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• A new derivation of a wave kinetic equation for the NLS is presented.
• It applies to the stochastically forced equation with dissipation.
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a b s t r a c t

We suggest a new derivation of a wave kinetic equation for the spectrum of the weakly nonlinear
Schrödinger equation with stochastic forcing. The kinetic equation is obtained as a result of a double
limiting procedure. Firstly, we consider the equation on a finite box with periodic boundary conditions
and send the size of the nonlinearity and of the forcing to zero, while the time is correspondingly rescaled;
then, the size of the box is sent to infinity (with a suitable rescaling of the solution). We report here
the results of the first limiting procedure, analysed with full rigour in [8], and show how the second
limit leads to a kinetic equation for the spectrum, if some further hypotheses (commonly employed
in the weak turbulence theory) are accepted. Finally we show how to derive from these equations the
Kolmogorov–Zakharov spectra.

© 2015 Published by Elsevier B.V.
0. Introduction

0.1. Weak turbulence and spectra

The theory of the weak turbulence (WT) studies weakly nonlin-
ear PDEs, focusing in particular on the distribution and exchange
of energy among the normal modes of oscillations (in most cases,
these are Fourier modes of the solutions). The weakness of the
nonlinearity allows to consider the interaction between different
modes (or, in a more physical language, different waves) as a small
perturbation to the linear flow, so that solutions of the equations
can be approximated by suitable power series expansions. Usually,
the lowest order nontrivial approximation for a solution is consid-
ered and the attention is payed to its statistical properties on long
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time intervals. That is, one deals with averaged values of certain
quantities, taken with respect to some probability measure. The
latter can be introduced either as the probability of a given con-
figuration of initial data, or as the probability of a realisation of a
stochastic forcing which is added to the system, together with a
damping to dissipate the energy pumped by the forcing.

The most important object of the study is the distribution of
energy among the modes, that is the energy spectrum

nk(t) = E

|vk(t)|2


,

where |vk(t)| denotes the amplitude of k-th mode (k ∈ Rd or
k ∈ Zd) at time t and E is the expected value with respect to the
probabilitymeasure.Most of the predictions of theWT concern the
behaviour of nk as a function of k. Possibly the most remarkable
among them is the existence of stationary solutions with spectra
decaying as a power law of |k|, when the dispersion relation of
the linearised at zero equation is homogeneous in |k|. In the case
when the system is stirred by a forcing, acting significantly only
on some modes (think, for instance, of the set |k| ≤ r1) and is
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subject to a dissipation having sensible effects only on a set of
modes well separated from the first (for example, |k| ≥ r2 with
r2 ≫ r1), these solutions correspond1 to a constant flux of a
quantity (typically, the energy) through the modes k such that
|k| ∈ [r1, r2]. If this happens, one says that a cascade (of energy, etc.)
occurs. The segment [r1, r2] is called the inertial interval, and the
collection of modes k such that |k| ∈ [r1, r2] is the inertial range,
see in [3].

The stationary energy spectra nk which behave as a power law
of |k| for k in the inertial range are called the Kolmogorov–Zakharov
(KZ) spectra.

0.2. The wave kinetic equation

Themain tool used to study the spectra is thewave kinetic (WK)
equation (or, better the class of equations). It can be written as

d
dt

nk = fk({n·}),

where fk is a function of the whole spectrum {nk, k ∈ Zd
},

constructed in terms of the original weakly nonlinear PDE. If it is
shown that the limiting energy spectrum satisfies a WK equation,
then the problem of finding stationary spectra reduces to that of
finding spectra which make f vanish. See [4,3] for derivation of
the WK equations and their discussion, and see [5] for the study
of the Cauchy problem for the WK equation, obtained from cubic
nonlinear Schrödinger equation.

However, known derivations of the WK equation all are
heuristic, and serious doubts always existed concerning their
validity. These concerns have become even more serious after the
appearance of some results which seem to be in contradictionwith
the prediction of WT (see, for instance [6,7]).

Our work [8] suggests a program to study the WT and verify
its postulates, in the frame of stochastic PDEs, following [9]. The
scheme consists in considering a nonlinear PDE with stochastic
forcing and damping on a torus of size L and performing, in
sequence, two limiting procedures:

(1) the limit (on long times) when the nonlinearity goes
to zero together with the forcing;

(2) the limit for L → ∞ (with a possible scaling of
the size of the solutions).

(I)

In the works on WT limiting procedures are considered, when
both the size of the nonlinearity goes to zero and the period L goes
to infinity. But the order of the limits often is not made precise,
and if it is precise, sometimes it is opposite to the order above. In
particular, the order of the limits is clearly made in the book by
Nazarenko [3], and there it is opposite to our choice.

The two limits in (I) correspond to two specific steps:

Step 1. Prove that the evolution of the spectrum on long times
is governed by certain stochastic effective equation, built
from the resonant terms of the nonlinearity.

Step 2. Under some assumptions on the form of the damping,
prove that when L → ∞, the energy spectrum of
solutions for effective equations converges to a solution
of certainWK equation, and derive from this that spectra
of stationary solutions converge to some KZ spectra.

In [8], Step 1 is done rigorously, using the method of resonant
stochastic averaging in the spirit of Khasminskii. The goal of this

1 See [1] for the general case and [2] for the case of NLS.
work is to perform Step 2 on the level of accuracy usual for WT. To
do this we first in Section 2 use some approximation, commonly
used in the WT theory, and derive that the limiting (as L → ∞)
energy spectrum satisfies theWKequation (2.12). Next in Section 3
we evoke the classical Zakharov argument to show that stationary
solutions of this equation have KZ spectra with the exponents,
specified in (3.4).

1. The limit of theweak nonlinearity and the effective equation

Now we briefly sum up the main results in [8]. There it
was considered the Schrödinger equation on the torus Td

L =

Rd/(2πLZd),

ut(t, x) − i1u(t, x) = 0, x ∈ Td
L , (1.1)

stirred by a perturbation, which comprises a Hamiltonian term, a
linear damping and a random force. That is, we have considered
the equation

ut − i1u = −iε2q∗ |u|2q∗u − νf (−∆)u

+
√

ν
d
dt


k∈Zd

L

bkβk(t)eik·x,

u = u(t, x), x ∈ Td
L ,

(1.2)

where q∗ ∈ N and ε, ν > 0 are two small parameters, controlling
the size of the perturbation, while Zd

L denotes the set of vectors
of the form k = l/L with l ∈ Zd. The damping −f (−∆) is the
selfadjoint linear operator in L2(Td

L) which acts on the exponents
eik·x, k ∈ Zd

L , according to

f (−∆)eik·x
= γkeik·x, γk = f (λk) where λk = |k|

2. (1.3)

The function f is real positive and continuous. To avoid technicali-
ties, we assume that f (t) ≥ C1|t| + C2 for all t , for suitable pos-
itive constants C1, C2 (for example, f (−∆)u = −1u + u). The
processes βk, k ∈ Zd

L , are standard independent complex Wiener
processes. The real numbers bk are all non-zero and decay fast
when |k| → ∞. That is, the equation is stirred by a random force,
which is smooth in x, while as a function of time t it is awhite noise.

Eq. (1.2) with small ν and ε is important for physics and
mathematical physics, where it serves as a universal model, see
[1,4,2]. The parameters ν and ε measure, respectively, the inverse
time-scale of the forced oscillations under consideration and their
amplitude. We consider the regime in which

ε2q∗ = ρν,

where ρ > 0 is a constant. This assumption is in agreement with
the requirement that one should consider the dynamics on a time-
scale which becomes longer and longer as the amplitude goes to
zero (see [3] for the actual bounds imposed to the relation between
ε and ν). Passing to the slow time τ = νt and writing u(τ , x) as
Fourier series, u(τ , x) =


k vk(τ )eik·x, we get the system

v̇k + iν−1λkvk = −γkvk + 2ρ i
∂H(v)

∂v̄k
+ bkβ̇k(τ ),

k ∈ Zd
L . (1.4)

Here vk = vk(τ ), the dot ˙ stands for d
dτ , and H(v) is the

Hamiltonian of the nonlinearity, expressed in terms of the Fourier
coefficients v = (vk, k ∈ Zd

L):

H(v) =
1

2q∗ + 2


k1,...k2q∗+2∈Zd

L

vk1 · · · vkq∗+1 v̄kq∗+2 · · · v̄k2q∗+2

× δ
1...q∗+1
q∗+2...2q∗+2, (1.5)
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where we used the notation (see [3]):

δ
1...q∗+1
q∗+2...2q∗+2

=


1 if k1 + · · · + kq∗+1 − kq∗+2 − · · · − k2q∗+2 = 0
0 otherwise. (1.6)

As before we are interested in the limit ν → 0, corresponding to
small oscillations in the original non-scaled equation.

The limiting procedure rests on the stochastic averaging
theorem for resonant systems with an infinite number of degrees
of freedom (see Introduction in [8]). Let us consider the equation

v̇k = −γkvk + 2ρ i
∂H res(v)

∂v̄k
+ bkβ̇k(τ ), k ∈ Zd

L , (1.7)

where H res is obtained as the resonant average of the Hamiltonian
H(v):

H res(v) =
1

2q∗ + 2


k1,...k2q∗+2∈Zd

L

vk1 · · · vkq∗+1 v̄kq∗+2 · · · v̄k2q∗+2

× δ
1...q∗+1
q∗+2...2q∗+2 δ(λ

1...q∗+1
q∗+2...2q∗+2), (1.8)

and we use another standard notation:

δ(λ
1...q∗+1
q∗+2...2q∗+2)

=


1 if λk1 + · · · + λkq∗+1 − λkq∗+2 − · · · − λk2q∗+2 = 0
0 otherwise. (1.9)

That is, Eq. (1.7) is obtained from the system (1.4) by a simple
procedure: we remove fast terms iν−1λkvk and replace the
Hamiltonian H by its resonant average H res.

If v(τ) is a solution of (1.4) or (1.7) and I(v(τ )) is its vector of
energies, I(v(τ )) = {|vk(τ )|2, k ∈ Zd

L}, then the main result of [8]
is the following theorem, which shows that the evolution of the
energy vector is given by the effective equation (1.7). Moreover, in
the stationary regime the effective equation completely controls
the limiting distribution of solutions:

Theorem 1.1. Let v0 := {v0k , k ∈ Zd
L} be a sufficiently smooth initial

condition and vν(τ ) be a solution for (1.4) with vν
0 = v0. When

ν → 0, we have the weak convergence of distributions of solutions

D(I(vν(τ ))) ⇀ D(I(v0(τ ))), 0 ≤ τ ≤ T ,

where v0(τ ) is a solution of Eq. (1.7) such that v0(0) = v0.
Moreover, if Eq. (1.7) has a unique stationary measure2 µ0 and

vν(τ ) is a stationary (in time) solution of Eq. (1.4), then

D(vν(τ )) ⇀ µ0 as ν → 0.

Motivated by this result, we call (1.7) the effective equation (for
(1.4)).

2. The limit L → ∞

The effective equation enlightens the relevance of exact
resonant terms, as predicted in the studies of weak turbulence in
bounded domains (also called discrete WT, see, for instance [10]).
We intend to investigate here the behaviour of its solutions, as the
size of the domain goes to infinity, exploring in some sense the
transition from discrete WT to classical WT.

From the point of view of mathematics, the limit in Eq. (1.7)
in which the size L of the torus tends to infinity (which, as we

2 This happens, e.g. if q∗ = 1, d ≤ 3 and f (λ) = C1|λ| + C2 , or if q∗ = 1, d is any,
but the function f (λ) growth with λ sufficiently fast, see [8].
have seen, determines the spectrum) presents serious problems, in
particular forwhat concerns the definition of the stochastic forcing.
We prefer instead to study for finite L some averaged quantities,
calculated for solutions of the equation (i.e., their moments), and
then pass to the limit as L → ∞ only for them.

For the sake of simplicity, we will consider the case of cubic
nonlinearity, i.e., we choose q∗ = 1 in (1.2). Then the effective
equation takes the form

dvk(τ ) =

−γkvk − iρ


k1,k2,k3∈Zd
L

vk1vk2 v̄k3δ
k1k2
k3k δ(λ

k1k2
k3k )

 dτ

+ bkdβk, k ∈ Zd
L . (2.1)

The moment M
k1...kn1
kn1+1...kn1+n2

(τ ) of v(τ) of order n1 + n2 is defined
as

M
k1...kn1
kn1+1...kn1+n2

(τ ) = Eτ


vk1 · · · vkn1 v̄kn1+1 · · · v̄kn1+n2


, (2.2)

where Eτ denotes the expected values at time τ , i.e., Eτ [f (v)] =

E[f (v(τ ))] for any measurable function f (v). Note that
M

kn1+1...kn1+n2
k1...kn1

= M̄
k1...kn1
kn1+1...kn1+n2

. In order to write the evolution
equation for the moments we set

AM
k1...kn1
kn1+1...kn1+n2

= −


n1+n2
l=1

γkl


M

k1...kn1
kn1+1...kn1+n2

,

and for any l ∈ Zd
L introduce the operator Γkl which erases the

index kl (in lower or upper position) according to

ΓklM
k1...kn1
kn1+1...kn1+n2

=

M
k1...k̸l...kn1
kn1+1...kn1+n2

if l ≤ n1

M
k1...kn1
kn1+1...k̸l...kn1+n2

if l > n1,

where ̸ kl signifies that the index kl is omitted. So, bymaking again
use of Ito’s formula, we get

dM
k1...kn1
kn1+1...kn1+n2

dτ

= AM
k1...kn1
kn1+1...kn1+n2

− iρ


n1
l=1


k′
1,k

′
2,k

′
3

ΓklM
k1...kn1k

′
1k

′
2

kn1+1...kn1+n2k
′
3
δ
k′
1k

′
2

k′
3kl

δ(λ
k′
1k

′
2

k′
3kl

)

−

n1+n2
l=n1+1


k′
1,k

′
2k

′
3

ΓklM
k1...kn1k

′
3

kn1+1...kn1+n2k
′
1k

′
2
δ
k′
3kl

k′
1k

′
2
δ(λ

k′
3kl

k′
1k

′
2
)



+ 2
n1
l=1

n1+n2
m=n1+1

b2klδ
kl
kmΓklΓkmM

k1...kn1
kn1+1...kn1+n2

. (2.3)

This equation expresses the time derivative of a moment of order
n1 + n2 as a function of the moments of order n1 + n2 − 2
and those of order n1 + n2 + 2. The coupled system containing
the equations for all moments is called the chain of moments
equation (see [11]).3 Systems of this kind are usually treated by
approximating moments of high order by suitable functions of
lower order moments in order to get a closed system of equations.
We will show that if the quasi-stationary and quasi-Gaussian
approximations (see below) are chosen to close the system of

3 Notice that, due to our choice of the degree of the nonlinearity, in our case the
equations for moments of even order are decoupled from those for moments of odd
order.
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moment equations, then under the limit L → ∞ we recover a
modified version of the WK equation.

We start from Eq. (2.3) forMk
k with a fixed L, which gives

Ṁk
k = −2γkMk

k + 2b2k + 2ρ


k1,k2,k3

ImMk1k2
kk3 δ

k1k2
kk3 δ(λ

k1k2
kk3 ). (2.4)

To study the sum on the r.h.s., we notice that if the Krönecker
deltas are different from zero becausek equals to one amongk1, k2
and k3 is equal to another, then the moment is real and does
not contribute to the sum. So we may assume that k ≠ k1, k2,
k3 ≠ k1, k2. In this case to calculate the fourth order moments
on the r.h.s. of (2.4) we consider corresponding Eq. (2.3) of order
four. Due to the just mentioned restriction on k, k1, k2, k3, the last
double sum on the r.h.s. of (2.3) vanishes, and we get:

Ṁk1k2
kk3 = −(γk + γk1 + γk2 + γk3)M

k1k2
kk3

+ iρ


k4,k5,k6


Mk1k2k4

k3k5k6 δ
kk4
k5k6δ(λ

kk4
k5k6)

+Mk1k2k4
kk5k6 δ

k3k4
k5k6 δ(λ

k3k4
k5k6) − Mk2k5k6

kk3k4 δ
k5k6
k1k4 δ(λ

k5k6
k1k4)

−Mk1k5k6
kk3k4 δ

k5k6
k2k4 δ(λ

k5k6
k2k4)


. (2.5)

Wemake nowa first approximation by neglecting the term con-
taining the time derivative at the l.h.s. of (2.5). This can be justified,
if τ is large enough, by the quasi-stationary approximation (cf. Sec-
tion 2.1.3 in [4]). Namely, let us write Eq. (2.5) as

d
dτ

+ (γk + γk1 + γk2 + γk3)


Mk1k2

kk3 = f (k).

Notice that since all γk’s are positive, then the linear differential
equation on the l.h.s. is exponentially stable. Assume that f (k) as
a function of τ is almost constant during time-intervals, sufficient
for relaxation of the differential equation. Then

Mk1k2
kk3 ≈

f (k)

γk + γk1 + γk2 + γk3
.

We can finally insert this in (2.4) and get

Ṁk
k ≈ −2γkMk

k + 2b2k + 2ρ2


k1,k2,k3

1
γk + γk1 + γk2 + γk3

× δ
k1k2
kk3 δ(λ

k1k2
kk3 )Re

 
k4,k5,k6


Mk1k2k4

k3k5k6 δ
kk4
k5k6δ(λ

kk4
k5k6)

+Mk1k2k4
kk5k6 δ

k3k4
k5k6 δ(λ

k3k4
k5k6) − Mk2k5k6

kk3k4 δ
k5k6
k1k4 δ(λ

k5k6
k1k4)

−Mk1k5k6
kk3k4 δ

k5k6
k2k4 δ(λ

k5k6
k2k4)


. (2.6)

We then apply a second approximation, generally accepted in
theWT (see [4,1,3]) which enables us to transform the previous re-
lation to a closed equation for the second ordermoments. This con-
sists in the quasi-Gaussian approximation, i.e., in the assumption
that the higher-ordermoments (2.2) can be approximated by poly-
nomials of the second-order moments, as if the random variables
vk were independent complex Gaussian variables. So, in particular,

M l1l2l3
l4l5l6 ≈ M l1

l1 M
l2
l2 M

l3
l3


δ
l1
l4 (δ

l2
l5 δ

l3
l6 + δ

l2
l6 δ

l3
l5 )

+ δ
l1
l5 (δ

l2
l4 δ

l3
l6 + δ

l2
l6 δ

l3
l4 ) + δ

l1
l6 (δ

l2
l4 δ

l3
l5 + δ

l2
l5 δ

l3
l4 )


. (2.7)

At this point we pass in Eq. (2.6), closed using the relation (2.7),
to the limit L → ∞. To do it we pass to a limit in the sum Sk on
the r.h.s. of (2.6), by replacing the summation by integration. It is
not hard to see that the sum in (2.6), transformed using (2.7), splits
into a finite number of sums like

S jk =


(k1,k2,k3,k4,k5,k6)∈Z6d

L ∩Σ
j
k

F j
k(k1, k2, k3, k4, k5, k6),

where Σ
j
k is a manifold in R6d defined by

Σ
j
k =


(x1, x2, x3, x4, x5, x6) : x1 + x2 = k + x3,

|x1|2 + |x2|2 = |k|
2
+ |x3|2, xj + x4 = x5 + x6,

|xj|2 + |x4|2 = |x5|2 + |x6|2, x
j
1 = xj2, x

j
3 = xj4, x

j
5 = xj6


,

where xj stands for one among k, x1, x2, x3 and {xj1, . . . , x
j
6}—for

a permutation of the set {k, x1, . . . , x6} \ {xj}.4 In passing from
sums to integrals in the limit for L → ∞, it is easy to see that,
if F j is smooth enough, each term S jk depends on L as Lm, where
m is the dimension of the manifold Σ

j
k. A detailed analysis of all

cases shows that the terms of the highest order in L in the integral
correspond to terms of the form

S jk =


k1,k2,k3

Fk(k1, k2, k3)δ
k1k2
kk3 δ(λ

k1k2
kk3 )

in the sum Sk, where k⃗ := (k1, k2, k3) ∈ Z3d
L =: M. Denote

Σk =

x⃗ = (x1, x2, x3) ∈ R3d

: x1 + x2 = k + x3,

|x1|2 + |x2|2 = |k|
2
+ |x3|2


.

This is amanifold of dimension 3d−d−1 = 2d−1, smooth outside
the origin. The latter lies outsideΣk if k ≠ 0, and is a singular point
of Σk if k = 0. For any non-zero point x⃗ ∈ Σk denote by πk(x⃗)
the tangent space Tx⃗Σk, regarded as a subspace of R3d, and denote
by r2d−1ϕk(x⃗) the (2d − 1)-area of the intersection of πk(x⃗) with
the r-cube, centred at x⃗ (with the sides parallel to the axes of R3d).
Clearly, ϕk(x⃗) is a smooth function on Σk outside zero, such that

V1 ≤ ϕk(x⃗) ≤ V1(3d)d−1/2, (2.8)

where V1 is the volume of the 1-ball in R2d−1. Moreover, since in
view of the homogeneity of the relation which defines Σ we have
Σmk = mΣk, then πmk(mx⃗) = πk(x⃗). Accordingly,

ϕk(x⃗) := ϕmk(mx⃗). (2.9)

Since the surface Σk is invariant under the transposition (x1, x2,
x3) → (x2, x1, x3), then ϕk(x⃗) as well is invariant with respect to
it. Similarly, ϕk(x1, x2, x3) = ϕx3(x1, x2, k). Let us put r = L−1 and
write S as

Sk = L2d−1


x⃗∈Σk∩M

x⃗≠0


Fk(x⃗)
ϕk(x⃗)


ϕk(x⃗)r2d−1.

The sum on the r.h.s. is the Riemann sum for the integral
Σk\{0}

Fk(x⃗)
ϕk(x⃗)dx⃗. So

Sk ≈ L2d−1


Σ\{0}

Fk(x⃗)
ϕk(x⃗)

dx⃗,

where ϕk(x⃗) is a smooth function satisfying (2.8) and (2.9).

4 The relations defining Σ
j
k are not independent.
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After some calculations we get the limiting (as L → ∞)
equation in the form

Ṁk
k ≈ −2γkMk

k + 2b2k + 4ρ2L2d−1

×


R3d

dk1dk2dk3
ϕ−1
k (k1, k2, k3)

γk + γk1 + γk2 + γk3
δ
k1k2
kk3 δ(λ

k1k2
kk3 )

×


Mk1

k1 M
k2
k2 M

k3
k3 + Mk

kM
k1
k1 M

k2
k2

−Mk
kM

k2
k2 M

k3
k3 − Mk

kM
k1
k1 M

k3
k3


.

Finally, we define

nk = LdMk
k/2, b̃k = Ld/2bk, (2.10)

(so that


k M
k
k/2 →


nk and


k b

2
k →


b̃2k as L goes to infinity),

choose

ρ = ε̃2L1/2 =
ε2q∗

ν
ε̃2L1/2, (2.11)

for some ε̃ > 0, and get

ṅk = −2γknk + b̃2k + 16ε̃4


R3d
dk1 dk2 dk3δ

k1k2
kk3 δ(λ

k1k2
kk3 )

×
ϕ−1
k (k1, k2, k3)

γk + γk1 + γk2 + γk3

×


nk1nk2nk3 + nknk1nk2 − nknk2nk3 − nknk1nk3


, (2.12)

where the smooth outside the origin function ϕk(x⃗) satisfies (2.8),
(2.9). We have thus shown that, with a proper scaling of ρ and b
(see (2.10)–(2.11)), we get an equation, similar to theWK equation
for the NLS (see, for instance, formula (6.81) of [3], where d = 2).
The differences are two: obviously in our case there appear the
forcing and the dissipation, which are absent in his case in the
traditional WK equations; more interestingly, the nonvanishing
denominator γk + γk1 + γk2 + γk3 appears in the integral,
which modifies the spectra. The denominator goes to infinity with
the norm of the vector (k1, k2, k3) thus regularising the kinetic
equation and improving its analytical properties.

3. Kolmogorov–Zakharov spectra

We show here how to deduce a power law spectrum from
Eq. (2.12), following the well known Zakharov argument (see
[4,3]).

First of all, we have to restrain our analysis to the inertial
interval, i.e., to the spectral interval, where the damping and the
forcing are negligible. This means that we have to suppose that
damping and forcing are such that, for wave-vectors k belonging
to a sufficiently large spectral region, the first two terms at the
r.h.s. of (2.12) can be neglected if compared to the third. Clearly
this happens, e.g., if a solution {nk} is of order one, while bk ≪ 1
and γk ≪ 1 (i.e., the damping and the dissipation are small at
that spectral region). In the inertial interval we end up with the
equation

ṅk ≈ 16 ε̃4


R3d
dk1 dk2 dk3δ

k1k2
kk3 δ(λ

k1k2
kk3 )

×
ϕ−1
k (k1, k2, k3)

γk + γk1 + γk2 + γk3

×


nk1nk2nk3 + nknk1nk2 − nknk2nk3 − nknk1nk3


. (3.1)

Notice that, while in the inertial interval we can simply approxi-
mate b̃k with zero, this cannot be done with γk, as it appears in the
denominator of the integral at the r.h.s. of (2.12) (the so-called col-
lision term), and can play an essential role a determination of the
spectrum.

The previous equation has the form of the four-wave kinetic
equation (see, for instance, formula 2.1.29 of [4]). It is well known
(see [4,3]) how to solve such an equation for stationary spectra
with the aid of the Zakharov transformations, if the terms

T
k,k3
k1,k2 =

ϕ−1
k (k1, k2, k3)

γk + γk1 + γk2 + γk3

satisfy some conditions of symmetry and homogeneity. Namely,
one should have that

T
k,k3
k1,k2 = T

k3,k
k1,k2 = T

k,k3
k2,k1 = T

k1,k2
k,k3 ,

T
λk,λk3

λk1,λk2 = λmT
k,k3
k1,k2 ,

for somem ∈ R. For the sake of simplicity, we confine ourselves to
the isotropic case when nk is a function of k = |k| only.

Since ϕ is a homogeneous function of degree 0 due to (2.8) and
(2.9), the requirements above are met if γk can be approximated
by a homogeneous function of the form γk = ε′

|k|
m, where ε′

≪ 1
is a parameter that guarantees that the dissipation term indeed is
negligible, andm ∈ R.5

We continue (following [4, Sec. 3.1.3]; see also [3, Sec. 9.2.2]),
by integrating equation (3.1) over the angles, and obtain that

ṅk = C ε̃4


+∞

0


+∞

0


+∞

0
Tk3
12

× n1n2n3nk(k1k2k3)d−1dk1 dk2 dk3,

where

Tk3
12 = 4


1
nk

+
1
n3

−
1
n1

−
1
n2


δ(λ

k1k2
kk3 )

×


δ
k1k2
kk3 T

k,k3
k1,k2dΩ1dΩ2dΩ3,

C denotes a suitable positive constant and the integration is taken
on the d-dimensional solid angles Ωi = Ω(ki). Due to the symme-
tries ofTk3

12 (inherited from those of T k,k3
k1,k2 ), by a proper renaming of

mute integration variableswe can rewrite the previous equation as

ṅk =
C
4

ε̃4
 

Tk3
12 + T3k

12 − T13
k2 − T23

1k


× n1n2n3nk(k1k2k3)d−1dk1 dk2 dk3

=: I1 + I2 + I3 + I4. (3.2)

We introduce then as an ansatz for a solution the power law
nk ∝ kν , with some real ν, and, following Zakharov, make in the
integrals I2, I3, I4 the following substitutions: in I2 we put

k1 =
kk′

1

k′

3
, k2 =

kk′

2

k′

3
, k3 =

k2

k′

3
,

in I3 put

k1 =
k2

k′

1
, k2 =

kk′

2

k′

1
, k3 =

kk′

3

k′

1
,

and in I4

k1 =
kk′

1

k′

2
, k2 =

k2

k′

2
, k3 =

kk′

3

k′

2
.

5 This agrees with the hypotheses on the dissipation (see (1.3)), if, for instance,
we choose γk = ε1 + ε2|k|

β , where ε1, ε2 ≪ 1, and either ε1 ≫ ε2 , which gives
m = 0, or vice versa, which givesm = β .
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Then we re-denote the variables k′

j back to kj and sum up the four

integrals. By the homogeneity of T
k,k3
k1,k2 , one gets that the integral

in (3.2) is proportional to
Tk3
12


1 +


k3
k

κ

−


k1
k

κ

−


k2
k

κ 
× n1n2n3nk(k1k2k3)d−1dk1 dk2 dk3, (3.3)

where

κ = 2 − 3ν − m − 3d.

The stationary solutions are found by looking for ν forwhich the
integral in (3.3) vanishes. In addition to the equilibrium solutions
nk = C and nk = C/k2, which correspond, respectively, to
the equipartition of the wave action and of the quadratic energy
(Rayleigh–Jeans distribution), two nontrivial power law stationary
distributions appear by equating to zero the term in square
brackets in (3.3), corresponding to κ = 0 and κ = 2.6 These are
the Kolmogorov–Zakharov solutions:

nk ∝ k−(m+3d−2)/3, nk ∝ k−(m+3d)/3. (3.4)

They coincide with the Kolmogorov–Zakharov spectra for the NLS
equation without dissipation (for d ≥ 2) if m = 0, but the
dissipation modifies the power law of the decay ifm ≠ 0.

4. Conclusions

Despite the theory ofWT deals with well definedmathematical
objects (nonlinear PDEs), and gives for their solutions explicit an-
alytical predictions, some of which are well checked numerically,
it seems that there is only one work where the convergence to a
WK equation in the spirit of WT is rigorously established—the pa-
per [12]. That work deals with the NLS equation discretised on the
lattice Zd, where the randomness comes through the initial data,
distributed in accordance with the Gibbs measure.7 The approach
of [12] does not seem to be applicable to PDEs.

Our work suggests to justify the WT limits for damped and
driven Hamiltonian PDEs in the two steps (I), where the first step

6 Notice that the second solution appears because the integration is restricted to
the surface k2 + k23 − k21 − k22 = 0, due to the factor δ(λ

k1k2
kk3 ).

7 The obtainedWK equation is derived near the statistical equilibrium and differs
from those, usual for theWT. It is unclear how to use them to derive the KZ spectra.
is rigorously justified in our previous work [8], while the second
is verified now on the level of accuracy, used in WT. The two
steps together lead to a new WK equation, similar to those which
appear in the WT theory and, as a consequence, to a KZ spectra.
We strongly believe that the method proposed applies to a quite
general class of PDEs and that theheuristic argument, used to verify
the second step, can be translated to the rigorous mathematical
language, thus converting the approach (I) to a complete proof of
the main predictions the WT theory.
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