llog(1))?
if
1—9r 1. 143r 9
S

The result is an immediate consequence of Proposition 8.1 with
1
Wy =<w+ x (W), r> +5<C (Aw) + H'(w))¢>

By Proposition 8.1(ii) we get [x|e1(r) < cte.. Therefore the image
of U" under the mapping w — w + x(w) covers a subset U” of U of the

same complementary Lebesgue measure, and we can replace w + x(w)
by w if we take v’ = (Id + x) ' (w). O

8.3. The infinite induction.
Let h and f be as in the previous section with the same restrictions on
the constants v, o, p, pu are < 1 and A, A.
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Choice of constants. We define

cion = e—r(log(;lj))2 (r = 31_0)7 e =¢

Vi = (CfAj)_la Y1 = min(dA,y)
;= serTUj,l j=>2 oL =0

1y = 5{3“’%,1 j=>2 = p
pi=(+5)p

Ajyr = (10g(%))2m7 A=A

A; = cte.(da,)*.
13

With this choice of constants we prove

Lemma 8.3. There exist a constant Cte.” and an exponent exp’ such
that if

1

e < Cte. min(v, p, R X)exf’, min(o?, p) =57,
then for all j > 1
. 1 oxp 1
gj < Cte.min(y; — Yjs1, 05 = Pjvts 10 1) P min(o7, ;) -0
VY

and .
> (da,)ei < J min(Cy, G, 1),
1<i<;

where Cte., exp are those of Corollary 8.2.

The exponents exp’ only depend on d, #.A, m, while the constant Cte.'
also depend on C4,...,C5.

Remark. Notice that A; increases much faster than quadratically at
(d+1)!

each step — Aj11 > A; *  due to its coupling with 7;. This is the

reason why we cannot grant the convergence by a quadratic iteration

but need a much faster iteration scheme, as the one provided by Propo-

sition 8.1 and Corollary 8.2.

The proof is an exercise on the theme “superexponential growth
beats (almost) everything”.

Proposition 8.4. Under the above assumptions, there exist a constant
Cte. and an exponent exp such that if

11 1
e < Cte.min(y —~',p—p/, X K)e"p min(o?, p) =57,

13The constant in the definition of A; is the one in Proposition 6.7.
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then there is a subset U’ C U,
Leb(U \ U") < cte.e™
such that for all w € U’ the following hold: for all j > 1 there is an
analytic symplectic diffeomorphism
®; 0 O (041, pj1s 1) — O (0, s 1), YY" < s
and a vector w; such that
(hjo1+ fi)o®j=hi+ fiyn (ho=he;, fi=f)
and satisfying:
(1)
1
h; =<w,r> —1—5 <(, (w) + Hj(w))>  (modulo a constant),
H;j(w) and 0,H;(w) in NFa,,,, and
E.
HH] - Hj—l”U’ y <H] - Hj_1> Aj}g Cte.—é
U o
(i)
[fj+1]{2]/'+1 a],ﬂ} < €j+1-
Moreover, ®; = ((;,j,r;) has an analytic extension to O°(%,4,4)
and verifies on this set

1 —Clly < (2 +1)52
oy — ol < 3,2
rj —rl < (B + (2,2 + D)Bje;
for some
1 1
Vi = Vi1 pi—pi 1
and the mapping w +— w; verifies

B; < cte. max( ))&Ps

>Aj7 Aj? log(

€y

&j
|w; — wj*1|Cl(U’) < cte.—L.
2%}
The exponents exp,exp’ only depend on d,#.A, m, while the con-
stants Cte. and cte. also depend on C4,...,Cs.

Proof. The proof is an immediate consequence of Corollary 8.2 and
Lemma 8.3. The first part of the lemma implies that the smallness
assumption in the corollary is fulfilled for every j > 1, and the second
part implies that assumption (16) + (39) holds for every j > 1. The
remaining assumptions are only on €. O
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Theorem 7.1 now follows from this proposition. Indeed,
wj — W
and we have
(hr + ) 0 ® = lim (hy, + f) 0 By 0+ 0@y = lim (B + f;11),
and since the sequence h; clearly converges on (90(%, o %), also f; con-

verges on this set — to a function f’.
Moreover, for ¢ =r = 0 and [Sp| < & we have, as j — oo,

[fils 10: 51 0 fillg — O
and, by Young’s inequality,

Jezsic, = ez, e, o

Therefore
84}”2&]”202]”20 for (=7r=0.

9. APPENDIX A - SOME ESTIMATES
Lemma 9.1. Let f: I =] —1,1][— R be of class C" and
™)) =1 vtel
Then, Ve > 0, the Lebesque measure of {t € I : |f(t)| < e} is
< cte.eTlL,
where the constant only depends on n.

Proof. We have | f®™(t)| > en for all t € I. Since

FOD@E) = FO (1) = / t F(s)ds,

to
we get that ’f("_l)(tﬂ > ew for all ¢ outside an interval of length < 2e7.
By induction we get that | f("=9)(t)] > ew for all t outside 2/~ intervals
of length < 2. 7 = n gives the result. g

Remark. The same is true if

max [fO(t)] >1 Vtel

0<j<n

and f € C"*'. In this case the constant will depend on | f|zni1.
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Let A(t) be a real diagonal N x N-matrix with diagonal components
aj which are C' on I =] —1,1[ and
ai(t) >1 j=1,...,N, vtel.

J

Let B(t) be a Hermitian N x N-matrix of class C' on I =] — 1, 1] with

1
IBWI<; Vel

Lemma 9.2. The Lebesque measure of the set

tel: min M) < e
{ Mt)ea(A)+B(t) A }

18
< cte.Neg,

where the constant is independent of N.

Proof. Assume first that A(t) 4+ B(t) is analytic in ¢. Then each eigen-
value A\(t) and its (normalized) eigenvector v(t) are analytic in ¢, and

N(t) =<v(t), (A'(t) + B'(t))v(t)>

(scalar product in CV). Under the assumptions on A and B, this is

>1— 1. Lemma 9.1 applied to each eigenvalue A(t) gives the result.
If B is non-analytic we get the same result by analytic approxima-

tion. U

Proposition 9.3.
[(A(t) + B(t) 7| <

m | =

outside a set of t € I of Lebesque measure
< cte.Ne.

Proof. The exists an unitary matrix U(t) such that

A(t) ... 0
U(t)*(A(t) + B(t)U(t) SRR
0 ... An(t)
Now
o)+ 5oy = g | s
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