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Abstract We prove that the non-linear part of the Hamiltonian of the KdV equation on
the circle, written as a function of the actions, defines a continuous convex function on
the ℓ2 space and derive for it lower and upper bounds in terms of some functions of the
ℓ2-norm. The proof is based on a new representation of the Hamiltonian in terms of the
quasimomentum, obtained via the conformal mapping theory.
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1 Introduction and Main Results

We consider the Korteweg de Vries (KdV) equation under zero mean-value periodic
boundary conditions:

qt = −qxxx + 6qqx, x ∈ T = R/Z,
∫ 1

0
q(x, t) dx = 0. (1.1)
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For any α ∈ R denote byHα the Sobolev space of real-valued 1-periodic functions with
zero mean-value. In particular, we have

Hα = Hα(T) =
{

q ∈ L2(T) : q(α) ∈ L2(T),
∫ 1

0
q(x) dx = 0

}

, α ! 0.

We provide the spacesHα with the trigonometric base {e±1, e±2, e±3, ....}, where

ej (x) =
√
2 cos 2πjx, e−j (x) = −

√
2 sin 2πjx, j ! 1.

We also introduce real spaces ℓ
p
α of sequences f = (fn)

∞
1 , equipped with the norms

∥f ∥pp,α =
∑

n!1

(2πn)2α|fn|p, p ! 1, α ∈ R, (1.2)

and positive octants

ℓ
p
α,+ =

{
f = (fn)

∞
1 ∈ ℓpα : fn ! 0, ∀ n ! 1

}
.

In the case α = 0, we write ℓp = ℓ
p
0 , ℓ

p
+ = ℓ

p
0,+ and ∥ · ∥p = ∥ · ∥p,0.

The operator ∂
∂x defines linear isomorphisms ∂

∂x : Hα → Hα−1. Denoting by
(

∂
∂x

)−1

the inverse operator, we provide the spaces Hα,α ! 0, with a symplectic structure by
means of the 2-form ω2:

ω2(q1, q2) = −
〈
(∂/∂x)−1q1, q2

〉
,

where ⟨·, ·⟩ is the scalar product in L2(0, 1). Then in any space Hα,α ! 1, the KdV
equation (1.1) may be written as a Hamiltonian system with the Hamiltonian H2, given by

H2(q) =
1
2

∫ 1

0
(q ′(x)2 + 2q3(x)) dx.

That is, as the system

qt =
∂

∂x

∂

∂q
H2(q), (1.3)

e.g., see [4, 7, 20] (note that H2 is an analytic function on any spaceHα, α ! 1).
It is well known after the celebrated work of Novikov, Lax, Its, and Matveev that the

system (1.3) is integrable. It was shown by Kappeler and collaborators in a series of publi-
cations, starting with [6], that it admits global Birkhoff coordinates. Namely, for any α ∈ R
denote by hα the Hilbert space, formed by real sequences b = (bn, b−n)

∞
1 , equipped with

the norm
∥b∥2hα

=
∑

n!1

(2πn)2α
(
b2n + b2−n

)
.

We provide the spaces hα with the usual symplectic form

&2 =
∑

n!1

dbn ∧ db−n,

and define the actions I = (In)
∞
1 and the angles φ = (φn)

∞
1 by

In = 1
2

(
b2n + b2−n

)
, φn = arctan

bn

b−n
. (1.4)

This is another set of symplectic coordinates on hα , since &2 = dI ∧ dφ, at least
formally. Then

Author's personal copy



KdV Hamiltonian as a Function of Actions

1) There exists an analytic symplectomorphism ( : H0 → h 1
2
which defines analytic

diffeomorphisms ( : Hα → hα+ 1
2
,α ! −1, such that d((0) = ), where

)

⎛

⎝
∑

j!1

(
uj ej (x)+ u−j e−j (x)

)
⎞

⎠ = b, bj = |2πj | 12 uj , ∀j. (1.5)

2) The transformed Hamiltonian H2
(
)−1(b)

)
(which is an anlytic function on the space

h 3
2
) depends solely on the actions I , i.e., K(I (b)) = H2

(
)−1(b)

)
, where K(I) is an

analytic function on the octant ℓ13
2 ,+

. A curve q(·, t) ∈ C1 (R,H0
)
is a solution of

Eq. 1.1 if and only if b(t) = )(q(·, t)) satisfies the following system of equations

∂bn

∂t
= −b−n

∂K

∂In
,

∂b−n

∂t
= bn

∂K

∂In
, n ! 1, (1.6)

where I = (I (b)).

For 1)-2) with α ! 0 see [7] and with α = −1 see [8]. See [22] for the important
quasilinearity property of the transformation (.

Note that

∥b∥h = 2|I |1,α.
Thus, if I ∈ ℓ

p
+ for some p < ∞, then I ∈ ℓ1− 1

2 ,+
and the corresponding potential

q ∈ H−1.
By 2), in the action-angle variables (I,φ) the KdV equation takes the form

It = 0, φt =
∂

∂I
K(I). (1.7)

This reduction of KdV is due to McKean-Trubowitz [28] and was found before the
Birkhoff form (1.6). The action maps ψ ,→ Ij , j ! 1, are given by explicit formulas due to
Arnold and are defined in a unique way. So the HamiltonianK(I) also is uniquelly defined,
see [3]. But the symplectic angles are defined only up to rotations φ ,→ φ + (∂/∂I )g(I ),
where g is any smooth function. So the transformation ( is not unique.

The Birkhoff coordinates b and the actions-angles (I,φ) make an effective tool to study
properties of the KdV equation, see [8], and of its perturbations, see [4, 21]. For both these
goals, it is important to understand properties of the Hamiltonian K(I) which defines the
dynamics (1.6) and (1.7). But the only information about the function K(I) which follows
from 1)-2) is that it is analytic on the spaces ℓ1p,+, p ! 3/2.1

Denote by Pj moments of the actions I , given by

Pj =
∑

n!1

(2πn)j In, j ∈ Z. (1.8)

Note that

P1 =
1
2
∥q∥2, if I = I (b), b = )(q), (1.9)

1About the behavior of K(I) of the finite-dimensional subspaces ℓ̃N , defined below in Eq. 1.11, we know
more. See in [20] and below in Introduction.
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this is the Parseval identity for the transformation ), see [15, 27]. Due to Eq. 1.5, the linear
part dK(0)(I ) of K(I) = H2

(
)−1(b)

)
at the origin equals

1
2

∫ 1

0

(
∂

∂x

(
)−1b

))2

dx = P3.

Therefore
K(I) = P3(I )+O

(
I 2
)
.

The cubic part
∫ 1
0 q

3(x) dx of the Hamiltonian H2(q) is more regular than its quadratic

part 1
2

∫ 1
0 q

′(x)2 dx. Thus, it is natural to assume that the linear term P3 is a singular part of
K(I) and to study smoothness of the more regular quadratic part V , given by

H2(q) = K(I) = P3(I ) − V (I). (1.10)

Here, the minus-sign is convenient, since below we will see that V ! 0. For any N ! 1
denote by ℓ̃N ⊂ ℓ2 the N-dimensional subspace

ℓ̃N =
{
I = (In)

∞
1 , In = 0 ∀ n > N

}
, (1.11)

and set ℓ̃∞ = ∪ℓ̃N . Clearly, V is analytic on each octant ℓ̃N+ (i.e., it analytically extends to
a neighborhood of ℓ̃N+ in ℓ̃N ). So V is Gato-analytic on ℓ̃∞

+ . That is, it is analytic on each
interval

{
(a + tc) ∈ ℓ̃∞

+ |t ∈ R
}
, where a, c ∈ ℓ̃∞

+ . It is known that

∂2V (0)
∂Ii∂Ij

= 6δi,j ∀ i, j ! 1, (1.12)

see [1] and [4, 7, 20]. So d2V (0)(I ) = 6∥I∥22. This suggests that the Hilbert space ℓ2 rather
than the Banach space ℓ13

2
(which is contained in ℓ2) is a distinguished phase-space for the

HamiltonianK(I). This guess is justified by the following theorem which is the main result
of our work.

Theorem 1.1 The function V : ℓ̃∞
+ → R extends to a non-negative continuous function on

the ℓ2-octant ℓ2+, such that V (I) = 0 for some I ∈ ℓ2+ iff I = 0. Moreover,

0 " V (I) " 8P1P−1, ∀ I ∈ ℓ11,+, (1.13)

and

π

10
∥I∥22(

1+ P
1
2

−1

) " V "
(

4
11
2

(
1+ P

1
2

−1

) 1
2

P 2
−1 + 6πe

√
P−1∥I∥2

)

∥I∥2, ∀ I ∈ ℓ2.

(1.14)

Let X be a Banach space which contains ℓ̃∞ as a dense subsets. We say that the function
V (I) agrees with the norm ∥I∥X if V extends to a continuous function onX+ (= the closure
of ℓ̃∞

+ in X) and

F1(∥I∥X) " V (I) " F2(∥I∥X), ∀ I ∈ X+,

where F1, F2 are monotonous continuous functions from R+ into R+ such that Fj (0) = 0
and Fj (t) → ∞ as t → ∞, j = 1, 2. It is easy to see that there exists at most one
Banach space X as above (i.e., if X′ is another space, then X = X′ and the two norms are
equivalent).
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Estimates (1.14) imply that the function V (I) agrees with the norm ∥I∥2. So ℓ2 is the
natural phase space for the non-linear part V of the Hamiltonian K(I). In Section 3, we
show that ℓ2-sequences I correspond to potentials q ∈ H−1 and in general these potentials
do not belong toH1/2 (see there Remark 2).

A proof of the theorem is based on a new identity (see Theorem 4.2), representing
V (I) in terms of the quasimomentum of the Hill operator with a potential q. It uses
properties of the conformal mapping, associated with this quasimomentum, developed in
[10–16].

Remark 1) Equation 1.13 improves the known estimate |H2(q)| " 45P3

(
1+ P

4
3
3

)

from [13].
2) We claim that the function V is real analytic on ℓ2+. This will be proven elsewhere.
3) The complete Hamiltonian K(I) is analytic on the space ℓ13/2,+. Our results show that

the function K(I) − dK(0)(I ) = −V (I) is smoother and continuously extends to a
larger space ℓ2+. A natural question is if the function

K(I) − dK(0)(I ) − 1
2d

2K(0)(I, I ) = K(I) − P3 + 3∥I∥22
is even smoother and continuously extends to a larger space, etc. We do not know the
answer.

4) By Theorem 1.1, V (I) admits a quadratic upper bound in terms of P1. The estimate
(1.14) implies the exponential upper bound for V in terms of ∥I∥2. The bottle neck of
our proof which yields the unpleasant exponential factor in Eq. 1.14 is the Bernstein
inequality, used in Section 3 to prove Lemma 3.1. We conjecture that, in fact, V (I) is
bounded by a polynomials of ∥I∥2.

Consider the restriction of the function V (I) to ℓ̃N+ with any N ! 1. It is known that the
corresponding Hessian is non-degenerate:

det

{
∂2V (I)

∂Ii∂Ij

}

1"i,j"N

̸= 0, ∀ I ∈ ℓ+N . (1.15)

This result was proven in [19] with serious omissions, fixed in [2] (see also Appendix 3.6
in [20] and [4]). Since V is analytic on ℓ̃N+ , then Eqs. 1.12 and 1.15 yield that the Hessian
of V |ℓ̃N+ is a positive N × N matrix. Thus V is convex on ℓ+N . Since ℓ̃∞ = ∪ℓ̃N is dense in

ℓ2, where V is continuous, we get

Corollary 1.2 The function V (I) is convex on ℓ2+.

Remark 5) By Eq. 1.12 and Remark 2, the function V is strictly convex in some vicinity
of the origin in ℓ2+ (note that ℓ2+ is the only phase-space where V is strictly convex).
We conjecture that it is strictly convex everywhere in ℓ2+.

In difference with V (I), the total Hamiltonian K(I) is not continuous on ℓ2+ since its
linear part P3(I ) is there an unbounded linear functional. But P3(I ) contributes to Eq. 1.6
the linear rotations

∂bn

∂t
= −(2πn)3b−n,

∂b−n

∂t
= (2πn)3bn, n ! 1.
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So the properties of Eq. 1.6 essentially are determined by the component −V (I) of the
HamiltonianK(I). We also note that since P3(I ) is a bounded linear functional on the space
ℓ13/2,+ ⊂ ℓ2, then the complete HamiltonianK(I) = P3−V is concave on ℓ13/2,+. The flow
of the KdV equation in the action-angle variables (1.7) is

(I,φ) →
(
I,φ(t) = φ + tK ′(I )

)
, t ∈ R, K ′(I ) = ∂K(I)

∂I
.

Since the functionK is concave and analytic on ℓ13/2,+, then the flow-maps are twisting:

⟨φ(t; I(2),φ(1)) − φ(t; I(1),φ(1)), I(2) − I(1)⟩ = t⟨K ′(I(2)) − K ′(I(1)), I(2) − I(1)⟩ " 0 ∀ t ! 0.

If the assertion of Remark 5 above holds true, then L.H.S. is " −Ct∥I(2) − I(1)∥22, where
the positive constant C depends on I(2), I(1).

In the finite-dimensional case convexity (and strict convexity) of an integrable Hamil-
tonian significantly simplifies the study of long time behavior of actions of solutions for
perturbed equations. Similarly, we are certain that results of this work will help to study
perturbations of the KdV equation (1.1), especially those which are Hamiltonian . It is
important that as a phase space, our results suggest the Hilbert space ℓ2, rather than a
weighted ℓ1-space .

2 Momentum, Quasimomentum, and KdV Equation

2.1 Spectrum of the Hill Operator

We consider the Hill operator T acting in L2(R) and given by

T = − d2

dx2
+ q0 + q(x),

where a 1-periodic potential q (with zero mean-value) belongs to the Sobolev space
Hα,α ! −1 and q0 is a constant (so the potential q0 + q may be a distribution). Below, we
recall the results from [12] on the Hill operator with potentials q ∈ H−1. The spectrum of
T is absolutely continuous and consists of intervals (spectral bands)Sn, separated by gaps
γn and is given by (see also Fig. 1)

Sn =
[
λ+n−1, λ

−
n

]
, γn =

(
λ−
n , λ

+
n

)
, where λ−

n−1 " λ−
n " λ+n , n ! 1.

We choose the constant q0 = q0(q) in such a way that λ+0 = 0; in view of
(2.19) q0 ≥ 0. Note that a gap-length |γn| ! 0 may be zero. If the nth gap degen-
erates, that is, γn = ∅, then the corresponding spectral bands Sn and Sn+1 merge.
The sequence 0 = λ+0 < λ−

1 " λ+1 < . . . form the energy spectrum of T and
is the spectrum of the equation −y′′ + (q0 + q)y = λy with the 2-periodic bound-
ary conditions, i.e., y(x + 2) = y(x), x ∈ R. Here, the equality means that λ−

n = λ+n
is a double eigenvalue. The eigenfunctions, corresponding to λ±n , have period 1 when
n is even, and they are antiperiodic, i.e., y(x + 1) = −y(x), x ∈ R, when n is
odd.

In order to study the actions In, n ≥ 1, we introduce the quasimomentum function. We
cannot introduce the standard fundamental solutions for the operator T , since the pertur-
bation q is too singular if α < 0. Instead, we use another representation of T . Define a
function ρ(x) by

ρ(x) = e
∫ x
0 q∗(t)dt , where q∗ ∈ H0 q ′

∗ = q.
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Fig. 1 The spectral domain C \ ∪Sn and the bands Sn =
[
λ+n−1, λ

−
n

]
, n ! 1

Consider the unitary transformation U : L2 (R, ρ2 dx
)

→ L2(R, dx) given by the
multiplication by ρ. Then T is unitarily equivalent to

T1y = U−1T Uy = − 1
ρ2

(
ρ2y′

)′
+
(
q0 − q2∗

)
y = −y′′ − 2q∗y′ +

(
q0 − q2∗

)
y,

acting in L2 (R, ρ2 dx
)
. Note that the norm in this space is equivalent to the original L2−

norm. This representation clearly is more convenient, since q∗ and q2∗ are regular functions.
It is convenient to write the the spectral parameter λ as

λ = z2.

Let ϕ(x, z) and ϑ(x, z) be solutions of the equation

− y′′ − 2q∗y′ +
(
q0 − q2∗

)
y = z2y, z ∈ C, (2.1)

satisfying ϑ ′(0, z) = ϑ(0, z) = 1 and ϕ(0, z) = ϑ ′(0, z) = 0. The Lyapunov function is
defined by

1(z) = 1
2
(ϕ′(1, z)+ ϑ(1, z)). (2.2)

This function is entire and even, i.e., 1(−z) = 1(z) for all z ∈ C. It is known that
1
(√

λ±n
)

= (−1)n, n ! 0 and the function 1′(z) has a unique zero zn in each gap
[√

λ−
n ,

√
λ+n

]
⊂ R+ (see e.g., [17, 18]).

2.2 Momentum and Quasimomentum

Below we consider the conformal mappings from the spectral domain (see Fig. 2) onto the
quasimomentum domain (see Fig. 3). Consider a strongly increasing odd sequence un, n ∈
Z, of real numbers, un = −u−n, such that un → ±∞ as n → ±∞, and a non-negative
sequence h = (hn)

∞
1 ∈ ℓ∞

+ . We define the following domains (see also Fig. 3)

K(h) = C \ ∪n∈Z2n, K+(h) = C+ ∩ K(h),

where

20 = ∅, 2n = (un − ihn, un + ihn) = −2−n, and C+ = {z : Im z > 0}.
We call K+(h) the “comb” and denote its points by k = u + iv. Then there exists a

unique conformal mapping z = z(k):

z : K+(h) → C+,
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normalized by the condition z(0) = 0 and the asymptotics:

z(iv) = iv + o(v) as v → +∞, where z = x + iy, k = u+ iv. (2.3)

We call z(k) “the comb mapping.” Define the inverse mapping

k = z−1 : C+ → K+(h), k(z) = u(z)+ iv(z). (2.4)

This function is continuous in C+ up to the boundary, i.e., on the closure C+. It is
convenient to introduce “gap” gn, “bands” σn, and the “spectrum” σ of the combmapping by:

gn =
(
z−
n , z

+
n

)
= (z(un − 0), z(un + 0)), σn =

[
z+n−1, z

−
n

]
, σ = ∪σn, g0 = ∅, z±0 = 0.

Note that the identities λ±n = z±n
2 yields

|γn| = z+n
2 − z−

n
2 = |gn|

(
z+n + z−

n

)
, ∀ n ! 1. (2.5)

Define the momentum domain (see also Fig. 2)

Z = C \ ∪n∈Zgn.

The function k(z) may be continued from C+ to the domain Z by the symmetry, using
the formula k(z) = k(z), Im z < 0. Thus, we obtain a conformal mapping k : Z → K(h),
called the quasimomentum mapping (or shortly the quasimomentum), which generalizes the
classical quasimomentum ( see, e.g., [30]). A point z ∈ Z is called momentum and a point
k ∈ K(h) is called quasimomentum. It is odd, i.e., k(−z) = −k(z), since the domains K(h)

and Z both are invariant under the inversion z → −z.
If the spectrum of the comb mapping k(z) has only finite number of open gaps, then k(z)

is called a finite-gap quasimomentum. Different properties of the finite-gap quasimomentum
(and of more general conformal mappings) were studied by Hilbert one hundred years ago,
see in [5].

The abstract quasimomentum, which we have just defined, is related to the spectral
theory of the Hill operator T by the following construction invented in [26]. Namely, let
{z±n , n ∈ Z} be an odd sequence as above. For n ! 0 denote λ±n =

(
z±n

)2. Then
{
λ±n , n ! 0

}

is the energy spectrum of the Hill operator T with a potential q0+q, where q ∈ Hα,α ! 0,
if and only if the corresponding comb domain K(h) is such that un = πn, n ∈ Z and
h = (hn)

∞
1 ∈ ℓ2α+1. Moreover, in this case, cos k(z) = 1(z) is the Lyapunov function for T .

In [12], the construction was generalized for potentials fromH−1, see below Theorem 2.1.
Despite the objects, treated by Theorem 1.1, are defined in terms of Hill operators with

periodic potentials, for the proofs in Sections 3–4 below, we need the quasimomentum map-
ping k(z), k = u + iv, z = x + iy, corresponding to general odd sequences {un}. Now we
summarize their basic properties, referring for a proof to [9–17, 23–27].

Fig. 2 z-domain Z = C \ ∪gn, where z =
√

λ and momentum gaps gn =
(
z−
n , z

+
n

)
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Fig. 3 k-plane and cuts 2n = (πn − ihn,πn+ ihn), n ∈ Z

1) v(z) ! Im z > 0 and v(z) = −v(z) for all z ∈ C+ and

k(−z) = −k(z), k(z) = k(z), α z ∈ Z, (2.6)

2) v(z) = 0 for all z ∈ σn =
[
z+n−1, z

−
n

]
, n ∈ Z .

3) If some gn ̸= ∅, n ∈ Z , then

hn ! v(z+ i0) = −v(z − i0) > 0, v′′(z+ i0) < 0 ∀ z ∈ gn, (2.7)

see Fig. 4. The function v(z + i0)|gn > 0 attains its maximum at a point zn ∈ gn,
where

hn = v(zn + i0), v′(zn) = 0. (2.8)
Moreover,

v = 0 on R \ ∪n∈Zgn, (2.9)

v(z+ i0) > vn(z) =
∣∣(z − z−

n )
(
z − z+n

)∣∣ 12 > 0, ∀ z ∈ gn, (2.10)

|gn| " 2hn, |σn| " un − un−1, ∀ n ∈ Z. (2.11)
4) u′(z) > 0 on each σn, and

u(z) = πn, ∀ z ∈ gn ̸= ∅, n ∈ Z. (2.12)

5) The function k(z) maps a horizontal cut (a gap ) gn onto the vertical cut 2n and maps
a spectral band σn onto the segment [π(n − 1),πn], for all n ∈ Z.

6) The following asymptotics hold true:

z±n = πn+ o(1) as n → ∞. (2.13)

Fig. 4 The graph of v(z+ i0), z ∈ gn ∪ σn ∪ σn+1 and |hn| = v(zn + i0) > 0
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7) If h ∈ ℓ2 and infn!1(un+1 − un) > 0, then v(z+ i0), z ∈ R belongs to L1(R) and the
following identity holds true:

k(z) = z+ 1
π

∫
⋃

n∈Z gn

v(t)

t − z
dt, ∀z ∈ Z . (2.14)

For additional properties of the comb mapping z(k), see [9–17, 23–26].

2.3 Quasimomentum and the KdV Hamiltonian

Recall that we choose the constant q0 ≥ 0 in such a way that λ+0 = 0. If q ∈ H0(T), then
the quasimomentum k(·) has asymptotics

k(z) = z − Q0

z
− Q2 + o(1)

z3
as Im z → ∞, (2.15)

see [15]. If q, q ′ ∈ H0, then the asymptotics 2.15 may be improved:

k(z) = z − Q0

z
− Q2

z3
− Q4 + o(1)

z5
as z → +i∞, (2.16)

and

k2(z) = λ − S−1 − S0

λ
− S1 + o(1)

λ2
as λ = z2, z → +i∞, (2.17)

where

Qj = 1
π

∫

R
zj v(z+ i0) dz ! 0, j ! 0, Sj = 4

π

∫ ∞

0
z2j+1u(z)v(z+ i0) dz, j ! −1.

(2.18)

Note that Q2j+1 = 0 for all j ≥ 0 by the symmetry. The involved quantities Qj and Sj
are defined by converging integrals (see [10, 12, 15]), and satisfy the following identities

q0(q) = S−1 = 2Q0 if q ∈ H−1, (2.19)

H1(q) =
∫ 1

0
q2(x) dx = 2P1 = 4S0 = 8Q2 − 4Q2

0 if q ∈ H0, (2.20)

H2(q) = 8(S1 − S−1S0), S1 + 2Q0Q2 = 2Q4 if q ∈ H1, (2.21)

8Q2 = ∥q∥2 + q20 , 24Q4 = H2(q + q0). (2.22)

See [12, 15, 29].

2.4 The KdV Actions

The components In of the action vector I = (In)
∞
1 (see Eq. 1.4) may be calculated with the

help of a general formula due to Arnold, which in the KdV-case takes the form

In = (−1)n+12
π

∫

gn

z21′(z)dz
∣∣12(z) − 1

∣∣ 12
! 0, n ! 1, (2.23)

see [3]. These integrals may be re-written using the quasimomentum. Indeed, since
sin k(z) =

√
1 − 12(z), then

In = − 1
π i

∫

cn

z2
1′(z)
sin k(z)

dz,
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where cn is a contour around gn. It is convenient to introduce contours χn around 2n by

χn =
{
k ∈ K(h) : dist (k,2n) =

π

4

}
⊂ K(h), n ! 1, (2.24)

and define the contours cn as

cn = z(χn) ⊂ Z, ∀ n ! 1.

The differentiation of 1(z) = cos k(z) gives k′(z) = −1′(z)/sin k(z). This yields

In = 1
iπ

∫

cn

z2k′(z) dz = − 2
iπ

∫

cn

zk(z) dz = 4
/π

∫

gn

zv(z+ i0) dz ! 0, (2.25)

since on gn the function k = πn + iv and v satisfies (2.7). This representation for In is
convenient and is crucial for our work. In particular, below in Lemma 3.1, we derive from
Eq. 2.25 the following two-sided estimates:

2
3π

hn|γn| < In " 2hn|γn|
π

, if |γn| > 0.

Using Eq. 2.25 jointly with Eqs. 2.12 and 2.9, we easily see that

P3 =
∑

n!1

(2πn)3In = 32
π

∫ ∞

0
zu3(z)v(z+ i0) dz. (2.26)

Recall that P3(I ) is the linear in I part of the Hamiltonian H2, see Eq. 1.10.

2.5 Marchenko-Ostrovski Construction for Potentials q ∈ H−1

The Marchenko-Ostrovski construction, described in Section 2.1, defines the mapping q →
h, acting from Hj−1 into ℓ2j , j = 0, 1, ..... The results below are proven in [26] for j ! 1
and in [12] for j = 0.

Theorem 2.1 The mapping q → h acting from Hj−1 into ℓ2j , j = 0, 1 is a surjection. It
satisfies the following estimates

∥q∥−1 " 2∥h∥2(1+ 4∥h∥2), ∥h∥2 " 3∥q∥−1(1+ 2∥q∥−1)
2, ∀ q ∈ H−1, (2.27)

where ∥q∥−1 = ∥q∥H−1 . For each h ∈ ℓ2, there exists a function q ∈ H−1 such that
h = h(q), and a unique conformal mapping k(·, h) : Z → K(h) defined in Eq. 2.4.
Moreover,

cos k(z, h) = 1(z, h), z ∈ Z, (2.28)

where 1(z, h) is the Lyapunov function for q, and k(z) satisfy

k(z, h) = z − Q0 + o(1)
z

as z → i∞, (2.29)

k
(
z±n , h

)
= πn± i0, k(zn ± i0, h) = πn± ihn, n ! 1. (2.30)

Moreover, the real numbers z±n
2, satisfying (2.30), form the energy spectrum of the oper-

ator T . Furthermore, if a sequence hν, ν ! 1 converges strongly in ℓ2 to h as ν → ∞, then
1(z, hν) → 1(z, h) uniformly on bounded subsets of C.

In order to prove our main result, Theorem 1.1, we use Theorem 2.1 to reformulate it
as questions from the conformal mapping theory in terms of quasimomentum of the Hill
operator. To proceed, we need auxiliary results from previous work of the first author:
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Lemma 2.2 Let h ∈ ℓ2 and let each un = πn, n ! 1. Then following estimates hold true:

π

4
Q0 " ∥h∥22 "

π2

2

(

1+
√
2

π
Q

1
2
0

)

Q0, (2.31)

∥ρ∥22 " (16)2Q0, (2.32)

∥h∥2∞
2

" Q0 "
2
π

∫ ∞

0

zv(z) dz

u(z)
=
∑

j!1

Ij

2πj
= P−1, (2.33)

∥h∥∞ " 4
π

∞∑

j=1

|γj |
2πj

. (2.34)

Proof Estimates (2.31), (2.32) were proved in Theorem 2.1 from [11]. The first estimate
in Eq. 2.33, ∥h∥2∞ " 2Q0 was established in [16]. The second estimate in Eq. 2.33 Q0 "
2
π

∫∞
0 zv(z) dz/u(z) was proved in [15] (see p. 398). The identities (2.25), (2.9), and Eq.

2.12 imply
2
π

∫ ∞

0

zv(z) dz

u(z)
=
∑

j!1

Ij

2πj
,

and we get (2.33). Finally, using Eqs. 2.33, 2.8, and 2.12, we obtain

∥h∥2∞ " 4
π

∫ ∞

0

zv(z) dz

u(z)
" 4

π

∑

j!1

hj

∫

gj

z dz

u(z)
= 2

π

∑

j!1

hj
|γj |
πj

" 2∥h∥∞
π

∑

j!1

|γj |
πj

, (2.35)

which gives (2.34).

3 Local Estimates

In this section, we derive estimates for hn, In, and |γn| with a fixed n ! 1. We use the
following constants

C− = e
√

P−1 , CI = 1+
√
P−1 C0 = χ∥h∥∞ " e

√
2P−1 , (3.1)

where the inequality follows from lemma below.

Lemma 3.1 Let h ∈ ℓ2 and let each un = πn, n ! 1. Then for each n ! 1 the following
estimates hold true:

2
3π

hn|γn| <
2
3π

hn|gn|
(
zn + z−

n + z+n
)
< In " 2hn|γn|

π
, if |γn| > 0, (3.2)

z±n " πn+
n∑

j=1

|gj |, (3.3)

πn " 2z±n + ∥ρ∥22
π

, ρ = (ρn)
∞
1 , ρn = π − |σn|, (3.4)

2n " C0z
±
n , hn "

√
C0

2
|gn|, (3.5)

2πnh2n "
√
C0

3π
2
In + 2

∥ρ∥2
π

h2n, (3.6)
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1
CI

|γn|
4πn

" hn " πC
3
2
0 |γn|
8πn

. (3.7)

1
3πCI

|γn|2
(2πn)

" In " C
3
2
0

2
|γn|2
(2πn)

, (3.8)

8C
− 3

2
0

3π2 (2πn)|hn|2 " In " 8nCIh
2
n. (3.9)

Proof We show (3.2). Using Eqs. 2.7, 2.8, and standard convexity arguments (see Fig. 5),
we have

v
(
z−
n + t + i0

)
! f−(t) = t

hn

ε−
, t ∈ (0, ε−), ε− = zn − z−

n > 0. (3.10)

This yields

I−
n = 4

π

∫ zn

z−
n

zv(z) dz ! 4
π

∫ ε−

0
(z−

n + t)f−(t)dt =
4
π

hn

ε−

(

z−
n

ε2−
2

+ ε3−
3

)

= 2
π
hnε−

(
zn − ε−

3

)
.

Let f+(t) = (ε+ − t) hnε+ , t ∈ (0, ε+), ε+ = z+n − zn > 0. A similar argument gives

I+n = 4
π

∫ z+n

zn

zv(z) dz ! 4
π

∫ ε+

0

(
z+n + t − ε+

)
f+(t)dt =

4
π

hn

ε+

(

z+n
ε2+
2

− ε3+
3

)

= 2
π
hnε+

(
zn +

ε+
3

)
.

Denoting z0n = 1
2

(
z+n + z−

n

)
, we obtain

In = I−
n + I+n >

2
π
hn

(
ε−

(
zn − ε−

3

)
+ ε+

(
zn +

ε+
3

))
= 2

π
hn

(

zn|gn| +
ε2+ − ε2−

3

)

= 2
π
hn|gn|

(

zn + 2
z0n − zn

3

)

= 2
3π

hn|gn|
(
zn + 2z0n

)
! 2

3π
hn|gn|2z0n = 2

3π
hn|γn|.

Fig. 5 The graphs of v(z+ i0) and f±
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This implies the first two estimates in Eq. 3.2. Using Eq. 2.7 for all z ∈ gn, we get
In < 4

π hn
∫
gn
z dz = 2

π hn|γn|, which gives us the last estimate in Eq. 3.2.
We show (3.3). It is clear that

z+n = πn+
n∑

1

(
|gj | − (π − |σj |)

)
, all n ! 1. (3.11)

Since by Eq. 2.11, ρj = π − |σj | ! 0 and |gn| = z+n − z−
n , we get (3.3).

We show (3.4). Using identities (3.11), we obtain

πn " z±n +
n∑

1

ρj " z±n + n
1
2 ∥ρ∥2 " z±n + πn

2
+ ∥ρ∥22

2π
,

which yields (3.4).
In order to prove (3.5), we use an argument from [26]. This is a weak point in our proof,

which gives the exponential factor in Eq. 3.5 and later in Eq. 1.14. The Taylor formula
implies

2 =
∣∣1

(
z−
n

)
− 1

(
z+n−1

)∣∣ "
∣∣1′(̃zn)||σn

∣∣ , (3.12)

for some z̃n ∈ σn =
[
z+n−1, z

−
n

]
and all n ! 1. Using the Bernstein inequality for the

bounded exponential type functions (see [10, 12, 15]) we obtain

sup
z∈R

|1′(z)| " sup
z∈R

|1(z)| = C0 = ch ∥h∥∞ " e∥h∥∞ . (3.13)

Combining (3.12) and (3.13), we get 2n " C0z
±
n for all n ! 1, which yields the first

estimate in Eq. 3.4.
Let n be even and let |z−

n − zn| " |gn|/2 (for other cases the proof is similar).
The identity χhn = 1(zn) (which follows from Eq. 2.30) and the Taylor formula
imply

h2n
2

" ch hn − 1 = 1(zn) − 1 = 1
2
1′′ (z̃−

n

) (
z−
n − zn

)2 (3.14)

for some z̃−
n ∈ (z−

n , zn). Using again the Bernstein inequality, we obtain

sup
z∈R

|1′′(z)| " sup
z∈R

|1(z)| = C0. (3.15)

Then combining (3.14) and (3.15), we get h2n " C0
4 |gn|2, which gives the second estimate

in Eq. 3.5.
We show (3.6). Using Eqs. 3.4, 3.5, 3.2, and 2.5, we obtain

πnh2n "
(
z−
n + z+n

)
h2n +

∥ρ∥22
π

h2n "
(
z−
n + z+n

) √
C0

2
|gn|hn +

∥ρ∥22
π

h2n

=
√
C0

2
|γn|hn +

∥ρ∥22
π

h2n "
√
C0

2
3π
2
In +

∥ρ∥22
π

h2n,

which yields (3.6).
We show (3.7). Using Eqs. 2.5, 3.3, 2.33, and 2.11, we obtain

|γn|
4πn

=
(
z−
n + z+n

)
|gn|

4πn
"
(
1+ ∥g∥∞

π

)
hn "

(
1+

√
8P−1

π

)
hn " CIhn.

Recalling that C0 = ch ∥h∥∞ and using Eqs. 3.5 and 2.5, we obtain

hn " C
1
2
0 |gn|
2

= C
1
2
0 |γn|

2
(
z−
n + z+n

) " πC
3
2
0 |γn|
8πn

,
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and Eq. 3.7 is proven.
Estimates (3.7) and (3.2) imply the first estimate in Eq. 3.8:

|γn|2
(2πn)

" 2CIhn|γn| " 3πCI In.

Combining the last estimate in Eqs. 3.7 and 3.2, we obtain the second estimate in Eq. 3.8.
We show 3.9. Using Eqs. 3.2 and 3.7, we obtain

In " 2hn|γn|
π

" 8nCIh
2
n,

which yields the second estimate in Eq. 3.9. Using Eqs. 3.7 and 3.2, we obtain

2πnh2n " π

4
C

3
2
0 hn|γn| "

3π2

8
C

3
2
0 In,

and get the first.

For any h ∈ ℓ∞ we define integrals Vn as

Vn = 8
π

∫

gn

zv3(z) dz ! 0, n ! 1. (3.16)

These quantities are important for our argument since, as we show below, V =∑
n!1(4πn)Vn for I ∈ ℓ2+.

Lemma 3.2 Let h ∈ ℓ∞ and let each un = πn, n ! 1. Then for n ! 1 the following
relations hold true:

1
5
h2nIn " 2

5π
h3n|γn| "

2
5π

h3n|gn|
(
3zn + 2z0n

)
" Vn " 2h2nIn, (3.17)

4
π i

∫

cn

zk4(z) dz = (4πn)Vn − (2πn)3In. (3.18)

Proof We show 3.17. Let gn ̸= ∅. Using Eq. 3.10, we get v
(
z−
n + t + i0

)
! f−(t) =

thn/ε−, t ∈ (0, ε−), where ε− = zn − z−
n > 0. Therefore

V −
n := 8

π

∫ zn

z−
n

zv3(z) dz ! 8
π

∫ ε−

0
(z−

n + t)f 3
−(t)dt =

8
π

h3n

ε3−

(

z−
n

ε4−
4

+ ε5−
5

)

= 2
π
h3nε−

(
z−
n + 4ε−

5

)
= 2

π
h3nε−

(
zn − ε−

5

)
.

Similar argument yields v(zn + t + i0) ! f+(t) = (ε+ − t)hn/ε+, t ∈ (0, ε+), where
ε+ = z+n − zn > 0. Thus

V +
n = 8

π

∫ z+n

zn

zv3(z) dz ! 8
π

∫ ε+

0

(
z+n + t − ε+

)
f 3
+(t)dt =

8
π

h3n

ε3+

(

z+n
ε4+
4

− ε5+
5

)

= 2
π
h3nε+

(
z+n − 4ε+

5

)
= 2

π
h3nε+

(
zn +

ε+
5

)
.
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Summing these relations, we obtain

Vn = V −
n + V +

n >
2
π
h3n

(
ε−

(
zn − ε−

5

)
+ ε+

(
zn +

ε+
5

))
= 2

π
h3n

(

zn|gn| +
ε2+ − ε2−

5

)

= 2
π
h3n|gn|

(

zn + 2
z0n − zn

5

)

= 2
5π

h3n|gn|
(
3zn + 2z0n

)
.

Using Eq. 2.7, we get Vn "
(
8h2n/π

) ∫
gn
zv(z, h) dz = 2h2nIn, which yields the last two

estimates in Eq. 3.17. The second follows from Eq. 2.5 and the first follows from the last
estimate in Eq. 3.2.

Using Eqs. 2.7, 2.12, and 2.25, we obtain

4
π i

∫

cn

zk4(z) dz = 4
π i

∫

cn

z
(
u2 − v2 + 2iuv

)2
dz = − 8

π i

∫

gn

2z
(
u2 − v2

)
(2iuv) dz

= 32
π

∫

gn

z
(
v2 − u2

)
uv dz = (4πn)Vn − (2πn)3In.

This proves (3.18).

Remark 1) In particular, Eq. 3.8 yields that I ∈ ℓ2+ iff γ ∈ ℓ4−1.

2) Due to [12], for any N0 > 1 and ε ∈
(
0, 1

4

)
, there exists a potential q ∈ H−1 such that

|γn| = nε, for all n > N0. Then γ = (|γn|)∞1 ∈ ℓ4−1 and Eq. 3.8 gives that I ∈ ℓ2+. It
is clear that q /∈ L2(T), since the gap length |γn| is increasing.

Note that if I ∈ ℓ2+, then 3.7 gives
∑

n!1 |γn|4/n2 < ∞, which yields (|γn|)∞1 ∈
ℓ2− 1

2
. This and the standard relationship between the gap lengths and the Fourier coef-

ficients of potential imply q ∈ H− 1
2
(e.g., see [12], where an analogy of this relation

is established for (|γn|)∞1 ∈ ℓ2−1 and for (|γn|)∞1 ∈ ℓ2 ).
3) Relations 3.8 show that asymptotically the actions In are equivalent to the weighted

squared gap-length |γn|2/2πn. It is known that the gap-length |γn| is asymptotically
equivalent to the module of the Fourier coefficients |q̂n| of the potential q (see [26,
27] for the equivalence and see [14] for the corresponding estimates). The asymptotical
equivalences nIn ∼ |γn|2 ∼ |q̂n|2 and the corresponding estimates are important for
the spectral theory of the Hill operator T and the theory of KdV.

4 Proof of Theorem 1.1

We remind that V (I) = P3 − H2 is the non-linear part of the KdV Hamiltonian, written
as a function of actions, see Eqs. 1.8 and 1.10. Identities (2.21) and (2.25) represent H2
and Ij as integrals in terms of the quasimomentum k = u + iv. They allow to write V

in a similar form. We start with an integral representation for V for the case of smooth
potentials.

Lemma 4.1 Let q ∈ H1. Then V is finite, nonnegative and satisfies

V = 32
π

∫ ∞

0
zu(z)v3(z) dz. (4.1)
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Proof Since q ∈ H1, thenH2 is finite and I ∈ ℓ13/2,+. So P3 is finite, as well as V . To prove
Eq. 4.1 we start with a finite-gap aproximation for the momentum spectrum σM = R \∪gn
of the potential q0+ q, obtained by closing the gaps gm with largem. Namely, we fix r > 0
and consider a new momentum spectrum σ r

M = σM ∪ (−∞,−r) ∪ (r,∞), where the new
gaps grn are given by

grn =
{
gn if gn ⊂ (−r, r)

∅ if gn ̸⊂ (−r, r).

The variables corresponding to σ r
M will be indicated the upper index r . Due to the general

construction, presented in Section 2.2, for the finite-gap momentum spectrum σ r
M there

exists a unique conformal mapping

kr : C \ gr → C \ 2r
n, 2r

n =
(
urn + ihrn, u

r
n − ihrn

)
, hrn ! 0,

satisfying the asymptotics kr (z) = z − O(1)z−1 as |z| → ∞. By Eq. 2.14, each function
kr (z)− z is analytic at ∞. The sequence of real numbers urn, n ∈ Z is odd, strongly increas-
ing and urn → ±∞ as n → ±∞. In general, kr is not a quasimomentum for some periodic
potential, since not necessarily un = πn for all n.

For each r , we introduce Qr
m, S

r
m, P

r
3 , and V r by relations (2.18), (2.26), and (4.1)

respectively, where k = kr , u = ur and v = vr . Since vr(x) = 0 for large real x and
vr(x + i0), ur (x) ! 0 for real x ! 0, then all these quantities are finite and non-negative.
It is known (see [23–25]) that

vr(x) ↗ v(x), |ur(x)| ↗ |u(x)| x ∈ R, as r → ∞,

and that kr converges to k uniformly on compact sets from C\σM . From these convergence
and the Beppo Levi theorem, it follows that

Qr
m ↗ Qm, Srm ↗ Sm, P r

m ↗ Pm, V r ↗ V as r → ∞, (4.2)

for m = −1, 0, 1, 2, ... (some limits may be infinite).
Assume that for each r sufficiently large, we have proved that

8
(
Sr1 − Sr−1S

r
0
)
= P r

3 − V r . (4.3)

Then sending r → ∞ using Eq. 4.2 and evoking (2.21), we get that H2 = P3 − (r.h.s. of
Eq. 4.1). Since H2 = P3 − V , we recover (4.1).

So it remains to show (4.3). Fix r > 1 large enough and consider the integral∫
|z|=t zk

4(z) dz. The function z(kr (z))4 is analytic in {|z| > r}. For any m ≥ 1 we write its
Tailor series at infinity, omitting the index r for brevity:

k(z) = z − Q0

z
− Q2

z3
... − Q2m

z2m+1 + O(1)
z2m+2 as |z| → ∞. (4.4)

Due to Eq. 4.4, we get

zk4 = z

(
z2 − S−1 − S0

z2
− S1 + o(1)

z4

)2

= z5
(
1 − S−1

z2
− S0

z4
− S1 + o(1)

z6

)2

= z5

(

1 − 2
(
S−1

z2
+ S0

z4
+ S1 + o(1)

z6

)
+
(
S−1

z2
+ S0

z4

)2

+ ..

)

= z5+..−2
S1 − S0S−1

z
+O(1)

z2
.

If t > r , then
1

2π i

∫

|z|=t
zk4(z) dz = −2(S1 − S0S−1), (4.5)
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since v(z) = 0 for real z such that |z| > r . Thus
1

2π i

∫

|z|=t
zk4(z) dz= 1

2π i

∫

|z|=t
z
(
u2 − v2+2iuv

)2
dz= −1

π i

∫

R
2z

(
u2 − v2

)
(2iuv)dz

= − 8
π

∫

∪n≥1gn

z
(
u2 − v2

)
uv dz. (4.6)

By Eqs. 2.21, 4.5, 2.26, and 4.6, we get that

8 (S1 − S0S−1) =
32
π

∫ ∞

0
z
(
u2 − v2

)
uv dz = 32

π

∑

n!1

∫

gn

z
(
u2 − v2

)
uv dz = P3 − V,

which yields 4.3.

Let 0 < a < 1
4 . We note that since |h∥22,a = ∑

n!1(2πn)
2a−1 (2πnh2n

)
, then

∥h∥22,a " C2−4a∥h∥4,1, where C2
t =

∑

n!1

1
(2πn)t

< ∞ if t > 1. (4.7)

Theorem 4.2 A sequence h = h(I) belongs to ℓ41 if and only if I ∈ ℓ2+. The series

W =
∑

n!1

(4πn)Vn, (4.8)

where Vn = Vn(I ) ! 0 is defined by Eq. 3.16, converges for I ∈ ℓ2+ and defines there a
finite non-negative functionW(I). Moreover,

i) this function equals to
32
π

∫ ∞

0
zu(z)v3(z) dz,

ii) satisfies the following estimates

1
5

∑

n!1

(4πn)h2nIn " W " 2
∑

n!1

(4πn)h2nIn, (4.9)

W " 4∥h∥2∞P1; (4.10)

iii) is continuous on ℓ2+;
iv) on the octant ℓ̃∞

3/2,+ it coincides with V (I).

Proof Estimates (3.9) imply that h ∈ ℓ41 iff I ∈ ℓ2+.
Due to the last inequality in Eq. 3.17,

W ≤
∑

n!1

(4πn)2h2nIn " 4∥I∥1/22 ∥h∥24,1,

So W is defined by a converging series and satisfies the second estimate in Eq. 4.9. Using
the lower bound for Vn in Eq. 3.17, we recover the first estimate in Eq. 4.9. Estimate (4.10)
follows from Eq. 4.9.

Since u = πn on gn and u vanishes outside ∪gn, then W(I) has the integral
representation, required by (i).

Let a sequence I s =
(
I sn
)∞
1 −→ I strongly in ℓ2 as s → ∞. To prove (iii), we need to

show that
W(Is) → W(I) as s → ∞. (4.11)
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Using Eqs. 3.9 and 3.1, we have

∥hs∥44,1 "
3π2

8
C

3
2
0 ∥I s∥22,

where C0 " exp
√
2P−1(I s) and P−1(I ) = ∑

n!1 In/(2πn) " C2∥I∥2. Together with
Eq. 4.7 this yields the estimates

sup
s!1

∥hs∥4,1 < ∞, sup
s!1

∥hs∥2,a < ∞ if a <
1
4
. (4.12)

We claim that
hs −→ h weakly in ℓ2a as s → ∞, (4.13)

for some h ∈ ℓ2a . Indeed, assume that this is not the case. Then by Eq. 4.12, there are two

different vectors h′, h′′∈ ℓ2a and two subsequence
{
s′
j

}
and

{
s′′
j

}
such that

h
s′j −→ h′, h

s′′j −→ h′′ weakly in ℓ2a. (4.14)

Then
h
s′j −→ h′, h

s′′j −→ h′′ strongly in ℓ2ν,

for each ν < a. Using Theorem 2.1 and the identity

k(z, h) =
∫ z

0

1′(t, h)
√
1 − 12(t, h)

dt, z ∈ Z,

which easily follows from Eq. 2.28, we deduce that the corresponding conformal mappings
k converge to limits:

k
(
z, h

s′j
)

→ k
(
z, h′) , k

(
z, h

s′j
)

→ k
(
z, h′) as j → ∞, (4.15)

uniformly on bounded subsets in C. These convergences and Eq. 2.25 imply that for each n
the actions In

(
h
s′j
)
and In

(
h
s′′j
)
converge to limits In(h′) and In(h′′), which must equal In.

That is, h′ and h′′ belong to the same iso-spectral class. Since h′, h′′ ∈ ℓ2, then by Theorem
2.1 we have h′ = h′′. This proves (4.13).

Due to Eq. 3.18

(4πn)Vn − (2πn)3In = 4
π i

∫

cn

zk4(z) dz = − 8
π i

∫

χn

z2(k, h)k3dk.

By this relation, Eqs. 2.25 and 4.15, we have

Vn(I
sj ) → Vn(I ) as j → ∞ for each n = 1, 2, 3..... (4.16)

For any N denote
W(N)(I s) =

∑

n!N

(4πn)Vn(I
s).

Using Eq. 3.17, we get

W(N)(I s) ≤
∑

n!N

(8πn)(hsn)
2I sn = AN + BN,

where
AN =

∑

n!N

(8πn)
(
hsn
)2

In, BN =
∑

n!N

(8πn)
(
hsn
)2 (

I sn − In
)
.
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Since

AN " 4∥hs∥4,1
(
∑

n>N

I 2n

) 1
2

, BN " 4∥hs∥4,1∥I s − I∥2,

then Eqs. 4.12 and 4.16 yield the required convergence (4.11).
The last assertion follows from the integral representation for W(I) and Eq. 4.1 since

q ∈ H1 means that I ∈ ℓ13/2,+.

Proof of Theorem 1.1. Theorem 4.2 gives that the function V : ℓ̃∞ → R extends to a non-
negative continuous function on the octant ℓ2+. Using estimates (4.10) and (2.33), we obtain
V " 4∥h∥2∞P1 " 8P−1P1, which yields (1.13). If I = 0, then Eq. 1.13 implies V (I) = 0.
Finally, let V = 0 for some I . Since the terms Vn are non-negative, then each Vn = 0 and
Eq. 3.17 implies that I = 0.

It remains to prove (1.14). Estimates (4.9) and (3.9) give

V ! 2
5

∑

n!1

(2πn)h2nIn ! π

10CI
∥I∥22, (4.17)

which yields the first inequality in Eq. 1.14. Now we show the second. Using Eqs. 4.9 and
3.6, we find that

V "
∑

n!1

(
8πnh2n

)
In "

∑

n!1

(

C
1
2
0 6πI

2
n + 8

∥ρ∥22
π

h2nIn

)

" 6πC
1
2
0 ∥I∥22 + 8

∥ρ∥22
π

∥h∥2∥h∥∞∥I∥2.

Using Eqs. 2.31, 2.32, and 2.33, we obtain

∥ρ∥22∥h∥2∥h∥∞ " π44
(
1+Q

1
2
0

) 1
2

Q2
0.

Combining these estimates, we get that

V " 6π
√
C0∥I∥22 + 4

11
2

(
1+Q

1
2
0

) 1
2

Q2
0∥I∥2.

Together with Eq. 2.33, this yields the required estimate, since C0 " C− = exp
√
2P−1.

Finally, as a by-product of some relations, derived above in this work, we get two-sided
algebraical bounds on the norm ∥q ′∥ in terms of P3 = ∥I∥1, 32 (see [14] for two-sided

algebraical estimates of
∥∥q(m)

∥∥ in terms of Pm+ 1
2
for all m ! 0).

Proposition 4.3 The following estimates hold true:

∥q ′∥2 " 4
(
P3 + 2P 2

1

)
, (4.18)

P3 "
∥q ′∥2
2

+ ∥q ′∥√
2

∥q∥2 + 2π∥q∥3
(
1+ ∥q∥ 1

3

)
. (4.19)
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Proof Since H2 = P3 − V and ∥q∥∞ = supx∈[0,1] |q(x)| " ∥q ′∥√
2
, then

∥q ′∥2
2

= H2(q)−
∫ 1

0
q3(x) dx " P3+∥q∥∞∥q∥2 " P3+

∥q ′∥√
2

∥q∥2 " P3+
∥q∥4
2

+ ∥q ′∥2
4

,

which together with Eq. 1.9 yields (4.18). Using Eq. 4.10 and relations ∥q∥∞ " ∥q ′∥√
2
,

∥q∥2 = 2P1 (see Eq. 1.9), we obtain

P3 = ∥q ′∥2
2

+
∫ 1

0
q3(x) dx − V " ∥q ′∥2

2
+ ∥q ′∥√

2
∥q∥2 + 4∥h∥2∞P1

= ∥q ′∥2
2

+ ∥q ′∥√
2

∥q∥2 + 2∥h∥2∞∥q∥2.

As ∥h∥2∞ " π∥q∥
(
1+ ∥q∥ 1

3

)
(see Theorem 2.3 in [13]), then we get (4.19).
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