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Abstract Consider weakly nonlinear complex Ginzburg–Landau (CGL) equation of
the form:

ut + i(−4u+V (x)u) = εµ∆u+ εP(∇u,u), x ∈ Rd , (∗)

under the periodic boundary conditions, where µ > 0 and P is a smooth func-
tion. Let {ζ1(x),ζ2(x), . . .} be the L2-basis formed by eigenfunctions of the opera-
tor−4+V (x). For a complex function u(x), write it as u(x) = ∑k>1 vkζk(x) and set
Ik(u) = 1

2 |vk|2. Then for any solution u(t,x) of the linear equation (∗)ε=0 we have
I(u(t, ·)) = const. In this work it is proved that if equation (∗) with a sufficiently
smooth real potential V (x) is well posed on time-intervals t . ε−1, then for any
its solution uε(t,x), the limiting behavior of the curve I(uε(t, ·)) on time intervals
of order ε−1, as ε → 0, can be uniquely characterized by a solution of a certain
well-posed effective equation:

ut = εµ4u+ εF(u),

where F(u) is a resonant averaging of the nonlinearity P(∇u,u). We also prove
similar results for the stochastically perturbed equation, when a white in time and
smooth in x random force of order

√
ε is added to the right-hand side of the equation.

The approach of this work is rather general. In particular, it applies to equations in
bounded domains in Rd under Dirichlet boundary conditions.
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1 Introduction

Equations. We consider a weakly nonlinear CGL equation on a rectangular d-torus
T d = R/(L1Z)×R/(L2Z)×·· ·×R/(LdZ), L1, . . . ,Ld > 0,

ut + i(−∆ +V (x))u = εµ∆u+ εP(∇u,u), u = u(t,x), x ∈ T d , (1)

where µ > 0, P : Cd+1→ C is a C∞-smooth function, ε is a small parameter and
V (·) ∈Cn(T d) is a sufficiently smooth real-valued function on T d (we will assume
that n is large enough). If µ = 0, then the nonlinearity P should be independent
of the derivatives of the unknown function u. For simplicity, we assume that µ > 0.
The case µ = 0 can be treated exactly in the same way (even simpler).

For any s ∈ R we denote by Hs the Sobolev space of complex-valued functions
on T d , provided with the norm ‖ · ‖s,

‖u‖2
s = 〈(−∆)su,u〉+ 〈u,u〉, if s≥ 0 ,

where 〈·, ·〉 is the real scalar product in L2(T d),

〈u,v〉= Re
∫

T d
uv̄dx, u,v ∈ L2(T d).

For any s > d/2+1, it is known that the mapping P : Hs→ Hs−1, u 7→P(∇u,u),
is smooth and locally Lipschitz, see below Lemma 3.

Our goal is to study the dynamics of Eq. (1) on time intervals of order ε−1 when
0 < ε � 1. Introducing the slow time τ = εt, we rewrite the equation as

u̇+ ε
−1i(−∆ +V (x))u = µ∆u+P(∇u,u), (2)

where u = u(τ,x), x ∈ T d , and the upper dot˙stands for d
dτ

. We assume

Assumption A: There exists a number s∗ ∈ (d/2+1,n] and for every M0 > 0 there
exists T = T (s∗,M0)> 0 such that if u0 ∈ Hs∗ and ‖u0‖s∗ ≤M0, then Eq. (2) has a
unique solution u(τ,x) ∈C([0,T ],Hs∗) with the initial datum u0, and ||u(τ,x)||s∗ 6
C(s∗,M0,T ) for τ ∈ [0,T ].

This assumption can be verified for Eq. (1) with various nonlinearities P . E.g.
when µ = 0, it holds if V (x)≡ 0 and P(u) = i|u|2pu with

p ∈ N, p < ∞, if d = 1,2, and p = 1,2 if d = 3,

see [4, 9]. When µ > 0, the assumption is satisfied by Eq. (1) with nonlinearity
P(u) =−γR fp(|u|2)u− iγI fq(|u|2)u, where γR,γI > 0, the functions fp(r) and fq(r)
are the monomials |r|p and |r|q, smoothed out near zero, and

0 6 p,q < ∞ if d = 1,2 and 0 6 p,q < min
{

d
2
,

2
d−2

}
if d > 3,
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see, e.g. [10].
We denote by AV the Schrödinger operator

AV u :=−∆u+V (x)u.

Let {λk}k>1 be its eigenvalues, ordered in such a way that

λ1 6 λ2 6 λ3 6 · · · ,

and let {ζk, k > 1} of L2(T d) be an orthonormal basis, formed by the correspond-
ing eigenfunctions. We denote Λ = (λ1,λ2, . . .) and call Λ the frequency vector of
Eq. (2). For a complex-valued function u ∈ Hs, we denote by

Ψ(u) := v = (v1,v2, . . .), vk ∈ C, (3)

the vector of its Fourier coefficients with respect to the basis {ζk}k>1: u=∑k>1 vkζk.
Note that Ψ is a real operator: it maps real functions u(x) to real vectors v. In the
space of complex sequences v = (v1,v2, . . .), we introduce the norms

|v|2s =
+∞

∑
k=1

(|λk|s +1) |vk|2, s ∈ R ,

and denote hs = {v : |v|s < ∞}. Clearly Ψ defines an isomorphism between the
spaces Hs and hs.

Now we write Eq. (2) in the v-variables:

v̇k + ε
−1iλkvk =−µλkvk +Pk(v), k ∈ N, (4)

where

P(v) := (Pk(v), k ∈ N) =Ψ

(
µV (x)u+P(∇u,u)

)
, u =Ψ

−1v. (5)

For every k ∈ N we set

Ik(v) =
1
2

vkv̄k, and ϕk(v) = Arg vk ∈ T1 = R/(2πZ) if vk 6= 0, else ϕk = 0. (6)

Then vk =
√

2Ikeiϕk . Notice that the quantities Ik are conservation laws of the linear
equation (1)ε=0, and that the variables (I,ϕ) ∈ R∞

+×T∞ are its action-angles. For
any (I,ϕ) ∈ R∞

+×T∞ we denote

v = v(I,ϕ) if vk =
√

2Ikeiϕk , ∀k . (7)

If this relation holds, we will write v ∼ (I,ϕ) . We introduce the weighted l1-space
hs

I :

hs
I := {I = (Ik, k ∈ N) ∈ R∞ : |I|∼s =

+∞

∑
k=1

2(|λk|s +1)|Ik|< ∞}.



4 G. Huang, S. Kuksin, and A. Maiocchi

Then |v|2s = |I(v)|∼s , for each v ∈ hs. Using the action-angle variables (I,ϕ), we
write Eq. (4) as a slow-fast system:

İk = vk ·
(
−µλkvk +Pk(v)

)
, ϕ̇k =−ε

−1
λk + |vk|−2 · · · , k ∈ N.

Here a ·b denotes Re(ab̄), for a,b ∈ C, and the dots stand for a factor of order 1 (as
ε → 0).

Effective equations. Our task is to study the evolution of the actions Ik when ε � 1
and 0 ≤ τ . 1. An efficient way to deal with this problem is through the so-called
interaction representation. Let us define

ak(τ) = eiε−1λkτ vk(τ) . (8)

Then
|ak|2 = |vk|2 = 2Ik , (9)

so to study the evolution of the actions we can use the a-variables instead of the
v-variables. Using Eq. (4), we obtain for a = (a1,a2, . . .) the system of equations

ȧk(τ) =−µλkak + eiε−1λkτ Pk(Φ−ε−1Λτ a), k ∈ N , (10)

where for each θ = (θk, k ∈N)∈R∞, Φθ stands for the linear operator in hs defined
by

Φθ v = v′, v′k = eiθk vk ∀k .

Clearly Φθ defines isometries of all Hilbert spaces hs, and in the action-angle vari-
ables it reads Φθ (I,ϕ) = (I,ϕ +θ) .

To approximately describe the dynamics of Eq. (10) with ε� 1 we introduce an
effective equation:

˙̃ak =−µλkãk +Rk(ã), k ∈ N, (11)

where R(ã) := (Rk(ã), k ∈ N) and

R(ã) = lim
T→∞

1
T

∫ T

0
ΦΛ tP(Φ−Λ t ã)dt. (12)

We will see in Sections 2 and 3 that the limit in (12) is well defined and that Eq. (11)
is well posed, at least locally in time.

Results. In Section 4 we prove that the actions of solutions for the effective equation
approximate well the actions Ik(v(τ)) of solutions v for (4). Let us fix any M0 > 0.

Theorem 1. Let u(τ,x), 0 ≤ τ ≤ T = T (s∗,M0), be a solution of (2), such that
u(0,x) = u0(x), ‖u0‖s∗ ≤M0, existing by Assumption A. Denote v(τ) =Ψ(u(τ, ·)),
0≤ τ ≤ T . Then a solution ã(τ) of (11), such that ã(0) = v(0), exists for 0≤ τ ≤ T ,
and for any s1 < s∗ we have

|I(v(·))− I(ã(·))|∼s1
→ 0, as ε → 0 .
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The rate of the convergence does not depend on u0, if ‖u0‖s∗ ≤M0.

This theorem may be regarded as a PDE-version of the Bogolyubov averaging
principle, see [3] and [1], Section 6.1. The result and its its proof may be easily
recasted to a theorem on perturbations of linear Hamiltonian systems with discrete
spectrum. Instead of doing this, below we briefly discuss its generalisations to other
nonlinear PDE problems.

In the second part of the paper (Sections 5–7) we consider the CGL equations (1)
with added small random force:

ut + i(−∆ +V (x))u = εµ∆u+ εP(∇u,u)+
√

ε
d
dt ∑

l≥1
blβl(t)el(x), (13)

where u = u(t,x), x ∈ T d , the coefficients bl decay fast enough with |l|, {βl(t)} are
standard independent complex Wiener processes and {el(x)} is the usual trigono-
metric basis of the space L2(T d), parametrized by natural numbers. It turns out that
the effective equation for (13) is the equation (11), perturbed by a suitable stochas-
tic forcing, see Section 5. Assuming that the function P has at most a polynomial
growth and that the equation satisfies a suitable stochastic analogy of the Assump-
tion A we prove a natural stochastic version of Theorem 1 (see Theorem 2). Next,
supposing that the stochastic effective equation is mixing and has a unique stationary
measure µ0, we prove in Theorem 3 that if µε is a stationary measure for Eq. (13),
then Ψ ◦µε converge to µ0 as ε → 0. So if the stochastic effective equation is mix-
ing, then it comprises asymptotical properties of solutions for Eq. (13) as t→∞ and
ε → 0.

The proof of the theorems in this work follows the Anosov approach to aver-
aging in finite-dimensional systems (see in [1, 20]), its version for averaging in
resonant systems (see in [1]) and its stochastic version due to Khasminski [14]. The
crucial idea that for averaging in PDEs the averaged equations for actions (which
are equations with singularities) should be considered jointly with suitable effec-
tive equations (which are regular equations) was suggested in [15] for averaging in
stochastic PDEs, and later was used in [16] and [10, 11, 17, 18]. It was realised in
the second group of publications that for perturbations of linear systems the method
may be well combined with the interaction representation of solutions, well known
and popular in nonlinear physics (see [3, 21]), and which already was used for pur-
poses of completely resonant averaging, corresponding to constant coefficient PDEs
with small nonlinearities on the square torus (see [8, 6]).

For the case when the spectrum of the unperturbed linear system is non-resonant
(see below Example 1), the results of this paper were obtained in [16, 10], while for
the case when the spectrum is completely resonant – in [17, 11]. The novelty of this
work is a version of the Anosov method of averaging, applicable to nonlinear PDEs
with small nonlinearities, which does not impose restrictions on the spectrum of the
unperturbed equation.

Alternatively, the averaging for weakly nonlinear PDEs may be studied, using
the normal form techniques, e.g. see [2] and references therein. Compared to the
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Anosov approach, exploited in this work, the method of normal form is much more
demanding to the spectrum of the unperturbed equation, and more sensitive to its
perturbations. So usually it applies only in small vicinities of equilibriums. Its ad-
vantage is that it may imply stability on longer time intervals, while the method of
this work is restricted to the first-order averaging. So in the deterministic setting it
allows to control solutions of ε-perturbed equations only on time-intervals of order
ε−1 (still, in the stochastic setting it also allows to control the stationary measure,
which describes the asymptotic behaviour of solutions as t→ ∞).

Generalizations. The Anosov-like method of resonant averaging, presented in this
work, is very flexible. With some slight changes, it easily generalizes to weakly
nonlinear CGL equations, involving high order derivatives,

ut + i(−4u+V (x)u) = εP(∇2u,∇u,u,x), x ∈ T d , (14)

provided that the Assumption A holds and the corresponding effective equation is
well posed locally in time. See in Appendix (also see [10], where a similar result is
proven for the case of non-resonant spectra).

The method applies to equations (1) and (13) in a bounded domain O ⊂ Rd un-
der Dirichlet boundary conditions. Indeed, if d ≤ 3, then to treat the corresponding
boundary-value problem we can literally repeat the argument of this work, replac-
ing there the space Hs with the Hilbert space H2

0 (O) = {u ∈ H2(O) : u |∂O= 0}. If
d ≥ 4, then Hs should be replaced with an Lp-based Banach space W 2,p

0 (O), where
p > d/2.

Obviously the method applies to weakly nonlinear equations of other types; e.g.
to weakly nonlinear wave equations. In [18] the method in its stochastic form was
applied to the Hasegawa-Mima equation, regarded as a perturbation of the Rossby
equation (−∆ + K)ψt(t,x,y)− ψx = 0, while in [5] it is applied to systems of
non-equilibrium statistical physics, where each particle is perturbed by an ε-small
Langevin thermostat, and is studied the limit ε→ 0 (similar to the same limit in Eq.
(13)).

The averaging for perturbations of nonlinear integrable PDEs is more compli-
cated. Due to the lack in the functional phase-spaces of an analogy of the Lebesgue
measure (required by the Anosov approach to the finite-dimensional determinis-
tic averaging), in this case the results for stochastic perturbations are significantly
stronger than the deterministic results. See in [12].

2 Resonant Averaging in Hilbert Spaces

The goal of this section is to show that the limit in (12) is well-defined in some
suitable settings and study its properties. Below for an infinite-vector v=(v1,v2, . . .)
and any m ∈ N we denote

vm = (v1, . . . ,vm), or vm = (v1, . . . ,vm,0, . . .),
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depending on the context. This agreement also applies to elements ϕ = (ϕ1,ϕ2, . . .)
of the torus T∞. For m-vectors Im,ϕm,vm we write vm ∼ (Im,ϕm) if (7) holds for
k = 1, . . . ,m. By Π m, m > 1, we denote the Galerkin projection

Π
m : h0→ h0,(v1,v2, . . .) 7→ vm = (v1, . . . ,vm,0, . . .).

For a continuous complex function f on a Hilbert space H, we say that f is
locally Lipschitz and write f ∈ Liploc(H) if∣∣ f (v)− f (v′)

∣∣6 C (R)‖v− v′‖, if ‖v‖,‖v′‖6 R, (15)

for some continuous non-decreasing function C : R+ → R+ which depends on f .
We write

f ∈ LipC (H) if (15) holds and | f (v)| ≤ C (R) if ‖v‖ ≤ R . (16)

If f ∈ LipC (H), where C (·) =Const, then f is a bounded (globally) Lipschitz func-
tion. If B is a Banach space, then the space Liploc(H,B) of locally Lipschitz map-
pings H→ B and its subsets LipC (H,B) are defined similarly.

For any vector W = (w1,w2, . . .) ∈ R∞ we set

〈 f 〉TW,l(v) =
1
T

∫ T

0
eiwl t f (Φ−Wtv)dt, (17)

and if the limit of 〈 f 〉TW,l(v) when T → ∞ exists, we denote

〈 f 〉W,l = lim
T→∞
〈 f 〉TW,l(v).

Concerning this definition we have the following lemma. Denote

B(M,hs) = {v ∈ hs : |v|s 6 M}, M > 0.

Lemma 1. Let f ∈ LipC (hs0) for some s0 > 0 and some function C as above.Then
(i) For every T 6= 0, 〈 f 〉TW,l ∈ LipC (hs0).
(ii) The limit 〈 f 〉W,l(v) exists for v ∈ hs0 and this function also belongs to

LipC (hs0).
(iii) For s > s0 and any M > 0, the functions 〈 f 〉TW,l(v) converge, as T → ∞, to

〈 f 〉W,l(v) uniformly for v ∈ B(M,hs).
(iv) The convergence is uniform for f ∈ LipC (hs0) with a fixed function C .

Proof. (i) It is obvious since the transformations Φθ are isometries of hs0 .
(ii) To prove this, consider the restriction of f to B(M,hs0), for any fixed M > 0.

Let us take some v ∈ B(M,hs0) and fix any ρ > 0. Below in this proof by O(v),
O1(v), etc, we denote various functions g(v) = g(I,ϕ), defined for |v|s0 ≤ M and
bounded by 1.

Let us choose any m = m(ρ,M,v,C ) such that
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C (M) |v−Π
mv|s0 ≤ ρ .

Then | f (v)− f (Π mv)|< ρ, and by (i)∣∣〈 f 〉TW,l(v)−〈 f 〉TW,l(Π
mv)
∣∣< ρ ,

for every T > 0.
Let us set

F m(Im,ϕm) = F m(vm) = f
(
vm), ∀vm ∼ (Im,ϕm) ∈ Cm ,

where in the r.h.s. vm is regarded as the vector (vm,0, . . .). Clearly, the function
ϕm 7→F m(Im,ϕm) is Lipschitz-continuous on Tm. So its Fejer polynomials

σK(F
m) = ∑

k∈Zm, |k|∞≤K
aK

k eik·(ϕm), K ≥ 1 ,

where aK
k = aK

k (m, Im), converges to F m(Im,ϕm) uniformly on Tm. Moreover,
the rate of convergence depends only on its Lipschitzian norm and the dimen-
sion m (see e.g. Theorem 1.20, Chapter XVII of [24]). Therefore, there exists
K = K(C ,M,ρ,m)> 0 such that

F m(Im,ϕm) = ∑
k∈Zm,|k|∞6K

aK
k eik·ϕm

+ρO1(Im,ϕm) . (18)

Now we define

F res
K (Im,ϕm) = ∑

k∈S(K)

aK
k eik·ϕm

, S(K) = {k ∈ Zm : |k|∞ 6 K,wl−
m

∑
j=1

kiwi = 0}.

Since
F m(

Φ−W mt(Π
mv)
)
= F m(Im,ϕm−Wt) ,

then

〈eik·ϕm〉TW,l = eik·ϕm
if k ∈ S(K) ,∣∣∣〈eik·ϕm〉TW,l

∣∣∣≤ 2T−1

|wl− k ·W m|
if |k|∞ ≤ K, k /∈ S(K) ,

where we regard eik·ϕm
as a function of v. Accordingly,

〈 f 〉TW,l(v) = 〈F m(Im,ϕm)〉TW,l +ρO2(v)

= F res
K (Im,ϕm)+C(ρ,M,W, f , I)T−1O3(v)+ρO4(v) .

So there exists T̄ = T (ρ,M,W, f , I)> 0 such that if T > T̄ , then∣∣〈 f 〉TW,l−F res
K (Im,ϕm)

∣∣< 2ρ ,
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and for any T ′ > T ′′ > T̄ , we have∣∣〈 f 〉T ′W,l(v)−〈 f 〉T
′′

W,l(v)
∣∣< 4ρ.

This implies that the limit 〈 f 〉W,l(v) exists for every v ∈ B(M,hs0). Using (i) we
obtain that 〈 f 〉W,l(·) ∈ LipC (hs0).

(iii) This statement follows directly from (ii) since the family of functions
{〈 f 〉TW,l(v)} is uniformly continuous on balls B(R,hs0) by (i) and each ball B(M,hs),
s > s0, is compact in hs0 .

(iv) From the proof of (ii) we see that for any ρ > 0 and v ∈ hs0 , there exists
T = T (W,ρ,v,C ) such that if T ′ > T , then |〈 f 〉T ′W,l(v)−〈 f 〉W,l(v)|6 ρ . This implies
the assertion. ut

We now give some examples of the limits 〈 f 〉W,l .

Example 1. If the vector W is non-resonant, i.e., non-trivial finite linear combina-
tions of w j’s with integer coefficients do not vanish (this property holds for typical
potentials V (x), see [16]), then the set S(K) reduces to one trivial resonance el =
(0, . . . ,0,1,0, . . .0), where 1 stands on the l-th place (if m < l, then S(K) = /0). Let
f (v) be any finite polynomial of v. We write it in the form ∑k,l∈N∞,|k|,|l|<∞ fk,l(I)vkv̄l ,
where fk,l are polynomials of I and finite vectors k, l are such that if k j 6= 0, then
l j = 0, and vice versa. Then 〈 f 〉W,l = fel ,I(I)vl .

Example 2. If f is a linear functional, f = ∑
∞
i=1 bivi, then for any l ∈ N,

〈 f 〉W,l = ∑
i∈A 1

l

bivi, A 1
l = {i ∈ N : wi−wl = 0}.

If f is polynomial of v, e.g. f = ∑i+ j+m=k ai, j,kviv jvk, then

〈 f 〉W,l = ∑
(i, j,m)∈A 3

l

ai, j,kviv jvk, A 3
l = {(i, j,m) ∈ N3 : wl−wi−w j−wm = 0}.

We may also consider the averaging

〈〈 f 〉〉TW (v) =
1
T

∫ T

0
f (Φ−Wtv)dt , 〈〈 f 〉〉W (v) = lim

T→∞
〈〈 f 〉〉TW (v) . (19)

Lemma 2. Let f ∈ LipC (hs0). Then
(a) for the averaging 〈〈·〉〉W hold natural analogies of all assertions of Lemma 1.
(b) The function 〈〈 f 〉〉W commutes with the transformations ΦWt , t ∈ R.

Proof. To prove a) we repeat for the averaging 〈〈·〉〉W the proof of Lemma 1, replac-
ing there wl by 0. Assertion b) immediately follows from the formula for 〈〈 f 〉〉TW in
(19). ut
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3 The Effective Equation

Let V (x) ∈Cn(T d). As in the introduction, AV is the operator −∆ +V and {λk,k ∈
N} are its eigenvalues.

The following result is well known, see Section 5.5.3 in [22].

Lemma 3. If f (x) : C→ C is C∞, then the mapping

M f : Hs→ Hs, u 7→ f (u),

is C∞-smooth for s > d/2. Moreover, M f ∈ LipCs(H
s,Hs) for a suitable function Cs.

Consider the map P(v) defined in (5). From Lemma 3, we have

P(·) ∈ LipCs(h
s,hs−1), ∀s ∈ (d/2+1,n] , (20)

for some Cs. We recall that Λ is the frequency vector of Eq. (2). For any T ∈ R, we
denote

〈P〉TΛ (v) := (〈Pk〉TΛ ,k(v),k ∈ N) =
1
T

∫ T

0
ΦΛ tP(Φ−Λ tv)dt ,

and
R(v) = 〈P〉Λ (v) := (〈Pk〉Λ ,k(v),k ∈ N) .

Example 3. If P is a diagonal operator, Pk(v) = γkvk for each k, where γk’s are com-
plex numbers, then in view of Example 2, 〈P〉Λ = P.

We have the following lemma:

Lemma 4. (i) For every d/2 < s1 < s−1 6 n−1 and M > 0, we have∣∣∣〈P〉TΛ (v)−R(v)
∣∣∣
s1
→ 0, as T → ∞, (21)

uniformly for v ∈ B(M,hs);
(ii) R(·) ∈ LipCs(h

s,hs−1), s ∈ (d/2+1,n];
(iii) R commutes with ΦΛ t , for each t ∈ R.

Proof. (i) There exists M1 > 0, independent from v and T , such that∣∣〈P〉TΛ (v)−R(v)
∣∣
s−1 6 M1, v ∈ B(M,hs).

So for any ρ > 0 we can find mρ > 0 such that∣∣∣(Id−Π
mρ )
[
〈P〉TΛ (v)−R(v)

]∣∣∣
s1
< ρ/2, v ∈ B(M,hs).

By Lemma 1(iii), there exists Tρ such that for T > Tρ ,∣∣∣Π mρ
[
〈P〉TΛ (v)−R(v)

]∣∣∣
s1
< ρ/2, v ∈ B(M,hs).
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Therefore if T > Tρ , then∣∣〈P〉TΛ (v)−R(v)
∣∣
s1
< ρ, v ∈ B(M,hs).

This implies the first assertion.
(ii) Using the fact that the linear maps ΦΛ t , t ∈ R are isometries in hs, we obtain

that for T ∈ R and v′,v′′ ∈ B(M,hs),∣∣〈P〉TΛ (v′)−〈P〉TΛ (v′′)∣∣s−1 6 Cs(M)
∣∣v′− v′′

∣∣
s .

Therefore ∣∣R(v′)−R(v′′)
∣∣
s−1 6 Cs(M)

∣∣v′− v′′
∣∣
s , v′,v′′ ∈ B(M,hs).

This estimate, the convergence (21) and the Fatou lemma imply that R is a locally
Lipschitz mapping with a required estimate for the Lipschitz constant. A bound on
its norm may be obtained in a similar way, so the second assertion follows.

(iii) We easily verify that

∣∣〈P〉T+t
Λ

(v)−ΦΛ t〈P〉TΛ (Φ−Λ tv)
∣∣
s−1 ≤ 2Cs(|v|s)

|t|
|T + t|

.

Passing to the limit as T → ∞ we recover (iii). ut

Corollary 1. For d/2 < s1 < s−1≤ n−1 and any v ∈ hs,

〈P〉TΛ (v) = R(v)+κ(T ;v),

where |κ(T ;v)|s1 ≤ κ(T ; |v|s). Here for each T , κ(T ;r) is an increasing function of
r, and for each r ≥ 0, κ(T ;r)→ 0 as T → ∞.

Example 4. In the completely resonant case, when

L1 = · · ·= Ld = 2π and V = 0 , (22)

the frequency vector is Λ = (|k|2,k ∈ Zd). If P(u) = i|u|2u, then

P(v) = (Pk(v),k ∈ Zd), v = (vk,k ∈ Zd), u = ∑
k∈Zd

vkeik·x,

with
Pk(v) = ∑

k1−k2+k3=k
ivk1 v̄k2vk3 , k ∈ Zd .

Therefore 〈P〉Λ = (〈Pk〉Λ ,k,k ∈ Zd), with

〈Pk〉Λ ,k = ∑
(k1,k2,k3)∈Res(k)

ivk1 v̄k2vk,

where Res(k) = {(k1,k2,k3) : |k1|2−|k2|2 + |k3|2−|k|2 = 0}.
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Lemma 4 implies that the effective equation (11) is a quasi-linear heat equation.
So it is locally well-posed in the spaces hs, s ∈ (d/2+1,n].

4 Proof of the Averaging Theorem

In this section we will prove Theorem 1. We recall that d/2+1< s∗ ≤ n and s1 < s∗,
where s∗ is the number from Assumption A and n is a sufficiently big integer (the
smoothness of the potential V (x)). Without loss of generality we assume that

s1 > d/2+1 and s1 > s∗−2 ,

and that Assumption A holds with T = 1.
Let uε(τ,x) be the solution of Eq. (2) from Theorem 1,

‖uε(0,x)‖s∗ 6 M0 ,

and vε(τ) =Ψ(uε(τ, ·)). Then there exists M1 > M0 such that

vε(τ) ∈ B(M1,hs∗), τ ∈ [0,1] ,

for each ε > 0. The constants in estimates below in this section may depend on M1,
and this dependence may be non-indicated.

Let
aε(τ) = Φτε−1Λ (v

ε(τ))

be the interaction representation of vε(τ) (see Introduction),

aε(0) = v(0) =: v0 .

For every v = (vk,k ∈ N), denote

ÂV (v) = (λkvk,k ∈ N) =Ψ(AV u) , u =Ψ
−1v .

Then
ȧε(τ) =−µÂV (aε(τ))+Y

(
aε(τ),ε−1

τ
)
, (23)

where
Y
(
a, t
)
= ΦtΛ

(
P
(
Φ−tΛ (a)

))
. (24)

Let r ∈ (d/2+1,n]. Since the operators ΦtΛ , t ∈R, define isometries of hr, then, in
view of (20), for any t ∈ R we have

Y (·, t) ∈ LipCr(H
r,Hr−1) . (25)

For any s≥ 0 we denote by X s the space
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X s =C([0,T ],hs) ,

given the supremum-norm. Then

|aε |Xs∗ ≤M1, |ȧε |Xs∗−2 ≤C(M1) . (26)

Since for 0≤ γ ≤ 1 we have

|v|γ(s∗−2)+(1−γ)s∗ ≤ |v|
γ

s∗−2|v|
1−γ
s∗

by the interpolation inequality, then in view of (26) for any s∗ − 2 < s̄ < s∗ and
0≤ τ1 ≤ τ2 ≤ 1 we have

|aε(τ2)−aε(τ1)|s̄ ≤C(M1)
γ(τ2− τ1)

γ(2M1)
1−γ , (27)

for a suitable γ = γ(s̄,s∗)> 0, uniformly in ε .
Denote

Y (v, t) = Y (v, t)−R(v).

Then by Lemma 4 relation (25) also holds for the map v 7→ Y (v, t), for any t.
The following lemma is the main step of the proof.

Lemma 5. For every s′ > d/2+1, s∗−2 < s′ < s∗ we have∣∣∣∫ τ̃

0
Y (aε(τ),ε−1

τ)dτ

∣∣∣
s′
6 δ (ε,M1), ∀ τ̃ ∈ [0,1], (28)

where δ (ε,M1)→ 0 as ε → 0.

Proof. Below in this proof we write aε(τ) as a(τ). We divide the time interval [0,1]
into subintervals [bl−1,bl ], l = 1, · · · ,N of length L = ε1/2:

bk = Lk for k = 0, . . . ,N−1, bN = 1 ,bN−bN−1 6 L ,

where N 6 1/L+1≤ 2/L.
In virtue of (25) and Lemma 4 (ii),∣∣∣∫ bN

bN−1

Y (a(τ),ε−1
τ)dτ

∣∣∣
s′
≤ LC(s′,s,M1) . (29)

Similar, if τ̄ ∈ [br,br+1) for some 0 ≤ r < N, then |
∫

τ̄

br
Y dτ|s′ is bounded by the

r.h.s. of (29).
Now we estimate the integral of Y over any segment [bl ,bl+1], where l ≤ N−2.

To do this we write it as
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bl

Y (a(τ),ε−1
τ)dτ =

∫ bl+1

bl

(
Y (a(bl),ε

−1
τ)−R(a(bl))

)
dτ

+
∫ bl+1

bl

(
Y (a(τ),ε−1

τ)−Y (a(bl),ε
−1

τ)
)

dτ

+
∫ bl+1

bl

(
R(a(bl))−R(a(τ))

)
dτ .

In view of Lemma 4 and (27) the hs′ -norm of the second and third terms in the r.h.s.
are bounded by C(s′,s,M1)L1+γ . Since

ε

∫
ε−1L

0
Y (a(bl),ε

−1bl + s)ds = LΦΛε−1bl

1
L−1

∫ L−1

0
ΦΛsP(Φ−Λs(Φ−Λε−1bl

a(bl))
)
ds ,

then using Corollary 1 and Lemma 4 (iii) we see that this equals LR(a(bl)) +
κ1(L−1), where |κ1(L−1)|s′ ≤ κ(L−1;M1) and κ → 0 when L−1 → ∞. We have
arrived at the estimate∣∣∣∫ bl+1

bl

Y (a(τ),ε−1
τ)dτ

∣∣∣
s′
≤ L
(
κ(L−1;M1)+CLγ

)
. (30)

Since N ≤ 2/L and L = ε1/2, then by (30) and (29) the l.h.s. of (28) is bounded by
2κ(ε−1/2;M1)+Cεγ/2 +Cε1/2. It implies the assertion of the lemma. ut

Consider the effective equation (11). By Lemma 4 this is the linear parabolic
equation u̇−∆u+V (x)u = 0, written in the v-variables, perturbed by a locally Lip-
schitz operator of order one. So its solution ã(τ) such that ã(0) = v0 exists (at least)
locally in time. Denote by T̃ the stopping time

T̃ = min{τ ∈ [0,1] : |ã(τ)|s∗ > M1 +1} ,

where, by definition, min /0 = 1.
Now consider the family of curves aε(·) ∈ X s∗ . In view of (26), (27) and the

Arzelà-Ascoli theorem (e.g. see in [13]) this family is pre-compact in each space
X s1 , s1 < s∗. Hence, for any sequence ε ′j → 0 there exists a subsequence ε j → 0
such that

aε j(·) −→
ε j→0

a0(·) in X s1 .

By this convergence, (26) and the Fatou lemma,

|a0(τ)|s∗ ≤M1 ∀0≤ τ ≤ 1 . (31)

In view of Lemma 5, the curve a0(τ) is a mild solution of Eq. (11) in the space hs1 ,
i.e,

a(τ)−a(0) =
∫

τ

0

(
−µÂV a(s)+R(a(s))ds , ∀0≤ τ ≤ 1
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(the equality holds in the space hs1−2). So a0(τ) = ã(τ) for 0 ≤ τ ≤ T̃ . In view of
(31) and the definition of the stopping time T̃ we see that T̃ = 1. That is, ã ∈ X s∗

and
aε(·)−→ ã(·) in X s1 , (32)

where ε = ε j → 0. Since the limit ã does not depend on the sequence ε j → 0, then
the convergence holds as ε → 0.

Now we show that the convergence (32) holds uniformly for v0 ∈ B(M0,hs∗).
Assume the opposite. Then there exists δ > 0, sequences τ j ∈ [0,1],a j

0 ∈ B(M0,hs∗),
and ε j → 0 such that if aε j(·) is a solution of (23) with initial data a j

0 and ε = ε j,
and ã j(·) is a solution of the effective equation (11) with the same initial data, then

|aε j(τ j)− ã j(τ j)|s1 > δ . (33)

Using again the Arzelà-Ascoli theorem and (27), replacing the subsequence ε j→
0 by a suitable subsequence, we have that

τ j→ τ0 ∈ [0,1],

a j
0→ a0 in hs1 , where a0 ∈ hs∗ ,

aε j(·)→ a0(·) in X s1 ,

ã j(·)→ ã0(·) in X s1 .

Clearly, ã0(·) is a solution of Eq. (11) with the initial datum a0. Due to Lemma
5, a0(·) is a mild solution of Eq. (11) with a0(0) = a0. Hence we have a0(τ) =
ã0(τ), τ ∈ [0,1], particularly, a0(τ0) = ã0(τ0). This contradicts with (33), so the
convergence (32) is uniform in v0 ∈ B(M0,hs∗).

Since
|I(a)− I(ã)|∼s1

≤ 4|a− ã|s1(|a|s1 + |ã|s1),

then the convergence (32) implies the statement of Theorem 1.

5 The Randomly Forced Case

We study here the effect of the addition a random forcing to Eq. (1). Namely, we
consider equation (13). We suppose that

Bs = 2
∞

∑
j=1

λ
2s
j b2

j < ∞ for s = s∗ ∈ (d/2+1,n],

and impose a restriction on the nonlinearity P by assuming that there exists N̄ ∈ N
and for each s ∈ (d/2+1,n] there exists Cs such that

‖P(∇u,u)‖s−1 ≤Cs(1+‖u‖s)
N̄ , ∀u ∈ Hs (34)
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(this assumption holds e.g. if P(∇u,u) is a polynomial in (u,∇u)).
Passing to the slow time τ = εt, Eq. (13) becomes (cf. (2))

u̇+ε
−1i(−∆ +V (x))u= µ∆u+P(∇u,u)+

d
dτ

∞

∑
k=1

bkβ kek(x), u= u(τ,x), (35)

which, in the v-variables, takes the form (cf. (4))

dvk + ε
−1iλkvk dτ = (−µλkvk +Pk(v))dτ +

∞

∑
l=1

Ψklbldβ l , k ∈ N , (36)

where we have denoted by {Ψkl ,k, l ≥ 1} the matrix of the operator Ψ (see (3)) with
respect to the basis {ek} in H0 and {ζk} in h0. We assume

Assumption A′. There exist s∗ ∈ (d/2+1,n] and an ε-independent T > 0 such that
for any u0 ∈ Hs∗ , Eq. (35) has a unique strong solution u(τ,x), 0≤ τ ≤ T , equal to
u0 at τ = 0. Furthermore, for each p there exists a C =Cp(‖u0‖s∗ ,Bs∗ ,T ) such that

E sup
0≤τ≤T

‖u(τ)‖p
s∗ ≤C . (37)

Remark 1. The Assumption A′ is not too restrictive. In particular, in [16] it is verified
for equations (13) if µ > 0 and P(u) = −u+ z fp(|u|2)u, where fp(r) is a smooth
function, equal |r|p for |r| ≥ 1, and Imz ≤ 0,Rez ≤ 0. The degree p is any real
number if d = 1,2 and p < 2/(d−2) if d ≥ 3.

Under this assumption, a result analogous to Theorem 1 holds. Namely, the lim-
iting behaviour of the action variables Ik (see (6)) is described by the stochastically
forced effective equation (cf. (11))

dãk = (−µλkãk +Rk(ã))dτ +
∞

∑
l=1

Bkldβ l , k ∈ N , (38)

where we have defined {Bkr,k,r ≥ 1} as the principal square root of the real matrix

Akr =

{
∑l b2

l ΨklΨrl if λk = λr ,
0 else , . (39)

which defines a nonnegative selfadjoint compact operator in h0. Note that since R is
locally Lipschitz by Lemma 4, then strong solutions for (38) exist and are unique till
the stopping time τK = inf{τ ≥ 0 : |ã(τ)|s∗ = K}, where K is any positive number.

In the theorem below vε(τ) denotes a solution of (36) with the initial value v0 ∈
hs∗ .

Theorem 2. If Assumption A′ holds, there exists a unique strong solution ã(τ), 0≤
τ ≤ T , of equation (38) such that ã(0) = v0 =Ψ(u0) ∈ hs∗ , and

D (I(vε(τ)))⇀ D (I(ã(τ))) as ε → 0 ,
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in C([0,T ],hs1
I ), for any s1 < s∗.

In the theorem’s assertion and below the arrow ⇀ stands for the weak conver-
gence of measures. Let us assume further:

Assumption B′. (i) Eq. (13) has a unique strong solution u(τ),u(0) = u0 ∈ Hs∗ ,
defined for τ ≥ 0, and

E sup
θ≤τ≤θ+1

‖u(τ)‖p
s∗ ≤C for any θ ≥ 0 , (40)

where C =C(‖u0‖s∗ ,Bs∗).
(ii) Eq. (38) has a unique stationary measure µ0 and is mixing.

Remark 2. The assumption (i) is fulfilled, for example, for equations, discussed in
Remark 1. Assumption (ii) holds trivially if for a.e. realisation of the random force
any two solutions of Eq. (38) converge exponentially fast.1 For less trivial examples,
corresponding to perturbations of linear systems with non-resonant or completely
resonant spectra, see [16, 17].

Assumption B′ (i) and the Bogolyubov-Krylov argument, applies for solutions,
starting from 0, imply that Eq. (13) has a stationary measure µε , supported by the
space Hs∗ , and inheriting estimates (40).

Theorem 3. Let us suppose that Assumptions A′ and B′ hold. Then

lim
ε→0

µ
ε = µ

0 , (41)

weakly in hs1 , for any s1 < s∗. The measure µ0 is invariant with respect to trans-
formations ΦtΛ , t ∈ R. If, in addition, (13) is mixing and µε is its unique station-
ary measure, then for any solution uε(t) of (13) with ε-independent initial data
u0 ∈ Hs∗ , we have

lim
ε→0

lim
t→∞

D (vε(t)) = µ
0 ,

where vε(t) =Ψ (uε(t)).

For examples of mixing equations (13) see [16] and references in that work. In
particular, (13) is mixing if P(u,∇u) = P(u) is a smooth function such that all its
derivatives are bounded uniformly in u, cf. Remark 2.

For the case when the spectrum Λ is non-resonant (see Example 1) or is com-
pletely resonant, i.e. (22) holds, the theorem was proved in [16, 17].

The proofs of Theorem 2 and 3 closely follow the arguments in [16, 17, 18].
Proof of Theorem 3, in addition, uses some technical ideas from [5] (see there Corol-
lary 4.2). The proofs are given, respectively, in Section 6 and Section 7.

1 This is fulfilled, for example, if (i) holds and P(u) =−u+P0(u), where the Lipschitz constant
of P0 is less than one.
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6 Proof of Theorem 2

As in the proof of Theorem 1, let us assume, without loss of generality, that T = 1,
s1 > d/2+1 and s1 > s∗−2 (recall that s1 < s∗ and s∗ ∈ (d/2+1,n]).

Following the suite of [17] (see also [18]) we pass once again to the a-variables,
defined in (8)). In view of (36), they satisfy the system (cf. (10))

dak =
(
−µλkak +Yk(a,ε−1

τ)
)

dτ + eiε−1λkτ
∑

l
Ψklbldβ l , k ∈ N , (42)

where Y is defined in (24). For any p we denote

X p =C([0,1],hp) , X p
I =C([0,1],hp

I ) .

Let aε be a solution of (42) such that aε(0) = v0 =Ψ(u0) ∈ hs∗ ; we will often
write a for aε to shorten notation. Denote the white noise in (42) as ζ̇ (t,x) and
denote U1(τ) = Y (a(τ),ε−1τ), U2(τ) =−ÂV a(τ). Then

ȧ− ζ̇ =U1 +U2 .

In view of (34), ‖U1‖s∗−1 = |P(v)|s∗−1 ≤C(1+‖u(τ)‖N̄
s∗). So, by (37),

E
∫ (τ+τ ′)∧1

τ

‖U1‖s∗−1 dt ≤C
∫ (τ+τ ′)∧1

τ

EC(1+‖u(t)‖N̄
s∗)dt ≤C(‖u0‖s∗ ,Bs∗)τ

′ ,

for any τ ∈ [0,1] and τ ′ > 0. Similar,

E
∫ (τ+τ ′)∧1

τ

‖U2‖s∗−2 dt ≤ µCE
∫ (τ+τ ′)∧1

τ

‖u‖s∗ ≤ µC(‖u0‖s∗ ,Bs∗)τ
′ .

Hence, there exists γ > 0 such that

E
∥∥(a−ζ )((τ + τ

′)∧1)− (a−ζ )(τ)
∥∥

s1
≤C(‖u0‖s∗ ,Bs∗)τ

′γ ,

in virtue of the interpolation and Hölder inequalities (cf. (27)). It is classical that

P{‖ζ‖C1/3([0,1],hs1 ) ≤ R3}→ 1 as R3→ ∞ .

In view of what was said, for any δ > 0 there is a set Q1
δ
⊂ X s1 , formed by equicon-

tinuous functions, such that

P{aε ∈ Q1
δ
} ≥ 1−δ ,

for each ε . By (37),
P{‖aε‖Xs∗ ≥Cδ

−1} ≤ δ ,

for a suitable C, uniformly in ε . Consider the set
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Qδ =
{

aε ∈ Q1
δ

: ‖a‖Xs∗ ≤Cδ
−1} .

Then P{aε ∈Qδ} ≥ 1−2δ , for each ε . By this relation and the Arzelà-Ascoli theo-
rem (e.g., see [13], §8), the set of laws {D(aε(·)), 0 < ε ≤ 1}, is tight in X s1 . So by
the Prokhorov theorem there is a sequence εl → 0 and a Borel measure Q0 on X s1

such that
D(aεl (·))⇀ Q0 as εl → 0 . (43)

Accordingly, due to (9), for actions of solutions vε we have the convergence

D (I (vεl (·)))⇀ I ◦Q0 as εl → 0 , (44)

in X s1
I .

Theorem 2 follows then as a simple corollary from

Proposition 1. There exists a unique weak solution a(τ) of the effective equation
(38) such that D(a) = Q0, a(0) = v0 a.s.; and the convergences (43) and (44) hold
as ε → 0.

Proof. The proof follows the Khasminski scheme (see [14, 7]), as expounded in
[17]. Namely, we show that the limiting measure Q0 is a martingale solution of the
limiting equation, which turns out to be exactly the equation (38). Since the equation
has a unique solution, then the convergences (43), (44) hold as ε → 0.

For τ ∈ [0,1] consider the processes

Nεl
k = aεl

k (τ)−
∫

τ

0

(
−µλkaεl

k (s)+Rk(aεl (s))
)

ds , k ≥ 1

(cf. Eq. (38)). Due to (42) we write Nεl
k as

Nεl
k (τ) = Ñεl

k (τ)+Nεl
k (τ) ,

where Ñεl
k (τ) = aεl (τ)−

∫
τ

0 (−µλkaεl (s) +Yk(aεl (s),ε−1
l s))ds is a Q0 martingale

and the disparity Nεl
k is

Nεl
k (τ) =

∫
τ

0
Yk(aεl (s),ε−1

l s)ds

(as before, Y (a, t) = Y (a, t)−R(a)).
The key point is then a stochastic counterpart of Lemma 5, which is proved be-

low:

Lemma 6. For every k ∈ N, EAε
k → 0 as ε → 0, where

Aε
k = max

0≤τ̃≤1

∣∣∣∣∫ τ̃

0
Yk(aε(τ),ε−1

τ)dτ

∣∣∣∣ .
This lemma and the convergence (43) imply that the processes
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Nk(τ) = ak(τ)−
∫

τ

0
(−µλkak +Rk(a)) ds , k ≥ 1 ,

are Q0 martingales, considered on the probability space (Ω = X s1 ,F ,Q0) (F is
the Borel sigma-algebra), given the natural filtration (Fτ ,0 ≤ τ ≤ 1). For details
see [19], Proposition 6.3).

Consider then the diffusion matrix {Akr,k,r ≥ 1} for the system (42), i.e.,

Akr = exp(iε−1
τ(λk−λr))

∞

∑
l=1

b2
l ΨklΨ̄rl .

Clearly,
∫

τ̃

0 Akrdτ → Akr τ̃ , as ε → 0, where A denotes the diffusion matrix for the
system (38) (cf. (39)). Similar to Lemma 6, we also find that

E max
0≤τ̃≤1

∣∣∣∣∫ τ̃

0
Yk(aε(τ),ε−1

τ)dτ

∣∣∣∣2→ 0 as ε → 0 .

Then, using the same argument as before, we see that the processes

Nk(τ)Nr(τ)−Akrτ =

(
ÑkÑr−

∫
τ

0
Akrds

)
+

(
NkNr +NkÑr + ÑkNl−

∫
τ

0
(Akr−Akr)ds

)
are Q0 martingales. That is, Q0 is a solution of the martingale problem with the
drift R and the diffusion A (see [23]), so the assertion follows. ut

Proof of Lemma 6. We adopt a convenient notation from our previous publications.
Namely, we denote by κ(r) various functions of r such that κ→ 0 as r→ ∞. We
write κ(r;M) to indicate that κ(r) depends on a parameter M. Besides for events Q
and O and a random variable f we write PO(Q) = P(O∩Q) and EO( f ) = E(χO f ).

The constants below may depend on k, but this dependence is not indicated since
k is fixed through the proof. By M ≥ 1 we denote a constant which will be specified
later. Denote by ΩM = Ω ε

M the event

ΩM =

{
sup

0≤τ≤1
|aε(τ)|s∗ ≤M

}
.

Then, by (37),
P(Ω c

M)≤ κ(M). (45)

In view of Lemma 4 (ii) and (34), for any t ∈ [0,ε−1] and any a ∈ hs∗ the differ-
ence Y = Y −R satisfies

|Yk(a, t)| ≤ |Yk(a, t)|+ |Rk(a)| ≤ |Pk(v)|+ |Rk(a)| ≤C(1+ |a|s∗)
N̄ . (46)

Using this and (45) we get
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EΩ c
M
Aε

k ≤
∫ 1

0
EΩ c

M
|Yk(a(τ),ε−1

τ)|dτ

≤C (P(Ω c
M))1/2

∫ 1

0

(
E(1+ |a|s∗)

2N̄
)1/2

dτ ≤ κ(M) .

(47)

To estimate EΩMA
ε
k , as in Lemma 5 we consider a partition of [0,1] by the points

bn = nL, 0≤ n≤ N−1, bN−1 ≥ 1−L, bN = 1 , L = ε
1/2 ,

N ∼ 1/L. Let us denote

ηl =
∫ bl+1

bl

Yk(a(τ),ε−1
τ)dτ , 0≤ l ≤ N−1 .

Since for ω ∈ ΩM and any τ ′ < τ ′′ such that τ ′′− τ ′ ≤ L, in view of (46) we have∣∣∣∫ τ ′′
τ ′ Yk(a(τ),ε−1τ)dτ

∣∣∣≤ LC(M), then

EΩMA
ε
k ≤ LC(M)+EΩM

N−1

∑
l=0
|ηl | . (48)

Let us fix any s̄ > d/2+1, s∗−2 < s̄ < s∗, sufficiently small γ > 0, and consider
the event

Fl =

{
sup

bl≤τ≤bl+1

|aε(τ)−aε(bl)|s̄ ≥ Lγ

}
.

By the equicontinuity of the processes {aε(τ)} on suitable events with arbitrarily
close to one ε-independent probability (as shown above), the probability of P(Fl)
goes to zero with L, uniformly in l and ε . Since |ηl | ≤C(M)L for ω ∈ΩM and each
l, then

N−1

∑
l=0

∣∣EΩM |ηl |−EΩM\Fl
|ηl |
∣∣≤C(M)L

N−1

∑
l=0

PΩM (Fl)≤C(M)κ(L−1) , (49)

and it remains to estimate ∑l EΩM\Fl
|ηl |.

We have

|ηl | ≤
∣∣∣∣∫ bl+1

bl

(
Yk(a(τ),ε−1

τ)−Yk(a(bl),ε
−1

τ)
)

dτ

∣∣∣∣
+

∣∣∣∣∫ bl+1

bl

(
Yk(a(bl),ε

−1
τ)
)

dτ

∣∣∣∣=: ϒ
1

l +ϒ
2

l .

By (20) and Lemma 4 (ii), in ΩM the following inequality hold:∣∣Yk(a(τ),ε−1
τ)−Yk(a(bl),ε

−1
τ)
∣∣≤C(M) |a(τ)−a(bl)|s̄ .

So that, by the definition of Fl ,
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∑
l

EΩM\Fl
ϒ

1
l ≤ LγC(M) = κ(ε−1;M) . (50)

It remains to estimate the expectation of ∑ϒ 2
l . In view of (30) (with M1 = M) we

have
∑

l
EΩM\Fl

ϒ
2

l ≤ NLκ1(ε
−1;M) = κ(ε−1;M). (51)

Now the inequalities (47)–(51) jointly imply that

EAε
k ≤κ(M)+κ(ε−1;M) .

Choosing first M large and then ε small we make the r.h.s. arbitrarily small. This
proves the lemma. ut

Lemma 6 estimates integrals of the differences

eiε−1τλk Pk
(
Φ−ε−1τλk

(aε(τ)
)
−〈P〉Λ ,k(aε(τ)) .

Similar result holds if we replace the averaging 〈·〉Λ ,k by 〈〈·〉〉Λ and the function Pk
by any Lipschitz function:

Lemma 7. Let f ∈ Lip1(hs1) =: Lip1 (i.e., f is a bounded Lipschitz function on hs1 ).
Then

(i) E
∫ 1

0
(

f (Φ−τε−1Λ aε(τ))−〈〈 f 〉〉Λ (aε(τ))
)

dτ → 0 as ε → 0;
(ii) if in i) f is replaced by f θ = f ◦Φθ , θ ∈ T∞, then the rate of convergence

does not depend on θ .

Proof. To get (i) we literally repeat the proof of Lemma 6, using Lemma 2 instead of
Lemma 1. The assertion (ii) follows from Lemma 2 and item (iv) of Lemma 1. ut

7 Proof of Theorem 3

Let vε(τ), 0≤ τ ≤ 1, be a stationary solution for Eq. (13) such that D(vε(τ))≡ µε ,
and let aε(τ) = Φε−1Λτ vε(τ) be its interaction representation. Since v inherits the a-
priori estimate (40) (with u0 = 0), then an analogy of the convergence (43) holds for
a suitable sequence εl → 0. The argument from the proof of Proposition 1 applies
and imply that

D(aεl (·))⇀ D(a0(·)) in X s1 as εl → 0 , (52)

where a0 is a weak solution of (38). We may also assume that

µ
εl ⇀ µ̄

0 in hs1 , (53)

for some measure µ̄0.
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Let us take any f ∈ Lip1(hs1). Then

E
∫ 1

0
f (vε(τ))dτ = E

∫ 1

0
f (Φ−ε−1Λτ aε(τ))dτ .

Applying to the second integral Lemma 7 we find that∫ 1

0
E f (vε(τ))dτ =

∫ 1

0
E〈〈 f 〉〉Λ (aε(τ))dτ +κ(ε−1) . (54)

Since the function 〈〈 f 〉〉Λ is invariant with respect to transformations ΦΛ t , t ∈ R
(see item b) of Lemma 2), then 〈〈 f 〉〉Λ (aε(τ)) = 〈〈 f 〉〉Λ (vε(τ)). So both integrands
in (54) are independent from τ , and

E f (vε(τ)) = E〈〈 f 〉〉Λ (aε(τ))+κ(ε−1) ∀τ . (55)

Now let us take for f the function f̃ = f̃ε−1τ = f ◦Φε−1Λτ (which also belongs to
Lip1(hs1)). Then

E f (aε(τ)) = E f̃ (vε(τ)) = E〈〈 f̃ 〉〉Λ (aε(τ))+κ(ε−1) = E〈〈 f 〉〉Λ (aε(τ))+κ(ε−1) ,

where κ may be chosen the same for all functions f̃ in view of Lemma 7 i). Com-
paring this with (55) and using (53) we find that

E f (aεl (τ))⇀ 〈 f , µ̄0〉 as εl → 0,

for each τ . Therefore, in virtue of (52), D(a0(τ)) ≡ µ̄0. So a0(τ) is a stationary
solution for (38), and µ̄0 is a stationary measure for this equation. Since the latter is
unique, µ̄0 ≡ µ0, and (53) implies the convergence (41).

Replacing in (55) f by f̃t and using Lemma 2 b) we see that

〈 f ,ΦΛ t ◦µ
ε〉= 〈 f̃t ,µε〉= 〈 f ,µε〉+κ(ε−1).

Passing to the limit as ε → 0 we get the claimed invariance of the measure µ0.
Finally, the last assertion immediately follows from (41). 2
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Appendix

Consider the CGL equation (14), where P : Cd(d+1)/2+d+1 × T d → C is a C∞-
smooth function. We write it in the v-variables and slow time τ = εt:

v̇k + ε
−1iλkvk = Pk(v), k ∈ N,
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where
P(v) := (Pk(v),k ∈ N) =Ψ(P(∇2u,∇u,u,x)), u =Ψ

−1v,

and introduce the effective equation

˙̃a = 〈P〉Λ (ã). (56)

By Lemma 3 P defines smooth locally Lipschitz mappings hs → hs−2 for s > 2+
d/2. So by a version of Lemma 4, 〈P〉Λ ∈ Liploc(hs;hs−2) for s > 2+d/2. Assume
that

Assumption E: There exists s0 ∈ (d/2,n] such that the effective equation (56) is
locally well posed in the Hilbert spaces hs, with s ∈ [s0,n]∩N.

Let uε(t,x) be a solution of Eq. (14) with initial datum u0 ∈ Hs, vε(τ) =
Ψ(u(ε−1τ,x)), and ã(τ) be a solution of Eq. (56) with initial datum Ψ(u0). Then
we have the following result:

Theorem 4. If Assumptions A and E hold and s > max{s0 + 2,d/2+ 4}, then the
solution of the effective equation exists for 0 6 τ 6 T , and for any s1 < s we have

I(vε(·))−−→
ε→0

I(ã(·)) in C([0,T ],hs1
I ).

The proof of this theorem follows that of Theorem 1, with slight modifications.
Cf. [10], where the result is proven for the non-resonant case.
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