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1. Introduction

Consider a classical non-autonomous Hamiltonian system on the phase space
T ∗Td = Rd × Td = {(p, q)} or T ∗Rd = Rd × Rd with Hamiltonian H(p, q, t):

ṗ = −∇qH, q̇ = ∇pH. (1)

The corresponding quantum Hamiltonian operator is obtained from H(p, q, t)
by replacing the variable qj , j = 1, . . . , d, by the operator which acts on
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complex functions u(x) as multiplication by xj , and replacing each pj by
the operator (~/i)(∂/∂xj), where ~ is the Planck constant.1 The Hamiltonian
operator H = H((~/i)∇x, x, t) defines a quantum system. A classical problem
from the very beginning of quantum mechanics has been to study the (spectral)
properties of the operator H and the properties of the corresponding evolution
equation

i~u̇(t, x) = H u(t, x) (2)

in their relation to those of the classical system (1).
For example, if

H(p, q, t) = |p|2 + V (t, q), (3)

then
H = Ht = −~2∆ + V (t, x), (4)

that is, H is the Schrödinger operator with potential V .
In this paper we discuss properties of the Hamiltonian operator H corresponding

to properties of the system (1) described by the KAM (Kolmogorov–Arnold–Moser)
theory and related theories, namely, by KAM theory proper, averaging, Nekhoro-
shev stability, and diffusion (this list is by no means canonical but reflects the
authors’ taste). We discuss results for quantum systems (2) which we regard as
parallel to the indicated classical theories, restricting ourselves mostly to the case
of periodic boundary conditions x ∈ Td and assuming that ~ = const. By rescaling
x and t in the dynamical equations (2), (4) we can set ~ = 1. But there is a dis-
cussion in § 6 concerning the semiclassical limit ~ → 0 when it is not appropriate
to scale ~ to 1. There we consider the equations in the whole space x ∈ Rd, since
for periodic boundary conditions the corresponding results are less well developed.

All quantum results we discuss involve non-autonomous equations (2), (4), so
their classical analogues are ‘KAM related’ results for the theory of non-autonomous
Hamiltonian systems (3). We do not touch upon the very interesting, important,
and complicated problem of constructing eigenfunctions of nearly integrable Hamil-
tonian operators by quantizing KAM tori of the corresponding autonomous Hamil-
tonian systems (see [23]).

Let u(t) be a solution of (2), (4). Multiplying the equation by ū and integrat-
ing over Td, we get that ‖u(t)‖2

L2 = const. We write u(t, x) =
∑

s us(t)ϕs(x),
where {ϕs} are eigenfunctions of the ‘unperturbed’ Hamiltonian operator. Then∑

s |us(t)|2 ≡ const. What happens to the quantities |us(t)|2 as t grows, that is,
how is the total probability

∑
s |us(t)|2 distributed among the states s ∈ Zd when

t is large? This is the question which is addressed by the theorems we discuss.

2. Quantum averaging

2.1. Averaging and adiabatic invariance. Suppose that a classical Hamilto-
nian (3) has the form

H(p, q, εt) = Hε = |p|2 + V (εt, q), (5)

1This quantization rule is the most common, but it is far from the only one. More generally,
one may replace qj and pj by any operators Qj and Pj such that [Qj , Pk] = i~δj,k, for all j
and k.
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where the unperturbed Hamiltonian |p|2+V (τ, q), τ = const, is integrable for any τ .
Let Ij , 1 6 j 6 d, be the corresponding actions. The classical averaging principle
(see, for instance, [3], [25]) implies that each action is an adiabatic invariant, namely,
if uε(t) is a solution of the perturbed equation (1)H=Hε

, then Ij(uε(t)) stays almost
constant on time intervals of order ε−1. The averaging principle is a heuristic
statement, and it does not always lead to correct results. The adiabatic invariance
for classical systems is discussed in more detail in § 6.

We now consider the corresponding quantum system

u̇ = −i(−∆u+ V (εt, x)u), x ∈ Td. (6)

Assume that the function V (τ, x) is C2-smooth and bounded, and denote by Aτ

the linear operator in (6):
Aτ = −∆ + V (τ, x).

Let {ϕs(τ), s ∈ Zd} and {λs(τ)} be the eigenvectors and eigenvalues of Aτ , where
each λs(τ) is continuous in τ . Let u(t, x) be a solution of (6) equal at t = 0 to
a pure state

u(0, x) = ϕs0(0) (7)

such that for each εt the number λs0(εt) is an isolated eigenvalue of Aεt with
constant multiplicity. We consider the series expansion of u(t, x) with respect to
the basis {ϕs(τ), s ∈ Zd}:

u(t, x) =
∑

s

us(t)ϕs(εt).

The quantum adiabatic theorem says that u(t, x) stays close to the eigenspace
corresponding to λs0(εt):

Theorem 2.1 (Born, Fock [8], and Kato [20]).

sup
06t6ε−1

∑
s : λs(εt) 6=λs0 (εt)

|us(t)|2 → 0 as ε→ 0. (8)

This is a very general result which remains true for systems in the whole space
(when x ∈ Rd) if the operators Aεt have mixed spectrum but λs0(εt) is always
an isolated eigenvalue with constant multiplicity (see [25]). The case when this
eigenvalue can be approached by other eigenvalues is considered in [4].

For both classical and quantum systems, adiabatic theorems are often considered
on the infinite time interval −∞ < t <∞ under the condition that the dependence
of the potential V on the time disappears sufficiently fast as t→ ±∞ and the system
is sufficiently smooth. For classical Hamiltonians with d = 1 the difference between
the values of the action on the trajectory for t→ ±∞ tends to 0 much faster than
ε as ε → 0 in this case; in the analytic case this difference is O(exp(−const/ε))
(see [22] and references in [3], § 6.4.5). For quantum systems if all the probability is
concentrated in states corresponding to the eigenvalue λs0(τ) for τ → −∞, then all
but a very small remnant of the probability will be absorbed by these same states
as τ → +∞. In the analytic case this remnant is O(exp(−const/ε)) [18], [29] (this
result also follows from the calculus developed in [30]).
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We will return to quantum adiabaticity in § 6. We note that there are also
adiabatic theorems for systems where the Hamiltonian depends slowly not only on
the time, but also on a part of the space variables (for example, see [3], § 6.4.1 for
classical systems and [6] for quantum systems).

2.2. About Nekhoroshev’s Theorem. Let us start with classical systems. Let
Hε(p, q) = h0(p) + εh1(p, q), where the function h0 is analytic and steep (for
instance, strictly convex; for the definition of steep functions see [28] and [25], [3]).
Let (p(t), q(t)) be a solution of (1). Then there are a, b > 0 such that

|p(t)− p(0)| 6 εa ∀|t| 6 eε−b

(9)

(see [28], [25], [3]). There are many related results. For example, let

Hε(p, q, t) = h0(p) + εh1(ωt; p, q), ω ∈ RN ,

where h1 is an analytic function on TN ×Rd×Td, N > 1. Then for a typical ω the
estimate (9) holds. In particular, let us take

Hε(p, q, t) = |p|2 + εV (ωt, q).

The corresponding quantized Hamiltonian is the operator −∆+ εV (ωt, x), and the
evolution equation is

u̇ = −i(−∆u+ εV (ωt, x)u). (10)

Is there an analogue of the Nekhoroshev estimate (9) for solutions of (10)? In other
words, is it true that actions of the unperturbed system, evaluated along solutions
of the perturbed equation (10), do not change much over an exponentially long
time? It turns out that a weaker form of this assertion holds, even when ε = 1! Let
us consider the equation

u̇ = −i(−∆u+ V (t, x)u) (11)

and the square of the rth Sobolev norm of u:

‖u‖2
r =

∑
s∈Zd

|us|2(1 + |s|2)r, r ∈ R.

This is a linear combination of the actions for the unperturbed system with V = 0.

Theorem 2.2 [10]. Let V (t, x) = Ṽ (ωt, x), where ω ∈ RN is a Diophantine vector
and Ṽ is a smooth function on TN ×Td. Then for each r > 1 there exists a number
c(r) such that any solution u(t) of (11) satisfies

‖u(t)‖r 6 const · (log t)c(r)‖u0‖r ∀t > 2. (12)

Thus, if u0 is smooth, then the higher states us stay almost non-excited for a
very long time. We do not have a result which would imply that the quantity in
(8), calculated for solutions of (11), (7), stays small for a long time.

It is surprising that a weaker version of this result holds for potentials V that
are not time quasi-periodic.
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Theorem 2.3 [11]. Let V be smooth and Ck-bounded uniformly with respect to
(t, x) for each k. Then for each r > 1 and a > 0 there exists a constant Ca such
that

‖u(t)‖r 6 Cat
a‖u0‖r ∀t > 2.

Also see [12]. If the potential V (t, x) is analytic, then the norm ‖u(t)‖r satisfies
(12) (see [31]). We are not aware of any classical analogues of these results.

3. Quantum KAM theory

Let (p, q) ∈ Rd×Td. We consider the integrable Hamiltonian h0(p) = |p|2 and a
time quasi-periodic perturbation of itHε(p, q) = h0(p)+εV (ωt, q), ω ∈ Rn, where V
is analytic. For the corresponding Hamiltonian equation we have a KAM theorem:
For a typical initial condition (p(0), q(0)) and a typical ω the solution (p(t), q(t)) is
time quasi-periodic.

The quantized Hamiltonian defines the dynamical equation (10). We regard the
vector ω as a parameter of the problem: ω ∈ U b Rn. Let us use the abbreviated
notation L2 = L2(Td,C) and provide this space with the basis of exponentials

{eis·x, s ∈ Zd}

( · denotes the Euclidean scalar product). For any linear operator B : L2 → L2 let
(Bab, a, b ∈ Zd) be its matrix in this basis.

The theorem below may be regarded as a quantum analogue of the KAM theorem
above. For d = 1 it is proved in [5], and for n > 2 in [16]. We do not know how to
pass in this result to the semiclassical limit.

Theorem 3.1. If ε� 1, then for most ω there exist a ϕ-dependent complex-linear
isomorphism Ψ(ϕ) = Ψε,ω(ϕ), ϕ ∈ TN ,

Ψ(ϕ) : L2 → L2, u(x) 7→ Ψ(ϕ)u(x),

and a bounded Hermitian operator Q = Qε,ω such that a curve u(t) ∈ L2 solves
equation (10) if and only if v(t) = Ψ(tω)u(t) satisfies

v̇ = i(∆v − εQv).

The matrix (Qab) is block-diagonal, that is, Qab = 0 if |a| 6= |b|, and it satisfies

Qab = (2π)−n−d

∫
Tn

∫
Td

V (ϕ, x)ei(a−b)·x dx dϕ+O(εγ), γ > 0.

Moreover, ‖Q‖Hp,Hp 6 C1 and ‖Ψ(ϕ)− id ‖Hp,Hp 6 εC2 for any p ∈ N.

Here ‘for most’ means ‘for all ω ∈ Uε ⊂ U , where meas(U \ Uε) 6 εκ for some
κ > 0’. In particular, for any such ω all solutions of equation (10) are almost
periodic functions of the time. Their Sobolev norms are almost constant, namely,
we have the following result.

Corollary 3.2. For ω as in the theorem and for any p all solutions of (10) satisfy

(1− Cε)‖u(0)‖p 6 ‖u(t)‖p 6 (1 + Cε)‖u(0)‖p ∀t > 0.
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This property is called the dynamical localization.

Proof. Since Q is block diagonal, we have ‖v(t)‖p = const. The estimate follows
from the facts that v(t) = Ψ(t)u(t) and ‖Ψ− id ‖Hp,Hp 6 εC2.

Remarks. 1) Let n = 0. Then (10) becomes the equation u̇ = −i(∆u + εV (x)u.
The theorem states that this equation can be reduced to a block-diagonal equation
u̇ = −iAu, where Aab = 0 if |a| 6= |b|. This is a well known fact.

2) For n = 1 the theorem’s assertion is the Floquet theorem for the time periodic
equation (10). In contrast to the finite-dimensional case, this is a perturbative
result, valid only for ‘typical’ frequencies ω ∈ R and small ε.

Proof of Theorem 3.1. Equation (10) is a non-autonomous linear Hamiltonian sys-
tem in L2:

u̇ = −i δ
δū
Hε(u), Hε(u) =

1
2
〈∇u,∇ū〉+

1
2
ε〈V (ϕ0 + tω, x)u, ū〉.

Consider the extended phase space L2×Tn×Rn = {(u, ϕ, r)}. There the equation
above can be written as the autonomous Hamiltonian system

u̇ = −i δ
δū
hε(u, ϕ, r),

ϕ̇ = ∇rhε = ω,

ṙ = −∇ϕhε,

where hε(u, ϕ, r, ε) = ω · r + 〈∇u,∇ū〉/2 + ε〈V (ϕ, x)u, ū〉/2. Thus, hε is a small
perturbation of the integrable quadratic Hamiltonian h0 = ω · r+ 〈∇u,∇ū〉/2. The
KAM theorem in [16] is applicable to perturbations of h0. To show how this implies
Theorem 3.1 let us write hε as

hε(u, ϕ, r, ε) = ω · r +
1
2
〈∇u,∇ū〉+ εf(u, ϕ, r).

In our case f = 〈V (ϕ, x)u, ū〉/2. The theorem below is the main result of [16].

Theorem 3.3. There exist a domain O = {‖u‖ < δ} × Tn × {|r| < δ} and a sym-
plectic transformation Φ: O → L2 × Tn × Rn which takes hε to

h0 = ω′ · r +
1
2
〈∇u,∇ū〉+ ε〈Qu, ū〉+ f ′(u, ϕ, r),

where f ′ = O(|u|3) +O(|r|2).
The torus T0 = {0}×Tn×{0} is invariant for the transformed system, so Φ(T0)

is invariant for the original equation. This is the usual KAM statement. Here it is
trivial, since it simply states that u(t) ≡ 0 is a solution on the original equation.

But the KAM theorem above tells us more. A simple analysis of the proof (see a
remark in [16]) shows that if the perturbation εf is quadratic in u and independent
of r, then the KAM transformations are linear in u and do not change ω. Therefore,
the transformed Hamiltonians stay quadratic in u, and hence the Hamiltonian h0

is such that f ′ = 0. That is,

h0 = ω′ · r +
1
2
〈∇u,∇ū〉+ ε〈Qu, ū〉.

This proves Theorem 3.1.
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4. Quantum diffusion

Let (p, q) ∈ Rd × Td, and consider the Hamiltonian Hε(p, q) = |p|2 + εV (ωt, q),
where ω ∈ RN and V is analytic. Then:

i) by KAM, for a typical ω and typical initial data (p0, q0) the solution with
(p(0), q(0)) = (p0, q0) is time quasi-periodic;

ii) for exceptional ω and (p0, q0) we ‘should’ have Arnold diffusion, with the
action p(t) of a corresponding solution slowly ‘diffusing away’ from p0.

As before, the quantized Hamiltonian defines the dynamical equation (10).

Claim 4.1. Let d = 1 and N > 2, and suppose that V is non-degenerate in a
suitable sense. Then there exist a smooth function u(0, x) and a vector ω ∈ RN

such that
lim sup

t→∞
‖u(t)‖s = ∞ (13)

for some s > 1.

An example of a time periodic potential V satisfying (13) is given in [10]. It
is conjectured by Eliasson that the above claim can be established for a typical
potential by the methods in his paper [14]. A proof of this will be given in a paper
under preparation.

5. Perturbed harmonic and anharmonic oscillators.

In §§ 3 and 4 we dealt with the Schrödinger evolution equation under periodic
boundary conditions. Some similar results are known for equations in the whole
space with growing potentials:
• Consider the Schrödinger equation

u̇ = −i(−uxx + (x2 + µx2m)u+ εV (tω, x)u)

in R1, where µ > 0, m ∈ N, m > 2, and V (ϕ, x) is C2-smooth with respect to ϕ
and x, analytic with respect to ϕ, and uniformly bounded with respect to ϕ, x.
Then an analogue of Theorem 3.1 holds. See § 2.5 in [21] for the needed KAM
theorem.
• According to to Bambusi and Graffi [5], the same result holds for non-integers

m, that is, for equations

u̇ = −i(−uxx +Q(x)u+ εV (ϕ0 + tω, x)u)

with Q(x) ∼ |x|α for some α > 2 as |x| → ∞. The potential V can grow to infinity
as |x| → ∞.
• Liu and Yuan [24] allow faster growth of V (x) with respect to x. Their result

can be used to prove an analogue of Theorem 3.1 for the quantum Duffing oscillator

u̇ = −i(−uxx + x4u+ εxV (ϕ0 + tω, x)u).

• According to Grébert and Thomann [17], the assertion holds for the perturbed
harmonic oscillator

u̇ = −i(−uxx + x2u+ εV (ϕ0 + tω, x)u).

What happens in higher dimensions d > 2 remains completely unknown.
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6. Quantum adiabatic theorem in the semiclassical limit

In this section we consider the classical system on T ∗Rd = Rd ×Rd with Hamil-
tonian

H(p, q, τ) = |p|2 + V (τ, q), τ = εt, (14)

and the corresponding quantum system

i~u̇ = −~2∆u+ V (τ, x)u = Hτu, τ = εt (15)

(see (4)). We assume that for each τ the potential V (τ, x) grows to infinity with
|x|, so that the operator Hτ has a discrete spectrum.

We fix an ε small enough that we can say some things about the dynamics
of the classical system, and then we pass to the limit as ~ → 0. This limiting
dynamics may be quite different from that in § 2.1 when ~ is fixed and ε → 0,
as was demonstrated by Berry [7] in the following striking example. Let d = 1
and assume that for τ = const the potential V has two (non-symmetric) potential
wells. Generically, for τ = const and small enough ~ each well supports a family
of pure quantum states localized mainly in this well. Consider a solution u(t, x) of
equation (15) with initial condition which is a pure quantum state in the left well.
For arbitrarily small ε there exists a number ~0 = ~0(ε) > 0 such that if 0 < ~ < ~0,
then for each t ∈ [0, 1/ε] the function u(t, ·) is also localized in the left well. On the
other hand, under some rather general assumptions, for arbitrarily small ~ there
exist a number ε0 = ε0(~) and positive constants a1 < a2 such that if 0 < ε < ε0,
then the function u(t, ·) is localized in the right well for a1~/ε 6 t 6 a2~/ε.

The case ε ∼ ~ is discussed in [19]. In what follows, ε0, c, and ci denote positive
constants.

6.1. Systems with one degree of freedom. Assume first that the classical
Hamiltonian (14) has one degree of freedom. We suppose that V is C∞-smooth
and that for each τ = const the phase plane of the Hamiltonian system (14) contains
a domain filled by closed trajectories. In this domain we introduce the action-angle
variables I = I(p, q, τ), χ = χ(p, q, τ) mod 2π (that is, χ ∈ T1). We invert these
relations: p = p(I, χ, τ), q = q(I, χ, τ). Suppose that there is an interval [a1, b1],
0 < a1 < b1, such that the map (I, χ, τ) 7→ (p, q, τ) is smooth for I ∈ [a1, b1], χ ∈ T1,
τ ∈ [0, 1]. We express the Hamiltonian (14) in terms of the action variable and the
slow time: H(p, q, τ) = E(I, τ).

For ε > 0 let p(t), q(t) be a solution of the perturbed system with the Hamiltonian
H(p, q, εt).

Theorem 6.1 (see, for instance, [2]). There exist ε0 and c1 such that if 0 < ε < ε0,
then

|I(p(t), q(t), εt)− I(p(0), q(0), 0)| < c1ε for 0 6 t 6
1
ε
.

Now assume that for each τ = const ∈ [0, 1] and each I∗ ∈ (a1, b1) the Hamil-
tonian H (14) has a unique trajectory with the action I = I∗. Consider the cor-
responding quantum system (15). The operator Hτ has a series of eigenfunctions
ϕs(τ) = ϕs(τ, x) such that

‖ϕs(τ)‖ = 1, ϕs(τ, x) → 0 as x→∞, (16)
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and the corresponding eigenvalues are λs(τ) = E(Is, τ) +O(~2), where Is = ~(s+
1/2) ∈ [a1, b1] (this is the Bohr–Sommerfeld quantization rule; see [26]). We assume
that V is such that the convergence to zero in (16) is faster than |x| raised to any
negative power. Let u(t, x) be a solution of the non-stationary equation (15) with
a pure-state initial condition u(0, x) = ϕs0(0). Denote by Pτ

(α,β) the orthogonal
projection from L2(R) onto the linear span of the vectors ϕs(τ) with Is ∈ (α, β).
The approach in [9] leads to the following conjecture.

Conjecture 6.2. There exist ε0 and c1 such that if 0 < ε < ε0 and 0 < ~ 6 ε,
then for any m > 1 and a suitable c2(m) > 0

sup
06t6ε−1

∥∥u− Pεt
(Is0−c1ε,Is0+c1ε)u

∥∥ < c2(m)
(

~
ε

)m

. (17)

Thus, u(t, · ) stays close to the eigenspace that corresponds to eigenvalues in an
O(ε)-neighbourhood of E(Is0 , εt).

6.2. Systems with several degrees of freedom. Now let the classical Hamil-
tonian (14) have d > 1 degrees of freedom. As before, we assume that V ∈ C∞. For
each τ = const let the corresponding Hamiltonian system be completely integrable
and assume that its phase space contains a domain filled by invariant tori. In this
domain we introduce the action-angle variables I = I(p, q, τ), χ = χ(p, q, τ) ∈ Td.
We invert these relations: p = p(I, χ, τ), q = q(I, χ, τ). Suppose that there is
a compact domain A b Rd

+ such that the map (I, χ, τ) 7→ (p, q, τ) is smooth for
I ∈ A , χ ∈ Td, and τ ∈ [0, 1]. We express the Hamiltonian (14) in terms of
the action variables and the slow time, H(p, q, τ) = E(I, τ), and we denote by
ω(I, τ) = ∂E/∂I the frequency vector of the unperturbed motion. Assume that
the system is non-degenerate or iso-energetically non-degenerate (see the definition
in [2], Appendix 8). The dynamics of the variables (I, χ)(t) = (I, χ)(p(t), q(t), εt)
is described by a Hamiltonian of the form (see [2], § 52F)

H (I, χ, τ, ε) = E(I, τ) + εH1(I, χ, τ), (18)

where H1 is a smooth function on A × Td × [0, 1].
Let K0 be a compact set in R2d. For (p0, q0) ∈ K0 denote by (p, q)(t) =

(p, q)(t, p0, q0) a solution of the perturbed system with initial condition (p, q)(0) =
(p0, q0).

Theorem 6.3 (see, for instance, [3], [25]). If 0 < ε < ε0, then∫
K0

sup
06t6ε−1

|I(p(t), q(t), εt)− I(p(0), q(0), 0)| dp0 dq0 < c1
√
ε.

In systems with d > 1 degrees of freedom the value of the action vector as a
function of the time can change considerably for some initial conditions due to the
effect of resonance between unperturbed frequencies, that is, components of the
vector ω(I, τ). We say that there is a resonance for some (I, τ) if (k · ω)(I, τ) = 0
for a suitable vector k ∈ Zd \ {0} (here · denotes the Euclidean scalar product).

Now consider the corresponding quantum system (15). Under some conditions
the operator Hτ has a series of eigenfunctions ϕm(τ) = ϕm(τ, x) satisfying (16) and



10 S. B. Kuksin and A. I. Neishtadt

with eigenvalues λm(τ) = E(Im, τ) +O(~2), where Im = ~(m+ 1
4κ) ∈ A , m ∈ Zd

+,
and κ ∈ Zd is the vector of Maslov–Arnold indices [26] (the Bohr–Sommerfeld
quantization rule). Consider the solution u(t, x) of the non-stationary equation
(15) with a pure-state initial condition u(0, x) = ϕm0(0). If we fix some small ~
and pass to the limit as ε → 0, then Theorem 2.1 would apply. However, now we
are interested in a different limit: when a small ε is fixed and ~ → 0. Not much
is known about the corresponding limiting dynamics. Therefore, we will formulate
natural hypotheses about the limiting quantum dynamics as ~ → 0 and use them
together with known results about the dynamics for the classical Hamiltonian (14)
with small ε.

For Theorem 2.1 to hold it is important that λm0(τ) be an isolated eigenvalue
for all τ . Consider the distance between λm(τ) and λm0(τ), where m,m0 ∈ Zd are
such that m 6= m0 and |m−m0| ∼ 1:

λm(τ)− λm0(τ) = E(Im, τ)− E(Im0 , τ) +O(~2)

= (Im − Im0) · ω(Im0 , τ) +O((Im − Im0)
2) +O(~2)

= ~(m−m0) · ω(Im0 , τ) +O(~2).

Thus if there is no resonance at (Im0 , τ), then the distance between λm0(τ) and
nearby eigenvalues is ∼ ~. However, if there is a resonance k · ω(Im0 , τ) = 0,
then λm0+νk(τ) − λm0(τ) = O(~2) for integer ν ∼ 1. Hence, classical resonances
correspond to almost multiple points of the spectrum of the quantum problem, and
therefore it seems that they should also appear in questions of quantum adiabaticity.

For the Hamiltonian (14) there is quite detailed information about the dynamics
in the two-frequency case d = 2. We now use this information together with the
Bohr–Sommerfeld quantization rule to state some conjectures about dynamics for
the two-dimensional quantum system (15).

Following Dirac [13], we assume that2

ω2
∂ω1

∂τ
− ω1

∂ω2

∂τ
−

(
ω2

∂ω1

∂I
− ω1

∂ω2

∂I

)
∂H1

∂χ
> c−1 (19)

for all I, ϕ. General results of Arnold about averaging in two-frequency systems
[1], [3] imply that in this case

|I(p(t), q(t), εt)− I(p(0), q(0), 0)| < c1
√
ε for 0 6 t 6

1
ε
. (20)

On the basis of the Bohr–Sommerfeld quantization rule and by analogy with Con-
jecture 6.2 it is natural to conjecture that for 0 6 t 6 1/ε the total probabil-
ity |u(t)|2L2

is mostly concentrated in the states corresponding to actions in the
C
√
ε-neighbourhood of the original action Is0 .

Now assume that instead of (19) the following condition is satisfied (cf. foot-
note 2):

ω2
∂ω1

∂τ
− ω1

∂ω2

∂τ
> c−1. (21)

2The condition (19) just means that the ratio of the frequencies changes at a non-zero rate
along solutions of the system with Hamiltonian (18): ω2

2 (d/dt)(ω1/ω2) > c−1ε. Similarly, the
condition (21) means that ratio of the frequencies changes at a non-zero rate in the adiabatic
dynamics: ω2

2 (d/dt)(ω1/ω2)I=const > c−1ε.
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This is a particular case of a condition introduced by Arnold in [1]. If, in addition
to (21), a certain general position condition is satisfied (see details in [3]), then the
estimate (20) with

√
ε replaced by

√
ε| log ε| holds for all initial data outside a set

of measure O(
√
ε) ([3], § 6.1.8). The latter set consists mostly of initial data for

trajectories with capture into resonance, and along these trajectories the actions
change by quantities of order ∼ 1. Since for some initial data I(0), χ(0) the
solution I(t) is not localized in a neighbourhood of I(0), we should not expect for
the quantum system (15) any estimate similar to that in Conjecture 6.2, where the
amplitudes of the eigenmodes tend to 0 as ~ → 0 outside some small interval of
values of the action.

Consider the classical Hamiltonian (14) under the condition (21). Then capture
is only possible for a finite number of resonances, and the dynamics for a capture
into resonance k1ω1 + k2ω2 = 0 with coprime k1 and k2 is as follows [27]. Let
(I, χ)(t) = (I, χ)(p(t), q(t), εt). Suppose that at the initial moment t = 0 we have
no resonance,

k1ω1(I(0), 0) + k2ω2(I(0), 0) 6= 0,

and let τ∗ ∈ (0, 1) be the first moment when resonance occurs:

k1ω1(I(0), τ∗) + k2ω2(I(0), τ∗) = 0.

Then for 0 6 εt 6 τ∗ the values of the actions are approximately conserved:

I(t) = I(0) +O(
√
ε log ε).

For τ∗ 6 εt 6 1 the system is captured into resonance, and the evolution of the
actions is described by the two relations

k1ω1(I(t), εt) + k2ω2(I(t), εt) = O(
√
ε log ε),

k2I1(t)− k1I2(t) = k2I1(0)− k1I2(0) +O(
√
ε log ε).

The first of them means that the system stays near the resonance, while the second
says that the dynamics has an approximate first integral. The two relations together
approximately determine the trajectory I(t) for τ∗ 6 εt 6 1.

Using this description and the Bohr–Sommerfeld quantization rule, we conjecture
by analogy with Conjecture 6.2 that for the quantum problem (15) the capture into
resonance of the classical system (14) results in transfer of an amount Cε of the total
probability from a neighbourhood of the initially excited pure state corresponding
to the action Is0 , to a neighbourhood of a state st ∈ Z2 such that the lattice
vector I(t) = ~(st + 1

4κ) satisfies the two relations above. This transfer happens
for t > ε−1τ∗. When ~ → 0, this amount Cε remains positive of order ε.

For the dynamics of phase points captured into resonance there is also a more
detailed description [27]. Consider the resonant phase γ = k1χ1 + k2χ2. It turns
out that the behaviour of γ is described by an auxiliary Hamiltonian system with
one degree of freedom and a Hamiltonian of the form

F =
√
ε

(
α(τ)p2

γ

2
+ f(γ, τ) + L(τ)γ

)
.
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Here pγ , γ are canonically conjugate variables, the function f is 2π-periodic with
respect to γ, and α,L 6= 0. In the phase portrait of the system for frozen τ there
are domains of oscillations of γ. The motion in these domains can be approximately
represented as the composition of a motion along a trajectory of the Hamiltonian
F with frozen τ and a slow evolution of this trajectory due to a change of τ . This
evolution follows the adiabatic rule: the area surrounded by the trajectory remains
constant. In the original variables p, q this motion is represented as a motion along
a slowly evolving torus. The angle variables on the torus are γ and ψ = l1ϕ1 + l2ϕ2,
where l1 and l2 are integers such that k1l2 − k2l1 = 1. The torus itself drifts along
the resonant surface k1ω1 + k2ω2 = 0 as described above. It is not known what
quantum object corresponds to this torus.

The authors are grateful to Sergey Dobrokhotov, H̊akan Eliasson, and Johannes
Sjöstrand for useful discussions.
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