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KAM FOR THE NONLINEAR BEAM EQUATION

L. HAKAN ELIASSON, BENOIT GREBERT AND SERGEI B. KUKSIN

@ CrossMark

Abstract. In this paper we prove a KAM theorem for small-amplitude solutions
of the non linear beam equation on the d-dimensional torus

ug + A%u +mu+ 0,G(z,u) =0, teR, 2T (%)

where G (z,u) = u*+O(u®). Namely, we show that, for generic m, many of the small
amplitude invariant finite dimensional tori of the linear equation (%)g—o, written as
the system

u = —v, v =A%+ mu,

persist as invariant tori of the nonlinear equation (*), re-written similarly. The
persisted tori are filled in with time-quasiperiodic solutions of (k). If d > 2, then
not all the persisted tori are linearly stable, and we construct explicit examples
of partially hyperbolic invariant tori. The unstable invariant tori, situated in the
vicinity of the origin, create around them some local instabilities, in agreement
with the popular belief in the nonlinear physics that small-amplitude solutions of
space-multidimensional Hamiltonian PDEs behave in a chaotic way.
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1 Introduction

1.1 The beam equation and KAM for PDE’s.  The paper deals with small-
amplitude solutions of the multi-dimensional nonlinear beam equation on the torus:

g + A%u+mu = —g(z,u), uw=ultz), teR, =zeT?=RY27Z)%, (1.1)

where g is a real analytic function of x € T¢ and of « in the vicinity of the origin in
R. We shall consider functions g of the form

g=0.G, G(z,u)=u+0(W’). (1.2)

The polynomial u? is the main part of G and O(u®) is the higher order part. m
is the mass parameter and we assume that m € [1,2].
This equation is interesting by itself. Besides, it is a good model for the Klein—
Gordon equation
ugy — Au+mu = —8,G(z,u), €T, (1.3)

which is among the most important equations of mathematical physics. We feel
confident that the ideas and methods of our work apply—with additional technical
efforts—to (1.3). Our approach is adequate to a number of other space-multidimen-
sional Hamiltonian PDEs with a mass parameter. We have chosen the beam equation
(1.1) for an object of study in this work simply since this is the easiest space-
multidimensional equation of mathematical physics to which the approach applies.
Our results, presented below, hold for solutions of eq. (1.1) with a typical positive
value of the mass parameter. The situation with the nonlinear wave Eq. (1.3),,—0,
as well as with the zero-mass beam equation, may be quite different.

Our goal is to develop a general KAM-theory for small-amplitude solutions of
(1.1). To do this we compare them with time-quasi-periodic solution of the linearised
at zero equation

ug + A%u 4+ mu = 0. (1.4)

Decomposing real functions u(z) on T? to Fourier series
u(z) = E Ut 4 c.c.
acZ?

(here c.c. stands for “complex conjugated”), we write time-quasiperiodic solutions
for (1.4), corresponding to a finite set of excited wave-vectors A C Z?, as

u(t,z) = Z <§aei’\“t + naefi)‘“t> e e, (1.5)
acA

where A\, = /|a|* + m. We examine these solutions and their perturbations in
Eq. (1.1) under the assumption that the action-vector I = {3(|&|*+|na|%), a € A}
is small. In our work this goal is achieved provided that

- the finite set A is typical in a probabilistic sense;
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- the mass parameter m does not belong to a certain set of zero measure.

The linear stability of the obtained solutions for (1.1) is under control. If d > 2,
and |A| > 2, then some of them are linearly unstable.

Before giving exact statement of the result, we discuss the state of affairs in the
KAM for PDE theory. The theory started in late 1980’s and originally applied to
1d Hamiltonian PDEs, see in [Kuk87,Kuk93, Cra00]. The first works on this theory
treated

(a) perturbations of linear Hamiltonian PDE, depending on a vector-parameter of
the dimension equal to the number of frequencies of the unperturbed quasiperi-
odic solution of the linear system (for solutions (1.5) this is |.A|). Usually the
parameter enters the equation through the potential term V' (z)u(t, z), where
the potential V' depends on the parameter. Next the theory was applied to

(b) perturbations of integrable Hamiltonian PDE, e.g. of the KdV or Sine-Gordon
equations, see [Kuk00]. In paper [BK95]

(c) small-amplitude solutions of the 1d Klein-Gordon equation (1.3) with G(z,u) =
—u* 4+ O(u*) were treated as perturbed solutions of the Sine-Gordon equation,
and a singular version of the KAM-theory (b) was developed to study them
(Notice that for suitable a and b we have mu — u? + O(u?) = asinbu + O(u?).
So the 1d Eq. (1.3) is the Sine-Gordon equation, perturbed by a small term

O(u*)).

It was proved in [BK95] that for a.a. values of m and for any finite set .4 most
of the small-amplitude solutions (1.5) for the linear Klein-Gordon equation (with
Ao = +/|a|? + m) persist as linearly stable time-quasiperiodic solutions for (1.3).
In [KP96] it was realised that it can be fruitful in 1d equations like (1.3), just as
it is in finite-dimensional Hamiltonian systems (see for example [Eli88]), to study
small solutions not as perturbations of solutions for an integrable PDE, but rather
as perturbations of solutions for a Birkhoff-integrable system, after the equation
is normalised by a Birkhoff transformation. The paper [KP96]| deals not with 1d
Klein-Gordon equation (1.3), but with 1d NLS equation, which is similar to (1.3)
for the problem under discussion; in [P6s96] the method of [KP96] was applied to
the 1d Eq. (1.3). The approach of [KP96] turned out to be very efficient and later
was used for many other 1d Hamiltonian PDEs. In [GY06] it was applied to the d-
dimensional beam equation (1.1) with an x-independent nonlinearity g and allowed
to treat perturbations of some special solutions (1.5).

Space-multidimensional KAM for PDE theory started 10 years later with the pa-
per [Bou98] and, next, publications [Bou04,EK10]. The just mentioned works deal
with perturbations of parameter-depending linear equations (cf. (a) ), and in differ-
ence with the 1d case the parameter enters the equations through physically unnat-
ural convolutive term V() * u(t, z).! The approach of [EK10] is different from that

L Since for d > 2 the spectral theory of differential operators with mutiplicative potentials is too
complicated.
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of [Bou98,Bou04] and allows to analyse the linear stability of the obtained KAM-
solutions. Also see [BB12,BB13, GP16]. Since integrable space-multidimensional PDE
(practically) do not exist, then no multi-dimensional analogy of the 1d theory (b) is
available.

Efforts to create space-multidimensional analogies of the KAM-theory (c) were
made in [Wan,PP12,PP13], using the KAM-techniques of [Bou98, Bou04, EK10], re-
spectively. All the three works deal with the NLS equation. Their main disadvantage
(compare to the 1d theory (c)) is severe restrictions on the finite set .4 (i.e. on the
class of unperturbed solutions which the methods allow to perturb). The result of
[Wan] gives examples of some sets A for which the KAM-persistence of the cor-
responding small-amplitude solutions (1.5) holds, while the result of [PP12,PP13]
applies to solutions (1.5), where the set A is nondegenerate in certain very non-
explicit way.

Some KAM-theorems for small-amplitude solutions of multidimensional beam
equations (1.1) with typical m were obtained in [GY06,GY06]. Both works treat
equations with a constant-coefficient nonlinearity g(x,u) = g(u), which is signifi-
cantly easier than the general case (cf. the linear theory, where constant-coefficient
equations may be integrated by the Fourier method). Similar to [Wan, PP12,PP13],
the theorems of [GY06,GY06] only allow to perturb solutions (1.5) with very special
sets A (see also “Appendix B”). Solutions of (1.1), constructed in these works, all
are linearly stable.

1.2 Beam equation in real and complex variables. Introducingv = u; = u
we rewrite (1.1) as

U= —0,
{1’) = N%u+ g(z,u), (1.6)
where A = (A2 + m)'/2. Defining 1 (t,z) = %(Alpu + iA~1/20) we get for the

complex function (¢, x) the equation

L. e ~1/2 (7114'7%_)))
iib—Aw—f-ﬁA g(x,A 7 .

Thus, if we endow the space L?(T?, (C_) with the standard real symplectic struc-
ture, given by the two-form —idiy A di), then Eq. (1.1) becomes a Hamiltonian
system

Y =1i0h/dy

with the Hamiltonian function

h(1, 1) = Ad(A¢)$dx+AdG <1:,A_1/2 (W)) dz.

The linear operator A is diagonal in the complex Fourier basis

{eq(z) = (2m) 261 07) ¢ € 79},
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Namely,

Aeq = May, Ao =/|a|*+m, Vace 7.

Let us decompose 1 and v in the basis {e,}:

Y= Z §aas & = Z Na€—a -

a€Z? a€Zq

Pa = %(ga + 1a),
da = ﬁ(fu - 77a>:

and denote by (, the pair (p4, q.).?
We fix any m, > d/2 and define the Hilbert space

Y = {C = (p,q) € £2(2%,C) x A(Z%,C) | [[I* = D (@)™ |¢al® < OO} ;o (1Y)

a

where (a) = max(1, |a|), corresponding to Fourier coefficients of complex functions
(¢(z),9(z)) from the Sobolev space H™+(T? C?). A vector ¢ € Y is real if, and only
if, all its components are real.

Let us endow Y with the symplectic structure

AN /! _ O 1
(dp A dg)(¢,¢") =D (JCar Gy T = (_1()), (1.9)
and consider there the Hamiltonian system
: oh
w=J—, z°, 1.10
Co=J5e @€ (1.10)
where the Hamiltonian function h equals the quadratic part
1 2, 2
hg = 5 %Z:d Aa(pa + qa) (111)

plus the higher order term

(pa - iQa)ea + (pfa + iqfa)ea
h>4 :/ G (az > dz. (1.12)
T a€Z? 2V Aa

The beam Eq. (1.6), considered in the Sobolev space {(u,v) | (¥,) € H™}, is
equivalent to the Hamiltonian system (1.10).
We will write the Hamiltonian A as

h = hg + h>4 = hy + ha + h>s, (1.13)

2 ¢, will be considered as a line-vector or a colon-vector according to the context.
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where

4
a i a)ta + (p—a + iq—a)ea
h :/ u4dx:/ (Pa = iga)e dx, 1.14
Y7 - (Z 21V e (1.14)

a€Zd

h>5 = O(u®) comprises the remaining higher order terms and h>4 = hy + h>5. Note
that hy4 satisfies the zero momentum condition, i.e.
hy = Z C(a7 b,c, d) (fa + n—a)(gb + n*b)(gc + n—C)(fd + n*d)7

a,b,c,deZ?

where C(a, b, c,d) # 0 only if a+ b+ c+d = 0. This condition turns out to be useful
to restrict the set of small divisors that have to be controlled. If the function G does
not depend on z, then h satisfies a similar property at any order.

1.3 Invariant tori and admissible sets.  The quadratic Hamiltonian hy (which
is h when G = 01in (1.1)) is integrable and its phase-space is foliated into (Lagrangian
or isotropic) invariant tori. Indeed, take a finite subset A C Z¢ and let

L£=7NA.
For any subset X of Z¢, consider the projection
mx : (C2Y2 = (€)X = {g € (CY)2" . ¢, =0 Va ¢ X} .
We can thus write (C2)2" = (C2)X @ (C2)Z\X, ¢ = (Cx,¢z\x), and when X is
finite this gives an injection
(C2y#X s (Cz)zd

whose image is (C?)X.3
For any real vector with positive components 14 = (I,;)ac4, the |A|-dimensional
torus

2 .2 _
nefELET R
is invariant under the flow of hy. 77, is the image of the torus
TA={ra=0x{, €T:aec A} x{¢ =0} (1.16)
under the embedding
Up, : 04— {gz;i(z::_(), 21, eif ngj (1.17)
the pull-back, by Ur,, of the induced flow is simply the translation
04 — 04+ twa, (1.18)

3 We shall frequently, without saying, identify (C?)* and (C?)#¥.
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where we have denoted the translation vector (the tangential frequencies) by w4,
ie. \y = w, for a € A. The parametrised curve

t— Ur, (0 +tw)

is thus a quasi-periodic solution of the beam Eq. (1.10) when G = 0.

When G # 0 the higher order terms in h give rise to a perturbation of ho—a
perturbation that gets smaller, the smaller is I. Our goal is to prove the persistency
of the invariant torus TIA, or, more precisely, of the invariant embedding U, for
most values of I when the higher order terms are taken into account. The problem
doing this for this model is twofold. First the integrable Hamiltonian hs is completely
degenerate in the sense of KAM-theory: the frequencies w4 do not depend on I. One
can try to improve this by adding to he an integrable part of the Birkhoff normal
form. This will, in “generic” situations, correct this default. However, and that’s the
second problem, our model is far from “generic” since the eigenvalues {)\, : a € Z%}
are very resonant. This has the effect that the Birkhoff normal form is not integrable,
and therefore is difficult to use.

An important part of our analysis will be to show that this program can be
carried out if we exclude a zero-measure set of masses m and restrict the choice of
A to admissible or strongly admissible sets.

Let | - | denote the euclidean norm in R?. For vectors a,b € Z% we define

aZb iff #{wEZd | || = |a| and |z — b] = ]a—b\} < 2. (1.19)

Relation a Zb means that the integer sphere of radius |b — a| with the centre at
b intersects the integer sphere {z € Z? | || = |a|} in at most two points.

DEFINITION 1.1. A finite set A € Z¢ is called admissible iff
a,be A, a#b=|a|#|bl.
An admissible set A is called strongly admissible iff
a,be A, a#b=ala+b.

Certainly if |A| < 1, then A is admissible, but for |A| > 1 this is not true. For
d < 2 every admissible set is strongly admissible, but in higher dimension this is no
longer true: see for example the set (B.2) in “Appendix B”.

However, strongly admissible, and hence admissible sets are typical: see “Appen-
dix E” for a precise formulation and proof of this statement.

We shall define a subset of £, important for our construction:

Ly={acL]|Ibe A suchthat |a|=|bl}. (1.20)

Clearly Ly is a finite subset of £. For example, if d = 1 and A is admissible, then
AN —-Ac {0} and Ly = —(A\{0}).
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1.4 The Birkhoff normal form. In aneighbourhood of an invariant torus 77,
we introduce (partial) action-angle variables (74,64, &z,nc) by the relation

1 .
75— 140) = VI +rae®, aeA (1.21)

These variables define a diffeomorphism from a neighbourhood of T in (the
Hilbert manifold)

CA x (C/27Z)A x npY (1.22)
to a neighbourhood of T7, in Y. It is real in the sense that it gives real values to
real arguments.

The symplectic structure on Y is pull-backed to

draNdOa+ dég Ndne, (1.23)

which endows the space (1.22) with a symplectic structure.
In these variables h will depend on I, but its integrable part he becomes, up to
an additive constant,

S wrat 5 3 Alp +a)

acA a€Ll

which does not depend in I.* The Birkhoff normal form will provide us with an
integrable part that does depend on I. We shall prove

Theorem 1.2. There exists a zero-measure Borel set C C [1,2] such that for any
m ¢ C, any admissible set A, any c, € (0,1/2] and any analytic nonlinearity of the
form (1.2), there exist vy > 0 and [y > 0 such that for any 0 < v <1y, 0 < By < [y
there exists an open set Q C [vcs, V],

meas([ve,, V]N\Q) < Cv#ATP#,

and for every I = I 4 € @) there exists a real symplectic holomorphic diffeomorphism
®;, defined in a neighbourhood (that depends on ¢, and v) of T4 such that the
transformed Hamiltonian

ho®p(ra,04,pc,9c) = (D), 74) + 5 Xaepyz, AalD(PE + ¢7)

+% Z:beﬂf\f: Ao(D)(p; + q3) + (K(I)CF, Cr) + fr(ra, 04,0z, 4c) (1.24)

(where F = Fy is a subset of Ly, possible empty) has the following properties:

(i) Q(I) = wa + MI and the matrix M is invertible;
(ii) each Ay(I), a € L\Ly, is real and close to A4,

[Aa(I) = Xa| < C 1| (@)™

4 Both hy and the higher order terms of h depend on the mass m.
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iii) each Ay(I), b € L \F, is real and non-zero
(iii) ; \F, :
CTHIM P < |Ay(D)] < O 1'%

(iv) the operator K(I) is real symmetric and satisfies | K(I)|| < C |I|*~*#. The
Hamiltonian operator J K (I) is hyperbolic (unless Fy is empty), and the moduli
of the real parts of its eigenvalues are bigger than C~1|I |1+’g #,

(v) The function fr is much smaller than the quadratic part.

Moreover, all objects depend C*° on I. The set F; does not depend on I when
I stays in the same connected component of (), but may be different for different
components.

This result is proven in Part II. For a more precise formulation, giving in particu-
lar the domain of definition of ®7, the smallness in f; and estimates of the derivatives
with respect to I, see Theorem 5.1. The matrix M is explicitly defined in (4.44),
and the functions A, are explicitly defined in (4.45). An interesting information is
that the mapping ®; and the domain @ only depend on hs + h4, and that the set
Fr is empty on some connected components of Q.

1.5 The KAM theorem. The Hamiltonian h;o®; (1.24) is much better than
hr since its integrable part depends on [ in a non-degenerate way because M is
invertible. Does the invariant torus (1.16) persist under the perturbation f;7 ...and,
if so, is the persisted torus reducible?

In finite dimension the answer is yes under very general conditions—for the first
proof in the purely elliptic case see [Eli88], and for a more general case see [You99].
These statements say that, under general conditions, the invariant torus persists and
remains reducible under sufficiently small perturbations for a subset of parameters
of large Lebesgue measure.

In infinite dimension the situation is more delicate, and results can only be proven
under quite severe restrictions on the normal frequencies A,; see the discussion above
in Sect. 1.1. A result for the beam equation (which is a simpler model than the
Schrodinger and wave equations) was first obtained in [GY06, GY06]. Here we prove
a KAM-theorem which improves on these results in at least two respects:

e We have imposed no “conservation of momentum” on the perturbation, which
allows us to treat equations (1.1) with z-dependent nonlinearities g. This has
the effect that our normal form is not diagonal in the purely elliptic directions.
In this respect it resembles the normal form obtained in [EK10] for the non-
linear Schrodinger equation, and where the block diagonal form is the same.

e We have a finite-dimensional, possibly hyperbolic, component, whose treatment
requires higher smoothness in the parameters.

The proof has the structure of a classical KAM-theorem carried out in a complex
infinite-dimensional situation. The main part is, as usual, the solution of the homo-
logical equation with reasonable estimates. The fact that the block structure is not
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diagonal complicates a lot: see for example, [EK10] where this difficulty was also en-
countered. The iteration combines a finite linear iteration with a “super-quadratic”
infinite iteration. This has become quite common in KAM and was also used in
[EK10].

A technical difference, with respect to [EK10], is that here we use a different
matrix norm which has much better multiplicative properties. This simplifies a lot
the functional analysis which is described in Part I.

A special difficulty in our setting is that we are facing a singular perturbation
problem. The perturbation f; becomes small only by taking I small, but when [
gets smaller the integrable part becomes more degenerate. This is seen for example
in the lower bounds for Ay(I) and for the real parts of the eigenvalues of JK(I). So
there is a competition between the smallness condition on the perturbation and the
degeneracies of the integrable part which requires quite careful estimates.

A KAM-theorem which is adapted to our beam equation is proven in Part III
and formulated in Theorem 6.7 and its Corollary 6.9.

1.6 Small amplitude solutions for the beam equation. Applying to the
normal form of Part II, the KAM theorem of Part III, we obtain in Part IV the main
results of this work. To state them we recall that a Borel subset J C R“fr‘ is said to
have a positive density at the origin if

Jn{zr eRY|z| <
lim inf RS N2 — sl=vh) (1.25)
v—0 meas{zr € R |z] < v}

The set J has the density one at the origin if the lim inf above equals one (so the
ratio of the measures of the two sets converges to one as v — 0).

Theorem 1.3. There exists a zero-measure Borel set C C [1,2] such that for any
strongly admissible set A C 7%, any m ¢ C and any analytic nonlinearity (1.2),
there exist constants X1 € (0,1/16], X9 > 0, only depending on A and m, and a set
3 =34 CJ0,1]4, having density one at the origin, with the following property:
There exist a constant C' > 0, a real continuous mapping U’ = U/, : TAx3 —Y,
analytic in the first argument, satisfying

U, 1) - U (0)]| < Ol (1.26)
(see (1.17)) for all (9,1) € T4 x J, and a continuous mapping Q' = ', : J — R4,
| (1) —wyg — MI| < CTJMe, (1.27)
where the matrix M is the same as in (1.24), such that:
(i) for any I € J and § € T4 the parametrised curve
t— U0+ tY(I),1) (1.28)

is a solution of the beam Eqs. (1.10)—(1.12), and, accordingly, the analytic torus
U'(TA, 1) is invariant for this equation;
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(ii) the set J may be written as a countable disjoint union of compact sets J;, such
that the restrictions of the mappings U’ and € to the sets T4 x J; are ct
Whitney -smooth;

(iii) the solution (1.28) is linearly stable if and only if in (1.24) the operator K (I)
is trivial (i.e. the set F = F is empty). The set of I € J such that K(I) is
trivial is always of positive measure, and it equals § if d =1 or | A| = 1, but for
d > 2 and for some choices of the set A its complement has positive measure.

If the set A is admissible but not strongly admissible, then a weaker version of
the theorem above is true.

Theorem 1.4. There exists a zero-measure Borel set C C [1,2] such that for any
admissible set A C Z%, any m ¢ C and any analytic nonlinearity (1.2), there exist
constants N; € (0,1/16],R9 > 0, only depending on A and m, and a set J = J4 C
10, 1]“4, having positive density at the origin, such that all assertions of Theorem 1.3
are true.

REMARK 1.5. 1. The torus Ur(T4, I) (see (1.15)), invariant for the linear beam
Eq. (1.10)G=o, is of size ~ V1. The constructed invariant torus U’y (T4, 1)
of the nonlinear beam equation is a small perturbation of Ur(T, I) since by
(1.26) the Hausdorff distance between U’ (T4, I) and U(T) is smaller than
C|I|1—2N1 < C|I|7/8

2. Denote by T4 the image of the mapping U’;. This set is invariant for the
beam equation and is filled in with its time-quasiperiodic solutions. By the
item ii) of Theorem 1.3 its Hausdorff dimension equals 2|.A|. Now consider
T = UT,, where the union is taken over all strongly admissible sets A C Z¢.
This invariant set has infinite Hausdorff dimension. Some time-quasiperiodic
solutions of (1.1), lying on 7, are linearly stable, while, if d > 2, some others
are unstable.

3. Our result applies to Eq. (1.1) with any d. Notice that for d sufficiently large
the global in time well-posedness of this equation is unknown.

4. The construction of solutions (1.28) crucially depends on certain equivalence
relation in Z¢, defined in terms of the set A (see (5.15)). This equivalence is
trivial if d =1 or |/A| = 1 and is non-trivial otherwise.

5. We discuss in “Appendix B” examples of sets A for which the operator K (I)
is non-trivial for certain values of I. Note that examples of partially hyperbolic
KAM-solutions for the 2d cubic NLS equation were constructed earlier in the
work [GXY11].

6. The solutions (1.28) of Eq. (1.10), written in terms of the wu(z)-variable as
solutions u(t, z) of Eq. (1.1), are H™=*1-smooth as functions of 2 and analytic
as functions of ¢. Here m, is a parameter of the construction for which we
can take any real number > d/2 (see (1.8)). The set J depends on m., so the
assertion of the theorem does not imply immediately that the solutions u(¢, x)
are C*°—smooth in z. Still, since
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—(A% + m)u = ug + 9,G(x, u),

where G is an analytic function, then the theorems imply by induction that the
solutions u(t, z) define analytic curves R — H™(T¢), for any m. In particular,
they are smooth functions.

Structure of Text. The paper consists of Introduction and four parts. Part I
comprises general techniques needed to read the paper. The main Parts II-III are
independent of each other, and the final Part IV, containing the proofs of Theo-
rems 1.3, 1.4, uses only the main theorems of Parts II-III, and the intermediate
results are not needed to understand it.

Some Notation and Agreements. We denote a cardinality of a set X as |X]| or
as #X. For a € Z" we denote (a) = max(1, |a|).

In any finite-dimensional space X we denote by | - | the Euclidean norm. For
subsets X and Y of a Euclidean space we denote

dist (X, V) = _inf |o—y|, diam(X)= Sup [z —yl.

The distance on a torus induced by the Euclidean distance (on the tangent space)
will be denoted |- — - |.

For any matrix A, finite or infinite, we denote by ‘4 the transposed matrix. I
stands for the identity matrix of any dimension.

The space of bounded linear operators between Banach spaces X and Y is de-
noted B(X,Y). Its operator norm will be usually denoted || - || without specification
the spaces. If A is a finite matrix, then ||A|| stands for its operator-norm.

We call analytic mappings between domains in complex Banach spaces holomor-
phic to reserve the name analytic for mappings between domains in real Banach
spaces. This definition extends from Banach spaces to Banach manifolds.

Pairings in 1?-spaces. The scalar product on any complex Hilbert space is, by con-
vention, complex anti-linear in the first variable and complex linear in the second
variable. For any [?-space X of finite or infinite dimension, the natural complex-
bilinear pairing is denoted

<Cv CI> = <Ea C,>lza Cv C, € X. (129)
This is a symmetric complex-bilinear mapping.

Constants. The numbers d (the space-dimension) and #.A4, as well as s., m, and
#P,#F (that will occur in Part IT) will be fixed in this paper. Constants depending
only on these numbers and on the choice of finite-dimensional norms are regarded
as absolute constants. An absolute constant only depending on x is thus a constant
that, besides these factors, only depends on x. Arbitrary constants will often be
denoted by Ct., ct. and, when they occur as an exponent, by exp. Their values may
change from line to line. For example we allow ourselves to write 2Ct. < Cft.
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PART I. SOME FUNCTIONAL ANALYSIS

2 Matrix Algebras and Function Spaces

2.1 The phase space. Let A and F be two finite sets in Z¢ and let Lo, be an
infinite subset of Z¢. Let £ be the disjoint union F U L4.° Let Z be the disjoint
union A U F U Lo, and consider (C?)Z.

For any subset X of Z, consider the projection
mx : (C)F - (CHY = {(e(CH®:(=0Va g X}.

We can thus write (C?)Z = (C*)X x (C?)2\X, ¢ = (Cx,¢z\x), and when X is
finite this gives an injection

(C)#X — (€2)?

whose image is (C?)X.

In R? we consider the partial ordering (v{,v5) < (v1,72) if, and only if 7] < 71
and v, < 9.

Let v = (71,72) € R? and let Y, be the Hilbert space of sequences ¢ € (C?)?
such that

1Kl = [ 1Gal2e?rlal{a)? < oo (2.1)

aceZ

provided with the scalar product®

(6N =) (Car Gz a2

acZ

If 1 > 0 and 72 > d/2, then this space is an algebra with respect to the convolu-
tion. If 71 = 0, this is a classical property of Sobolev spaces. For the case 1 > 0 see
[EKO08], Lemma 1.1. (There the space Y(0,m.) coincides with the space Y, defined in

(1.8), while ¥{g ¢) is the I*-space of complex sequences (C?)Z.)

EXAMPLE 2.1. Let A= F =), Lo, = Z% and o > 0. Then any vector f= (fa,a €
Z%) € Y, defines a holomorphic vector-function f(y) = > fael{@¥) on the p-vicinity
T} of the torus T", T} = {y € C"/27Z" | |y| < o}, where its norm is bounded

by Cql|f|l,. Conversely, if f : T — C? is a bounded holomorphic function, then its
Fourier coefficients satisfy |fa] <Constelele g0 f € Y, for any ¢ < p.

5 This is a more general setting than in the introduction, where £ and A were two disjoint subsets
of 7.2,
5 Complex linear in the second variable and complex anti-linear in the first.
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Write (4 = (pa, 9a) and let

Q= Z dpg N dqg.
a€eZ

2 is an anti-symmetric bi-linear form which is continuous on
Y, xY_,uY_,xY,—-C

with norm ||Q|| = 1. The subspaces (C?)1%} are symplectic subspaces of two (com-
plex) dimensions carrying the canonical symplectic structure.
2 defines (by contraction on the second factor ) a bounded bijective operator

Y’Y > C = Q(aC) € Y—*'y

where Y*  denotes the Banach space dual of Y_,. (Notice that ¢’ — Q({’,() is a
well-defined bounded linear form on Y_,.) We shall denote its inverse by

Jo: Y, =Y,
We shall also let Jq act on operators
Jao : B(X,YZ) — B(X,Y,)
through (JoH)(z) = Jo(H (z)) for any bounded operator H : X — Y.

REMARK 2.2. The complex-bilinear pairing (1.29) on the I?-space Y{0,0) extends to
a continuous mapping Y, x Y_, — C which allows to identify Y, with the dual
space Y. Then

Q¢ ¢ = (J¢. ¢, (2.2)
where J here stands for the linear operator ¢ — J( defined by
(JCQa=JC Va€Z,
where the 2 x 2-matrix J (in the right hand side) is defined in (1.9).” Then we have
JoC=J¢ V(eYZ, (2.3)

where ¢ in the r.h.s. is regarded as a vector in Y, and we shall frequently denote
the operator Jq by J. (It will be clear from the context which of the two operators
J denotes.)

7 Sorry for the abuse of notation.
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A bijective bounded operator A : Y, — Y., v > (0,0), is symplectic if, and only
if,

QAGAC) =, ¢) Ve,

Writing Q in the form (2.2) we see that A is symplectic if and only if ‘AJA = J.
Here 'A stands for the operator, symmetric to A with respect to the pairing (-, )
(its matrix is transposed to that of A).

Let

A4 =CA x (C/272)A

and consider the Hilbert manifold A% x 7Y, whose elements are denoted x = (7,0 =
[2],w). We provide this manifold with the metric®

T YA
Hx_xH,y_plélzf;dH(T?Z—i_zﬂpaw) (Tuzuw)H’Y'
We provide A# x mcY, with the symplectic structure €2. To any C'-function

f(r,0,w) on (some open set in) A x 7Y, it associates a vector field X ; = J(df )—
the Hamiltonian vector field of f—which in the coordinates (r, 6, w) takes the form?

(f)_J< Hsw (i) ag F(r,6,w)
0, 30 9_f(r,0,w) da f(r O,w) |-
2.2 A matrix algebra. The mapping

(a,b) — [a — b] = min(Ja — b, |a + b|) (2.4)

is a pseudo-metric on Z?, i.e. it verifies all the relations of a metric with the only
exception that [a — b] is = 0 for some a # b. This is most easily seen by observing

that [a — b] = dygausdort ({£a}, {£b}). We have [a — 0] = |a].
Define, for any v = (y1,72) > (0,0) and s > 0,
ey 5(a,b) = Ce " max([a — b], 1) min((a), (b))*. (2.5)

LEMMA 2.3. (i) Ify1,72 — 2 > 0, then
67,%(6% b) < 67,0(% c)e%%(c, b)7 Va,b,c,

if C' is sufficiently large (bounded with s, »).
(ii) If —y <4 < v, then

¢5,5(a,0) < €55(a, b)es,5(b,0),  Va, b

if C is sufficiently large (bounded with ~ya, ).

8 Using this notation for the metric on the manifold will not confuse it with the norm on the

tangent space, which is also denoted || - ||, we hope.
9 There is no agreement as to the sign of the Hamiltonian vectorfield —we’ve used the choice of
Arnold [Arn06].
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Proof. (i) Since [a —b] < [a — ] + [¢ — b] it is sufficient to prove this for v, = 0. If
~v9 = 0 then the statement holds for any C > 1, so it is sufficient to consider
~v2 > 0. This reduces easily to 2 = 1 and, hence, » < 1. Then we want to
prove

max([a — b],1) min((a), (b))
< C'max([a — ¢],1) max([c — b], 1) min({c), (b))”.

This gives the estimate.
(ii) Again it suffices to prove this for 73 = 0 and 42 = 1. Then we want to prove

max(|a|,1)7 < Cmax([a — b],1) min({a), (b)) max(|b|,1)72.
The inequality is fulfilled with C' > 1 if a or b equal 0. Hence we need to prove
|a|? < C max([a — b],1) min((a), (b))* |b]™>.

Suppose 72 > 0. If |a| < 21| then this holds for any C' > 2. If |a| > 2 |b| then
[a —b] > 1 |a| and the statement holds again for any C > 2.
If instead 42 < 0, then we get the same result with a and b interchanged. O

2.2.1 The space M, .. ~ We shall consider matrices A : Z x Z — gl(2,C), formed
by 2 x 2-blocs, (each A% is a complex 2 x 2-matrix). Define

SUP,
A — max @
A e = ma { 1o &

Ab

Ab €., 0), (2.6)

ey, 5(a,b),

where the norm on A% is the matrix operator norm.

Let M, ;. denote the space of all matrices A such that [A[, < oco. Clearly
||, is @ norm on M, ,—this is indeed true for all (1,72, ) € R3. It follows by
well-known results that M., .., provided with this norm, is a Banach space.

Transposition—(*A)% = ‘A¢—and C-conjugation—(A4)% = Ab)— do not change
this norm. The identity matrix is in M., .. if, and only if, 2 = 0, and then ||, = C.

REMARK. The “/'-norm” used here is a bit more complicated than the “sup-norm”
used in [EK10], but it gives rise, as we shall see, to much better multiplicative
properties.

2.2.2  Matriz multiplication. ~ We define (formally) the matriz product
(AB), =>_A:B!.

Notice that complex conjugation, transposition and taking the adjoint behave in
the usual way under this formal matrix product.
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PROPOSITION 2.4. Let v9 > ». If A € M,y and B € M, ,,, then AB and BA ¢
M., ;. and

|AB|7,% and |BA"\/,J¢ S |A"y,0 ‘B|'y7%'

Proof. (i) We have, by Lemma 2.3(i),

> ||cany

eroela,b) < D11 AL |BY e5,(a,0)
b,c

)

<>l |8
b,c

eyo(a, c)ey . (c,b)

which is < [|A]|, o | B[, - This implies in particular the existence of (AB)?.
The sum over a is shown to be < |A|, ([B|, , in a similar way. The estimate of
BA is the same. O

Hence M, o is a Banach algebra, and M, ., is an ideal in M, o when s < 7».

2.2.3 The space Mg%. We define (formally) on Y,
(AQ)a =Y AbG,.
b

PROPOSITION 2.5. Let —y <y <~v.If Ac M, ;. and ( € Y5, then A € Y5 and

[ACl5 < 1AL, L MI¢l5 -

Proof. Let ¢’ = AC. We have

2
Z ‘QQ‘ZG:WQ(CL,OP < Z (Z HAZ |Cb| 6:%0(a, 0)) .
a a b

Write
| 42| 1ol es0a,0) = 1 ¢ (£1Gs] 5.0(6.0)) x
where
I'=1ap=1/llA}]l ey,(a,b)
and
J = Juy = ey,0(a,0)

e'y,%(av b)e:y,()(b7 0) '
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Since, by Lemma 2.3(ii), J < 1 we get, by Holder,

Z 1G4 e5.0(a,0)% < Z (Z Iz,b> (Z 12,16 e5,0(b, o>2>
<|4],,, Z 2 1G1% e5,0(b,0) <|A|V,{Zrcb\ e5.0(b,0) Z

< IA!WHC!H
This shows that y, exists for all a, and it also proves the estimate. O
We have thus, for any —y < 4 <+, a continuous embedding of M, ..,
Moy oe = My — B(Y3,Y5),

into the space of bounded linear operators on Yy. Matrix multiplication in M, .,
corresponds to composition of operators.

For our applications (see Lemma 2.7) we shall consider a somewhat larger sub
algebra of B(Y5,Y,) with somewhat weaker decay properties. Let

MY =By, Y2) N My, ammoe (2.7)

which we provide with the norm

HA”%% = HAHB(Y.y,Y.Y) + |A’(71,727m*),%' (28)

When v = (71,72) > 7% = (0, my + »), Proposition 2.4 shows that this norm makes
Mg,o into a Banach sub-algebra of B(Y,,Y,) and Mg,% becomes an ideal in Mf}y,O

2.3 Functions. For o, p € (0,1] let

Oy(o, 1) = {& = (ra,04,w) € A X Yy s fral < py | S04] < o, | ]l < w}.
(2.9)
It is often useful to scale the action variables » by p? and not by p, but in our
case pu will be ~ 1, and then there is no difference (on the contrary, in Sect. 4.2 we
scale 74 as p? to simplify the calculations we perform there). The advantage with
our scaling is that the Cauchy estimates becomes simpler.
Let

= (7,72) = % = (0, ma + 5), (2.10)
We shall consider perturbations
f : O’Y*(O'vu) - (C

that are real holomorphic and continuous up to the boundary (rhcb). This means
that it gives real values to real arguments and extends continuously to the closure
of Oy (o, ). f is clearly also rheb on O (o, p) for any v > ., and

df : Oy(o,pn) — Y7
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and
Jod*f : O (o, 1) — B(Y,,Y_,)
are rheb.

REMARK 2.6. Identifying Y with Y_, via the paring (-,-) we will interpret the
differential df (¢) as a gradient V f({) € Y_,,

dF(Q)(C) = (VF(Q).C) V(€Y.

As classically, Vf(() is the vector Vf(() = (Vof((),a € Z), where for ( = (Ca =
(Pasqa),a € Z), V.f is the 2-vector (Of /Opa, df/0qq)-

Similar we will interpret d2f as the Hessian V2 f, which is an operator with the
matrix (V2f)%,a,b € Z), formed by the 2 x 2-blocks (V2f)? = V,V,f. The Hessian
defines bounded linear operators V2f(¢) : Y, — Y_,, and

f(C)(CH,¢%) = (V2F(O)¢h,¢?) V(L ¢Pey,.
We shall require that the mappings df and d?f posses some extra smoothness:

R1 —first differential There exists a v > ~, such that
Jodf = JVf:Oy(o,pn) — Yy
is rheb for any v, <4/ < 7.

This is a natural smoothness condition on the space of holomorphic functions on
O,. (0, 1). Via the Cauchy estimate it implies some bounds on the Hessian of f. But
we need stronger restriction on the Hessian and assume

R2 —second differential
Jod?f = IV Oy(o ) — M, ,

is rheb for any v, <~/ <.

Such decay conditions do not seem to be naturally related to any smoothness
condition of f, but they are instrumental in the KAM-theory for multidimensional
PDE’s: see for example [EK10] where such conditions were used to build a KAM-
theory for some multidimensional non-linear Schrodinger equations.
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2.3.1 The function space T ,.. ~ Consider the space of functions f : O, (o, ) — C

which are real holomorphic and continuous up to the boundary (rheb) of O, (o, 1).

We define 7, (o, 1) to be the space of all such functions which verify R1 and R2.
We provide 7, ,.(o, 1) with the norm

Supxeow (o,1) |f($)|7
Floss = manx § 51D, <3< WD, o ol () 1y = V52 (2.11)
’ SUP,, <<~ SUPzcO., (o,u) HJdef(a:)H%% = HVQf(l’)H%%

making it into a Banach space. (It is even a Banach algebra with the constant
function f = 1 as unit, but we shall be concerned with Poisson products rather than
with products.)

This space is relevant for our application because

LEMMA 2.7. Let Z = Lo = Z% and 3 = 2. Then the Hamiltonian function hs,,
defined in (1.12), belongs to T, o(1, j1g) for suitable jig € (0,1] and v4 > ..

The lemma is proven in “Appendix A”. Notice that we would not have been able
to prove this if we had used the matrix norm (2.6) instead of (2.8).

The higher differentials d**2f can be estimated by Cauchy estimates on some
smaller domain in terms of this norm.

REMARK. The higher order differential d**2f(z), x € O, (0, ), is canonically iden-
tified with three bounded symmetric multi-linear maps

(Yv)k+2 _ C,
(Y’y)k—‘rl _ Y,;‘,

(Y))F — B(Y,,Y7).

Due to the smoothing condition R1 the second one takes its values in the subspace
YZ, . Due to the smoothing condition R2 J d* 2 f(x) is a bounded symmetric multi-
linear map

(Y)F — M .. (2.12)

Alternatively, identifying d? f with the hessian V2 f, we may identify d**+2f with

a continuous symmetric multilinear mapping of the form (2.12).

2.3.2  The function space T, ,.p. Let D be an open set in RP. We shall consider
functions

[:04(o,u) xD—C
which are of class C** for some integer s, > 0. We say that f € 7, ,.p(o, n) if, and
only if,

rr

ap] ('7 p) € TY,%(U7 ILI/)
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for any p € D and any |j| < s.. We provide this space by the norm
Y
[flow = max sup |5 o5 Sl (2.13)
This norm makes 7, . p(c, ) a Banach space.
2.3.3  Jets of functions.  For any function f € 7, ,.p(o, 1) we shall consider the
following Taylor polynomial of f at r =0 and w = 0:
fT(x) = £(0,0,0) + d, £(0,6,0)[r] + duw (0,0, 0)[w] + %dfuf(o, 0,0)[w,w]. (2.14)

Functions of the form f7 will be called jet-functions.
PROPOSITION 2.8. Let f € T, ,.p(0, p). Then f* € T, .. p(o, ) and
s o, < Clf o

7%?
(C' is an absolute constant.)

Proof. The proof follows the general argument. Look for example on

g($) = d?uf op(m)[w,w], T = (Ta 97w)a

where p(x) is the projection onto (0, 8, 0). This function g is rhcb on O, (o, 1), being
a composition of such functions. A bound for its sup-norm is obtained by a Cauchy
estimate of f:

2 £ p()) Jll < Ctog swp (f@)] Jul, < Cr.swp (£

HB Y, Y*
(Y Y2 0, (o2 YeO,. (o)

Since Jdg(x)[-] equals
(Jddz, f o p(a)[w,w])[dp[] + 2(Jd5, f o p(z)[w])[],

and

JA2f : Oy(o, 1) — B(Yy, Yy)

and JAL,f = Jd%df : Oy (0, ) — B(Yy, B(Ya,Yy))
are rheb, it follows that dg verifies R1 and is rheb. The norm [|Jdg(z)| ., is less than

| Tdzdf (p wl2, + 2| Jd% £ (p .,

HBY B(Y,,Y,) )’ HBYY |

which is < Ct.supyeo , (0, [I/df (y)||,,—this follows by Cauchy estimates of deriva-
tives of Jdf.
Since Jd?g(x)[-, -] equals

(Jd*d2, f o p(x)w,w]) [dp[-], dp[-]] + 2J (dds, f o p(x)[w])[-, dp[-] + 2Jdy, f o p(x)[-, -],
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and
Jdof : Oy(o,p) — M,
Jdd, f = Jdodf : Oy (o, p) — B(Yy, MY, ),

and

JdPdof = Jdod f : Oy (o, 1) — B(Yy, B(Yy, MY, )

are rheb, it follows that Jdg? verifies R2 and is rheb. The norm HJ d? is less
than

[, d? £ ( HB(Y B(Y, M, ) ”wH +2 || Jdwd? f( HB Yo MY, y el

+2HJd2 @),

which is < Ct. SUPyco., ( HJ d2f( |7, —this follows by a Cauchy estimate of
Jd*f.

The derivatives with respect to p are treated alike. O
2.4 Flows

2.4.1  Poisson brackets. — The Poisson bracket {f, g} of two C!-functions f and g
is (formally) defined by

{f,9} = Q(Jdf, Jdg) = (JV [,Vg) = —df[Jdg] = dg[J df].

If one of the two functions verify condition R1, this product is well-defined. Moreover,
if both f and g are jet-functions, then {f, g} is also a jet-function.

PROPOSITION 2.9. Let f,g € T ,.p(o, i), and let o' < o and i’ < 1 < 1. Then
() {9, f} € T ;ep(0', 1) and

o SO glou | flow
{g: f}o o lglow Ao
for
/ 1 1
chh =C .
= =N

(ii) the n-fold Poisson bracket P}'f € T, ,.p(o, ) and

o )"\fl;r,ﬁp

’P;f TS (

5%

where Pyf = {g, f}.

(C is an absolute constant.)
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Proof. (i) We must first consider the function h = Q(Jdg, Jdf) on O, (o, 1) Since
Jdg, Jdf : O, (o,u) — Y, are rheb, it follows that h: O, (o, u) — C is rheb, and

()| < \[Jdg(@)ll.,, l7df ()], -
The vector Jdh(z) is a sum of
JQ(Jd*g(x), Jdf (x)) = Jd*g(x)[Jdf (x)]

and another term with g and f interchanged. Since Jd?g : O (o, ) — B(Yy,Yy)
and Jdg, Jdf : O, (o, ) — Y, are rheb, it follows that Jdh verifies R1 and is rhcb.
Moreover

[Jd?g(x)[df (z), ]

o < 9@ gy, vy 1df ()]

and, by definition of M?

77% ’

||Jd2g ) < HJd2g($)

(z) HB(w Y, 40

The operator Jd*h(z) = d(Jdh)(z) is a sum of
Jd’g(x)[Jdf (z)]
and
Jd’g(x)[Jd* f(x)]

and two other terms with g and f interchanged.

Since Jd3g : O, (o, ) — B(er,/\/lf’y,%) and Jdf : Oy (o, ) — Y, are holomor-
phic functions, it follows that the first function O,/ (o, pn) — B(Y,Y/,Mg,%) also is
holomorphic. It can be estimated on a smaller domain using a Cauchy estimate for
Jd3g(x).

The second term is treated differently. Since
Jd2f7 Jd2g : O’Y' (U’ ,U’) - Mz,%

are rheb, and since, by Proposition 2.4, taking products is a bounded bi-linear map
with norm < 1, it follows that the second function O, (o, i) — MZ,% is rheb and

|Jd*g(w)[Jd* f(x)]

}'y’,% < ”szg(x)H'y’,% HJde(x)H'y’,%'

The derivatives with respect to p are treated alike.

(ii) That g, = P;'f € T, ..p(o’, 1') follows from (ii), but the estimate does not
follow from the estimate in (ii). The estimate follows instead from Cauchy estimates
of n-fold product Pjf and from the following statement:
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Fgn ()],

(0, 1), is bounded by a sum of

terms of the form!Y

[d™g(@)]. .. [d" g ()| |d™ f ()]

with " m; =n+ 1+ k and each m; > 1. The number of terms in the sum is < 2"%
(This is proven above for n = 1 and k < 2. It follows for £ > 3 by the product
formula for derivatives. It follows then for all n > 2 and any £ > 0 by an easy
induction).

Let now m;- = 2 if m; > 3 and = m; if m; < 2. Then the term above can be
estimated by Cauchy estimates:

< (Cﬁ:ﬁ/’)Z(mj m})

@] |a] a7 16o)

/

< (CUEDE ) (gl )" |fl

g—0

The result now follows by observing that > (m; —m/) < max(n+k—2,0) and taking
k = 2. [Indeed, if 3~ (m; —m/}) were > n+k—1, then Y m/ <> m;—(n+k—1) = 2.

Since m; > 1 this forces n to be = 1 and all m; to be = 1. Hence m; = m; and

2. (mj —mj) = 0.] 0

REMARK 2.10. The proof shows that the assumptions can be relaxed when g is
a jet function: it suffices then to assume that g € 7,9 p(o, ) and g — g(-,0,) €
%,%,D(Ua M)'ll

Then {g, f} will still be in 7, ,. p(o, 1) but with the bound
o < C'uiu,, ) — Yy O, : ) )
|{g’f}|$7;’:p <Co—s (lglg’gﬂ) +1g—4( ”iﬁ@) [ flow

To see this it is enough to consider a jet-function g which does not depend on 6.
The only difference with respect to case (i) is for the second differential. The second
term is fine since, by Proposition 2.4, Mf’% .. is a two-sided ideal in M?y’,() and

[Jd>g(x)[Td* f ()|,

2 2
v, — HJd H'y’,OHJd f(x)"y’,%'
For the first term we must consider Jd*g(z)[Jdf(z)] which, a priori, takes its

values in /\/lg,70 and not in Mg,%. But since g is a jet-function independent of 6 this
term is = 0.

10 11 the norms of the appropriate Banach spaces.
1 §(-,0,-) is the 0:th Fourier coefficient of the function 6 +— g(-, 6, ).
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2.4.2 Hamiltonian flows. The Hamiltonian vector field of a C!-function g on
(some open set in) Y, is Jdg. Without further assumptions it is an element in Y_.,
but if g € 7, .., then it is an element in Y, and has a well-defined local flow {®}}.
Clearly (d/dt)f(®}) = {f, g} o ®, for a C'-smooth function f.

PROPOSITION 2.11. Let g € 7, ;. p(0o, 1), and let o' < o and p/ < p < 1. If

1 . , .
|g|o'7u v,2¢,D S C mln(a — O, — )’
then

(i) the Hamiltonian flow map ® = ® is, for all |t < 1 and all 7. <+ < 7,
a C®*-map

Oy (0/7 M/) XD — O’Y/(Uv 1)

which is real holomorphic and symplectic for any fixed p € D.
Moreover,

/§C|g|07M Y

V%%

|3(@ (. ) — )],
and

|09 (d®" () — 1)

7/’%§C|g|0}l$ Y

V%%

for any x € O~ (o', 1), v <o <, and 0 < |j] < ss.
(ii) fo @) € T, (o', i/, D) for [t| <1 and

[fo

o’ §C|f|0,u
v,2¢,D 7,26, D

for any f € T (o, i1, D).

(C is an absolute constant.)

Proof. 1t follows by general arguments that the local flow ® = ®,: U — Oy (o, 1) is
real holomorphic in (¢,¢) in some U C C x O4(o, 1), and that it depends smoothly
on any smooth parameter in the vector field. Clearly, for |t| < 1 and z € O, (o', 1t/)

dl(x,p) — < s Jd < ,
[ s, < _swp gt <ol
as long as ®(z) stays in the domain O, (o, p1). It follows by classical arguments that
this is the case if

|g|g,gD <ct.min(oc — o', u — p).

The differential. We have

%d@t(x) = Jdg(® (2))d (z) = B(1)dd' (),
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where B(t) € ./\/lf’w{. By re-writing this equation in the integral form d®'(z) =
Id+ fot B(s)d®*(x)ds and iterating this relation, we get that d®!(x) — Id = B>(t)
with

t  pty thoa K
Boo(t):Z/o/o /O [ Bt)dty---dtzdty.
j=1

k>1
We get, by Proposition 2.4, that d®(z) — Id € M,b%% and, for [t| <1,

tk
aw! (@) —1all, < 3 [ldPg(@ @), 37 < [TPg@ @]l -
k>1 '

In particular, A = d®'(z) is a bounded bijective operator on Y. Since Jd?g is a
Hamiltonian vector field we clearly have that

QA AC) =9, (), V(. (eYs,

so A is symplectic.
Parameter Dependence. For |j| = 1, we have

g = d Pz, p) & Jdg(®'(z,p), p)
dt dt Opi dpI

Since

= B(t)Z(t) + A(t).

— B(t,p)Z (1)

< Ct.|g

o1 9
v,2¢,D

A@I, +1IB®I, ..

it follows by classical arguments, using Gronwall, that
|20, < Ot lglow 1]
The higher order derivatives (with respect to p) of ®(z, p), and the derivatives

of d®'(x, p) are treated in the same way.
The same argument applies to any v, < 7' < 7.

Since
1
fO(I)Z :Zﬁtnpfg.ﬂ
n>0
(ii) is a consequence of Proposition 2.9(ii). 0

REMARK 2.12. If the set Z is such that A = F = () and Lo = Z¢ (so Z = Z%),
then the domains O, (o, ) and the functional spaces on these domains which we
introduced do not depend on o. In this case in our notation we will chose the dumb
parameter o to be 1. The assertions of the Propositions 2.9 and 2.11 remain true
if we there take ¢ = ¢/ = 1 and drop the assumptions, related to o and ¢’ (in
particular, replace there min(o — o', u — 1) by p— p/, and replace 1/(oc — ¢’) by 0).
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PART II. A BIRKHOFF NORMAL FORM

3 Small Divisors

3.1 Non resonance of basic frequencies. In this subsection we assume that
the set A C Z% is admissible, i.e. it only contains integer vectors with different norms
(see Definition 1.1).

We consider the vector of basic frequencies
w = w(m) = (Wa(m)acas m e [1,2], (3.1)

where wy(m) = A = /|a|* + m. The goal of this section is to prove the following
result:

PROPOSITION 3.1. Assume that A is an admissible subset of Z% of cardinality n
included in {a € Z% | |a| < N'}. Then for any k € ZA\{0}, any x > 0 and any c € R
we have

N4n? wl/n

Z kqwq(m) + ¢ R

meas {mE 1,2] |
acA

S’i}gcn

where |k| := ) 1 |ka| and C;, > 0 is a constant, depending only on n.

The proof follows closely that of Theorem 6.5 in [Bam03] (also see [BGO06]); a
weaker form of the result was obtained earlier in [Bou95]. Non of the constants C;
etc. in this section depend on the set A.

LEMMA 3.2. Assume that A C {a € Z? | |a| < N}. For any p < n = |A|, consider p

points a1, ...,a, in A. Then the modulus of the following determinant

dwa, dwa, dw,,,p

dm dm m
Pwa, d*wa, d*wa,

dm? dm? °°° dm?

D=

dPw,, dPwa, dpwap

dmr dmpr " dmp

is bounded from below:
|D| > C]\f—3102+p7
where C' = C(p) > 0 is a constant depending only on p.

Proof. First note that, by explicit computation,

|
—

D, o L a1
o5 = (i +m) T Ty = [ ==

(3.2)

N
I
o
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Inserting this expression in D, we deduce by factoring from each [ — th column
the term (Jas|* + m)~/2 = w,; !, and from each j — th row the term Y; that the
determinant, up to a sign, equals

1 1 1 ...1

Tay, Tay Tay - - - Ta,

2 .2 .2 2

P To, Tay Tay - - - Tg,

—1 YT,| %
We, j S I

=1 j=1 e
P .p D p

Ta, Tay Tay - - - Ta,

where we denoted x, := (|a|* +m)™! = w; 2. Since |wq, | < 2|ag|> < 2N? for every
k, the first factor is bigger than (2N?)7P. The second is a constant, while the third
is the Vandermond determinant, equal to

4 4
a — |a
|| (xaz_xak-): || W::V
1<I<k<p 1<I<k<p e Ak

Since A is admissible, then

2 2 p(p—1)
viz ] !ak!2+\2ae! > <1> N1
1<l<k<p Wa,Yay, 4

where we used that each factor is bigger than %N —6 using again that |w,, | <

2|ag|? < 2N? for every k. This yields the assertion. O
LEMMA 3.3. Let u), ..., u® be p independent vectors in RP of norm at most one,
and let w € RP be any non-zero vector. Then there exists i € [1,...,p| such that

()| =

det (u(l),...,u(p))’.

Proof. Without lost of generality we may assume that |w| = 1.

Let [(u®, w)| < a for all i. Consider the p-dimensional parallelogram IT, generated
by the vector u, ... u® in R? (i.e., the set of all linear combinations Z:vju(j),
where 0 < z; < 1 for all j). It lies in the strip of width 2pa, perpendicular to
the vector w, and its projection to the p — 1-dimensional space, perpendicular to
w, lies in the ball around zero of radius p. Therefore the volume of II is bounded

Cpp?~(2pa) = Cpa. Since this volume equals |det(u™), ..., u®)|, then a >

Cp| det(u, ... uP)|. This implies the assertion. 0
d“’( ), 1 <i < n, denote K; = j;ﬁ“i (m)| and set
i
ul) = _ldw(m), 1<i<n
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From (3.2) we see that'? K; < C, for all 1 < i < n (as before, the constant
does not depend on the set A). Combining Lemmas 3.2 and 3.3, we find that for
any vector w and any m € [1,2] there exists r = r(m) < n such that

d"w

dm”

( (m),w>’ = K, |(u),w)| > K,Cp|w|(K; ... K,) ' D|
> Cpw|N 7374 (3.3)
Now we need the following result (see Lemma B.1 in [Eli98]):

LEMMA 3.4. Let g(x) be a C"*l-smooth function on the segment [1,2] such that
|g'|cn = B and max)<g<, min, |0¥g(x)| = . Then

meas{alg(a)| < p} < Cul 2+ 121

|k|_1 ZCLE.A kawa(m) + |k|_1C. Then |g/
> C,N~3"+" in view of (3.3). Therefore, by

Consider the function g(m) = on <
C!, and max;<p<, ming, [0%g(m)|
Lemma 3.4,

meas{||g(m)| < ﬁ} < CnN3n2—”(ﬁN3”2_”)l/n — CnN3n2+2n—1(|% )l/n.

This implies the assertion of the proposition.

3.2 Small divisors estimates.  We recall the notation (1.20), (3.1), and note
the elementary estimates

(a)? < Xa(m) < (a)?® + Vaezl, mell,?2], (3.4)

m
2(a)?
where (a) = max(1, |a|?). In this section we study four type of linear combinations
of the frequencies A\, (m):

Dy :<w7 k>7 ke ZA\{O}?

Dy =(w, k) + Aoy keZ* acL,

Df =(w,k) + Aot Ny, keZA abe L.

In subsequent sections they will become divisors for our constructions, so we call
these linear combinations “divisors”.

DEFINITION 3.5. Consider independent formal variables xg,x1,x9,.... Now take
any divisor of the form Dy, Dy or Dzjt7 write there each w,,a € A, as A4, and
then replace every \,,a € Z4, by T)q2. Then the divisor is called resonant if the
obtained algebraical sum of the variables z;,7 > 0, is zero. Resonant divisors are
also called trivial resonances.

12 Tn this section C,, denotes any positive constant depending only on n.
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Note that a Dg-divisor cannot be resonant since k # 0 and the set A is admissible;
a Di-divisor (w, k) + A, is resonant only if a € Ly, |k| = 1 and (w, k) = —wy, where
la| = |b|. Finally, a DJ -divisor or a Dy divisor with k # 0 may be resonant only
when (a,b) € Ly x Ly, while the divisors D, of the form A\, — Ay are resonant if and
only if |a| = |b]. So there are finitely many trivial resonances of the form Dy, Dy, Dy
and of the form D, with k # 0, but infinitely many of them of the form D, with
k= 0.

Our first aim is to remove from the segment [1,2] = {m} a small subset to
guarantee that for the remaining m’s the moduli of all non-resonant divisors admit
positive lower bounds. Below in this section

constants C, C etc. depend on the admissible set A,
while the exponents cj, ¢ etc depend only on |A|. Borel (3.5)
sets Cy;, etc. depend on the indicated arguments and A.

We begin with the easier divisors Dy, D7 and D; .

PROPOSITION 3.6. Let 1 > k > 0. There exists a Borel set C, C [1,2] and positive
constants C' (cf. (3.5)), satisfying meas C, < Ck'/ "2 such that for all m ¢ C,,
all k and all a,b € L we have

[{w, k)| > k(k)™™,  except if k =0, (3.6)

{w, k) + Aa| > (k) 3" except if the divisor is a trivial resonance, (3.7)

[{w, k) + Xg + Xp| > /ﬁ(k)*g("ﬂ)s, except if the divisor is a trivial resonance. (3.8)
Here (k) = max(|k|,1).

Besides, for each k # 0 there exists a set A¥ whose measure is < Ck'/" such
that for m ¢ AX we have
{w, k) + j| > w(k)~ "D for all j € 7. . (3.9)

Proof. We begin with the divisors (3.6). By Proposition 3.1 for any non-zero k we
have

meas{m € [1,2] | |{w, k)| < ﬁ‘krn’z} < kY|l

Therefore the relation (3.6) holds for all non-zero k if m ¢ 2y, where meas 24y <
C/ﬁ;l/” Zk;ﬁo |k’fn71/n _ le/n.

Let us consider the divisors (3.7). For k = 0 the required estimate holds trivially.
If k # 0, then the relation, opposite to (3.7) implies that |\,| < C|k|. So we may
assume that |a| < C|k[Y/2.If |a| ¢ {|s| | s € A}, then Proposition 3.1 with n := n+1,
A:= AU {a} and N = C|k|'/? implies that

meas{m € [1,2] | [{w, k) + Aa| < slk[ 720D}
< C,il/(nﬂ)|k‘2(n+1)2—3(n+1)2—,fj < Cﬁl/(n+1)|k|f(n+1)2'
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This relation with n + 1 replaced by n also holds if |a| = |s| for some s € A, but
{(w, k) + A is not a trivial resonant. Since for fixed k the set{)\, | |a|?> < C|k|} has
cardinality less than 2C|k|, then the relation |(w, k) + Ao| < &|k|73("FD? holds for a
fixed k and all a if we remove from [1,2] a set of measure < Cx!/ (1|~ (r+D*+1 <
CrY D771, So we achieve that the relation (3.7) holds for all k if we re-
move from [1,2] a set 2; whose measure is bounded by Cx!/(*+1) > k40 k|7t =
COgl/(n+1)

For a similar reason there exist a Borel set 25 whose measure is bounded by
CrY/("+2) and such that (3.8) holds for m ¢ 2,. Taking C, = 2o U Ay UAs we get
(3.6)-(3.8). Proof of (3.9) is similar. 0

Now we control divisors Dy = (w, k) + Ag — .

PROPOSITION 3.7. There exist positive constants C,c,c_ and for 0 < k there is a
Borel set C), C [1,2] (cf. (3.5)), satisfying

meas C,, < Ck°, (3.10)
such that for all m € [1,2]\C/., all k # 0 and all a,b € L we have
R(k;a,b) == |{w, k) + Ao — Xo| > K|k|“, (3.11)
except if the divisor is a trivial resonance.
Proof. We may assume that |b| > |a|. We get from (3.4) that
Ao =X = (Jaf® = [b]*)] < mlal™* < 2|al 2.

Take any ko € (0,1] and construct the set AF as in Proposition 3.6. Then

meas X < C/’i(l)/ " and for any m ¢ A~ we have
R:= R(k;a,b) > [(w,k) + |a|* — [b]| — 2[a| =% > Ko|k|~"T1" — 2]a| 2.
So R > 1ko|k|~("T1" and (3.11) holds if
b > [af* > 4rg ! [R|CFD" = 77,
If |a|? < Y3, then
R>XN— Ao — ClE| > |b* = Y1 — C|k| — 1.

Therefore (3.11) also holds if [b|*> > Y7 + C|k| + 2, and it remains to consider the
case when |a|?> < Y7 and |b|> < Y7 + Clk| + 2. That is (for any fixed non-zero k),
consider the pairs (A, \p), satisfying

la> <Y1, b <Y1 +2+ Clk|=:Ys. (3.12)
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There are at most C’Yld/ 2YQd/ ? pairs like that. Since the divisor (w, k) + Aq — Ap
is not resonant, then in view of Proposition 3.1 with NV = Y;/2 and |A| < n+2, for
any & > 0 there exists a set BE C [1,2], whose measure is bounded by

C/%l/("+2)nacl|k\02, cj =cj(n) >0,

such that R > & if m ¢ BE for all pairs (a,b) as in (3.12) (and k fixed).

Let us choose & = /{301 ("*+2) Then meas BE < Ok§' k| and R > /ﬁgcl(nﬂ) for a,b
as in (3.12). Denote €F = A% UBY . Then meas €k < C(/@(l]/n—i—/igl |k|°2), and for m
outside this set and all a, b (with & fixed) we have R > min (%/{0|kz|_("+1)”, /{(2)61(”+2)) .
We see that if kg = ko(k) = 2k|k|~% with suitable cs,cq > 0, then

meas (C,, = Uk;ég@ﬁo) < Ck®,

and, if m is outside C., then R(k;a,b) > k|k|~° with a suitable c_ > 0. 0

It remains to consider the divisors D, with £ = 0, i.e. Dy = Ay — A\. Such a
divisor is resonant if |a| = |b|.
LEMMA 3.8. Let m € [1,2] and the divisor D, = X\, — A\, Is non-resonant, i.e.
|a| # [b]. Then [Aq — Ap| > .

Proof. We have

S N e A 7ot 2 S | .
a = > > —.
Vet +m+pr+m — Vet +m+ b +m 4
By construction the sets C,; and C/, decrease with k. Let us denote
c=[)C.uc). (3.13)

Kk>0

From Propositions 3.6, 3.7 and Lemma 3.8 we get:

PROPOSITION 3.9. The set C is a Borel subset of [1,2] of zero measure. For any
m ¢ C there exists kg = ko(m) > 0 such that the relations (3.6), (3.7), (3.8) and
(3.11) hold with k = K.

In particular, if m ¢ C then any of the divisors
(w,s), (w,s) £ Ag, (w,s) ANy, sE zZ% abelL,

vanishes only if this is a trivial resonance. If it is not, then its modulus admits a
qualified estimate from below.

The zero-measure Borel set C serves a fixed admissible set A, C = C4. But since
the set of all admissible sets is countable, then replacing C by U4C4 we obtain a
zero-measure Borel set which suits all admissible sets C. For further purposes we
modify C as follows:

C=:CU{3, 2} (3.14)
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4 The Birkhoff Normal Form I

In Sects. 4 and 5 we construct a symplectic change of variable that puts the Hamil-
tonian (1.12) to a normal form. In these sections constants in the estimates may
depend on

d, G, A and constants with lower index * (including c.) (4.1)

without saying. Their dependence on other parameters will be indicated. This does
not contradicts Agreements (see the end of Introduction) since in these sections the
set F is defined in terms of A and P does not occur.

4.1 Statement of the Result.  The goal of this section is to get a normal form
for the Hamiltonian h = hg + h4 + h>5 of the beam equation, written in the form
(1.10), in toroidal domains in the space which are complex neighbourhoods of the
n-dimensional real tori Ty, (see (1.15)). We scale the parameters [4 as vp where
v > 0 is small and p = (p4, a € A) belongs to the domain

D = e, 1A (4.2)

In this section ¢, € (0, 1] is regarded as a fixed parameter.
Consider the complex vicinity of the torus 7, 4 (see (1.15))

\%(p3+q2)—u,oa| <velp?, ac A,
Tp(l/, 0'7/-1’77) = {(p.Aa(J.Avpﬁ?C,C) : ‘%9a| < o, a € A’ (43)
I(pz,ac)lly < v eup,

where 6, is related to pg, ¢, through ﬁ = elfa
because then p2 + ¢2 # 0 for all a € A whenever the point belongs to this vicinity.

In this section we use the complex coordinates (&4,74),a € Z¢, defined in (1.7),
denoting (&4,74) = (4. So we will write points of T, (v, 0, 1,7) as ¢ = (C4,¢z). We
recall (see (1.20)) that we have split the set £ = Z%\ A into the union £ = LU L.
We will write (z = ((f, (o) and will use the notation of Sect. 2.1 with Z = 78, Z =
AUL; ULy (ie. with F = Ly).

this is well-defined when pu < 1

PROPOSITION 4.1. There exists a zero-measure Borel set C C [1, 2] such that for any
admissible set A, any ¢, € (0,1/2] and m ¢ C we can find real numbers v4 > 7, =
(0, ms + 2) and vy > 0, where vy depends on m, with the following property.

For any 0 < v < vy and p € [cs, 1]” there exists a holomorphic diffeomorphism
(onto its image)

1
(I),O : O’Y* (25/13) - T,O(Vv ]-7 1’7*)7 Mx = Qi*fv (44)
which defines holomorphic transformations

D,: 0, (3,42) = Ty, 1,1,7), 7 <7<,
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such that
@;( — idp A dq) =vdraNdly —ivdés Ndng,

and such that ® and the transformed Hamiltonian

%h © (I)p(r7 9; §£7 77£) = <Q(p), T> + Zaeﬁm Aa(P)fana (4 5)
+ 5 (K(p)Cy, Cp) + f(r,0,Ccs p) '

(where h is the Hamiltonian (1.11)+(1.12)) satisfy:

(i) ®, depends smoothly (even analytically) on p, and

| @,(r,0,&c.02) — (y/7pcos(B), \/wpsin(6),0,0) ||
< CWvIrl+vvlie,ne)ll, +v

for all (r,0,&c,mz) € Oy(5, 1) N {0 real} and all v, <y < vy

(ii) the vector Q and the scalars A,,a € Lo are affine functions of p, explicitly
defined by (4.44) and (4.45);

(iii) K is a symmetric real matrix. It Iis a quadratic polynomial of
VP = /Py »/P,), explicitly defined by relation (4.47);

1v) the remaining term elongs to »=2Dl5, ;) and satisties

iv) th ini f bel T,,.—2,0(3, 12) and satisfi

(4.6)

|

)

flijae <Cv, |f jae < CV¥2. (4.7)
797271) '79727D

Finally, ®, is not a real diffeomorphism, but verifies the “conjugate-reality” con-
dition:

®,(r,0,é,me)  is real if, and only if, n; =&,
The constant C' depends on m (we recall (4.1)) but not on v.

REMARK 4.2. 1. ®, is close to the scaling by the factor vY/2 on the Loo-modes
but not on the (AU Ly)-modes, where it is close to a certain affine transfor-
mation, depending on 6.

2. All the objects, involved in this proposition, except the remaining term f in
(4.5), depend only on the main part u* of G, and not on the higher order
correction.

The rest of this section is devoted to the proof of Proposition 4.1. From now on
we arbitrarily enumerate the set A of excited modes, i.e. we write A as

A={ay,...,a,}, (4.8)

so that the cardinality of A is n, and accordingly identify R4 with R™ and identify
various A-valued maps with maps, valued in the set {1,...,n}.
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4.2 Resonances and the Birkhoff Procedure. Instead of the domains
O, (o, i), in this section we will use domains

Oy (o1, ) = {(r,6,w) : |r] < 4%,96] < o, o]l < 1}, (4.9)

more convenient for the normal form calculation. The space of functions on
O, (o, %, 1), defined similar to the space 7., ,.(o, ), will be denoted 7T, ,.(o, 2, ).

The norm |f|, , 2 in this space is defined by the relation (2.11), where the first line
v,
is given the weight x° = 1, the second line—the weight !, and the third line—pu?.

Note that
O, (0, 4%, 11) € Oy (0, 1) C Or (0, 1, /1), (4.10)

and that | - > and |- |o,u are equivalent if p ~ 1.
77%

’U),L’ﬂ/"‘
v,

In the situation of Remark 2.12, when Z = Z? and A = F = (), we have
777,%(171127:“) = 7;,%(17“)3 and

|f|1,;¢,;ﬁ < |f|17u < N_2|f’1,p,,p,2 (411)
v, V5%

77%

for any 0 < p < 1.

EXAMPLE 4.3 (homogeneous functionals). Let Z = Z% and A = F = ) and let
f(w) € T, ,.(1,1,1) = 7, ,.(1,1) be an r-homogeneous function, r < 2 integer. Then
df and d? f are, accordingly, (r—1) —and (r—2)—homogeneous. So for any 0 < p < 1
we have
|flu gz = 1" fla - (4.12)
’77% 7’%
If for j = 1,2 fj(w) € 7,.(1,1,1) is an rj—homogeneous functional, r; > 2,
then the functional {f1, fo} is r1 + ro — 2—homogeneous. So the relation above and
Proposition 2.9 imply that

1{f1, fatlian < Clfilaa - [ falian (4.13)
i< v, Y,

Let us consider the quartic part ho + hy4 of the Hamiltonian h,

- (& +n-i) (& +1-5)(Ek +1-1)(E +n—0)
ho = Xoballa, ha = (2) d J J
agz;d (i,j,kz,éz)ej 4/ NiNj AL A

(the variables &, n are defined in (1.7)), where J denotes the zero momentum set:

T ={(,5,k,0) CZ | i+j+k+£=0}



1624 L. H. ELIASSON ET AL. GAFA

We decompose hy = hyg + ha1 + ha2 according to

1 _ &i&i&u€e + Mimimene
h4,0 :7(271—) d Z 5
y (i.g,k,0) €T VAR ARAe
hay =2m) Y &i&5€kne + minneée

wiiTher VAN

30 §i&iMkne
hag=S(2m)™t Y R
2 (i —h0)eT VAN AR AL

and define
Jo = {04k, 0) CZ*| (5,5, =k, —0) € T, #{i, 5 b, 3 1A > 2}
By Proposition 3.9 we have
LEMMA 4.4. If m ¢ C, then there exists k(m) > 0 such that for all (i, j, k,?) € Jo

‘)\Z‘—i-)\j—i-)\k —/\g’ > li(m);
M+ A A= Al = r(m),  except if {li. 51} = {[kl.|¢]}.

For v = (v1,72), where 0 < 71 < 1, 79 > m,, and for Z = Z% as above consider
the space Y, as in Sect. 2.1, written in terms of the complex coordinates ¢, =
(€asMa),a € Z2. In these variables the symplectic form Q reads Q = —i > d&, A dn,.
For 0 < p < 1 consider the ball O, (1, u?, ) = O (1, u) = {[¢]y < p}-

For any vector ¢ = ({4 = (£4,M4), @ € Z4), we will write ¢ = &, and (; = 7,. For
an integer r > 2 we abbreviate a = (ay,...,a,) € (ZY)", ¢ = (¢1,...,5) € {+, =},
and consider a homogeneous polynomial

=M D> A
a€(ZY)r se{+,—}"

Here M is a positive constant, the moduli of all coefficients Af, are bounded by
1, and

AS =0 unless a; 4 a0 =0

for some fixed boolean vector < € {+, —}". Denote by D~ the block-diagonal oper-
ator
D~ = diag{|\a| V?I,a € 2}, TeM(2x2), (4.14)

and set Q" ({) = P"(D().
LEMMA 4.5. For any «y as above, Q" € T,2(1,1,1) and

IQTluél <CM, C=0C(r). (4.15)
s



GAFA KAM FOR THE NONLINEAR BEAM EQUATION 1625

The lemma is proved in “Appendix A”.

Note that by this lemma, (4.11) and (4.12), |Q"]1,, < CMu"~2. So by Lemma 2.11
7,2
if the function Q" is real, then the hamiltonian flow-maps ®! = QT, |t| <1, define

real-holomorphic symplectic mappings
O 0,1, 12 ) — O4(1,4p%,2p) ifr>4and p < py, p = pr (M) >0,
or if r =3 and M > 0 is sufficiently small

(we recall that now O (1, u?, 1) = O, (1, w)).

PROPOSITION 4.6. For m ¢ C and pg > 0, 74 > 7« as in Lemma 2.7 there exists
i € (0, g] and a real holomorphic symplectomorphism

7: 04 (Lp) = {[¢ly. < pp — O04.(1,2p)
which is a diffeomorphism on its image and which for v, < v < v, defines analytic
mappings 7 : O~ (1, u) — O~(1,2pu), such that

I751C) = Clly S CIICIE V¢ € Oy(1, p). (4.17)

It transforms the Hamiltonian h = hg + ha + h>5 as follows:

(4.16)

ho7’:hg—i—24—|—qi+7"8+h2507', (4.18)
where
3 _ . .
o 25(27‘_) d E 515]77197767

- Aidj
(27]7k7e)€j2
{liL 1 1={I%l,lel}

and qu =q41 + Q42 with!'3

_ &i&i&kme + mimjmeée
Qa1 = (2m) " Z ;
ikngs VAN

3 _d &i&inkne
qa2 = 5(2m)" —
2 ,],kzejgzj \/)\)\)\k)\g

The functions z4,q3,73, h>5 o T are real holomorphic on O, (1, ) for each v, <
v < 7. Besides 7"8 and h>5 o T are, respectively, functions of order 6 and 5 at the
origin. For any 0 < u/ < p the functions

24,43, 7Y and h>5 o T belong to T, »(1, (¢)?, 1t/), and

‘Z4|1,/J/ (p)? + |qz|l,p/,(u’)2 < C(:U’,)47 (419)
’7572 V52 6
‘TG‘I ) = C(u)°, (4.20)
Ya:2
|h>50 Tl )y < C’(,u,')5. (4.21)
'Yg72

The constants C' and p depend on m (we recall (4.1)).

13 The upper index 3 signifies that ¢3 is at least cubic in the transversal directions {Caya € L}.
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Proof. We use the classical Birkhoff normal form procedure. We construct the trans-
formation 7 as the time one flow CI>>1<4 of a Hamiltonian y4, given by

_ i —d o §i&i&r€e—mim;mKne
X4 = 4(27[') Z(z,j,k,Z)EJ (/\i+)\j+)\k+)\z)\/)\i)\j)\k)\é
] —d §i&i&kne—nin;nee
i(2m) Z(i,j,—k,é)ejz i A= Ae) /AN A Al (4.22)
3i —d §i&imnkne
3endy ; _
LRy QP m A AV AR

The Hamiltonian y4 is 4-homogeneous and real (it takes real values if £, = 7,
for each a). If m ¢ C, then by Lemma 4.5 x4 € 7, 2(1,1, 1), and by Lemma 2.11 and
(4.16) the time-one flow-map of this Hamiltonian, 7 = <I>)1<4 is a real holomorphic and
symplectic change of coordinates, defined in the y—mneighbourhood of the origin in
Y, for any v, <~ < 74 and a suitable positive p = p(m). The relation (4.12) implies
that on O, (1,2u) the norm of the hamiltonian vector field is bounded by Cy?. This
implies (4.17).

Since the Poisson bracket, corresponding to the symplectic form —idé A dn is
{F,G} =i{(V,F,V:G) —i(VeF,V,G), and since V) ho = A&, Ve ha = Agns, then
we calculate

{X4, hQ} = 2(271'>_d Z 515]5/654 + 1N MkNe

(g k0)eT VAidj Ak Ag

TN DR e /L (4.23)

(i.5,—k,0) €T VAirjAkAe

_ §iMne
2 R NP KL
ijknes VAN

(
Ll 11y A{ kL e}

_l’_

N W

Therefore the transformed quartic part of the Hamiltonian h, i.e. (hy + hy) o T,
equals

1
ho + (ha + {x4, ha})+({x4, ha} + / (1 —t){xa, {xa, ha + ha}} o B! dt)
0
=hy + (24 + q3) + 70

with z4 and qﬁ’ as in the statement of the proposition and

1
8= {uaha) + [ (1= Dl fxasba + ) o @8t
0

The reality of the functions z; and ¢j follow from the explicit formulas for them,
while the inclusion of these functions to 7, 2(1,1,1) and the estimate (4.19) for any
0 < ¢/ < p hold by Lemma 4.5 and (4.12).
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To verify (4.20) we first note that {4, h4} is a 6-homogeneous function, belonging
to 7,,2(1,1,1) =: 7 by (4.13). It satisfies the estimate in (4.20) by (4.12). Next,
{x4, ha} is a 4-homogeneous function, given by (4.23). By Lemma 4.5 it belongs to 7.
The function {x4, ha} is 6-homogeneous and belongs to 7 by (4.13). So { x4, { x4, ha+
ha}} is a sum of a 6- and 8-homogeneous functions, belonging to 7 by (4.13). Now
the estimate (4.20) for the second component of 7§ follows from (4.16), Lemma 2.11
and (4.12).

Finally, the estimate (4.21) follows by applying the argument above to homo-
geneous components of h>5 and noting that the obtained sum converges, if p is
sufficiently small. We skip the details. O

Clearly T,(v,1,1,7) C Oy(1,p) if v < C71u? (see (4.3)). Due to (4.17), if
¢ eT,y(r,1/2,1/2,7) and v, < 7 < 7y, then [[751(¢) = (||, < C'(m)vs. Therefore

Til(Tp(Va 1/27 1/27 7)) - T,0<V7 17 17 7) - O’Y(lv /'L)a (424)
provided that v < C7!pu? v, < v <+, and p € [c,, 114,

4.3 Normal form, corresponding to admissible sets .A.  Everywhere below
in Sects. 4, 5 the set A is assumed to be admissible in the sense of Definition 1.1.

In the domains T, = T,(v, 0, i1,y) we pass from the complex variables ({,,a €
A), to the corresponding complex action-angles (I, 6,), using the relations

éa = \/jaeieav Na = \/jaeiiea a€ A (425)

By T£’0 = Tf;’g(y, o, t,7y) we will denote a domain T,(v, o, it,7y), written in the
variables (I,6,&,,m,), and will denote by ¢ the corresponding change of variables,

vi T =T, (1,0,&,nc) — C. (4.26)

Thus, ¢ 'T,, 4 = {(1,0,0,0) : I =vp,0 € T"}.

The Hamiltonian z4 contains the integrable part, formed by monomials of the
form &;&;nim; = 1;1; that only depend on the actions I,, = §,m,, n € Z%. Denote it
zzr and denote the rest z, . It is not hard to see that

2foL= 2(2@—‘1 > - 35“)31;; (4.27)
leA, keZd

To calculate z; , we decompose it according to the number of indices in A: a
monomial §&;nene isin z; " (r =0,1,2,3,4)if (¢, 4, —k, —¢) € J and {7, j, k, (}NA =
r. We note that, by construction, z;° = 2z, = ()

Since A is admissible, then in view of Lemma 4.4 for m ¢ C the set z; * is empty.
The set z; > is empty as well:

LEMMA 4.7. If m ¢ C, then 2, = 0.
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Proof. Consider any term &&nine € z4_3, ie. {i,7,k ¢} N A = 3. Without lost of
generality we can assume that i,j,k € A and ¢ € L. Furthermore we know that
i+j—k—20¢=0and {|i,|j]} = {|k],|¢]}. In particular we must have |i| = |k| or

|7] = |k| and thus, since A is admissible, i = k or j = k. Let for example, i = k.
Then |j| = |¢|. Since i + j = k + ¢ we conclude that ¢ = j which contradicts our
hypotheses. O

Recall that the finite set £y C £ was defined in (1.20). The mapping
C:Ly— A a—L(a) e Aif |a| = |l(a)], (4.28)
is well defined since the set A is admissible. Now we define two subsets of L; x Ly:

(L x Ly)y ={(a,b) € Ly x Ly |l(a)+L(b) =a+Db}, (4.29)
(Lyx Ly)- ={(a,b) € Ly x L | a#band l(a) —{(b) =a— b}. (4.30)

EXAMPLE 4.8. If d = 1, then {(a) = —a and the sets (L x Lf)+ are empty. If d
is any, but A is a one-point set A = {b}, then L is the punched discrete sphere
{a € 79| |a| = |b|,a # b}, £(a) = b for each a, and the sets (L£; x L)+ again are
empty. If d > 2 and |A| > 2, then in general the sets (L¢ x L)+ are non-trivial. See
in “Appendix B”.

Obviously
(Lfx L)y N(Lyx L) = 0. (4.31)

For further reference we note that

LEMMA 4.9. If (a,b) € (Ly x Ly)4+ U (Ly x Ly)_ then |a| # [b|.

Proof. If (a,b) € (L x Lf)+ and |a| = |b| then ¢(a) = £(b) and we have
la+b| = [26(a)] = 2la| = |a] + [b

which is impossible since b is not proportional to a. If (a,b) € (L x Lf)_ and
la| = |b| then ¢(a) = £(b) and we get a — b = 0 which is impossible in (L x L¢)_. O

Our notation now agrees with that of Sect. 2.1, where Z = Z? is the disjoint
union Z¢ = AU L § U Loo. Accordingly, the space Y, = Y.z« decomposes as

Y’y = Y.A 2] Y[,f 2] Y’)/[,oo7 Y’Y = {C = (CA? Cfa COO)}? (432)

where Y4 = span {(s, s € A}, etc. Below in this Section and in Sect. 5, the domains
O. (o, 12, 1) and O (o, ), as well as the corresponding function spaces, refer to Z
as above.
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LEMMA 4.10. For m ¢ C the part z; > of the Hamiltonian z; equals

Z Ee(a)Se) M + Me(a)Mev)SaSh

3(2m)~¢ < o

(a,b)e(LyxLy)t

+2 Y W) (4.33)

Ao\
(ab)E(LyxLy)_

Proof. Let &§&;nrne be a monomial in 24_2. We know that (4,7, —k,—¢) € J and
{li], 171} = {Ikl, |¢]}. If i,5 € Aor k,{ € A then we obtain the finitely many mono-
mials as in the first sum in (4.33). Now we assume that i,/ € A and j,k € £. Then

we have that, either |i| = |k| and |j| = |¢| which leads to finitely many monomials
as in the second sum in (4.33). Or i = ¢ and |j| = |k|. In this last case, the zero
momentum condition implies that j = k which is not possible in z; . O

4.4 Eliminating the non integrable terms. For ¢ € A we introduce the
variables (I,,0q,(c) as in (4.25), (4.26). Now the symplectic structure —id¢ A dn
reads
— > " dly ANdO, — idEp A dy. (4.34)
acA
In view of (4.27), (4.18) and Lemma 4.10, for m ¢ C the Hamiltonian h, trans-
formed by 7 o ¢, may be written as

3 I
horor=(wI)+) s +52m) 7" D (4-350k) £k

sel teA, keZd A
_ Eoa)Ee)Mab + Me(a)Me()Salt
paml Y b
(@b)e(LrxLs)+ artb

+9 Z Eao(v)Me(a)

3 0
WYY | gty

(ab)e(LexLy)-

where 7§ = h>soTor+7rJ01 (recall that w = (Aa, a € A)). The first line contains the
integrable terms. The second and third lines contain the lower-order non integrable
terms, depending on the angles 6; there are finitely many of them. The third line
also contains the remaining high order terms, where ¢j is of total order (at least) 4
and of order 3 in the normal directions (, while rg is of total order at least 5. The
latter is the sum of r§ o ¢ which comes from the Birkhoff normal form procedure
(and is of order 6) and h>5 o 7 o ¢ which comes from the term of order > 5 in the
nonlinearity (1.2). Here I is regarded as a variable of order 2, while 6 has zero order.
The terms qi o+ and rg should be regarded as a perturbation.

To deal with the non integrable terms in the second and third lines, following
the works on the finite-dimensional reducibility (see [Eli01]), we introduce a change
of variables

W (1,0,€,7) — (1,0,€,n),



1630 L. H. ELIASSON ET AL. GAFA

symplectic with respect to (4.34), but such that its differential at the origin is not
close to the identity. It is defined by the following relations:

I, = fé - Z|a|:|g|7 atl gaﬁ(h 0 = éﬂ e A;
§a = gaeiei'(a)a Na = ﬁae_wk("') ac ﬁf; §a = gav Na=1Ta @€ Loo.

For any (I, 6, 5) € Tg’a(y, o, jt,7) denote by y = {y;,l € A} the vector, whose
[-th component equals y; = Zla\zll\ astl &aTla- Then
1T —vp| < [T —vpl+ 1yl < v+ Y |€alal < 260p2°. (4.35)
aeﬁf

This implies that

1
+1 1,0 1 1,0 11 _.ml,0
U <Tp (V,2,2\/§,7>> cT,” (v,35,57) = T, (4.36)

The transformation W is identity on each torus {(/,0,(z) : I =const, 0 € T", (z =
0}. Writing it as (I,60,(¢) — (I,60,() we see that

o — L) < [I¢cl2 a€ A, =0 and  |Cclly = ¢zl (4.37)

and that (¢,7) = o(I,0,(,) satisfies

&= VI =\l 10w 0(¢), 1A (438)

Accordingly, dropping the tildes, we write the restriction to Tf)’e of the trans-
formed Hamiltonian h! = ho71o10 W as

1

1 _ —d
h _<W>I> + Z )\afana + 6(277) Z W(IZ - Z gana)gknk
a€l LeA, kel lal=||
aeﬁf
3 _ 4— 36
—|—§(27I‘) d Z TM(IZ_ Z gana)(Ik_ Z fana)
(kEA k lal=¢| |a|=]k|
aellf ae[lf
NINAY)
—d £(a)LE(b)
+3(2m) > Ty el &)

(a,b)€(LyXLy)+

_ NI , . ,
D D w e AT L A
(a,b)E(LyxLy)_ @

Here ¢; and Q" are the function ¢} and r?, transformed by ¥, so the former
satisfy the same estimates as the latter, while rél is a function of forth order in the
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normal variables. The latter comes from re-writing terms like §yq)&r(v)Map, using
(4.38) and expressing 7,, 1 via the tilde-variables. Or, after a simplification:

4
Wt = (w,I) + > acc.. Aaalla + 5 ( ™))" ZZ keA )\Miklzlk

B 2—34,
3(2m)~? (2 Ytea, acc. mxleSalla = Xpea, acr, (Mi‘lj g‘m“)
_ Il{ a II/, b
3(2m) ™ X aye(e, <L), %(%”b t&as)
(2m)

— A/ Loca) L ’ ’ _
6(2m dZ(a,b)e(focf), o Camy +af +rd v Y2

_l’_

(4.39)

+ +

We see that the transformation ¥ removed from h o 7 o ¢ the non-integrable
lower-order terms on the price of introducing “half-integrable” terms which do not
depend on the angles 6, but depend on the actions I and quadratically depend on
the finitely many variables {4, 7, with a € Ly.

The Hamiltonian h o 7 o 1 o W should be regarded as a function of the variables
(1,0,(r). Abusing notation, below we often drop the lower-index £ and write (y =

(Ec,me) as ¢ = (§,m).

4.5 Rescaling the variables and defining the transformation ®. Our aim
is to study the transformed Hamiltonian h! on the domains TI o = T] 6( v, %, ﬁ, v),

0 <7 <y (see (4.36)). To do this we re-parametrise points of Tp by mean of the
scaling

Xp : (7:7 é? g?ﬁ) = (1797§>77)> (440)
where T=vp+vi, 0=0, &=\wvE, n=wi. Clearly,
Xo : Oy(3. 412, ps) — TL?

for 0 <y < 4, where p, is defined in (4.4), and in the new variables the symplectic
structure reads

—v Y drAdly —ivY_ dé, Adi,.

leA a€L

Denoting
¢ =,=7010WVo0 Y,

we see that this transformation is analytic in p € D. In view of (4.37), ( = (§,71) =
(7,0, () satisfies

¢ =Nl < o (7 + ICl), ¢ = (Vope?, yope?, o).

This relation and (4.17) imply (4.6), so the assertion (i) of the proposition holds.
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Dropping the tildes and forgetting the irrelevant constant v(w, p), we have

ho®(r,0,0) =v [<w, ) 4 Yuer Aabanta + (2m) ( 83 e S0k oy

(2—38¢,1a1)

1
+6 Z(EA, a€Llo mpzzﬁaﬁa -3 ZZEA, acLly . Pe vEalla

+ 3 Z(a,b)e(ﬁle:f) pZ()(\l)Apr(b) (nanb + fagb)

62 p)e( yx9)- LS )]
+ ((q4 +T +V_1/2 )(I 9 f()) |I:1/p+ura
where ¢ = (¢ = (Ca)aeﬁa Ca = (éaana% and Cf = (Ca)aeﬁf' So,
v ho® =hy+ f,

where f is the perturbation, given by the last line in (4.41),

f=v ((qi” ol Y2 4) (1,0,0'%¢ )) | 1=vpturs

(4.41)

(4.42)

(4.43)

and ho = ho (1,&,m; p,v) is the quadratic part of the Hamiltonian, which is indepen-

dent from the angles 0:
h2 = (Q,r) Z Aabana + V(K (P)Cf,Cf>~

a€Lo

Here Q = (Q)pea with

3(4 — 36,4
Qk:Qk(PW):wk‘i‘VZM]fPl? M;f=((27r)d/\)\),
teA kAt
—d
Ag = Aa(p, V) = Mg + 61(21) ZM
le A

and K (p) is a symmetric complex matrix, acting in the space

Yz, = {¢r} = €41,

such that the corresponding quadratic form is

<K(p)CfaCf>:3(27T)*d( > Wﬁe&na

LeA, aeﬁf

N Z \/Pe(a)+/Pe(b)

N (Mam + £ap)

(a,b)e(LyxLy)+
F\//T
2> oy el )
(ab)e(LyxLy)_

Note that the matrix M in (4.44) is invertible since

det M = 3™(2m) ™" (e a M)~ det (4 — 3001), e 4 7 0.

(4.44)

(4.45)

(4.46)

(4.47)
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The explicit formulas (4.44)—(4.47) imply the assertions (ii) and (iii).

The transformations ¥ o x, and 7 o ¢ both are real if we use in the spaces Y,
and Y, o the real coordinates (pq, qq), see (1.7). This implies the stated “conjugate-
reality” of ®,,.

It remains to verify (iv). By Proposition 4.6 the function f belongs to the class
T, 2(3, 12, jus). Since the remainder f has the form (4.43) then in view of (4.19)-
(4.21) for (r,0,() € Oy (5, 42, pus) it satisfies the estimates

1< Cr, IIVeflly < Cr, IVEfI2 < Ov.

Now consider the f7-component of f. Only the second term in (4.43) contributes
to it and we have that

T+ IV STy + 192, < CvP/2,

This implies the assertion (iv) of the proposition in view of (4.10) and (4.11).

We will provide the domains (’)7(%, uz) C (’)7(%, uz,,u,*) ={(r,0,¢,n)} with the
symplectic structure — Zee adre NdBy — iy acre @€a N dng. Then the transformed
Hamiltonian system, constructed in Proposition 4.1 has the Hamiltonian, given by
the r.h.s. of (4.5).

5 The Birkhoff Normal Form II

In this section we shall refine the normal form (4.5) further. We shall construct a
p-dependent transformation which diagonalises the Hamiltonian operator (modulo
the term f) and shall examine its smoothness in p. So here we are concerned with
analysis of the finite-dimensional linear hamiltonian operator iJ K (p) defined by the
Hamiltonian (4.47). To do this we will have to restrict p to some (large) subset
Q C D = [c,, 1] In this section and below c, is regarded as a parameter of the
construction, belonging to an interval (0, %co], where ¢p > 0 depends on m and on
the constants in (4.1). This ¢p is introduced in Lemma 5.4 and is fixed after it. The
parameter ¢, will be fixed till Sect. 10.2 (the last in our work), where we will vary
it.

In this section we shall also shift from the conjugate-reality to the ordinary reality,
thus restoring the original real character of the system.

Theorem 5.1. There exists a zero-measure Borel set C C [1,2] such that for any
admissible set A and any m ¢ C there exist real numbers v4 > v, = (0,my + 2)
and 0y, 1y, co > 0, where ¢y, 0By, V9 depend on m, such that, for any 0 < ¢, < ¢,
0<v <y and0 < By < [ there exists an open set QQ = Q(cx, fu,v) C [cs, 114,
increasing as v — 0 and satisfying

meas([c,, 1]N\Q) < CvP#, (5.1)

with the following property.
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For any p € @ there exists a real holomorphic diffeomorphism (onto its image)

q)p : O’Y* (%auz) - T,D(Va 17 1)7*)7 Hsx = 2?;57 (52)

which defines analytic diffeomorphisms ®, : O (3, p2) — Ty, 1,1,7), v < v < 7,

such that

(I)z (df A dT]) =vdraNdis + vdpe Ndgg, (5.3)

and, up to a constant,

L ho ®,(r,0,pc,qc) = (Up),7) + 5 Dacr. Malp) (P2 + q2) (5.4)
+5 SperF Mo (0)(0f + a3) + V(K (p)Cr, Cr) + (7,6, Cci p), '

where F = F, C Ly (only depending on the connected component of () containing
p), and h is the Hamiltonian (1.11) + (1.12). ®, satisfies:

(i) ®, depends smoothly on p and

| @, (r,0,&c,n2) — (/rpeos(8), /vpsin(9), /vpée, /rpne) |l

<C (ﬁ\r\ + Vv llEc,ne)ll, + ,,) —B (5.5)

for all (’I”, 07557775) S O"/(%?/‘Lz) N {9 rea]} and all v, <y < Vg5

(ii) the vector 2 and the scalars Ay, a € Lo, are affine functions of p, explicitly
defined (4.44), (4.45);

(ili) the functions Ay(p), b € Lf\F, are smooth in @,

1Al i) < le/f’g#’g(j)% Vj >0, (5.6)

where 0 < 3(1) < 8(2) < ..., and satisfy (5.38). In some open subset of [c,, 1]4
they also satisty (5.29);
(iv) K is a symmetric real matrix that depends smoothly on p € @, and

sug 102K (p)|| < Civ=P#PU) 5 >0 (5.7)
peE

the set F = F,, is void for some p (in which case the operator K (p) is trivial);
(v) the eigenvalues {£ilA,,a € F} of JK are smooth in Q, satisfy (5.6) and

inf |SAq(p)| > C %%, Va e F; (5.8)
peEQ

(vi) There exists a complex symplectic operator U(p) such that
U(p) 'K (p)U(p) = idiag{+A,(p),a € F};
the operator U(p) smoothly depends on p and satisfies

Szg(uagwmu+HazU<p>*1u>scjv*ﬁ#ﬂ@, Vj > 0. (5.9)
P
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(vii) f belongs to Ty ,—2.0(%, p2) and satisfies
[z < Cv= Py, \fT\l/mg < OB+ 312, (5.10)
Vg:2,Q Y9:2,Q

The set @) and the matrix K(p) do not depend on the function G (having the
form (1.2)). The constants C,C; are as in (4.1), while the exponents ¢, ¢ and ((j)
depend on m (we recall (4.1)).

REMARK. 1. By (5.3) the transformation ®, transforms the beam equation, writ-
ten in the form (1.10), to a system, which has the Hamiltonian (5.4) with
respect to the symplectic structure drq A df 4 + vdpe A dqr.

2. We also have ®,(0(3,42)) C Tp(v,1,1,7) for v <y < v,.

The remaining part of this section is devoted to the proof of this result.

5.1 Matrix K(p). Recalling (4.8) and (4.2), we write the symmetric matrix
K(p), defined by relation (4.47), as a block-matrix, polynomial in
VP = (V/Pys---5/p,). We write it as K(p) = K%(p) + K™4(p). Here K% is the
block-diagonal matrix

d — A; 0 /J’(aap)
Kp) = diag <<u<a,p> 0o ) L) (5.11)
wa,p) = Cu (3 pua)a® = X" Liearh '), Cu=3(2m)%

Note that!?
p(a, p) is a function of |a| and p. (5.12)

The non-diagonal matrix K™/? has zero diagonal blocks, while for a # b its block
K™4(p)b equals

Pl(a)Pi(b) 10} o 01 _
e YR () @+ (1) v (@),

X+(a,b) _ {1’ (a,b) € (‘Cf X ‘Cf)Jra

where

0, otherwise,

and x~ is defined similar in terms of the set (L¢ x Lf)_. In view of (4.31),

X+(a7 b) ’ X7<CL, b) =0.
Accordingly, the Hamiltonian matrix H(p) = i.JK (p) equals (H%(p) +H"/%(p)),

where
0
Hd —idi <<M(CL,P) >’ €£>7
B o e )t
10

(5.13)
/U (p)} = i, PSP | T (a,b) + <0 _1> X (a,0)]

14 Here and in similar situations below we do not mention the obvious dependence on the parameter
m € [1,2].
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Note that all elements of the matrix H(p) are pure imaginary, and
if (L¢x L)y =0, then —iH(p) is real symmetric, (5.14)

in which case all eigenvalues of H(p) are pure imaginary. In “Appendix B” we show
that if d > 2, then, in general, the set (L; x L) is not empty and the matrix H(p)
may have hyperbolic eigenvalues.

EXAMPLE 5.2. In view of Example 4.8, if d = 1 then the operator H"™/¢ vanishes. We
see immediately that in this case H? is a diagonal operator with simple spectrum.

Let us introduce in Ly the relation ~, where
a~b ifand only if a=10 or (a,b) € (Lyx L)L ULy x Ly)_. (5.15)
It is easy to see that this is an equivalence relation. By Lemma 4.9
a~b, a#b = l|al #|b. (5.16)

The equivalence ~, as well as the sets (Ly x Lf)+, depends only on the lattice
7% and the set A, not on the eigenvalues A\, and the vector p. It is trivial if d = 1
or |[A| =1 (see Example 4.8)) and, in general, is non-trivial otherwise. If d > 2 and
|A| > 2 it is rather complicated.

The equivalence relation divides £y into equivalence classes, Ly = ﬁ} u-- -UE?/I .
The set L is a union of the punched spheres X, = {b € Z% | |b| = |a|,b # a}, a € A,
and by (5.16) each equivalence class Egc intersects every punched sphere 3, at at

most one point. 4
Let us order the sets E;c in such a way that for a suitable 0 < My < M we have

- Egc‘: {b;} (for a suitable point b; € Z9) if j < My;
*’ﬁ;‘:njEQifj>M0.
Accordingly the complex space Yz, (see (4.32)) decomposes as

Ye, =Y @ oy vy = span{(,s e L)}, (5.17)
Since each (4,5 € Ly, is a 2-vector, then
dimY7? = 2|L4| = 2n;, dimYg, =2|Lf] = Qan := 2N.
j=1
So dimY#7 = 2 for j < My and dim Y7 > 4 for j > M. In view of (5.16),
L4 =n; < |A] V] (5.18)

We readily see from the formula for the matrix H(p) = iJK(p) that the spaces
Y /7 are invariant for the operator H(p). So

H(p) =H'(p) @ dHY(p), H =1+ HI "7, (5.19)
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where HJ operates in the space Y77, so this is a block of the matrix H(p). The

operators H?¢ and H7™? are given by the formulas (5.13) with a,b € 5;. The

Hamiltonian operator H’(p) polynomially depends on /P, 80 its eigenvalues form
an algebraic function of p. Since the spectrum of H/(p) is an even set, then we can
write branches of this algebraic function as {+iA{(p), ..., +iA%,(p)} (the factor i
is convenient for further purposes). The eigenvalues of H(p) are given by another
algebraic function and we write its branches as {*iA,,(p),1 < m < N = [Ly]}.
Accordingly,

{£M1(p), - FAN(P)} = Ujen{£AL(p), k <}, (5.20)

and Aj = A{ for 7 < M.

The functions Ay, and A, are defined up to multiplication by +1.1 But if j < My,
then E; = {b;} and H/ = H'4, so the spectrum of this operator is {£iju(bj, p)}, where
(s, p) is a well defined analytic function of p, given by the explicit formula (5.11).
In this case we specify the choice of A7:

if £} = {b;}, we choose A](p) = p(bj, p)- (5.21)

So for j < My, Aj(p) = p(bj, p) is a polynomial of p, which depends only on |bj]
and p.
Since the norm of the operator K(p) satisfies (4.17), then

IA(p)| <Cy Vp, Vr, Vj. (5.22)

EXAMPLE 5.3. In view of (5.18), if A = {a.}, then all sets ]L’]f| are one-point. So
My = M = N and

{£AM1(p), .., £AN(P)} = {£n(a,p) | a € 2% |a| = |as|,a # a.}.

In this case the spectrum of the Hamiltonian operator H(p) is pure imaginary
and multiple. It analytically depends on p.

Let 1 < j. <nand Dé* be the set
Dé* ={p=(p1,.-.om) | e« <p<co if l#j. and 1—¢o<p; <1}, (5.23)
where 0 < ¢, < %CO < 1/4. Tts measure satisfies
meas D{)* > %cg.

This is a subset of D = [¢4, 1]™ which lies in the (Const ¢g)-vicinity of the point
px = (0,...,1,...,0)in [0, 1]", where 1 stands on the j.-th place. Since K"d(p,) =0,
then K (p.) = K%(p). Consider any equivalence class E?c and enumerate its elements

15 More precisely, if Ay is not real, then well defined is the quadruple {£Ax, £Ar}; see below
Sect. 5.3.
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as b{, Cee bZL]. (n; < n). For p = p, the matrix H’(p,) is diagonal with the eigenvalues
:l:iu(bjrl, p«), 1 < r < nj. This suggests that for ¢ sufficiently small we may uniquely
numerate the cigenvalues {+iA%(p)} (p € D%*) of the matrix H’(p) in such a way
that AZ(p) is close to u(bl, ps). Below we justify this possibility.

Take any b € L and denote £(b) = a, € A. If ay = a;,, then

p(b, pi) = C. <2>\;i -~ A;ﬁ) =107 (5.24)
If ap # a;,, then
(b, pi) = —CAp e (5.25)

If m € [1,2] is different from 4/3 and 5/3, then it is easy to see that 2\, # £\, for
any a,a’ € A. By (3.14) this implies that for m € [1,2]\C and for b,0’ € L such
that |b| # |b'| we have

|14(b, )| = 267 (m) >0, |u(b, pu) + p(t, pa)| = 2¢% (m),
and
(b, p)| = #(m) >0, |u(b, p) £ u(V, p)| = #(m) for peDf, (5.26)

if ¢ is small. In particular, for each j the spectrum iiu(bﬁ,p*), 1 < r < n; of the
matrix H7(p,) is simple.

LEMMA 5.4. If ¢y € (0,1/2) is sufficiently small,'S then there exists ¢ = ¢°(m) > 0
such that for each r and j, Al.(p) is a real analytic function of p € D}, satisfying

M) (p) — u(bl,p)| < Cyeo Vpe Dy, (5.27)
and
M () > °(m) > 0 and [N(p) £ ()] > °(m) Vr £l Vi, Vpe Dy,
(5.28)
|AZ (p) + A2 (p)| > (m) Vji,j2,m1,72 and p€ Dg*. (5.29)
In particular, ‘ ‘ '
A #£0 Yr; A #EA Vr#£l (5.30)

The estimate (5.27) assumes that for p € Dg* we fix the sign of the function AJ
by the following agreement:

Al(p) €R and signAl(p) = signu(bl,p) Vp € Dy, V1 < j. <mn, ¥r,j, (5.31)

see (5.24), (5.25).

Below we fix any ¢y = ¢o(A,m,g(-)) € (0,1/2) such that the lemma’s assertion
holds, but the parameter ¢, € (0, %co] will vary at the last stage of our proof, in
Sect. 10.2.

16 Tts smallness only depends on A, m and g(-).
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Proof. Since the spectrum of H’(p,) is simple and the matrix H”(p) and the numbers
u(b?, p) are polynomials of \/p, then the basic perturbation theory implies that the

functions AZ (p) are real analytic in \/p in the vicinity of p, and we have

(bl pe) = (bl p)| < CV/eo, A (ps) = M (p)| < C/eo.

So (5.27) holds. It is also clear that the functions A (p) are analytic in p € Dg*.
Relations (5.27) and (5.26) (and the fact that u(b, p) depends only on |b| and p)
imply (5.28) and (5.29) if ¢g > 0 is sufficiently small. 0

REMARK 5.5. The differences |2\, — Ay| can be estimated from below uniformly in
a,b in terms of the distance from m € [1,2] to the points 4/3 and 5/3. So the con-
stants ¢ and ¢ depend only on this distance, and they can be chosen independent
from m if the latter belongs to the smaller segment [1,5/4].

Contrary to (5.29), in general a difference of two eigenvalues Afnll —A{i may vanish
identically. Indeed, if j, k < My, then EIJ‘é and Ezc are one-point sets, E’} = {bx} and
£ = {b;}, and A = p(bj,-), AF = p(b,-). So if |b;| = [byl, then A] = A} due to
(5.12). In particular, in view of Example 5.3, if n = 1 then each [,; is a one-point set,
corresponding to some point b; of the same length. In this case all functions Ag(p)
coincide identically. But if j < My < k, or if max j, k > My and the set A is strongly
admissible (recall that everywhere in this section it is assumed to be admissible),

then Af;ll — Af;i # 0. This is the assertion of the non-degeneracy lemma below, proved
in Sect. 5.4.

LEMMA 5.6. Consider any two spaces Y/ and Y/ such that ri < ro and ry > M.
Then
A;l % iA;Z Y (r1,4) # (re, k), (5.32)

provided that either r1 < My, or the set A is strongly admissible.

We recall that for d < 2 all admissible sets are strongly admissible. For d > 3
non-strongly admissible sets exist. In “Appendix B” we give an example (B.2) of
such a set for d = 3 and show that for it the relation (5.32) does not hold.

5.2 Removing singular values of the parameter p. We recall that the
hamiltonian operator H(p) equals iJK (p); so {A](p)} are the eigenvalues of the real
matrix JK(p). Accordingly, the numbers {A{ (p),1 <1 < ny}, are eigenvalues of
the real matrix $1H7(p) =: L7(p). Due to Lemma 5.4 we know that for each j the
eigenvalues {:I:A{C (p), k < nj}, do not vanish identically in p and do not identically
coincide. Now our goal is to quantify these statements by removing certain singular
values of the parameter p. To do this let us first denote Pi(p) = ([[,Al(p)* =
+det L7 (p) and consider the determinant

Plp) =[] P (p) = + det K (p).
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Recall that for an R x R-matrix with eigenvalues 1, ..., kg (counted with their
multiplicities) the discriminant of the determinant of this matrix equals the product
Hi#(/ﬁ:l — ;). This is a polynomial of the matrix’ elements.

Next we define a “poly-discriminant” D(p), which is another polynomial of the
matrix elements of JK (p). Its definition is motivated by Lemma 5.6, and it is dif-
ferent for the admissible and strongly admissible sets A. Namely, if A is strongly
admissible, then

—for r = 1,..., My define D"(p) as the discriminant of the determinant of the
matrix L' (p) & LM+ (p) @ - & LM (p);
~set D(p) = D'(p) -~~~ Do (p).

This is a polynomial in the matrix coefficients of JK(p), so a polynomial of ,/p.
It vanishes if and only if A7, (p) equals AL (p) for some r,l,m and k, where either
r 0l >My+1land m#kifr=10,orr < Myand m = 1.

If A is admissible, then we:

— for I < My, r > My + 1 define D" (p) as the discriminant of the determinant of
the matrix L!(p) @ L"(p);

= set D(p) = [Li<ary syt D' (p).

This is a polynomial in the matrix coefficients of JK (p), so a polynomial in /p. It
vanishes if and only if A7 (p) equals £Al (p) for some r < My, some [ > My + 1 and
some k, or if Al (p) equals £A! (p) for some | > My + 1 and some k # m.

Finally, in the both cases we set

M(p)= T u.p) T (b, p) = p(¥',p)).
bel; b L,
[b]#[']
This also is a polynomial in /p which does not vanish identically due to (5.26).
The set

X ={p| P(p) D(p) M(p) = 0}

is an algebraic variety, if written in the variable ,/p (analytically diffeomorphic to
the variable p € [c., 1]4), and is non-trivial by Lemma 5.4. The open set D\ X is
dense in D and is formed by finitely many connected components. Denote them
Q1,...,Qr. For any component (; its boundary is a stratified analytic manifold
with finitely many smooth analytic components of dimension < n, see [KP02]. The
eigenvalues A;(p) and the corresponding eigenvectors are locally analytic functions
on the domains @, but since some of these domains may be not simply connected,
then the functions may have non-trivial monodromy, which would be inconvenient
for us. But since each Q) is a domain with a regular boundary, then by removing
from it finitely many smooth closed hyper-surfaces we cut @; to a finite system of
simply connected domains Qll, e Q?’ such that their union has the same measure
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as @; and each domain Q' lies on one side of its boundary.!” We may realise these
cuts (i.e. the hyper-surfaces) as the zero-sets of certain polynomial functions of p.
Denote by Ri(p) the product of the polynomials, corresponding to the cuts made,
and remove from Q;\X the zero-set of Ry. This zero-set contains all the cuts we
made (it may be bigger than the union of the cuts), and still has zero measure.
Again, (Q;\X)\{zero-set of R} is a finite union of domains, where each one lies in
some domain Q).

Intersections of these new domains with the sets Dg* (see (5.23)) will be important
for us by virtue of Lemma 5.4, and any fixed set Dj*, say D}, will be sufficient for
our analysis. To agree the domains with D} we note that the boundary of D§ in D
is the zero-set of the polynomial

Ra(p) = (p1 — (1 = co))(p2 — co) - - - (pn — c0),
and modify the set X above to the set X,

X ={peD|R(p) =0}, R(p)=P(p)D(p)M(p)Ri(p)Ra(p).

As before, D\X is a finite union of open domains with regular boundary. We still
denote them @;: .
D\X=Q:1U---UQy, J<oc. (5.33)

A domain @) in (5.33) may be non simply connected, but since each @); belongs
to some domain @), then the eigenvalues A,(p) and the corresponding eigenvectors
define in these domains single-valued analytic functions. Since every domain @Q); lies
either in D} or in its complement, we may enumerate the domains Q; in such a way
that

DONX =QU--UQy, 1<Ii<U. (5.34)

The domains Q; with [ < J; will play a special role in our argument.
Let us take ¢; = %c* and consider the complex vicinity D,, of D,

D, ={peCY||Spj| <c1, o —c1 < Rpj < 1+¢1 Vi€ A} (5.35)

We naturally extend X to a complex-analytic subset X¢ of D, (so X = X¢ND),
consider the set D, \X¢, and for any 6 > 0 consider its open sub-domain D¢, (4),

D.,(6) = {p € D, | [R(p)| > 6} € D\ X"

Since the factors, forming R, are polynomials with bounded coeflicients, then
they are bounded in D,,:

1Pllci(p,,) < Ch,-- s |1 Rellorp,,) < Ch (5.36)

17 For example, if n = 2 and Q; is the annulus A = {1 < p? + p3 < 2}, then we remove from A not
the interval {p2 = 0,1 < p1 < 2} =: J (this would lead to a simply connected domain which lies on
both parts of the boundary J), but two intervals, J and —J.
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So in the domain D, () the norms of the factors P,..., Ry, making R, are
bounded from below by (59, and similar estimates hold for the factors, making P,
D and M. Therefore, by the Kramer rule

I(TE) " (p)| < 1™t Wp € D, (). (5.37)

Similar for p € D, () we have
ML) = C16 ik, (5.38)
b )| 2 C718, b, p) — p¥ )] = €16 it bY € £y and o] £ ] . (5.39)

Besides, '
A7, (p) £ AL, (p)| > C716 where  (j,k1) # (r,k2) (5.40)

and if the set A is strongly admissible, then the index j is any and r > My + 1,
while if A is admissible, then either j < My (and so k; = 1) and r > My + 1, or
j =1 > My+1. The functions Aj(p) are algebraic functions on the complex domain
D.,(9), but their restrictions to the real parts of these domains split to branches
which are well defined analytic functions.
We have
meas(D\D,, (6)) < Co%, (5.41)

for some positive C' and [B4—this follows easily from Lemma D.1 and Fubini since R
is a polynomial in ,/p (also see Lemma D.1 in [EGK14]). Denote c2 = ¢1/2, define
set D, as in (5.35) but replacing there ¢; with co, and denote D, (d) = D, (6) N De,.
Obviously,

the set D, (26) lies in D, (§) with its C~1§-vicinity. (5.42)

Consider the eigenvalues +iAg(p). They analytically depend on p € D, (J), where
|Ak| < Cy for each k < N by (5.22). In view of (5.42),

l
IngAk(pN <05t VpeD,(26),1>0, k<N, (5.43)

by the Cauchy estimate.

5.3 Block-diagonalising and the end of the proof of theorem 5.1. We
shall block-diagonalise the operator iJK (p) for p € D, (§). By (5.19) this operator
is a direct sum of operators, each of which has a simple spectrum with eigenvalues
that are separated by > C~14. Let us denote one of these blocks by i.JK1(p). Let its
dimension be 2N and let 1(£,7) = (7,€). Notice that since iJK;(p) is “conjugate-
real” we have

1K) (p)I(2) = I(TK L (p)2).

Fix now a py € D¢, (d). Then, by (5.42) with ¢ replaced by ¢/2, for |p — po| <
C~164N the operator iJK1(p) has a single spectrum. Consider a (complex) matrix

U(p) = (21(p),-- -, 22n(p)),
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whose column vectors [|z;(p)|| = 1 are eigenvectors of iJ K1 (p). It diagonalises iJK:
U(p)~' (iJK1(p))U(p) = idiag {£A1(p), ..., £An(p)}. (5.44)

The operator U is smooth in p with estimates
sup (|05T (o) + 85U (p)~1|) < €567 v >0, (5.45)

P

and ]
inf |det(U(p))| > =%, (5.46)

P Co

for some 0 < 3(0) < B(1) < ---. See Lemma A.6 in [Eli98] and Lemma C.1 in
[EGK14].

Since the spectrum is simple, then the pairing (iJzx(p), z1(p)) = “i(p) (i) 2k (p)
is zero unless the eigenvalues of zx(p) and z;(p) are equal but of opposite sign.
We therefore enumerate the eigenvectors so that z2;_1(p) and 22;(p) correspond to
eigenvalues of opposite sign. If now 7;(p) = (iJ22j-1(p), 22;(p)), then, for each j,

655 < |det(U |det(TUiJU)| = H\m! <ml <1,

since the matrix elements of UiJU are (iJzp(p), z1(p)).
Replacing each eigenvector zy; by — L To; 72§, We can assume without restriction that
U verifies

555 < |z (p)| < Cos™® (5.47)

and (5.44)—(5.46) (for some choice of constants) and, moreover,
UiJ)U = J. (5.48)

Suppose now that some Aj, A; say, is real. Then zp and I(z1) are parallel, so
z9 = ial(z1) for some complex number o € C* satisfying the bound (5.47) (for
some choice of constants). Since (iJz1,22) = 1, we have that a = (Jz1,I(z1)) "t is
real, and, by eventually interchanging 21 and 2y, we can assume that o = 5% > 0.
Replacing now z1, z2 by 21, & F%2 We can assume without restriction that U verifies
(5.44)—(5.48) (for some choice of constants), and za = il(z1).

Suppose then that some Aj, A; again say, is purely imaginary. Then z; and I(z1)
are parallel, so z; = a(z1) for some unit a. Similarly, zo = $I(z2) for some unit 3.
Since (iJz1,22) = 1, we have that 1 = aB(iJI(21),1(22)) = af. Let now a = ~2,
and by replacing z1, zo by 721, %22 we can assume without restriction that U verifies
(5.44)—(5.48) (for some choice of constants), and z; = I(z1) and 22 = I(29).

Suppose finally that some A;, Ay say, is neither real nor purely imaginary. Then
—iA; also is an e1genvalue and, hence, equals to +iAs say. Let us assume it is iAo,

8 An example, considered in “Appendix B”, shows that quadruples of eigenvalues {+iA, +iA}
indeed may occur in the spectra of operators iJK.
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the other case being similar. Then z3 = aI(z1) for some unit «, and z9 = $1(z4) for
some 3 € C*, both satisfying the bound (5.47) (for some choice of constants). Since
(iJ21, 22) = (iJ23,24) = 1, a3 must be = 1. Let now a = 42, and by replacing 21, 23
by 4z1,723 and 29, 24 by %22, %24 we can assume without restriction that U verifies
(5.44)—(5.48) (for some choice of constants), and z3 = I(z1) and z4 = I(22).

Now we define a new matrix

Up) = (p1(p) 01(p) - pn(p) PN (p))
in the following way. If Ay is real, then we take
i ) 1 .
= ———=(21 +129), = ———=(21 — 122),
D1 \/5( 1 2), @ \/5( 1 2)
so that I(p1) = p1, I1(¢1) = ¢ and (iJp1,q1) = 1. We do similarly for all A; real.
If Ay is purely imaginary, then we take p; = 21 and ¢; = 22, and similarly for all
Aj purely imaginary. If Ay is neither real nor purely imaginary, and z; = I(23) and
zZ9 = I(Z4), then
(ot izs) (e — i)
= ———(z1 +iz3), =———(z —iz
n /2 1 3 p2 /2 1 3

and
i . 1 .
Q= —E(@ +izy), = —E(zz —izy),

similarly for all A; neither real nor purely imaginary.
Then the matrix U(p) verifies (5.45)(5.48) (for some choice of constants) and
the mapping
w = U(p)w

takes any real vector w into the subspace {I(w) = w}. By doing this for each
“component” iJK(p) of the operator (5.19) and taking the direct sum we find a
matrix U(p) which transforms the Hamiltonian of iJK (p) to the form

My Moo
%Zu(bj,p (pb +aq ) +* > A (pzj +Qz3j> %( (P)Ch ) > (5.49)
j=1 J =Mo+1

where (}, denotes the the remaining {(pbj , qu) : Moo+1 < j < N}. The Hamiltonian
operator J K (p) is formed by the hyperbolic eigenvalues of the operator iJ K (p).
Since Aq(p)éana is transformed to 1A (p) <pc2l + qﬁ) by a matrix U,, independent

of p, that verifies ‘U, (i.J,)U, = J, = J (see (1.7)) , the full Hamiltonian (4.5) gets
transformed to

(U0)s7) + § Caer. Aalp) (2 +Q§> + 33205 (s, 0) (8 + @2)
5580 A 0) (8, + @) + 3R ()G, )

plus the error term f(r,0,pz, qc; p) = f(r,0,Ec,nc; p).

(5.50)
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Note that in difference with the normal form (4.5), the variable (5 belongs to a
subspace of the linear space, formed by the vectors {(pa,¢a),a € Ly}, with the usual
reality condition.

We choose any subset 7 C Ly of cardinality |F| = N — My, and identify the
space, where acts the operator K(p), with the space Lr = {Cg: ={(pa,qa),a € .7-“}}
We denote the operator K (p), re-interpreted as an operator in Lz, as K (p). Finally,
we identify the set of nodes {1,..., My} with £L£\F, and write the collection of fre-
quencies {yu(bj,p),1 < j < Mo} U{A;(p), Mo+1 < p < Moo} as {Ay(p),b € LF\F}.
After that the Hamiltonian (5.50) takes the form (5.4), required by Theorem 5.1. We
denote by ﬂp the constructed linear symplectic change of variables which transforms
the Hamiltonian (4.5) to (5.4)

For convenience we denote

1/84 and ¢é=B(0)c (5.51)

¢ =
With an eye on the relation (5.41), for S4 > 0 and any v > 0 we choose § = 6(v) =
C®%P# . Then

CoP = 1P#, (5.52)

For any v > 0 we set

Q(cx, By, v) =D N D, (6(v)).

This is a monotone in v system of subdomains of D, and Q(c, By, v) / (D\f( )
as v — 0. In view of (5.41) the measures of these domains satisfy (5.1).

For p € Q(c«, By, v) the operator ép =, oflp transforms the hamiltonian v~ th
o (5.4). Re-denoting this transformation back to ®,, we see that the constructed
objects satisfy the assertions (i)-(v) and (vii) of the theorem. To prove (vi) we
recall (see (5.44)) that the operator U(p) (complex-)diagonalises one block of those,
forming the operator iJ K (p). Denote by U(p) the direct sum of the operators U(p),
corresponding to all blocks of iJK (p). It diagonalises the whole operator iJK (p).
Accordingly, the operator U(p) o ﬂ_l(p) diagonalises JK (p). Denoting it U(p) we
see that this operator satisfies the assertion (vi)

5.4 Proof of the non-degeneracy lemma 5.6. Consider the decomposition
(5.19) of the Hamiltonian operator H(p). To simplify notation, in this section we
suspend the agreement that |L7}| = 1 for r < My, and changing the order of the
direct summands achieve that the indices r; and rg, involved in (5.32), are r; = 1
and 7y = 2. For r = 1,2 we will write elements of the set E; as aj,1 < j <n, and

vectors of the space Y /" as

C = (Ca';- - (ga}'v 77a';->7 1< .] < n'l‘) = ((50/{7 77a’{)a ceey <§aZ,T ’ naﬁ,,,))‘ (553)

Using (4.8) and abusing notation, we will regard the mapping ¢ : Ly — A also
as a mapping £ : £y — {1,...,n}. Consider the points £(a}),... ,E(a}h) (they are
different by (5.16)). Changing if needed the labelling (4.8) we achieve that

{¢(ay),...,b(ap, )} > 1. (5.54)
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We write the operator H" as H" = iM", where
M (p) = JK" (p) = JE"(p) + JE"4(p) =: M"%(p) + M""/(p),

and the real block-matrices M7 ¢ = i~ 'H" 4 M""/4 = {~1H""/4 are given by (5.13).
Then {£A’(p)} are the eigenvalues of M"(p), and

r.p) 0
M) = dia <(u(aj,p) > | < .<n>7
where pi(aj, p) is given by (5.11).
Renumerating the eigenvalues we achieve that in (5.32) (with r; = 1,79 = 2)
we have A} = A} and A? = A?. As in the proof of Lemma 5.4, consider the vector
p« = (1,0,...,0). Let us abbreviate

pu(a, pi) = pla) Va,

where p(a) depends only on |a| by (5.12). In view of (5.13) M"(p.) = M"%(p,) and
thus Al(ps) = p(al) and A2(ps) = p(a?), if we numerate the elements of E} and E?

accordingly. As in the proof of Lemma 5.4, p(]a]|) equals %C*)\;f or —C’*)\g_(i{))\;{l.
Therefore the relation u(al) = +u(a?) is possible only if the sign is “+” and |ai| =
|a?]. So it remains to verify that under the lemma’s assumption

M(p) # Ailp) if |ay] = ladl. (5.55)

Since |ai| = |a3], then
fay) = U(a}) =:az, € A and  Aj(p.) = Af(ps) =2 A.

To prove that Al(p) # A2(p) we compare variations of the two functions around
p = ps. To do this it is convenient to pass from p to the new parameter y =
(Y1, .-+, Yn), defined by

yi =+/pj, Jj=1,...,n.

Abusing notation we will sometime write y,, instead of y;. Take any vector
z = (x1,...,2,) € R", where 1 = 0 and x; > 0 if j > 2, and consider the following
variation y(e) of y, = (1,0,...,0):

1 if j=1,
i(e) = 5.56
ZJJ( ) {Exj it j>2. ( )

By (5.28), for small € the real matrix M"(¢) := M"(p(e)) (r = 1,2) has a simple
eigenvalue Af(e), close to A. We will show that for a suitable choice of vector x the
functions Ai(g) and A3(e) are different. More specifically, that their jets at zero of
sufficiently high order are different.

Let r be 1 or 2. We denote A(e) = Aj(p(e)), M(e) = M"(p(e)) and denote
by M?(e) and M™?(e) the diagonal and non-diagonal parts of M(e). The matrix
M™4(e) is formed by 2 x 2-blocks
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n aj Ye(ap)Ye(ar) 0 1 ror 10 Y
MY e)) " = Co—=m (L ) x ek ah) + (L ) X (aka)) )
o Mo A 10 0-1

k
(5.57)
(note that if j = k, then the block vanishes).
Fore = 0, M(0) = M"(0) is a matrix with the single eigenvalue A(0) = pu(a}, p«),
corresponding to the eigen-vector ¢(0) = (1,0,...,0). For small ¢ it analytically
extends to a real eigenvector ((¢) of M (e) with the eigenvalue A(e), i.e.

We abbreviate ¢ = ¢(0), M = M(0) and define similar ¢,(,A, A ... etc, where
the upper dot stands for d/de. We have

M = M? = diag (u(ai), —p(ai), ... —play, ) , (5.58)
M4 =0. (5.59)
Since (M(g) — A(€))¢(e) = 0, then
(M(e) = Ale))¢(e) = =M(£)¢(e) + Ae)¢(e)- (5.60)
Jointly with (5.58) and (5.59) this relation with & = 0 implies that
(M4 — A)¢ = =M™ + AC. (5.61)

In view of (5.58) we have ((M? — A){,¢) = 0. We derive from here and from
(5.61) that

A= (MM, ¢) = 0. (5.62)

Let us denote by 7 the linear projection 7 : R?" — R?" which makes zero the
first component of a vector to which it applies. Then M? — A is an isomorphism of
the space TR?", and the vectors C and —MC + AC = M”/dC belong to TR?"". So we
get from (5.61) that

(= —(M— A)TTMm, (5.63)
where the equality holds in the space mR?". Differentiating (5.60) we find that
(M(e) = A(€))¢(e) = =M (e)¢(e) — 2M(e)¢(e) + Ale)¢(e) +2A(e)C(e).  (5.64)

Similar to the derivation of (5.62) (and using that (¢,¢) = 0 since |¢(e)] = 1),
we get from (5.64) and (5.62) that

A = (MC, Q) +2(MC,¢) = (MC,C) + 2((M — A) " M™4¢,H(M)C). (5.65)
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Since for each € and every j

d? d , d?
d?pj(@ = 2 (e) = 2273, dfgyl(@yj(g) =0,

and since (M¢,¢) = (M9, ¢), then

- 2, _ _ o
(M, C) = —p(at, p(e)) [e=o = Cdgl [ 3Aa)af, — 23 2| =tk (5.66)
j=2
Note that k1 does not depend on r.
Now consider the second term in the r.h.s. (5.65). For any a,b € L7 we see that
d%(yg(a) (€)Yew)(€)) le=0 is non-zero if exactly one of the numbers £(a), £(b) is a1, and
this derivative equals ), where ¢ € {a, b}, £(c) # a1. Therefore, by (5.57),

(Mn/dOa; = )\i*# (fg;» —773;> ,aj € LY,

o __ w(af,af) ro.r o __ w(ay,a}) + ro_r
é-a;. - Aot . X <a17 aj)? na;. - ar . X a17 aj )
: J

(5.67)

where ¢(af,a]) =0 and for j # 1
iL'g(aJr_) if j# = 1,
@(a{,a;) =4 Tj, if E(a;"-) =aq,
0 if jy #1, l(a]) # ar.

Since x*(a},af) = 0, then £, = 12, = 0.
In view of (4.31), at most one of the numbers g, 7g, is non-zero. By (5.67),

(R L e G (5.68)
aj aj#
where 53‘73 = 773‘73 =0 if j =1, and otherwise
W G R G B At R G
S g alal) — plap) )
aj J 1 Aay <N(aj) + M(a1)>
Here p(aj) = FON 2 if {(a}) = ar and p(a}) = —C*/\;lrl)\gll if £(af}) # ar.
Similar,
) o o o
(tMg)a; — \ (ga;.?na;) )
Clj#

so the second term in the r.h.s. of (5.65) equals

2
S G e G I )
2 2
e R I <a§) —plaf) p a;) + o (ay)

+
Il

ka(r) . (5.69)
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Finally, we have seen that

A (p(e)) = A (ps) + 3%kt + Le2ho(r) + O(®), 1 =1,2,

where k; does not depend on 7. Since a} ~ a for each r and each j (see (5.15)),
then for j > 1 at least one of the coefficients Xi(a’i, a;-) is non-zero. As xT-x~ =0,
then
(o) (o)
+ #0 Vr, Vj>1. (5.70)

p(ar) = p(a) (@) +puap)

We see that the sum, defining ko(7), is a non-trivial quadratic polynomial of the
quantities ¢(af, ag) if n, > 2, and vanishes if n, = 1.
The following lemma is crucial for the proof.

LEMMA 5.7. If the set A is strongly admissible and |a| = |b|, a # b, and x " (a,d’) #
0, xT(b,0') #0, or x " (a,d’) # 0, x~(b,0) # 0, then |a’| # |V/|.

Proof. Let first consider the case when xy* # 0.
We know that £(a) = £(b) =: a;,. Assume that |a'| = |V'|. Then {(a') = £(V') =: aj, €
A. Denote aj, +aj, = c. Then ¢ # 0 since the set A is admissible. As (a,d’), (b,b') €
(Ly x Ly)4, then we have |a;, —c| = |a—c| = |b—c|. As |aj,| = |a| = |b], then
the three points a;,,a and b lie in the intersection of two circles, one centred in the
origin and another centred in ¢ = a;, + a;,. Since A is strongly admissible, then
aj, Zc (see (1.19)). So among the three point two are equal, which is a contradiction.
Hence, |a'| # |V/| as stated.

The case x~ # 0 is similar. O

We claim that this lemma implies that
A(p(e)) # A2(p(e)) for a suitable choice of the vector z in (5.56), (5.71)

so (5.55) is valid and Lemma 5.6 holds. To prove (5.71) we consider two cases.
2 x?(ar)

Case 1: ju = 1. Then ¢(aj,a}) = Zy(ar)- Denoting )\CT Sz =t Zy(ay) We see that
k2(1) and ko(2) are linear functions of the variables z,,, ... ,JZgn.

(i) Assume that x~(af,a}) = 1 for some r € {1,2} and some j > 1. Denote

(a}) = aj.. Then j. # jy and

Za,
J*

D)= @ ey T

where ... is independent from z; . Now let ' = {1,2}\{r}, and find j' such
that €(a§:) = aj,. If such j' does not exist, then ka(r’) does not depend on
z;.. Accordingly, for a suitable x we have ka(r) # kao(r’), and (5.71) holds. If
ng = 1, then r = 1 and " = 2. So j’ does not exists and (5.71) is established.
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If j/ exists, then ny,ne > 2, so the set A is strongly admissible. By Lemma 5.7
X~ (a}, agf) = 0 since x~ (a7, a}) =1 and
T

la1| = lay |, laj| = |aj|. (5.72)

So
*(a}',a%
ka(r') = z;. —XT,( L 2,/
p(af) + plat)
Since xT equals 1 or 0, then using again (5.72) and the fact that p(a) only
depends on |a|, we see that ko(r) # kao(r') for a suitable z, so (5.71) again
holds.

(i) If x~(af,a}) = 0 for all j and r, then Xt (al, aj) =1 for some 7 and j. Define
z;. as above. Then the coefficient in k2(r) in front of z;, is non-zero, while for
ko(r') it vanishes. This is obvious if n,» = 1. Otherwise A is strongly admissible
and it holds by Lemma 5.7 (and since x~ = 0). So (5.71) again holds.

Case 2: ju # 1. Then by (5.54) there exists a} € L% such that {(a}) = a1. So
X*‘(a%,a;) # 0 or X‘(a%,a}) # 0. Then go(a%,ajl-) = Zq,,,, the sum in (5.69) is
non-trivial and for the same reason as in Case 1 (5.71) holds.

This completes the proof of Lemma 5.6. O

PART III. A KAM THEOREM

6 KAM Normal Form Hamiltonians

6.1 Block decomposition, normal form matrices. In this subsection we
recall two notions introduced in [EK10] for the nonlinear Schrédinger equation.
They are essential to overcome the problems of small divisors in a multidimensional
context. Since the structure of the spectrum for the beam equation, {\/|a|* +m, a €
7%}, is similar to that for the NLS equation, {|a|? + V,, a € Z%}, then to study the
beam equation we will use tools, similar to those used to study the NLS equation.
6.1.1 Partitions. For any A € NU{oco} we define an equivalence relation on Z¢,
generated by the pre-equivalence relation

|a| = [b],

“”b‘:’{[a—b]gA.

(see (2.4)). Let [a]a denote the equivalence class of a—the block of a. For further
references we note that

la| =|b] and [a]a # [b]a = [a —b] > A. (6.1)
The crucial fact is that the blocks have a finite maximal “diameter”

da = maxl|a —b
& = maxla =0

which do not depend on a but only on A. This is the content of
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PROPOSITION 6.1.
(d+1)!

da < CA 2. (6.2)
The constant C' only depends on d.

Proof. In [EK10] it was considered the equivalence relation on Z?, generated by the
pre-equivalence

arb if |a]=1b] and |a—0b <A,

Denote by [a]§ and d the corresponding equivalence class and its diameter (with
respect to the usual distance). Since a ~ b if and only if a ~ b or a ~ —b, then

[a]a = [a]3 U —[d]A, (6.3)

provided that the union in the r.h.s. is disjoint. It is proved in [EK10] that d} <
(d+1)!

Da =: CA 2. Accordingly, if |a| > Da, then the union above is disjoint, (6.3)
holds and diameter of [a]a satisfies (6.2). If |a] < Da, then [a]a is contained in a
sphere of radius < Da. So the block’s diameter is at most 2D . This proves (6.2) if
we replace there Cy by 2Cy. O

If A = oo then the block of a is the sphere {b : |b] = |a|}. Each block decom-
position is a sub-decomposition of the trivial decomposition formed by the spheres
{]a| = const}.

6.1.2 Normal form matrices. On Lo C Z% we define the partition

la]a = [a]a N Loo ifa € Lo and |a| > ¢,
ATU{be Lo b < ¢} ifa€ Lo and |a] <,

for some positive constant c.
On L = F U Ly we define the partition, denoted &,
B o [a]Aﬂ,COOCLE,COO,
[a] = [a]a = {f s F (6.4)
REMARK 6.2. Now the diameter of each block [a] is bounded as in (6.1) if we just
let C' > max(#F,c?).

If A: L x L — gl(2,C) we define its block components

0
Ay

to be the restriction of A to [a] x [b]. A is block diagonal over Ea if, and only if,
Al = o if [a] # [b]. Then we simply write Ay, for Al

(o] [a]”
On the space of 2 x 2 complex matrices we introduce a projection

: [a] x [b] — gl(2,C)

IT:gl(2,C) - CI+CJ,
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orthogonal with respect to the Hilbert-Schmidt scalar product. Note that CI 4+ CJ
is the space of matrices, commuting with the symplectic matrix J.

DEFINITION 6.3. We say that a matrix A : £ x £ — ¢l(2,C) is on normal form
with respect to A, A € NU {oo}, and write A € N Fa, if

(i) A is real valued,

(i) A is symmetric, i.e. A% = '4°,

(iii) A is block diagonal over Ea,

(iv) A satisfies IIA} = Af for all a,b € L.

Any real quadratic form q(w) = %(w, Aw), w = (p, q), can be written as

1 1 1
§<p> A1p) + (p, A12q) + §<q, Agoq) + 5(“’% H(p)wr)

where A1y, Ao and H are real symmetric matrices and Ao is a real matrix. We
now pass from the real variables w, = (pa, ¢q) to the complex variables z, = (&4, 74)
by the transformation w = Uz defined through

(pa - iQa)a (65)

Sl

1 .
§a = ﬁ(pa +1i¢a); M0 =
for a € L, and acting like the identity on (C2)”. Then we have

A(U=) = (6, PE) + 51, Pi) + (6, Qn) + 3 (o, H(p)zr),

where

P == ((A11 — Agg) —i(A12 + "A12))

| =

and

Q== ((A11 + Agz) +i(A12 — "A12)) .

NN

Hence P is a complex symmetric matrix and @ is a Hermitian matrix. If A is on
normal form, then P = 0.

Notice that this change of variables is not symplectic but changes the symplectic
form slightly:

UQ=1» d& Adna+ Y _ dé Adn,.

a€Ll aceF

6.2 The unperturbed Hamiltonian. Let hy,(r,w,p) be a function of the
form
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(r, Qupl(0)) 50, Aup(0)0) = {1 Dupp)) + 5 (e, Hoplpg) +5 3 A (54 2)

aeﬁoc
(6.6)
where w, = (pa, ¢a) and
Qup : D — RA
Ay : D — R, a€ Lo, (6.7)

Hyp: D — gl(RT x RY),  H,, = Hy,

are C* -functions, s, > 1. D is an open ball or a cube of diameter at most 1 in the
space RP, parametrised by some finite subset P of Z.
We can write

(1, Aup(p)w) = (w0, Hup(p)r) + 3 ((pocs Qup(pIpoc) + (e, Quplp)aoc))
and

Qup(p) = diag{A4(p) : a € Lo}

DEFINITION 6.4. A function hyp, of the form (6.6) + (6.7) will be called un unper-
turbed Hamiltonian if it verifies Assumptions A1-3 (given below) described by the
positive constants

Cla C, 507 /8 - (517 /627 63)7 T.

To formulate these assumptions we shall use the partition [a] = [a]s of F U L
defined in (6.4). Notice that this partition depend on a (possibly quite large) constant
c.

6.2.1 Al—spectral asymptotics.  There exist a constant 0 < ¢ < ¢ and exponents
£1 > 0,62 > 0 such that for all p € D:

Aale) = o’ | € e 0 € Lo (63
(M) — Aalp)) — (af? — p)] < cmax( e <b§gz>, 0b € Lo: (6.9)
AP 2 ¢, @€ Lo,
{|<JHup<p>>—1H <1, (6.10)
|Au(p) + Ap(p)| >, a,b€ Lo, (6.11)
|(Aa(p) - Ab(p)))| > Clv a,b € Lo, [CL] # [b]v (6 12)
(Aa(p)] — T Hup(p) " < &, 0 € Lo, '

Notice that if £ > (2, then (6.8) implies (6.9) (if ¢ is large enough).
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6.2.2 A2—transversality.  Denote by (Qup)|q the restriction of the matrix Qu,
to [a] x [a] and let (Qup)g = 0. Let also JHyp(p)jg = 0.
There exists a 1 > dg > 0 such that for all C*+-functions

Q:D—R" [Q—Qulcs(p) < do, (6.13)
and for all k£ € Z™\0 there exists a unit vector 3 such that
B30k, QAp))| > 6, WpED
19 and the following dichotomies hold for each k € Z™\0:
(i) for any a,b € Lo U {0} let
L(p) : X = (b, 20)) X + (Qup) o) (9)X £ X (Qup)py -
then either L(p) is do-invertible for all p € D | i.e.

1
|Z(p)7!|| < 5 VPeD, (6.14)

or there exists a unit vector 3 such that
‘<Ua azL(:O)UH > do, VP €D

and for any unit-vector v in the domain of L(p);*
(ii) let

L(p,A) : X — (k,Q(p) X + AX +iXJHy,(p)
and
Pup(p, A) = det L(p, A) :

then either L(p, Ay(p)) is dp-invertible for all p € D and a € [a]s, Or there
exists a unit vector 3 such that, with m = 2#F,

105 Pup(ps Ma(p)) + OxPup(p; Aa(p)) (v, 05Qup(p)v)]
> 60 [|L(, Aa(-))ller y 105 Aa()) 126 )

for all p € D, a € [a]s and for any unit-vector v € (C?)!
(iii) for any a,b € F U {0} let

L(p) : X = (k,Q(p)) X — iJHup(p)[q) X +1XJHup(p)py) :

al.21
Y

then either L(p) is dp-invertible for all p € D, or there exists a unit vector 3
and an integer 1 < j < s, such that

0] det L(p)| > b |l oy | LGS Vi € D, (6.15)

199, denotes here the directional derivative in the direction 3 € R?.

L is a linear operator acting on ([a] X [b])-matrices.
L is a linear operator acting on (1 X m)-matrices.

20
21
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where m? = (2#F)? if both [a] and [b] are # () and m? = 2#F if one of [a]
and [b] = (.22

REMARK 6.5. The dichotomy in A2 is imposed not only on €, but also on C*-
perturbations of (), because, in general, the dichotomy for €2, does not imply
that for perturbations.

If, however, any C®: perturbation of (), can be written as 2, o f for some
diffeomorphism f = id + O(dy)—this is for example the case when Q(p) = p—then
the dichotomy on €2 implies a dichotomy on C*-perturbations.

6.2.3 A8—a Melnikov condition.  There exist constants (3,7 > 0 such that

(5. 2(0)) = (Au(0) = 4(0))] > 2

(6.16)

for all k € ZP\0 and all a,b € L\[0].

6.3 KAM normal form Hamiltonians. = Consider now an unperturbed Hamil-
tonian hy;, defined on the set D (see Definition 6.4). The essential properties of this
function are described by the positive constants

Clu C, 507 /8 == (ﬂlu /627 53)7 T
(occurring in assumptions A1-3), and by the constant
X = |vaup|CS**1(D) + suﬁp ‘VpAa’Cs*—l('D) + vaHupHcs*—l(D). (617)
a€L
Notice that, by Assumption A2, x > &g, and in order to simplify the estimates a

little we shall assume that
0<d<fp<x<ec (6.18)

We shall consider a somewhat larger class of functions.

DEFINITION 6.6. A function of the form

(e, p) = (), ) + 5w, Alpu) (619

is said to be on KAM normal form with respect to the unperturbed Hamiltonian
hup, satistying (6.18), if
(Hypothesis Q) Q is of class C** on D and

12 — Quples- (D) < 6. (6.20)
(Hypothesis B) A— A, : D — /\/ll(’o’mﬁ%)’% is of class C*+, A(p) is on normal form
€ N Fp for all p € D and
; 1
185(A(p) = Auwp(P)ialll <07 (6.21)

(a)”

in the first case L is a linear operator acting on (m x m)-matrices, and in the second case L is
a linear operator acting on (1 X m)-matrices or (m x 1)-matrices.

22
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for |j| < s«, a € £ and p € D.23 Here we require that
0 < s (6.22)
We denote this property by
h € NF . (hup, A, 0).

Since the unperturbed Hamiltonian h,, will be fixed in Part III we shall often
suppress it, writing simply h € NF,.(A, ).

6.4 The KAM theorem. In this section we state an abstract KAM result for
perturbations of a certain KAM normal form Hamiltonians.
Let

hup = hup7X,C’75o,C

be a fixed unperturbed Hamiltonian satisfying (6.18). (hyp, also depends on 3, 7 but
we shall not track this dependence.)
Let h be a KAM normal form Hamiltonian,

h € Nf%(hup,x,c’,(sg,c; A? 5)7

and recall (6.22). We shall also assume A > 1.
The perturbation will belong to 7, ,.p(o, u) with

0<o,pum <1
and (recall (2.10))
v = (1, My + 2) > ve = (0,4 + 32).
These bounds will be, often implicitly, assumed in the rest of Part III.

Theorem 6.7. There exist positive constants C, o and exp such that, for any h €
J\/']:%,h”p(A, d) and for any f € T, ,.p(o, 1),

= |fon and &=|flon .
v,%¢,D V5%,

if
|
<
6 < 200
and ) >
1 1 ex:
cllog s g (LT ) (6.23)
€ C maX(71 7dA) X + ‘5

23 Here it is important that || - || is the matrix operator norm.
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then there exist a closed subset D' = D'(h, f) C D,

1 exp
meas(D\D') < C (log iW) %((X + §)§)a, (6.24)

and a C** mapping
®:0,.(0/2,1/2) x D — O, (0, 1),
real holomorphic and symplectic for each parameter p € D, such that
(h+flod=h+f

with

~

e NF (00,8, & < %
and

|V = koo <C;

V26D

(ii) for any x € O, (0/2,11/2), p € D and |j| < s.
1090 (. p) = )], + [94(d(e,p) D), < C

and ®(-, p) equals the identity for p near the boundary of D;
(iii) forpe D' and { =r =0

df' = dof = def' = df' =0,

Moreover,
(iv) if p = (0,p2,...,pp) and f1(-,p) =0 for all p, then b’ = h and ®(z,-) = x for
all p.

The exponent « is a positive constant only depending on d, s., » and (2. The
exponent exp only depends on d, #A and 7,32, 3. C' is an absolute constant that
depends on ¢, 7, 32, #3 and s. C also depend on supyp |Qyp| and supp |Hyy|, but stays
bounded when these do.

The condition on ® and A’ — h may look bad but it is not.

COROLLARY 6.8. Under the assumption of Theorem 6.7, let €, be the largest positive
number such that (6.23) holds. Then, for any p € D and |j| < s, — 1,

(i)’

- c
051 (-, p) = 15 0)) |2,/ Sf*!fﬂ;w ;

ag
BETE<D € <
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105(@(, p) = )|l + [|8)(d®(, ) — 1))

’Y*7% B E* ’Yv%:,D
for any x € O (0/2, 11/2).
Proof. Let us denote p here by py. If | f7] b < &4, then we can apply the theorem

77%7
to ef for any |e| < 1. Let now p = (g, p1) and consider hyy,, h and f as functions

depending on this new parameter p—they will still verify the assumptions of the
theorem, which will provide us with a mapping ® with a C%* dependence in p = (g, p1)
and equal to the identity when € = 0. The bound on the derivative together with
assertion (iv) now implies that

|®(2, e, p) — 2|

C
b <0< | fow
Ex v,3¢,D

for any z € O,_(0/2, ;1/2). The same estimate holds for all derivatives with respect
to p up to order s, — 1. Take now € = 1 and we get (i7)’.
The argument for b’ — h is the same. O

A special case that will interest us in particular is the following.
COROLLARY 6.9. Let hy, = hyp e 50,c be an unperturbed Hamiltonian, satisfying
(a) G <d < <x <8N <,
and let f € T, ,.p(o, u) with
(b) §=|flop <C'H.

77%7
for some 1 > X > 0 and C' > 0.
Then there exist constants g > 0, o and k— independent of ¢, 6y, x and R—such
that if e = ‘fT| o satisfies

~,56,D
€ <log i)ﬁ < godp T, (6.25)
then there exist a closed subset D' = D'(h, ) C D,
meas(D\D') < ;()56“5’, (6.26)

and a C** mapping ®
P :0,,(0/2,p/2) x D — Oy, (0, ),

real holomorphic and symplectic for each parameter p € D, such that

(hup + 1) 0 ®(r,,p) = (@ (p), ) + 3 w0, A o)) + f (1w, )

with
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(i) the frequency vector € satisfies
1 — Quples—rpy < ¢
and, for each |j| < s, and p € D, the matrix
A'(p) = A(p) ® H'(p) € NF o
and satisfies
105(H' (p) — Hup(p)I] < s

(ii)” for any x € O, (0/2,1/2), p € D and |j| < s, — 1,

1 ¢ 1

1052(a.0) = Db+ [05d(rr) = D, < s g 3"

and ®(-, p) equals the identity for p near the boundary of D;
(iii) forp e D" and ( =7 =0

dof' =dgf =dcf =dif' =0.
The exponent « is a positive constant only depending on d, s., > and (2. The
exponent k also depends on #A and T. The constant ¢y depends on everything

except, as already said, ', 0y, x and N.

Proof. We apply the theorem with h = hyp, i.e. § = 0 and A = 1. The condition

(6.23) is implied by
1 exp 1 J exp )
e | log - < o I c

for some C” depending on C, v, 0, u. With the choice of ¢, £, x this is now implied
by (6.25) if kK > 1+ 2exp.
The estimate of the measure becomes, from (6.24),

)

1 1\ 1 a
5 <10g 6) 5 N(l+0¢)€a < =4, N(1+a)€5

which is what is claimed if we replace § by «a, and take x > (1 + ).

(i) is just a consequence of h' € N F(co,c). The bound in (ii) follows from the
bound (i7)" in Corollary 6.8 plus an easy estimate of e,. 0
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7 Small Divisors

Control of the small divisors is essential for solving the homological equation (next
section). In this section we shall control these divisors for k # 0 using Assumptions
A2 and A3.

For a mapping L : D — gl(dim, R) define, for any x > 0,

S(Ls) = {p € DL )l > .
Let
h(rw. ) = (r.Qp) + 3 (w, Alp)u)

be a normal form Hamiltonian in N F,.(A,J). Recall the convention (6.18) and
assume s > 0 and

§< (7.1)

Q\H

where C' is to be determined.
LEMMA 7.1. Let
Li = (k,Q(p))-
There exists a constant C' such that if (7.1) holds, then

meas U Y(Lg, k) | < C’NGXP—
0<|k|ISN

and
dist <D\E(Lk,n),2 (Lk, g)) >
24 for any k > 0.
(The exponent exp only depends on #A. C' is an absolute constant.)

Proof. We only need to consider k < §p since otherwise the result is trivial. Since
d < dp, using Assumption A2(i), with a = b = (), we have, for each k # 0, either that

[(Qp), k)| > 60>k VpeD
or that
05(Qp), k) =60 VpeD

(for some suitable choice of a unit vector 3). The first case implies Y(Lg, k) = 0. The
second case implies that ¥(Ly, x) has Lebesgue measure < 3=. Summing up over all

> This is assumed to be fulfilled if 1, (£) = 0.
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0 < |k] < N gives the first statement. The second statement follows from the mean
value theorem and the bound

[VpLi(p)| < N(x +9). O

LEMMA 7.2. Let
Ly jq) = ((k, 1 —iJA),

al

There exists a constant C' such that if (7.1) holds, then,

meas U S(Li,jq) (k) SCNBXP(E)i

0<|k|<N %
[a]

and

dist (D\E(Lk’[a},/ﬁ;),E (Lk,[a], g)) S1r

for any k > 0.

(The exponent exp only depends on d and #.A. C is an absolute constant that
depends on c. C also depend on supp |Qup| and supp |Hyy|, but stays bounded when
these do.)

Proof. Consider first a € Loo. Then Ly, [, is conjugate to a sum of two Hermitian
operators of the form

L= <k’Q>I+ Q[a}?

where @[y is the restriction of @ to [a] x [a] (see the discussion in Sect. 6.1.2).
If we let

LUP = <kv Q>I + (Qup)[a}7

where @y, comes from the unperturbed Hamiltonian, then it follows, from (6.21)
and (7.1), that

IL — Lupllospy < 6 < ct.do.

If now Ly, is dp-invertible, then this implies that L is %O—invertible.
Otherwise, by assumption A2(i), there exists a unit vector 3 such that

(0,85 Lup(p)0)]| =

for any unit vector v. Since Q| is Hermitian we have, for any eigenvalue A(p), C
in the direction 3, and any associated unit eigenvector v(p),

05((k. Q(p)) + A(p)) = (v(p), %5 L(p)v(p)) = (v(p), DsLup(p)v(p)) + O(9).

1
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Hence

10,((k, Qp)) + Ap))| = 6o — Ct.6 > %0

which implies that |(k,Q(p)) + A(p)| is larger than ~ outside a set of Lebesgue
measure S £. Since L(p) is Hermitian this implies that

meas X(L, k) < |a]* =
do

~ the dimension of L is < |a|?. (This argument is valid if A(p) is C! in the direction 3
which can always be assumed when @ is analytic in p. The non-analytic case follows
by analytical approximation.)

We still have to sum up over, a priori, infinitely many [a]’s. However, since
[(k,Q(p))| < k| SN, it follows, by (6.8), that

[k, 2(p)) + Alp)] = [Aa(p)] — 6 — Ct. [k| > [af* — efa) P — 6 — Ct. |K]

for some appropriate a € [a]. Hence |(k, Q(p)) + A(p)| is larger than  for |a| > Nz.
Summing up over all 0 < |k| < N and all |a| < Nz gives a set whose complement 3
verifies the estimate.

Consider now a € F and let L(p) = ((k,Q)I —iJH). It follows, by (6.21) and
(7.1), that

IIL — LHPHC < 6§ < =do,

1

- 2

where Lyy(p) = ((k,Q)I — iJHy,)—now we are not dealing with an Hermitian
operator.

If now Ly, is dp-invertible, then L will be & G-invertible. Otherwise, by assumption
A2(iii), there exists a unit vector 3 and an mteger 1 < j < s, such that

\@f det Luy(p)| = o HLupch(D) HLupHZEZ%) , VpeD.
Since, by convexity estimates (see [Hor76]),
‘8;{ det Lup(ﬂ)‘ < Ct. ||Lup||cj(p) IILupIIZ?)@%)
and
\3§(det L(P) — det Lup(f))ﬂ < Ct.5( HLupch + 5)(HL”CO(D) + 5)m_2
this implies that

\3§ det L(P)‘ (6o — Ct.0) HLUPHCI (D) HLUPHCO (D) Vp €D,

which is > %0 if § is sufficiently small.
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Then, by Lemma D.1,
|det L(p)| = & |[ LI,

outside a set of Lebesgue measure

Hence, by Cramer’s rule,

meas (L, k) < Ct. my < Ct. LA
do )

Summing up over all |k| < N gives the first estimate.
The second estimate follows from the mean value theorem and the bound

VoL (p)] < N(x +9). .

LEMMA 7.3. Let
b]

al”

Lisfay ) = (B, Q) — iad, )|
There exists a constant C' such that if (7.1) holds, then,

(e 11—«
ex R X
U S(Lifap) &) < C(NA)SP <50> ((5())

0<|kI<N
[a],[b]

and

dist (D\S (L 0910, = (Lo ) ) > % e VX

for any k > 0. Here

. . ﬁg% 1
o (ﬁz% +2d(B2 + )’ 8*> '

(The exponent exp only depends on d, #A and 1, 32, ». C' is an absolute constant
that depends on ¢, T, 32, #3 and ». C also depend on supp |$y,| and supp |Hyyl|, but
stays bounded when these do.)

Proof. Consider first a,b € F. This case is treated as the operator L(p) = ((k,Q)I —
iJH ) in the previous lemma.

Consider then a € L and b € F. Then Ly |, is conjugate to a sum of two
operators of the form

X e (k, Q2p))X + Quy(p) X + XiJH(p)
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(see the discussion in Sect. 6.1.2). This operator in not Hermitian, but only “par-
tially” Hermitian: it decomposes as an orthogonal sum of operators of the form
L(p, A(p)), where

L(p,\) : X — (k,Q(p) X + \X +iXJH(p),

and A(p) is an eigenvalue of Qq(p)-
If we let

Lup(p, A) : X = (k,Q(p)) X + AX + XiJ Hyy(p),
then it follows, from (6.21) and (7.1), that
HL(v)‘) - Lup(‘v A)H(h(rD) S ) S Ct.(S().

If Lup(p,Aa(p)) is do-invertible for all a € [a], then this implies that, for any
eigenvalue A(p) of Qq(p), L(p,A(p)) is %O—mvertible.
Otherwise, by Assumption A2(ii), there exists a unit vector 3 such that

105 Pup(, Aa(p)) + OzPap(p, Aa(p)) (0, 85Qup(p)0)| 2 b0 | Lupller ) || L)
for all p € D, all a € [a] and for any unit-vector v € (C?)l. If now
P(p,A) = det L(p, A),

then, for any eigenvalue A(p), C! in the direction 3, and any associated unit eigen-
vector v(p),

diP(p, A(p)) = 95P(p, Ap)) + OrP(p, A(p)){v(p), 0;Q(p)v(p))

3
- az,Pup(p7 Aa(p)) + 8)\Pup(p7 A (p))<v(p)7 83Qup(p)v(p)>
+0 (311 Zuplles ) I LupllEis ) -

Hence
CZP(,O,A(/)))‘ 2 | Zupller ) | Lupllgap) -
Then
Plp.Alp))
ILlgmy |~

outside a set of Lebesgue measure < %. Hence, by Cramer’s rule,

meas X(L, k) < Ct. -
do
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Since |(k,Q(p))| S |k| S N, it follows, by (6.8), that for any eigenvalue a(p) of
JH(p),

[(k, () + Alp) + alp)| = |Aa(p)| =8 = Ct.|k| = |a|* = e(a) ™™ — 6 — Ct. |K]

for some appropriate a € [a]. Hence, ¥(L, k) = 0 for |a| 2 Nz,
Summing up over all 0 < |k| < N and all |a] < N > gives the first estimate.
Consider finally a,b € Loo. Then Ly, (4 ) 1s conjugate to a sum of four operators
of the forms

X = (k, X + QX + X'Qp
and
X = (E,NX + Q[G]X — XQ[b]-

These operators are Hermitian with respect to the Hilbert—Schmidt norm on the
space of matrices X. Changing from the operator norm to the Hilbert—Schmidt norm
(and conversely) changes any estimate by a factor that depends on the dimension
of the space of matrices X, which, we recall, is bounded by some power of A.

With this modification, the first operator is treated exactly as the operator
X = (b, Q)X + QX in the previous lemma, so let us concentrate on the sec-
ond one, which we shall call L = Ly, (4) 5. It follows as in the previous lemma that
the Lebesgue measure of X(L,k) is < (|al |b|)di—recall that the operator is of
dimension < (|a| |b])?.

The problem now is the measure estimate of | J E(Lk,[a],[b} , k) since, a priori, there
may be infinitely many 3(Ly (4] 5, %) that are non-void. We can assume without
restriction that |a| < |b|. Since [(k, Q(p))| < Ct. |k| < Ct.N, it is enough to consider
|b| — |a| < Ct.N.

Suppose first that [a] and [b] are # [0]. Let a(p) and 3(p) be eigenvalues of Q4 (p)
and Qp(p) respectively, and chose a, b such that

1
1B(p) — Ap(p)| < 5W'

Using Assumption A3 now gives

(K, Qp)) + alp) = B(p)| = [k, Qup(p)) + Aalp) — Au(p)| — k] 6 — 25<a1>%

> [k, Qup(0)) + Aa(0) = Ap(0)] = x([k] +2)

—o(lk]+2) > P

> = — 6k x,
k|

and this is > k unless

B3, 1
k| > K =~ (—)7+.
X
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Recall that x > dg, by convention, and that x < &g, because otherwise the lemma
is trivial.

From now on we only consider K < |k| < N. By Assumption A2, there exists a
unit vector 3 such that

104k, 20)]| = .
Since |k| < N and |a|® — |b|* are integers, it follows that (for any x’)
(k. 2(p) + lal” = [bl* | > 2

for all a,b and all p outside a set of Lebesgue measure < NV ’g—;. Summing up over all
K < |k| < N gives a set ¥ of Lebesgue measure
K//
< NP —,

By (6.9) it follows that, for p outside of ¥,
(B, Q2(p)) + Aalp) = Mo(p)] = .
if just
ja| > 25
K
Then

Mhmm>+mm—ﬁ@nzw—%@;

which is > k if ¥’ > 2k and

Let

M = 2max ((;);2 , (i?)i> .

Then it only remains to consider [a] and [b] with |a| < M and [b] < M +Ct.N. We
have seen above that the the Lebesgue measure of each X(Ly (45, #) is S (|a] |b|)d§.
Summing up over all these a and b gives a set Yo of Lebesgue measure

< NexpMZdﬁ'
~ 5

Suppose now that [a] or [b] is = [0]. Then |a| and |b] are < ¢+ N < N. Summing

up over all these a and b gives a set X3 of Lebesgue measure

< NexP ﬁ

do
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The union of ¥y, Y9 and X3 has Lebesgue measure

< NExP E+M4d£ < NexXp il—l— 1 eﬁ 0 = 4d i_i_l
~ do do) ™~ do k') & B Bo k)

Take now ' = ri+ and observe that Nx+ > 1 (because N > K). Then the

bound becomes
< Nexp v A
~ <%> (%>

( with a new and larger exponent exp). O

8 Homological Equation
Let h be a normal form Hamiltonian (6.19),

h(r,w, ) = (Qp),7) + = (w, A(p)w) € NF.(A, )

\]

— recall the convention (6.18)—and assume » > 0 and

§ < =, (8.1)

Q|-

where C' is to be determined. Let
Y= (7, ma + ) 2 7 = (0,m + 5).

REMARK 8.1. Notice the abuse of notations here. It will be clear from the context

when 7 is a two-vector, like in [|-[| _, and when it is a scalar, like in e,

Let f € T, ,.p(o, ). In this section we shall construct a jet-function S that solves
the non-linear®® homological equation

(h,SYy+{f—fr,8}"+ =0 (8.2)

as good as possible—the reason for this will be explained in the beginning of the
next section. In order to do this we shall start by analysing the homological equation

{n,S}+ T =0. (8.3)

We shall solve this equation modulo some “cokernel” and modulo an “error”.

25 “Non-linear” because the solution depends non-linearly on f.
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8.1 Three components of the homological equation. Let us write

F70,r, ) = F(r,0) + (ul8), w) + 3 {FunOw, 0)
and recall that, by Proposition 2.8, fT € T, .. p(o, u). Let

SO, r,w) = S.(r,0) + (Sw(0), w) + %(
where f,. and S, are affine functions in r—here we have not indicated the dependence

on p.
Then the Poisson bracket {h, S} equals

Sww (0w, w),

— (008, (r,0) + (008w (8), w) + %<agsww(9) w)
+<AJSw(9),w>+%<AJSww() w) — %(Sww(Q)JAw,m

where Jq denotes the derivative of the angles 0 in direction 2. Accordingly the
homological Eq. (8.3) decomposes into three linear equations:

aQST(Tﬂ 0) = fr(r7 9)7
aQSw(e) - AJSw(H) = fw(a)a
005w (8) — ATSww(0) + Sww () TA = fuwl().

8.2 The first equation
LEMMA 8.2. There exists constant C' such that if (8.1) holds, then, for any N > 1
and k > 0, there exists a closed set D1 = D1(h,k, N) C D, satisfying

meas(D\D;) < C’NeXP(Sﬁ
0

and there exist C* functions S, and R, on C* x TA x D — C, real holomorphic in
r,0, such that for all p € Dy

aQ(p)ST(raevp) = fT(r797p> - fT(T707p> - RT(eap) 20 (84)
and for all (.0, p) € CA x Tf, x D, |r| < p, o' < 0, and |j| < s.
935019, )| <C———— - (NX) | 7] (8.5)
O a0 L v,56D’
7(0'70

DR (1,0, p)| <C—— |70

e (8.6)

Moreover, S,(-,p) = 0 for p near the boundary of D.
(The exponent exp only depends on n = #.A, and C' is an absolute constant.)

6 £ (r,0, p) is the 0:th Fourier coefficient, or the mean value, of the function 6 — f,(r, 0, p).
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Proof. Written in Fourier components the Eq. (8.4) then becomes, for k € ZA,
Li(p)S(k) =: (k, Qp))S(k) = —i(F(k) — R(k))

where we have written S, F' and R for S, (f, — fr) and R, respectively. Therefore
(8.4) has the (formal) solution

S(r,0,p) = ZSrkp k0 and R(r,0,p) = ZFrkp k.6)

with
5 _ [ —Li(p)THE (r,k, p) if 0 < [k] < N,
Sk, p) = {0 if not,
and
A [ E(rk,p) if |k| > N,
R(r. k. p) = {0 if not.
By Lemma 7.1
1
Li(p) Y| < =
(o))l <

for all p outside some set 3(Lg, k) such that

K K
ist(D\X(L (L, =)) > ct.—
dlSt( \ ( kv’%)’ ( k72)) ct. NX

and
=D\ J (L k)
0<|k|<N

fulfils the estimate of the lemma.
For p ¢ X(Lg, §) we get

A 1, -
’S(’I",k‘,p” < Ct;|F(T‘,k,p)’

Differentiating the formula for S(r, k, p) once we obtain

8Z‘§(7',k,p) = ( <Q k) 6]F(T k P) <Q,1k>2 <8ZJQ7k>F(ra kvﬁ))
),

which gives, for p ¢ X(Ly, §

L X
senmat (v
095(r, k, p)| < Ct - dnax 10, 0L E (r, ks p)].
(Here we used that |0,2(p)| < x + 0. ) The higher order derivatives are estimated
in the same way and this gives

1
|055(r, k. p)| < Ct.—(N K) gg;lgg\@ F(r,k, p)]



1670 L. H. ELIASSON ET AL. GAFA

for any [j| < s, where Ct. is an absolute constant.

By Lemma D.2, there exists a C*°-function gy : D — R, being = 1 outside
Y(Ly, k) and = 0 on X(Ly, §) and such that for all j > 0

oklesmy < (C02 XY

Multiplying S(r, k, p) with gx(p) gives a C**-extension of S(r, k, p) from D\X (L, )
to D satisfying the same bound (8.5).

It follows now, by a classical argument, that the formal solution converges and
that |8,S(r, 0, p)| and |9, R(r, 0, p)| fulfils the estimates of the lemma. When summing
up the series for |8£R(7“, 0,p)| we get a term e~clo=oN (because of truncation of
Fourier modes), but the factor % disappears by replacing N by C'N.

By construction S and R solve Eq. (8.4) for any p € D;.

If we multiply S(r, k, p) by a second C* cut-off function hy, : D — R—which is
=1 at a distance > NLX from the boundary of D and = 0 near this boundary—then
the new function will satisfy the bound (8.5), it will solve the Eq. (8.4) on a new
domain, smaller but still satisfying the measure bound of the Lemma, and it will
vanish near the boundary of D. O

8.3 The second equation. Concerning the second component of the homolog-
ical equation we have

LEMMA 8.3. There exists an absolute constant C' such that if (8.1) holds, then, for
any N > 1 and

0<k<d,

there exists a closed set Dy = Dy(h, k, N) C D, satisfying

1

meas(D\Dz) < CNP (;) ,
0

and there exist C3*-functions Sy, and Ry, : TAx D — Y., real holomorphic in 0, such
that for p € Dy

and for all (0,p) € TA x D, ¢’ < o, and |j| < s.
. 1 X\l
J <C———— = o .
105560, 0)ll <Co— o (N3) 1 Lo (8.8
) e—(o=0")N T
10, R (8, p)lly <C [ om . (8.9)

(O’ — O'/)n v,2¢,D

Moreover, Sy (-, p) = 0 for p near the boundary of D.

(The exponent exp only depends on d and #.A. C' is an absolute constant that
depends on c. C also depend on supp || and supp |Hyy|, but stays bounded when
these do.)
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Proof. Let us re-write (8.7) in the complex variables ,z = (£n) described in Sect.
6.2. The quadratic form (1/2)(w, A(p)w) gets transformed, by w = Uz, to

(& Qo) + 5 (o, H'(p)2),

where @’ is a Hermitian matrix and H’ is a real symmetric matrix. Then we make in
(8.7) the substitution S =US,,, R ="UR,, and F ='U f,,, where S = (S, S,, Sr),
etc. In this notation Eq. (8.7) decouples into the equations
8955 + iQSg = Fg - Rg,
90S, —1'QS, = F, — R,
0nSr—HJSr=Fr— Rf.
Let us consider the first equation. Written in the Fourier components it becomes

({k, PN + Q) Se(k) = —i(Fe(k) — Re(k)). (8.10)

This equation decomposes into its “components” over the blocks [a] = [a]a and
takes the form

Lic1a1(9)Sa) (k) = ((k,2(p)) + Qpu)) Spa (k) = —i(Fly (k) — Rpoy(k)) (8.11)

— the matrix @, being the restriction of Q¢ to [a] x [a], the vector F], being the
restriction of Fy to [a] etc.
Equation (8.11) has the (formal) solution

Ly o) (p)YiE (K, p) if [k| < N,
if not

Sa (k. p) = {5(
and
> _ Fa(kap) lf|k’>N)
Ra(k,p) = {0 if not.

For k # 0, by Lemma 7.2,

3=

(L fa) () 7HT <

for all p outside some set X(Ly, (4], &) such that

dist (D\E (Lk o> %) » 2 <L’f»[a}’ g)) = Ct'Nix

and
Dy=D\ |J ik,

0<|k|<N
[a]

fulfils the required estimate.
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For k = 0, it follows by (8.1) and (6.10) that

2

1
L <<=

We then get, as in the proof of Lemma 8.2, that S[a](k, -) and R[a](k, -) have

C*+-extension to D satisfying

A 1 X\ Ml A
] _ 2~
118551a) (k: p)II < Ct.— (NK) fnax 10, Fja (K. p)|

and
Ha;])R[a} (k7 ,0) | ’ < Ct| lazp[a} (k7 P) | ’7
and satisfying (8.11) for p € Ds.
These estimates imply that

A 1 X\ 1 .
187 Se(k. p)l1y < Ct. (N2)™ max (9] F (k. p)

K 0<I<j
and
0] Re (. p)| |y < Ct.||0) Fe(k, p)]-

Summing up the Fourier series, as in Lemma 8.2, we get

102568, Pl < Ct.M (N%)IJI s sup 10 FeC )l
and
185 e (0, p)ll < o sup ||93Fe (-, )15
(0= |s0/<o ”

for (6,p) € TA x D, 0 < o’ < o, and |j| < s.. This implies the estimates (8.8) and
(8.9)—the factor & disappears by replacing N by Ct.N.
The other two equations are treated in exactly the same way. O

8.4 The third equation. Concerning the third component of the homological
equation, (8.3), we have the following result.

LEMMA 8.4. There exists an absolute constant C' such that if (8.1) holds, then, for
any N >1, A’ > A > 1, and
K < lc’
S o
there exist a closed subset Dy = Ds(h, k, N) C D, satisfying

meas(D\D3) < C(AN)>P: (g))a (g;)la
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and there exist real C**-functions By : D — My N NFa and Syw, Ruw =
RE .+ RS, : TA XD — M., ., real holomorphic in 6, such that for all p € Ds

aQ(p)Sww(g’ ,0) - A(p)JSww(9> P) + Sww(ea p)JA(p)
= fuww(0,p) = Buww(p) — Ruww (0, p) (8.12)

and for all (0,p) € TA x D, ¢’ < o, and |j| < s.

) Aexp262'ydA X+5 I
185 Sww(@: )], ,, < CA’K(J T <N p > ‘fT‘é’,’fi,D’ (8.13)
Halj)wa(p” o5 < C A AP ’fT|'(y7,ffD’ (8.14)
and

|oaRE,@.0)|| < carmees () |17 o
p' v, ( ) /) ‘ "y 2,D ’ (815)

|08 0,0)| < CaATReem =N £ 0

v, V5%,

for any v, <+ <.

Moreover, Sy (-, p) = 0 for p near the boundary of D.

The exponent « is a positive constant only depending on d, s,, » and (32.27

(The exponent expy only depends on d, n = #.A and T, 2, . The exponent exp,
only depends on d, m., s.. C' is an absolute constant that depends on ¢, T, 32, #3 and
2. C also depend on supp |Qyp| and supp |Hyp|, but stays bounded when these do.)

Proof. 1t is also enough to find complex solutions Sy, Ruww and By, verifying the
estimates, because then their real parts will do the job.

As in the previous section, and using the same notation, we re-write (8.12) in
complex variables. So we introduce S = tUS“U, R = tURC,CU, B = tUBC,CU and
F =WJf:U. In appropriate notation (8.12) decouples into the equations

9aSee +1QS¢e +15¢e 1Q = Fee — Bee — Ree,
9aSen + 1QSey — 15¢ynQ = Fey — Bey — Rey,
3955,@ + iQS&ZF + ngf_ JH = ngf_ — B& — szfa
oaS + HJS, -8 JH = F - B

ZFRZF FRF ZFZF ZFZF ZFZF RZ}'Z}'?

and equations for Sy, Sye, S..¢, Syzry Sz Since those latter equations are of the
same type as the first four, we shall concentrate on these first.
First equation. Written in the Fourier components it becomes

((k, U + Q) See (k) + See(k)'Q = —i(Fig(k) — 1,08 — Reg(k)). (8.16)

2T« is the exponent of Lemma 7.3
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This equation decomposes into its “components” over the blocks [a] x [b], [a] =
[a]a, and takes the form

L(k, [a], [bmé{ﬁ(k) =: (k, p)) Siej(k) + Qpay (0) S} (k)
%ﬂwt@mm (B0 (k. ) — BE(R) — 0B, (817)

— the matrix Q,) being the restriction of Q¢ to [a] X [a], the vector F, [[ab}] being the
restriction of Fge to [a] x [b] etc.
Equation (8.17) has the (formal) solution:

Sl ):{—LU@ al, 16, p) 5B, p) i dist(a). [B) < A’ and [K] < .

if not,
B[[ ]] 0 and

. Fb(k, p) if dist([a],[b]) > A" or |k| > N
b _ a\l, P ) el )
Ra(k.p) = {O if not.

We denote RY(k, p) by (RS)

——b
a
——b
a
3

(k, p) if dist([a], [b]) > A’—truncation off “diagonal” in
(

space modes—and by (RF)_(k,p) if |k| > N —truncation in Fourier modes.

For k # 0, by Lemma 7.3,

- 1
(L o,y (0) ] < p

for all p outside some set Eh[a]’[b](ﬁ) such that
. K K
dist(D\ Xy, a5 (K), Ek,[a},[b](g)) > Ct.ﬂ’

and

=D\ U i fa),p) (K)

0<|k|<N
[a], 8]
fulfils the required estimate. For k = 0, it follows by (8.1) and (6.11) that
1 1
L <<=
(L a1 (2) ] < oS

We then get, as in the proof of Lemma 8.2, that S[[Z%(k:, -) and R{Z]](k', -) have

C*--extension to D satisfying

1 |1
18352 (k)| < Ct.- (NX) max 1055010, )

k) 0<I<j [a]
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and

187 R (k. p)I| < Ct.[|8]F7 (k. p)

B
and satisfying (8.17) for p € Ds.
These estimates imply that, for any . <7/ <~,

AEXP 2vda
e (N X

H -
—) max |10, Fee (k. p)l v, v,)

109 See (k, p)l 180y, v,y < Ct.A !

and
107 Ree (k. )|y, v,y < COLA AP Fee(k, p)l |5y, v

The factor A®Pe279a gecurs because the diameter of the blocks < da interferes
with the exponential decay and influences the equivalence between the [*-norm and
the operator-norm. The factor A’A®*P occurs because the truncation < A’ + da of
diagonal influences the equivalence between the sup-norm and the operator-norm.

The estimates of the “block components” also gives estimates for the matrix
norms and, for any v, <" <,

187 Se¢ (k. p) |y < C.A

max ||9) Fee (k. )|,

ASP2vda oy
—— ()
K < 0<I<j

KR

and

105 Ree (k. p) 15,5 < Ct.[|0) Fee (K, p)|.5-

Summing up the Fourier series, as in Lemma 8.3, we get that See(, p) satisfies
the estimate (8.13). Reg(6, p) decompose naturally into a sum of a factor Ré(@, 0),
which is truncated in Fourier modes and therefore satisfies the first estimate of
(8.15), and a factor R (0, p), which is truncated in off “diagonal” in space modes
and therefore satisfies the second estimate of (8.15).

The third equation. We write the equation in Fourier components and decompose
it into its “components” on each product block [a] x [b], [b] = F:

Lk, [al, [b], p)Si (k) = (£, 2(p)) SI3(K) + Quay(0) Sle) (k)
i8N (k)T H (p) = —i(E})(k, p) — dr.0By,) — Rip) (k)
— here we have suppressed the upper index £zx.
The formal solution is the same as in the previous case and it converges to
functions verifying (8.13) and (8.15), by Lemma 7.3, and by (6.12).
The Fourth Equation We write the equation in Fourier components:
Lk, [al, [b], ) Sjo) (k) = (k, (p)) Slo) (k) — iH.J(p) S o) (k)

- alb (L N Ry
Sy (k) TH (p) = ~i(E}g| (k. p) — B0 Byg) — Ry (k).
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where [a] = [b] = F—here we have suppressed the upper index zrzr.
The equation is solved (formally) by

(k, p) = { —L(k, [al, [b], p) " HEL (k. p) i 0 < k| < N,

if not,

(k.p) = { Fif(k,p) i [K] > N,

if not;
and
[a] (p) = F[[j]] (0,p).

The formal solution now converges to a solution verifying (8.13), (8.14) and (8.15)
by Lemma 7.3. The factor R® is here = 0.

The Second Equation We write the equation in Fourier components and decom-
pose it into its “components” on each product block [a] x [b]:

Lk, lal, [, ) S} () = (1 ) SEI(R) + Quap() S ()
8@ () = i (FEl(k. o) — R — oo

— here we have suppressed the upper index £n. This equation is now solved (formally)
by

S[b] 0 P ZS 1k-9 and R ZR[b] 1k-9’

e ) — {5(’“ o ) 48} ) 1 (), ) < &7 and 0. <

(p) = {OFé’(o,p) p fiifqa]’[b]) <A and k=0,

and

B (k. p) = | Falkop) if dist((a], o)) > & or [k] > N,
o 0 if not.

We denote again RP(k, p) by (@)Z(k,p) if dist([a], [b]) > A’ and by (T%\F)Z(k,p) if
|k| > N.

We have to distinguish two cases, depending on when k£ = 0 or not.

The case k # 0.
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We have, by Lemma 7.3,

-~ 1
(L g, () M| < p

for all p outside some set Xy, |4) ) (%) such that

dist (D\Z a1 (9 e (5 ) ) = et

and

D3=D\ |J Siamx)
0<|k|ISN
[al,[0]
fulfils the required estimate.
The case k = 0. In this case we consider the block decomposition Ear and we
distinguish whether |a| = |b| or not.
If |a| > |b], we use (8.1) and (6.12) to get
) d
_ > - - - >
la(p) = B(p)| = ¢ PERROEE

This estimate allows us to solve the equation by choosing

> K.

= R)(0)=0

and
%0, p) = L(0, [a], [t], p) 1 EL (0
[a]( . P) (0, [a], [b], p) [a]( . P)
with

i

j gl LX)V L bl
123850, plI < Ct (N ) max |9} (0. )

which implies (8.13).
If |a| = |b|, we cannot control |a(p) — B(p)| from below, so then we define

&

fa] (0)=0

and
Bq(p) = £3(0,p),  Ry(0)=0 for [a]a = [b]ar
R(0,p) = E2(0,p) BE=0, for [ala # o
Clearly R and B verify the estimates (8.15) and (8.14).
Hence, the formal solution converges to functions verifying (8.13), (8.14) and

(8.15) by Lemma 7.3. Moreover, for p € D', these functions are a solution of the
fourth equation. O
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8.5 The homological equation. For simplicity we shall restrict ourselves here
to o, p,y < L.

LEMMA 8.5. There exists a constant C' such that if (8.1) holds, then, for any N > 1,
A" >A>1 and

K< 60',

there exists a closed subset D' = D(h, k, N) C D, satisfying

and there exist real jet-functions S, R = R + R® € T, ,.p(o, ) and hy verifying,
for p e D/,

{h,S}+ fT = hy +R, (8.18)

and such that
h+hy € N}"%(A’, oy)

and, for all 0 < ¢/ < o,

’h+ a’,u S X ‘fT g, 5 (819)
’}’,%,D 77%71)
1 X 5+
Sl <-X (N—) T op | 8.20
Sl <X (V)1 o, (8.20)
and

[P Cola A VR ET

7, oar o T (8.21)
|R*| 5 < Xe (A fT’mM 7

% 7,261

for v, <« <, where

A\ &P
X =0nN s,
o—oa

Moreover, S, (-, p) = 0 for p near the boundary of D.

The exponent « is a positive constant only depending on d, sy, > and s.

(The exponent exp, only depends on d, n = #A and T, 32, ». The exponent exp,
only depends on d, m., s,. C' is an absolute constant that depends on ¢, T, 32, 33 and
2. C also depend on supyp || and supp |Hyy|, but stays bounded when these do.)
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REMARK 8.6. The estimates (8.19) provides an estimate of d. Indeed, let 3 (w, Bw)
denote the quadratic part of h4. Then, for any a,b € [a]as

1
a, )"t < Ct. (A T o ——
(@) s e
— recall the definition of the matrix norm (2.8) and of the exponential weight (2.5).
By (8.19) this is

‘ang

= 7HaJBH (7,m0), 226 (7, 3¢),5¢

1
/ T

Since #[a]ar < (AP we get

‘ < Ct. A/ explfT‘U“u 1

P B(p)ial .
H P (p)[]A’ 7,742)( >

This gives the estimate

51— 6 < Ct(A)*P | fT | o

7%7D

Proof. The set D' will now be given by the intersection of the sets in the three
previous lemmas of this section. We set

h+(7“,w) = fr(ra 0) + %<w>Bw>a

1

—(Spw(0)w,w),

S(r,0,w) =S, (0,7r) + (Sw(@)w) + 5

and

1<wa(0)w,w>,

R(r,0,w) = R.(r,0) + (Ry(6), w) + 5

with Ryw = RE, + RS.. These functions also depend on p € D and they verify
equation (8.18) for p € D'.
If 2 = (r,0,w) € O, (o,p), then

1
|hy(2)] < ’fT|$,’ﬁ,D + §|\B7~UH7J|WH%~
Since
HB||7% - HBH'y 2w = HBHB(Y Y, )
it follows that
e (&) < Ct. |£7] o

We also have for any x = (r,0,w) € O (o, 1), 7 <+ <7,
17dhs (@)l < Ct. | £

o + 1Bl
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Since
1Blly e = I1Bllyy e = [1Blls(y,, v,
it follows that
Tdh ()]l < Ot | 7|0
7,%D

Finally Jd?h, (x) equals JB which satisfies the required bound.

The estimates of the derivatives with respect to p are the same and obtained in
the same way.

The functions S(6,7,¢), R (6,7,¢) and R*(#,r,() are estimated in the same
way. D

8.6 The non-linear homological equation.  The Eq. (8.2) can now be solved
easily. We restrict ourselves again to o, pu,v < 1.

PROPOSITION 8.7. There exists a constant C' such that for any
1
he NF..(A)5), §< 50/’

and for any

N>1

Y

1
A'>A>1, KSEC,

there exists a closed subset D' = D(h, k, N) C D, satisfying

« l—a
meas(D\D') < C(AN)™P: - X ,
9o 0o
and, for any f € T, ,.(o, 1, D)
T
€= o, and = on
f ’v,ﬁ,D 3 |f|%i
there exist real jet-functions S, R = R + R® € T, ,.p(o,n) and h, verifying, for

peD,
(hSY+{f— 115} +f =hy+R (8.22)

and such that
h+hy e NF,(A)5,)

and, for all o/ < o and p' < p,

|h+|(,/7,,p < CXYe, (8.23)
’77%7
1
S|y <C=XYe (8.24)
I

v,2,D
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and
’RF 0/711‘/ S Ce_(a_a/)NXY5’
~v,2¢,D
‘Rs‘a/#/ < Ce*(’Y*'Y/)AIXys, (825)
v’ ,2¢,D

for v, <" <, where

NAevda ©XPy
N ),
(0 =) (= u')

and

4s,+3
Y = <X+§> .
K

Moreover, S,.(-,p) = 0 for p near the boundary of D.

Moreover, if p = (0,pa,...,pp) and f1(-,p) = 0 for all p, then S = R = 0 and
h4 = h for all p.

The exponent « is a positive constant only depending on d, sy, » and (3.

(The exponent exp, only depends on d, n = #A and T, 2, ». The exponent exp,
only depends on d, m., s«. C' is an absolute constant that depends on ¢, T, (32, 33 and
2. C also depend on supyp |Q2y,| and supp |Hyy|, but stays bounded when these do.)

REMARK 8.8. Notice that the “loss” of S with respect to « is of “order” 4s, + 4.
However, if x, 6 and £ = |f| o 5 e of size < k, then the loss is only of “order” 1.
v

Proof. Let S = Sy+51+.52 be a jet-function such that Sy starts with terms of degree
1in r,w and Ss starts with terms of degree 2 in r, w—jet functions are polynomials
in 7, w and we give (as is usual) w degree 1 and r degree 2.

Let now o/ = 05 < 04 < 03 < 03 < 01 < 09 = o be a (finite) arithmetic
progression, i.e. 0; — 041 do not depend on j, and let and p/ = ps < pa < p3 <
pa < p1 < po = p be another arithmetic progressions.

Then {', S} + {f — f1,S}* + T = hy + R decomposes into three homological
equations

{1, S} + f* = (hy)o + Ro,
{h/751}+f1T:(h+)1+R17 flz{f_fTsz}a

{W,So}+ 3 = (hy)a+ Ro, fo=1{f— 1,51}

By Lemma 8.5 we have for the first equation

1
hidolow < Xe, |Soloww < —XY
|(hy)ol no < Xe |Solor < ~XYe

V5% Y52
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where

g —0

exp
X—CA’( = ,> e*nda,

and where Y, Z are defined by the right hand sides in the estimates (8.20) and (8.21).
By Proposition 2.9 we have

1
&1 = |filoope < —XYW€Ee
D K

7’%7

where

w=c(Glat o)

By Proposition 2.8 ¢; = |f1T}az,u2D satisfies the same bound as &;.
2.

By Lemma 8.5 we have for the second equation

1
‘(h+)1’03,#2 < Xeq, ’51’03,/12 SEXY?'fI-

’Y}%’ 77%7
By Propositions 2.8 and 2.9 we have

1
& = |folowns < —XYWé&er,
D~ K

’y?%’

and g9 = ‘ f2T |o4,u4 satisfies the same bound.
v,2,D

By Lemma 8.5 we have for the third equation

1
|(h+)2’057M4D < Xeo, ’52|057H4 < ;XY@-

77%7 Fy7%7

Putting this together we find that
1
eter+ea<(1+ fXYW§)35 =Te
K
and

hiloryw <XTe, |Slyw <-XYTe.
v,2¢,D v,2¢,D K

Renaming X and Y gives now the estimates for hy and S. R = Ry + R; + R»
and its estimates follows immediately from the homological equation.

The final statement does not follow from Lemma 8.5. However, if one follows the
whole construction through the proofs of Lemmas 8.2 to 8.5 one sees that it holds.
For example in Lemma 8.2 it is seen immediately that this holds for p ¢ X(Ly, §).
The only arbitrariness in the construction is the extension, but we have chosen it
so that S, and R, are = 0 on X(Ly, §). The construction Lemmas 8.3 and (8.4)
displays the same feature. O
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9 Proof of the KAM Theorem

Theorem 6.7 is proved by an infinite sequence of change of variables typical for
KAM-theory. The change of variables will be done by the classical Lie transform
method which is based on a well-known relation between composition of a function
with a Hamiltonian flow <I>tS and Poisson brackets:

4ol =1{f,5)0 %
from which we derive
fo(b}g:f—i—{f,S}—i—/Ol(l—t){{f,S},S}o@fg dt.
Given now three functions h, k and f. Then
(h+k+flods=h+k+f+{h+k+f S}
+/01(1 —t){{h+k+ f,S}, S} o dL dt.

If now S is a solution of the equation

(R, SY+{f— 5,8y + fF' =hy + RF + R, (9.1)
then
(h+k+f)o®s=h+k+hy+ fr+ R
with
fo =R (f =)+ {k+ 1Sy +{f = 18y = {f = 1.5}
+/01(1—t){{h+k+f,S},S}o<1>g dt (9.2)
and
1 T
fI:RF+{k+fT,S}T+</O (1t){{h+k+f,5},5}oq>gdt) . (9.3)

If we assume that S and R are “small as” f7, then fI is is “small as” kfT—this
is the basis of a linear iteration scheme with (formally) linear convergence.?® But if
also k is of the size fT, then f* is “small as” the square of f7—this is the basis of a
quadratic iteration scheme with (formally) quadratic convergence. We shall combine
both of them.

First we shall give a rigorous version of the change of variables described above.
We restrict ourselves to the case when o, p, v < 1.

28 Tt was first used by Poincaré, credited by him to the astronomer Delauney, and it has been

used many times since then in different contexts.
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9.1 The basic step. Let h € NF,.(A,d) and assume » > 0 and

§< —=c. (9.4)

Q-

Let
Y= (77m* +%) > Ve = (Ovm*+%)
and recall Remark 8.1 and the convention (6.18). Let N > 1, A’ > A > 1 and

<1’
K —C.
- C

The constant C' is to be determined.
Proposition 8.7 then gives, for any f € 7, ..p(o, 1),

T
= . d = s
==\ ’%ﬁ,p and ¢ |f|ya,fi,1>’

a set D' = D'(h,s,N) C D and functions h,,S,R = R + R® satisfying
(8.23)+(8.24)+(8.25) and solving the equation (9.1),

{haS}+{f_fTaS}T+fT:h++Ra
forany pe D'. Let now 0 < 0/ =04 <03 <09 <01 <opg=ocand 0 < p' = py <
ps < p2 < p1 < po = p be (finite) arithmetic progressions.
The Flow ®%. We have, by (8.24),
1
’S|O’1,/L1 S Ct*XY&
v,%¢,D R
where X,Y and Ct. are given in Proposition 8.7, i.e.

A/ ’YdAN ©XPy 42A, 'ydAN XPy
X:< e ) :( 5 ) Ly = (X
(00 — 01)(po — p1) (0 —0o")(u— ') K

— we can assume without restriction that exp, > 1.

If
1 &

< -

=X

and C' is sufficiently large, then we can apply Proposition 2.11(i). By this proposition
it follows that for any 0 < ¢ < 1 the Hamiltonian flow map ®% is a C**-map

(9.5)

O’y’(ai—l—la/ﬁi—i-l) XD — O’Y/(O-iu MZ)? VPY* S 7/ S v 1= 17 27 37

real holomorphic and symplectic for any fixed p € D. Moreover,

j 1
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and

: 1
03y (, ) = D), ,, < Ct.—XVe

v,
for any x € O/ (02, p2), v« <7 <7, and 0 < |j] < s,
A transformation. Let now k € T, ,.p(0, ) and set
n= \M;ﬁ’
Then we have
(h+k+flods=h+k+h, +f +R

where f4 is defined by (9.2), i.e.

fr=(F =+ k1S {f = 18 = {f = 1 8Y

+/01(1 —t){{h +k+ f,S},S}od% dt.

The integral term is the sum
1 1
/ (—0){hy + R—f7,5) 0 Bl i+ / () {{k+ £.S}—{f — /. 5}, 5} 0 B} dt.
0 0

The estimates of {k + fT,S} and {f — f*,S}. By Proposition 2.9(i)
k' TS 02,2 <CtX SO’l,l ]C T0'1,1 .
[{k+ 7", }‘v,alfD_ | \%iD k+ f }'y,aﬂ,D
Hence .
[{k+ f7, S}’az,ugp < Ct.;XQY(n + €)e. (9.6)
’y7a7

Similarly,
1
[{f = f", S} owms < Ct.—X?YVée. (9.7)
v,a,D K

The estimate of {hy — f1,S5} o ®,. The estimate of h. is given by (8.23):
|h+|0’1,u1 S CtXYE

v,2¢,D

This gives, again by Proposition 2.9(i),
1
[{hs = [T, S} oo < Ct.= XY 22
v,0,D K

Let now F = {h, — fT,S}. If & verifies (9.5) for a sufficiently large constant C,
then we can apply Proposition 2.11(ii). By this proposition, for |¢| < 1, the function
Fodl €T, , plos, us) and

1
[{hs — T, S} o %‘?’“% < Ct.;X?’YQsQ. (9.8)

e}
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The estimate of {R,S} o ®%. The estimate of R is given by (8.25). It implies that

‘R’O’l,,uq S CtXYE

’Y’%’

Then, as in the previous case,

1
[{R,S}o @@]fy% < Ct.EX3Y252. (9.9)

The estimate of {{k + f, S} — {f — f1, S}, S} o ®L. This function is estimated as
above. If F = {{k+ f,S} — {f — f¥,S}T, S}, then, by Propositions 2.8 and 2.9(i),

1
Flou, < Ct.(=X2Y)2(n+ €)<
v,e,D K

and by Proposition 2.11(ii)
1
[k + 1,8} = {f =}, Sy o @louy < CLLXYP(n+0™ (9.10)

The estimates of RY and R*. These estimates are given by (8.25):

o < Ct.XYe (079N,
v,%¢D

|R"

and
|RS|U1,H1 S Ct.XY@i(AYiPY/)Alg.
7,24
Renaming now X and Y and denoting R® by R gives the following lemma.

LEMMA 9.1. There exists an absolute constant C such that, for any

he NF,.(AS), »>0, §<—(,
Cy
and for any
1
N>1, AN>A>1, k< =/,
Cy

there exists a closed subset D' = D(h, k, N) C D, satisfying

« -«
meas(D\D') < C1(AN)>P u X
5o 3o
and, for any f € T, ,.p(o, 1),

— T — ’7?%
e=|f ‘f;ﬁp and &= [f])7p.
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satisfying

_ NA’ea  vexp,
=l

K , ol <o, <,
< -
£SO XY y:(XiS)

K )

and for any k € T, ,.p(o, j1),

n= ‘k| TH
’Y)%’
there exists a C%* mapping
o o
¢:OW’(J/7/1’/)XD_>O’Y’(O—_U U?M_N H)a V’Y*S’Y’S%

2 2
real holomorphic and symplectic for each fixed parameter p € D, and functions
f+7 R+ € %,%»D(O’,7ﬂl) and

h+hy € NFL(Ad4),

such that
(h+k+f>0(b:h+k+h++f+—|-R+? vpezD/’
and
‘h+|a’,u’ < ClXYE,
7,26, D
‘f+_f‘o“,p,’ SClXY(1+77+§)5’
~v,2¢,D
1 ’
\ff o S Cl*XY(n + /ief("*" N + 6)57
v,%D K
and

|Riloryw < C1XYe 0772
v, D
for any v, < <.
Moreover,

105(@(x, p) — )]

for any © € Oy (o', 1), v« < < v, |j| < s« and p € D, and ®(-,p) equals the
identity for p near the boundary of D.

Finally, if p = (0, pa, ..., pp) and f1(-,p) = 0 for all p, then fy —f = Ry = hy =0
and ®(x,-) = x for all p.

1
< leXYE
> K

v+ [|04(d(x, p) — 1)

7,7

REMARK 9.2. The exponent « is a positive constant only depending on d, sy, s
and (2. The exponent exp; only depends on d, n = #A, s, and 7,32, . C] is an
absolute constant that depends on ¢, 7, 52, #3 and ». C also depend on supp |y,
and supp |Hyp|, but stays bounded when these do.
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9.2 A finite induction. = We shall first make a finite iteration without changing
the normal form in order to decrease strongly the size of the perturbation. We shall
restrict ourselves to the case when N = A’.

LEMMA 9.3. There exists a constant Cy such that, for any
he NF,(A,5), x>0, §<—,
and for any

1
A>A>1, Kgacl,
there exists a closed subset D' = D(h, k, A") C D, satisfying
meas(D\D') < Co(A)*P: [ =) (Xyi-a
do do
and, for any f € T, ,.p(o, 1),

_ | £T _ v,
e=|f ‘3517 and &= [f];" p,

satisfying

/vd €XPy
o Lon X:(%log%) , ol <o, p <y,
T CGXY' )y= <x+£>eXp27

there exists a C%* mapping

/

-0 M_u—u’
2 2

(I):O,y,(g,’ul)xpﬁo,}/ (U_U >7 V’Y*S’}/S'}/,

real holomorphic and symplectic for each fixed parameter p € D, and functions
J' € T,p(o’, 1) and

e NF,.(A, ),

such that
(h+flod=n+f, VpeD,
and
‘h' —hlorw < C2XYe,
~,3,D
E=\flow <E+CXY(1+E),

o'
’
v
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and

e = |(f/)T}a’,u’ < CQXY(ef(”’”')A' + e*(’Y*V’)A’)E7
v ,2D

for any v, < <.
Moreover,

105(@(x, p) — )|

J+ |93, p) - 1)

, < CQlXY€
el K
for any x € O~y (o' 1), v < v <7, |j] < s, and p € D, and (-, p) equals the
identity for p near the boundary of D.

Finally, if p = (0, pa,...,pp) and f1(-,p) = 0 for all p, then f' — f = h' =0 and
O(x, ) = x for all p.

( The exponents «, exp,y and the constant Cy have the same properties as those
in Remark 9.2).

Proof. Let N = A’ and k < é—; Let 01 =0 — 0_2"/, 1 = — “_T”/ and ox 41 = o',
pr 41 =/, and let {oj 1+

and {p;}5 ! be arithmetical progressions. Let

—1
(0 —d)A'< K < (0 —-0")A <log g)

This implies that
ke (0i—0i41)N <e.

We let fi = f and k; = 0, and we let €1 = [f{]on  =¢, & = [filon = &,

77%7 "7‘7%7'D
(51 =4 and m = [k‘l]a,,u =0.
v,%D

Define now

1
Ejt1 = Cl;Xij(??j + €1+ ¢€j)gj,

§ir1 =&+ Cr1XY;(1+mj +&5)ej,  njv1 =n; + C1X;Yej,

with

X - ( NAle'ydA >exp1 v _ <X_‘_€j>exp1
J 9 J 9
(o )

5= 0j1) (g — pjg1 K

where C1,exp; are given in Lemma 9.1. Notice that X; = X.

SUBLEMMA. If

1 K

< ———, (5 =3eC2%"
€1 > CQ X12Y127 2 el 3
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then, for all j > 1,

1 Co X2v2 \7! .
gj < o X;YQ and €; < (2211%161> g1 < e_(J_l)el,
fj - & < QC'leYl(l + 51)61 and n; < 2C1X1Y1eq.

This sublemma shows that we can apply Lemma 9.1 K times to get a sequence
of mappings

0j — 0j+1 Hj — Hj+1
;1 Oy (041, 1) X D' — Oy (UJ' - %’/‘j - %

) , <Y <y
and functions fj;; and Rj; such that, for p € D',
(h+kj+ fj) o ®j =h+kjp+ fin

with ijrl = k?j + thrl + Rj+1.
Let f' = fx41+ R+ -+ Rgy1 and ' = hy + -+ + hg 1. Then

‘h/ —h < Cl ZXjY}&“j < NK+1 < 2ClX1Y1€1,
v,¢,D
[ = florw <O XYi(1+ & +my)e; S ACXVi(1+ &)en,
77%7
and
[ e S e +C1 Y XY™
Y52t

< einl + 201X1}/16(777/)A/€1 < e(oial)Alﬁl -+ 201X1Y16(777/)A/€1.
We then take ® = ®10---0®g. For the estimates of ®, write ¥; = ®;0---0Pg
and W = id. For (z,p) € O (o, ') x D we then have

1@ (z, <Z|I‘1’ z,p) = Vit (x, p)ll

Then

[[W;(z, p) — Vjt1(z, p)

i (Wir1(x, p),p) — Vir1(z, p)lly
is

1
< leXijjEj.
K
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It follows that

1
H<I>(x,p) - x‘H/ S 201;X1Y1€1.

The estimate of ||d®(x, p) — ||, is obtained in the same way.

The derivatives with respect to p depends on higher order differentials which can
be estimated by Cauchy estimates.

The result now follows if we take Cs sufficiently large and increases the exponent
€xXpy - O

Proof of Sublemma. The estimates are true for j = 1 so we proceed by induction on
j. Let us assume the estimates hold up to j. Then, for k < j,

X+ &+ 201X1Y1(1 + 51)51

Yi < ( -

)eXP1 = 9°XP1Y;

and

Xpyy

€j+1 < 26Xp17[201X1Y161 + &1+ El]Ej < C’ €1€5,

C'" = 3C,2%%1. Then

Eir1— & <27 XY (1+ & +4C1 X0 Yi(1+&)er)(er + -+ -+ €541)
<27PLXGY (14 &) (1 +4C1 X Yie1)2e; < 29P14 XY (1 + & )en,

if 4C1X Y161 <1 and C’@sl < % < %—and similarly for 7;41.

9.3 The infinite induction. = We are now in position to prove our main result,
Theorem 6.7.

Let h be a normal form Hamiltonian in N'F,(A, ) and let f € 7, ,.p(o, 1) be a
perturbation such that

0<e=|fT]s = flon .
e=|f |$,fv,v’ 3 \fl;f,ip

We construct the transformation ® as the composition of infinitely many trans-
formations ® as in Lemma 9.3. We first specify the choice of all the parameters for
j=>1

Let (5, expy and « be the constants given in Lemma 9.3.
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9.3.1 Choice of parameters.  We have assumed v,0, 4 < 1 and we take A > 1.
By decreasing 7 or increasing A we can also assume v = (da) .
We choose for j > 1

(1 1 q (1 1
i = 5—{—2—] pw o and o = 54-27 o.

We define inductively the sequences €, Aj;, §; and &; by

Ej41 = efe, €1 =¢,

Aj+1 = 4Kj max (07‘_177‘“ y dAj) IOg %, Al = A,

Yi+1 = (dAHl)il? o =7 (9'11)
5j+1 = (5]' + CQXjY}'&“j, 6 =902>0,

Eiv1 = & + CaXGY5(1+ &j)ej, & =¢,

where

0;—0j41) (1 —Hj+1) op

v, = (x8)"
=

Kj

PRCLYN *P2 A J+1 €XPy
Xj _ <( Ajyie J log €IJ> _ (KJAJ+164 log %) ’

—for da see (6.2).The r; is defined implicitly by

1 Iij

Ve, — —
T oY

These sequences depend on the choice of K;. We shall let K; increase like
K; =K’
for some K sufficiently large.

LEMMA 9.4. There exist constants C' and exp’ such that, if

K>
and
1\ 1 op o
log—) <= (—H
<g> e <(X+§)KA> |

then

(i) d;j—0, &—¢& < 209X1Yie;

(ii) i1 > CQXjY;-(efé(Ujfg"“)Aj“ + e*%(’Yj*’YjJrl)AHl)Ej;

ox ox Kdplogt

(1“) S AT < 285k < (S (x o+ )e)°

o
i>1 H
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(The exponents «, exp’ and the constant C' has the same properties as those in
Remark 9.2).

Proof. Aji1 is equal to

1 1 1 ,
4K max < ,dAj> log — < <Ct. log > (2K)’Af,
€ o "¢

9j = Tj+1

where « is some exponent depending on d. By a finite induction one sees that this is
1 1 o
< | Ct.=log — ) (2K)A)",
o "¢

if, as we shall assume, a > 2. Now X; equals
KA 47+1 €xpy 1 1 . 2 expy
<”+16 log ) < <(Ct.log)(4K)J A?)
o € o €

which, by assumption on ¢, is

4 exp, a’ 4exp, a’
1 1 2 1 2
< <<Ct.10g > KA) < (> .
op e €

if, as we shall assume, a > 3.
(i) holds trivially for j = 1, (i) , so assume it holds up to j — 1 > 1. Then
0; <0+ 202X 1Y1e and & < £+ 205X 1Y1¢e, and hence

exp, exp,
ij < <X+§+2C2X1Y1€> < 29%XP2y; <Hl> )

kj kj

By definition of ;,

1 . . . ‘
’{j +exp, = 9J 02 XJY75] K./‘(;XPQ < 90XP; 02}/1 K‘iXp2 27 X] £j < 27 ngKj -1

by assumption on . Hence

1

WO X YVie: = e < 29 X.e20Kj-1 « 20K 1—dexpya’—jlog2 ¢ _ '
245 15¢) J = J = ) 2(1 + expy)

If K is large enough—notice that j > 2 this is < -1,

Hence
ki < ebFi1 < bK< o < 209X 1Y1e,
if K is large enough. Moreover

J
0j —0= Z CoXpYier < gk < 209X Y1¢e1
k=2
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if K is large enough. From these estimates one also obtains the required bound for
& — & if K is large enough. This concludes the proof of (i).
To see (ii), notice that

e (0i=0511) A 41 < e 4K log £ < g,

Notice also that A, is much larger then A; so that ;41 is much smaller than
~; and, hence,

—4FK; T :;_j“ log 1

e_('VJ'_’Yj-H)AJ-H <e = < gKa‘g_

This implies that
G2 XY (6_%(01—%“)%“ + 6_%(’7J'_'Yj+1)Aj+1> g; < cKig = Ejt1-

To see (iii) we have for j > 2

1 dexpia? 2 g 1 1
A?XPQKQ < X‘?Xp2/{q < (= kY < e—4exp2 a’? log;eabKj,llogg
J+1v = J J — c J

which is
N )
< g3bKia < 277¢,

if K is large enough (depending on «). This implies the first inequality in (iii). The
second one is a simple computation. O

9.3.2 The iteration

PROPOSITION 9.5. There exist positive constants C'3, a and exps such that, for any
h e NF,.(A,$) and for any [ € T, ,.p(o, ),

4T _
e=|f ‘iﬁ,D’ 3 |f’$ffr,2>’

if

and

1 1 P
Ol / /

e(log —)¥Ps < — ,

(log 7 = Cs ((X+§)maX($,da)C> ‘

then there exist a closed subset D' = D'(h, f) C D,

x(£,dp)log 1\ P o
meas(D\D) < O (m S OgE) L (+0)
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and a C** mapping
®:0,.(0/2,11/2) X D — Oy, (0, ),
real holomorphic and symplectic for given parameter p € D, and
h' e NF,(0,8), § < 02/7
such that
(h+flo®=n"+f
verifies

\f = flojzpe <Cs
Yay 32, D
and, for p e D', ()T = 0.
Moreover,
|1 = hloappe < Cs
V26, D

and

185(®(, ) = @)l|+. + |05 (d@(z, ) = D], < Cs

1695

for any x € Oy (', 1), 7] < s«, and p € D, and ®(-, p) equals the identity for p
(7 *)

near the boundary of D.

Finally, if p = (0, pa, ..., pp) and fT (-, p) = 0 for all 5, then b’ = h and ®(z,") = =

for all p.

( The exponents «, exps and the constant Cs have the same properties as those

in Remark 9.2).

Proof. Assume first that ’y:dgl. Choose the number pj, 05,65, Aj, 74,905, &, X5, Y}, Kj

as above in Lemma 9.4 with K = C’. Let hy = h, fi = f.
Since

1
Rj, (S] -0 < 202X1}/18 < ﬁcl

by Lemma 9.4 and by assumption on € we can apply Lemma 9.3 iteratively. It gives,

for all j > 1, aset D; C D,

et -«
meas(D\D;) < CoATP2 (fﬁ) (X) )
( \ J)A— 202541 5o 5o
and a C® mapping

9j —95+1

®ji1: O (041, j41) X Dy — O <"J’ T T

Ve < <41,



1696 L. H. ELIASSON ET AL. GAFA

real holomorphic and symplectic for each fixed parameter p, and functions f;11 €
Ty 50 (041, pj41) and

hjt1 € NF(Aji1,0541)

such that
(hj + fj) 0 ®jr1 = hjy1 + fix1, Vp € Djia,
with
T
’fj+1|01+17ltj+1 < Ej+1
Yi+1,%%,
and
|[fitilosinmisr < &g
Vi+1,%%,
Moreover,
hje1 = jlosinm < CaX;Yie;
V4157,
and

18,(@j1(, ) —

v+ sty — 1)

1
< Cr—X;Yje;j
i1 KR4
for any x € Oy (041, pjr1), Ve <7 < vj41 and |I] < s
Welet b/ =limhj, f/ =lim f; and @ = ®go0---0Pzo0.... Then (h+f)o® = W'+ f’
and h' and f’ verify the statement. The convergence of ® and its estimates follows
as in the proof of Lemma 9.3.
Let D' = |JD;. Then, by Lemma 9.4,
1-a Y1 da logl

meas(D\D') < Cy X ZAjipf Ky < C3 % ( o =)z ((x + £e)”.

The last statement is obvious.
If v < (da)~!, then we increase A and we obtain the same result. If v > (da) ™1,
then we can just decrease v and we obtain the same result. O

Theorem 6.7 now follows from this proposition.

PART IV. SMALL AMPLITUDE SOLUTIONS

10 Proofs of Theorems 1.3, 1.4

We shall now treat the beam equation by combining the Birkhoff normal form the-
orem 5.1 and the KAM theorem 6.7 or, more precisely, its Corollary 6.9. In order
to apply Corollary 6.9 we need to verify, first that the quadratic part of the Hamil-
tonian (5.4) is a KAM normal form Hamiltonian and, second that the perturbation
f is sufficiently small.

We recall the agreement about constants made in the introduction.
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10.1 A KAM normal form Hamiltonian. Let A be the Hamiltonian
(1.11)+(1.12).

Theorem 10.1. There exists a zero-measure Borel set C C [1,2] such that for any
strongly admissible set A and any m ¢ C there exist real numbers v, > v, = (0, M+
2) and [y, vy, co > 0, where ¢y, (o, vo depend on m, such that, for any 0 < ¢, < cg,
0 < By < By and 0 < v < v there exists an open set Q = Q(cx, By, v) C [cs, 114,
increasing as v — 0 and satisfying

meas([c,, 1]N\Q) < CvP#, (10.1)

with the following property:
For any p € @Q there exists a real holomorphic diffeomorphism (onto its image)

U, 0, (%,Mf) =T, 1,1,7), = 26\;57 (10.2)

satisfying (5.5), such that
Vo (dp Ndq) = vdrandia + vdug Adug,

and such that, up to a constant,

1
;(ho\llp):hup+fv

hup(r, 0,2, 4) = (Q(p),7) + % > Malp)s + @) + (K (p)Cr, CF) - (10.3)
acLl

where F = F, C Ly, with the following properties:

(i) ¥, depends smoothly on p and

\ij (O'y (%,Mz)) CTp(%LL’Y): Y <Y < Vg

(ii) hup satisfies, on any ball (or cube) D C @, the Hypotheses A1-A3 of Sect. 6.2
for some constants ¢, c, 8, 3, such that

d>uviP c=2max{(a)?,ac A}, B =L =2, (10.4)
oo > P s, =4 (#F)?, (10.5)
B3 = pF3(m) >0, 7=7(m)>0; (10.6)
(iii)
X = IV Qlee—1py + sup |VpAalce—1(p) + [V, K]|gon-1(p) < Cv'=P#,

a€Ll



1698 L. H. ELIASSON ET AL. GAFA

(iv) f belongs to ’T%%:g,Q(%,,uf) and satisfies

E=1flijgue < Cvihr, = |fT\1/2,#3 < CV3/2 P,
Y9,2,D Yg,2,D
If A is admissible but not strongly admissible, then the same thing is true
with the difference that (ii) only holds for balls (or cubes) D C Q NDy, where
Dy C [0,1]4 is an open set, independent of ¢«, By and v, such that

meas(Dy) > %C#A. (10.7)
The constant C' depends on m, ¢y, 4, but not on v.

Proof. We apply Theorem 5.1 and denote the constructed there symplectic trans-
formation by W. We let Loo = L\F = (L\Ly) U (Lf\F) (this is a slight abuse of
notation since in Part II we denoted by Lo the set L\L¢). For By, vy and £y we take
the same constants as in Theorem 5.1. If A is only admissible, we take for Dy the
set Dy = D}, see (5.23).

The assertion (i) of the theorem holds by Theorem 5.1.

To prove (ii) and (iii) we will first verify (ii) for a smaller ¢/,

¢ > 2B (B0)+0) (10.8)

and in (iii) will replace the exponent for v by a bigger number.
By (4.44), (4.45), (5.6) and (5.7) we have that

X = |va cs*—l(Q) + sup |vaa|C5**1(Q) + Hl/vpKHcs*—l(Q) S Ct.l/l_ﬁ#ﬁ(s*_l),

a€Llo

which implies (iii) with a modified exponent.

Now let us consider (ii). We will check the validity of the three hypotheses A1-A3
(with ¢ as in (10.8)).

First we note that using (4.45), (3.4), (5.22), (5.38) and (5.52) we get

s+ 3la® <Ag<2al +1,  |Aa— Aalcipy) < Cavla™® Vij>1, VaeL\Ly,

(10.9)
Ot < |A,| < Cov Va € L\F. (10.10)

It is convenient to re-denote
Ao =:0 if a€L\F; (10.11)

then the second relation in (10.9) holds for all a. We recall that the numbers
{£A,4,a € F} are the eigenvalues of the operator JK. They satisfy the estimates
(5.8).

The vector—function Q(p) € R™ is defined in (4.44), so

Qp) =w+vMp, detM #0, (10.12)
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and K is a symmetric real linear operator in the space Yz. Its norm satisfies
WK (p)lles < Cpp' =70 j > 0. (10.13)

See Theorem 5.1, items (ii)—(iv).
Hypothesis A1. Relations (6.8) and (6.9) and the first relation in (6.10) immediately
follow from (10.9) and (10.10).

To prove the second relation in (6.10), with H,, = K, note that by Theo-
rem 5.1 the operator U conjugates JK with the diagonal operator with the eigen-
values +iA,(p), a € F. So by (5.8) and (5.9) the norm of (JK)~! is bounded by
Cr~18#(c+28(0) "and the required estimate follows from (10.8). The second relation
in (6.12) follows by the same argument from (5.8), which implies that the norms
of the eigenvalues of A,J — iJK are > C~'v%%#. The first relation in (6.12) is a
consequence of (10.9), (10.10) and (6.4).

Now consider (6.11).29 If a € L and b € L\Ly, then again the relation follows
from (10.9) and (10.10). Next, let a,b € Lf\F. Let us write A, and Ay as Al and
Ak < k. If j = k, then the condition follows from (5.40), (5.52) (from (5.38)
if m = r). If j < My < k, then again it follows from (5.40). If j,k < My, then
Al = A} = p(bj, p) and Ak, = 1i(by, p), so the relation follows from (5.39). Finally,
let j, k > My. Then if the set A is strongly admissible, the required relation follows
from (5.40), while if p € Dy = D}, then it follows from (5.29).

Hypothesis A2. By (10.12), 0;,Q(p) = vM3. Choosing

Mk

3= Mgk (10.14)

and using that | — Q|cs. < &y we achieve that 0;(k, ' (p)) > Cv, so (6.13) holds.
To verify (i) we restrict ourselves to the more complicated case when a,b # ().
Then L(p) is a diagonal operator with the eigenvalues

Ay o= (k, () + Aalp) £ Ao(p),  a € [a], be[b].
Clearly
’)\l;b - (<k7w> + >\a + )\b)‘ < CU’k“

(we recall (10.11)). Therefore by Propositions 3.6 and 3.7 the first alternative in (i)
holds, unless B
k| > CvF (10.15)

for some (fixed) 8 > 0. But if we choose 3 as in (10.14), then 9;L(p) becomes a
diagonal matrix with the diagonal elements bigger than |'Mk| — Cv|k| — Cyv. So if
k satisfies (10.15), then the second alternative in (i) holds.

29 This is the only condition of Theorem 6.7 which we cannot verify for any p € Q without assuming
that the set A is strongly admissible.
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To verify (ii) we write L(p, A,) as the multiplication from the right by the matrix
L= ({kQ)+ Ay(p))I +ivJK.

The transformation U conjugates L with the diagonal operator with the eigen-
values )\’;j =: (k, Q) + Au(p) = yiAg‘. In view of (5.8), |)\’a‘3j| > |%)\§j| > O yttels,
This implies (ii) by (5.9) and (10.8).

It remains to verify (iii). As before, we restrict ourselves to the more complicated
case a,b € F. Let us denote

Ap) = (&, ¥ (p)) = (k,w) + vk, Mp) + (k, (2 = Q)(p)),
and write the operator L(p) as
L(p) = Mp)I + L°(p), L°(p)X = [X,iJ(vK)(p)].

In view of (10.13),
HLOHCj < ijlfﬁ(j)ﬁ# for j>0. (10.16)

Now it is easy to see that if [(k,w|) > C(v'=POB8# 4 y|k|) with a sufficiently big
C, then the first alternative in (iii) holds.
So it remains to consider the case when

[(k,w)| < C(' PO« 4 k). (10.17)

By Proposition 3.6 the Lh.s. is bigger than x|k|™ . Assuming that Gy < 1, we
derive from this and (10.17) that

k| > Cv~ 1/ 047, (10.18)

In view of (10.16)-(10.18), again if fy < 1, we have:

IA(p)| < Cu(v= 708 4 |k|) < Crvlk|, (10.19)
@) Mp)| < Cjlkldo, 2< 3 < s, (10.20)
ILl|ci < Cv(v=P9DB% 4 |k|) + C;|k|do, > 0. (10.21)

Denote det L(p) = D(p). Then

Dip)= T TI Awiabo1,09),

a,bEF 01,02==%

where A(p;a,b,o1,02) = A(p) + o1vAa(p) — oavAp(p). Choosing 3 as in (10.14) we
get

Al < Cvlk|, |0;A] > C 7 kly — |k|6o > 2O k|, yagA| < Cjlk|do if j>2
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(that is, these relations hold for all values of the arguments p,a,b,o1,03). Recall
that 2|F| = m; then s, = m?. Chose in (6.15) j = s, = m?. Then, in view of the
relations above, we get:
193D (p)| = m*! (CYE[W)™ — Ca(Jk|p)™ " ([K|60) = tm? (C~ k|p)™ .
In the same time, by (10.21) the r.h.s. of (6.15) is bounded from above by
C, S0 <y<m2—1><1—5(m2>5#> Y k|m2—1) ,

In view of (10.8), (10.5) this implies the relation (6.15) if we choose (4 <
(B(m?)(1 +n?))! (as always, we decrease vy, if needed).

Hypothesis A3. The required inequality follows from Proposition 3.7 since the divisor,
corresponding to (6.16) where a,b ¢ L¢, cannot be resonant.
Finally, let us denote

By = By max(1,¢,2(5(0) +¢), B(s. — 1)).
Our argument shows that the assertions (ii), (iii) of the theorem hold with (4
replaced by ﬂ%. The assertion (iv) with Sy =: ﬁ% follows from (5.10). Now it remains
to re-denote ﬁ% by B4. O

10.2 The main result. We have cg, By, 1y so small that Theorem 10.1 applies.
Now we shall make them even smaller.

Theorem 10.2. There exists a zero-measure Borel set C C [1,2] such that for any
strongly admissible set A and any m ¢ C there exist real numbers cy, 3y > 0,
depending only on A, m and G, such that, for any 0 < ¢, < ¢p and 0 < By < By the
following hold.

There exists a vy such that if v < vy, then there exist a closed set Q' =

Q' (cx, By, v) C Q = Q(cx, By, v), and a C**-mapping @
D (9%(1/4#3/2) xQ — (97*(1/2,#3), Hoxe = ;ﬁa Ve = (0,my +2),

real holomorphic and symplectic for each parameter p € @), such that

(hap + £) 0 @(r,10,p) = (8 (p), ) + 3 (w, A )} + (0, )

with the following properties:
(i) the frequency vector Q' satisfies
‘Q/ _ Q’C-?*—l(Q) S yl'i‘N?
and the matrix
Al(p) = A(p) @ H'(p) € NF
satisfies
102(H (p) = vE (p))[| < v!*,

for |j| < sy and p € Q;
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(ii) for any z € O, (1/4,u2/2), p € Q and |j| < s, — 1,
1052, p) = @)l + [|05(dD(x,7) = D)|| . < wa N2,
(iii) forpe Q" and ( =7 =0
dpf' = dof = dcf' =d¢f' =0
(iv) if A is strongly admissible, then
iii%meas Q' (cx, By v) = (1 — c*)#A.
If A is admissible but not strongly admissible, then
li]lc/n_i(r)lf meas Q' (cx, By, v) > %C#A.

The exponent R is defined by N(k + 2) = min(§,a) where a and k are given in

Corollary 6.9.

Proof. By Proposition 10.1 we know that the Hamiltonian h;, of (10.3) satisfies the
Hypotheses A1-A3 of Sect. 6.2 with the choice of parameters (10.4)—(10.6)—c', dp
are here still to be determined—on any ball D C Q(cx, B, v) C [cx, 1] with

meas([c., 11"\ Q(cx, By, v)) < CvP#. (10.22)

In order to apply Corollary 6.9 to the Hamiltonian h,, + f it remains to verify the
assumptions (a), (b) of that corollary, and (6.25).

Choose X so that R(k+2) = min(3, «). (Here x and o are given in Corollary 6.9.)
If we take By < N2, then

Y, £E<Ct N and e < Ct.(yl_w)%
for any By < fy. By (10.4) and (10.5) we have
C, — 50 2 V1+N.

Then a) and b) are fulfilled.

The smallness condition (6.25) in Corollary 6.9, is now easily seen hold, by the
assumption on X, if we take v sufficiently small. (Notice that this bound on v depends
on ¢, through p..) We can therefore apply this corollary: there exists a closed subset
D'(v) C D, with the measure bound (6.26) becomes

1
meas(D\D'(v)) < —d, e <&,
€0
(by the assumption on R); the bound in (ii) follows since ¢’ > v'*%; the bound in
iii) holds if vy is small enough. The diffeomorphism & trivially extends from D to
@ since it equals the identity near the boundary of D.
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In order to prove (iv), assume first that A is strongly admissible. Then for any
¢y the sets Q, = Q(cy, By, v), form an increasing system of open sets in [, 1]4 such
that their union is of full measure. So for any ¢ > 0 we can find v, > 0 such that
meas @, > (1 —€)(1 —c)" (n = #A) if v < v,. Since Q,, is open there is a finite
disjoint union U§V:1Dj C @, of open balls (or cubes) whose measure differ from that
of Q.. by at most €(1 — ¢,)™. [Use for example the Vitali covering theorem.|

For any j > 1 we construct a closed set D;-(I/) as above. Then

Dj(v) CD; C Q. CQ,

for any 0 < v < v, and meas(D;\Dj(v)) < VR If now Q) = U;yleg(y) and
v, € [0, v is sufficiently small, then meas(Q,\@,,) < 2¢(1 —¢,)" for all 0 < v < V..
This implies the first assertion in (iv). To prove the second we simply replace in the
argument above the cube [0, 1] by the set Dy as in (10.7). 0

10.2.1  Proof of theorems 1.3 and 1.4

Proof. Given (4. For any ¢, and v, let Q'(cs,v) C Q(cy, By, v) be the closed set
defined in Theorem 10.2. Then, for any c, > 0,
U Q/(C*a V)
veQ*
#

is of Lebesgue measure: = (1 — c*)#“4 when A is strongly admissible; > ¢ A when
A is admissible. It follows that the set

J=ST=w:pe |J Qe
c.,veQ*
VA#<e,

at I = 0 has: density = 1 when A is strongly admissible; positive density when A is
admissible. )
~ Chose an enumeration {(cj,v;)}; of Q* x Q" and let J; = v;Q'(cj,v;) so that
J= Uj 3j~ B

Now we fix j and let v = v;. We define for any I € Jj,

U]{(HA?I =vp)=V,0P(ry =0,04,(c=0,p).
We have, by Theorem 10.2,
1@, p) — @l < va N,

for any z € O,,(1/4,u2/2), p € Q(c;, By, vj), and, by Theorem 10.1,

1 Wp(r. 0, €c,me) —(ywpcos(0), \/wpsin(0), vpe, vpne) |l
< C(Wrlrl+ Vo€, no)ll, +v2)v=
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for all (r,0,&,,nr) € (’)w(%, ©2) N {0 real}. Therefore

I U],'(@A; vp) — (y/vpcos(8),/vpsin(0),0,0) ||,.

which is < CT'"R+3) if 8, is small enough. Thus U; verifies (1.26).
Also, by Theorem 10.2, the frequency vector Q; satisfies

12 (p) — Qp)| < ¥ < O < O
for p € Q(cs, Bx,v), and, by Theorem 5.1,
Qp) = wa +vMp.

Therefore the vector 'y ;(vp) = Q}(p) will satisfy (1.27).

Part (i), for p € J; is clear by construction.
If p is such that F = F, is non-void, then the eigenvalues {+iAy(p),a € F} of
JK (p) verifies (see (5.8))

ISAL(p)| > C~ W% Vae F.

Since, by Theorem 10.2,
1 / N
1= JH (p) = JK(p)l| < v,

it follows (see for example Lemma A2 in [Eli98] and Lemma C.2 in [EGK14]) that the
eigenvalues of the matrix 1.JH'(p), hence those of JH'(p), have real parts bounded
away from 0 when ¢f4 < XN and v is small enough. This proves (iii).

If the J ;s were mutually disjoint, the mappings Uj/- would extend to a mapping U’
on J. But they are not. However there are closed subsets J; of 3 j» mutually disjoint,
such that the density of the set J = Uj Jj at I =0 is the same as that of the set ‘;j
Now we just restrict each U ]’ to J;, and these restrictions give a mapping U’ on J.

[To see the existence of the sets J; we construct, by induction, Borel subsets 3;-
of j j» mutually disjoint, such that U ; 3;- = :”j . The set 3;- are not closed, but each has
a closed subset J; such that meas(fj;\fjj) < 277 meas(fj;) by the regularity of the
Lebesgue measure. Since each 3 ; is separated from I = 0, it follows that the density
offj:Uj‘”jj at 0 is the same as that offj.} O
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Appendix A. Proofs of Lemmas 2.7 and 4.5

For any v = (v1,72) let us denote by Z, the space of complex sequences v = (vs, s € Z%)
with the finite norm ||v||,, defined by the same relation as the norm in the space Y. By
M., o we denote the space of complex 74 x Z%—matrices, given a norm, defined by the same
formula as the norm in M, o, but with [a — b] replaced by |a — b|.

For any vector v € Z,, o > 0, we will denote by F(v) its Fourier-transform:

Fv) =ulx) & u(zr) = Zvaei<a’“>.

By Example 2.1 if u(z) is a bounded real holomorphic function with the radius of an-
alyticity o’ > 0, then F~'u € Z, for o < ¢'. Finally, for a Banach space X and r > 0 we
denote by B,(X) the open ball {z € X | |z|x <7}.

Let F be the Fourier-image of the nonlinearity g, regarded as the mapping u(z) +—
g(@,u(@)), ie. F(v) = FLg(z, F(o)(x)).

LEMMA A.1. For sufficiently small g > 0, 751 > 0 and for v4 = (v41,742), Where v4o >
my + » we have:

(i) F defines a real holomorphic mapping B, (Z,,) — Z.,,

(ii) dF defines a real holomorphic mapping B, (Z,,) — Mf;,,o , where v = (g1, 792 — M).

Proof. (i) For sufficiently small ¢/, x > 0 the nonlinearity g defines a real holomorphic
function g : ']1“;/ x B,,(C) — C and the norm of this function is bounded by some constant
M. We may write it as g(z,u) = > 25 gr(x)u”, where g,(z) = %aai;g(m,u) lu=0. So
gr(x) is holomorphic in z € ']I‘Z, and by the Cauchy estimate |g,| < Mp~" for all x € ']T‘g,.
Accordingly,

H}—_lgr”vg <C,Mp™™ if 0<Z Y91 < 0,

for any o < ¢'; cf. Example 2.1. We may write F(v) as

o0 oo
F(v) = Flg)xvx - %v=: F.(v). Al
();(9)\T,§() (A1)

Since the space Z,, is an algebra with respect to the convolution (see Lemma 1.1 in
[EKO08]), the 7-th term of the sum is a mapping from Z, to itself, whose norm is bounded
as follows:

NF1g) % pxew %y, < CLOH " o]l (A2)

T

This implies the assertion with a suitable ;4 > 0.

(ii) The assertion (i) and the Cauchy estimate imply that the operator-norm of dF(v)
is bounded if |v], < pg. To estimate |dF(v)|, 0, for r > 3 consider the term F).(v)
in (A.1). This is the Fourier transform of the mapping u(xz) — g,(z)u(x)”, and its
differential dF).(v) is a linear operator in Z,  which is the Fourier-image of the operator
of multiplication by the function rg, (z)u"*(z). So the matrix (dF,(v)’, a,b € Z%) of
the former operator is nothing but the matrix of the latter operator, written in the
trigonometric basis {el(%*)}. Therefore

(dFr(v))Z = (27r)_d/e_i<b’””>7"gr(ac)uT_1ei<a’z> dx.
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That is, (dF,(v))2 = G,.(b— a), where G,.(a) is the Fourier transform of the function
rg-(x)u"t. So

(B ()]0 = sup C 3 [(|dF(v)2 7011270 (@ — by o=
@ b

= supC Y [(1Grla = D™ (a = b (a = )~ < C'IG, (Ol
@ b

1/2 1/2
<C (Z |G7-<c>|2e2791'0<c>2<wm*>> <Z<c>2m*> = Gl

C

(we recall that m. > d/2). Applying (A.2) with r convolutions instead of r + 1, we see
that [G(-)],, < CoC™p~"|v[lZ 1. So

[(dF(0))]yr,0 < C3CT ™" |Jo]l5 1

Since dF(v) =Y, ~ 5 dF,(v), then the assertion ii) follows, if we replace 114 by a smaller
positive number. 0

Proof of Lemma 2.7. Let us consider the functional h>4(¢) as in (1.12), and write it as
h>4(() =G oY oD (. Here D™ is defined in (4.14), Y is the operator

T:Y,—Z,, (—uv, va:(§a+77—a)/\/§ Va,

and G(v) = [g(z,(F'v)(z)) dz. Lemma A.1 with F replaced by G immediately implies
that p is a real holomorphic function on B, (Y,) with a suitable y, > 0. Next, since

Vhs4(C) = D™ o 'T 0 VG(T 0 DC),

where VG = F is the map in Lemma A.1, then Vh>4 defines a real holomorphic mapping
B,,,(Yy) — Y., bounded uniformly in v, < v <.

By the Cauchy estimate, for any 0 < ,u/g < p the Hessian of h>4 defines an analytic
mapping

V2hsa: By (Yy) — B(Y,,Y,), (A.3)
and V2h>4(¢) is the linear operator
V2hs4(() =D (T V*G(Yo D ¢) Y)D™.

Note that for any infinite matrix A the matrix *YAY is formed by 2 x 2-blocks and

satisfies
bl
S 4Ll
a’'=%a,b'==+b

|("TAT);| <

DO | =

Noting also that for a’ = +a, b’ = £bwe have [a—b] < |a’—V'|, and that min(ry, ro)?r try !

< 1if r1,79 > 1, we find that the first term which enters the definition of |V2h24|7/72 esti-
mates as follows:

SUDyezd D pezd |V2hs4|lem [0=8] max(1, [a — b])"2=™ min({a), (b))?

’ a —b —m, min({a’), (¥’ 2
< SUPgeza %Zbezd D oa/mtab =t IV2G [ e =¥ T max(1, [a — b'])7 W

< suPyreze 2N yeza V2GS e ™ max(1, [of — ¥])2 7™ < 2|V2Glyr .
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The second term which enters the definition of the norm estimates similar, so
V2hsa(O)ly 2 < 2/V2G ()] = 2ldF ()], (A4)
v =T¢. In view of (A.3) and item ii) of Lemma A.1l, the mapping
V2hsa: By (Y,) = MS 5,

is real holomorphic and is bounded in norm by a y-independent constant. Jointly with (A.4)
and Lemma A.1 this implies the assertion of Lemma 2.7, if we replace py, by any smaller
positive number. a

Proof of Lemma 4.5. The proof is similar to that of Lemma 2.7 but simpler, and we restrict
ourselves to estimating the Hessian of QQ". Let us start with the Hessian of P". For any
¢ € 0O(1,1,1) we have:

EP(OC, ) =2M Y D AL )T e 4 = RO )+ (AD)

Here the dots ... stand for similar sums, where the pair ¢(’,{’ replaces (,( on other (g)

positions. For any by, bs € Z¢ the element (V%PT(C));;? of the Hessian (VQP”(())Zf, coming
from the component R of d? P, corresponds to the quadratic form R(() (1;,1 (&,m), 1, (&, 77)),

where 1;, stands for the d-function on the lattice 7%, equal one at b at equal zero outside b.
Denote by ¢ the vector (, = |Cu| + |[C_al, a € Z%. Then €0 ap)| < |Ca, |, and we see

from (A.5) that [V3P"(¢);?| is bounded by

2" M Y tarame® by =0, Car - - Cary = 27T M (CH - % Q) (=g b1 — ¢ba).
Since the space Y, is an algebra with respect to convolution, then
[C %% ]y < CTTRICILT2 (A.6)

As in the proof of Lemma 2.7, [V2Q"()7?| < (b1) ™ (b2) "} |V2P"(D~();?|. Denoting by
V2Q" the component of V2Q", corresponding to VP", denoting by = —c% b1, by = b,
and using that [by — ba] < |b) — bh|, we find :

Supy, D4, |(V%Qr)zf|emblfb2] max(1, [by — ba])72 =" min((b1), (b2))* . .
< CTMsupy, 3, (Cor ook O) (b — b)e =02 ma(1, by — by])7e e it e
<C'M supy, Zb’z (g* e 5)([)’1 — b’2)€71 [b1—b2] <b1 — b2>727m* < C/TM‘<~|§72 <C'M

(since [¢|y < 1). This implies the estimate for VQ", required by the lemma. Other compo-
nents of V2Q", corresponding to the dots in (A.5), may be estimated in the same
way. O

Appendix B. Examples

In this appendix we discuss some examples of Hamiltonian operators H(p) = iJ K (p) defined
in (5.13), corresponding to various dimensions d and sets A. In particular we are interested
in examples which give rise to partially hyperbolic KAM solutions.
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Examples with (L5 x Lf); = 0.

As we noticed in (5.14), if (Ly x Ly); = 0 then H is Hermitian, so the constructed
KAM-solutions are linearly stable. This is always the case when d = 1.

When d = 2 and A = {(k,0), (0,/)} with the additional assumption that neither k? nor
% can be written as the sum of squares of two natural numbers, we also have (L x L) = 0.
Similar examples can be constructed in higher dimension, for instance for d = 3 we can take
A =1{(1,0,0),(0,2,0)} or A ={(1,0,0),(0,2,0),(0,0,3)}.
We note that in [GY06] the authors perturb solutions (1.5), corresponding to sets A for
which (Ly x L)+ =0 and (L5 x L;)_ = (). This significantly simplifies the analysis since
in that case there is no matrix K in the normal form (4.5) and the unperturbed quadratic
Hamiltonian is diagonal.
Examples with (L5 x Lf); # 0.

In this case hyperbolic directions may appear as we show below.
The choice A = {(j,k), (0, —k)} leads to ((j,—k), (0,k)) € (Ly X Lf)4+.
Note that this example can be plunged in higher dimensions, e.g. the 3d-set
A={(4,k,0),(0,—k,0)} leads to a non trivial (Ls x Ly).
Examples with hyperbolic directions

Here we give examples of normal forms with hyperbolic eigenvalues, first in dimension
two, then—in higher dimensions. That is, for the beam equation (1.1) we will find admissible
sets A such that the corresponding matrices iJK (p) in the normal form (4.5) have unstable
directions. Then the set F in (1.24) is non-empty and by Theorem 1.4 the time-quasiperiodic
solutions of (1.1), constructed in the theorem, are linearly unstable.

We begin with dimension d = 2. Let

A= {(07 1)7 (1’ _1)}'
We easily compute using (4.30), (4.30) that
Lf = {(O’ 71)7 (170)’ (7170)7 (15 1)7 (71’ l)a (717 71))}3
and
('Cf X ’Cf)Jr = {((07 _1)7 (17 1))5 ((1’ 1)7 (Oa _1))}7 (’Cf X 'Cf)*

=0
So in this case the decomposition (5.19) of the Hamiltonian operator H(p) = iJK(p)
reads

H(p) = Hi(p) @ Ha(p) ® Hz(p) ® Halp) ® H5(p),

where Hy (p)®Ha(p)®Hs(p)BHa(p) is a diagonal operator with purely imaginary eigenvalues
and Hs(p) is an operator in C* which may have hyperbolic eigenvalues. That is, now M =5
and My = 4.

Let us denote (1 = (£1,7m1) (reps. (2 = (&2,m2)) the (€, n)-variables corresponding to the
mode (0,—1) (reps. (1,1)). We also denote p1 = pg1,0y, p2 = p,-1), A1 = V1 +m and
A2 = v/4 + m. By construction Hs(p) is the restriction of the Hamiltonian (K (m, p)r, )
to the modes (£1,71) and (£2,72). We calculate using (4.47) that

(Hs(p)(C1,C2), (C1,C2)) = Bp)erm +v(p)&anz + a(p)(mn2 + &162), (B.1)
where

alp) = YR gy = L2y o B L 2y

p)= 471'2 )\1/\2 ’ 4771'2/\71

A A

471'2 /\2

Ay A
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Thus the linear Hamiltonian system, governing the two modes, reads®’

&1 = —i(B&1 + an),
m =1i(Bm + abs),
& = —i(v§2 + an),
e = i(yn2 + afy).

So the Hamiltonian operator Hs has the matrix iL, where

-6 0 0 —«
10 B8 a O
L= 0 —a—v 0
a 0 0 v

We calculate the characteristic polynomial of L and obtain after a factorisation that
det(L — M) = (N 4+ (y = BA =By +a®) (A = (v = B)A = By + 7).

Both quadratic polynomials which are the factors in the r.h.s. have the same discriminant
A= (B+7)?—4a% If py ~1 and 0 < py < 1, then A > 0. So all eigenvalues of L are real,
while the eigenvalues of Hs and H are pure imaginary (in agreement with Lemma 5.4). But
if p1 = p2 = p, then

C3p (11 C3p (1 1 4 C6p 1
1A= (Ag A%)’ Atr=1m <X{+A§ )\1)\2)’ T a0

Al 9 (11N 1.1 8\ _ 9 (1 1\(1 7
Tenr TR\ TN et \ T2\ )

Thus, A < 0 for all m € [1,2]. Since the eigenvalues of the matrix L = (1/i)H; are
+(y — B) £ VA, then all four of them have nontrivial imaginary parts for all values of
the parameter m € [1,2], and accordingly the operator H has 4 hyperbolic directions. By
analyticity, for all m € [1,2] with a possible exception of finitely many points, the real
parts of the eigenvalues also are non-zero. In this case the operator H has a quadruple of
hyperbolic eigenvalues.

This example can be generalised to any dimension d > 3. Let us do it for d = 3. Let

A= {(0,1,0), (1, ~1,0)}. (B.2)
We verify that £; contains 16 points, that (£; x L7)_ = () and

and

(Lyx L)y ={((0,-1,0),(1,1,0)); (1,1 0)7(07—1 0));
((1,0,-1), (0 0,1)); ((0 0,1),(1,0,-1));
((1,0,1),(0,0,-1)); ((0,0,=1), (1,0, 1)) }.

)
Le. (£Ly x Lf)4+ contains three pairs of symmetric couples (a,b), (b, a) which give rise to
three non trivial 2 x 2-blocks in the matrix ‘H. Now M = 13, My = 10 and the decomposition
(5.19) reads

H(p) = Hi(p) ® - ® Hiz(p).

30 Recall that the symplectic two-form is: —i > dE N dn.
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Here Hi(p) & - -- @ Hio(p) is the diagonal part of H with purely imaginary eigenvalues,
while the operators Hi1(p), Hi2(p), Hi3z(p) correspond to non-diagonal 4 x 4-matrices.

Denoting p1 = p(o,1,0) and pa = p(1,-1,0) we find that the restriction of the Hamiltonian
(K (m, p)Cs, () to the modes (§1,71) == (§0,-1,0)»M(0,—1,0)) and (§2,m2) := (§(1,1,0),M(1,1,0))
is governed by the Hamiltonian (B.1), as in the 2d case. Similarly the restrictions of the
Hamiltonian (K (m, p)Cs,(s) to the pair of modes (§(1,0,—1),7(1,0,—1)) and (£(0,0,1)> 7(0,0,1))
and to the pair of modes (£(1,0,1),7(1,0,1)) and (§0,0,—1),M0,0,—1)) are given by the same
Hamiltonian (B.1). So Hi1(p) = Hi2(p) = Hiz(p) and for p; = ps we have 3 hyperbolic
directions, one in each block Y/ Y /12 and Y13 (see (5.17)) with the same eigenvalues.

We notice that the eigenvalues are identically the same for all three blocks, thus the
relation (5.32) is violated. This does not contradict Lemma 5.6 since the set (B.2) is not
strongly admissible. Indeed, denoting a = (0,1,0), b = (1,—1,0) we see that c:=a+b =
(1,0,0). So three points (0, —1,0),(0,0,+1) € {x | |=| = |a|} all lie at the distance v/2 from
c. Hence, it is not true that a ZZb.

Appendix C. Admissible and Strongly Admissible Random R-sets

Given d and n, let B(R) be the (round) ball of radius R in R¢, and B(R) = B(R)NZ®. The
family Q = Q(R) of n-sets {ai,...,a,} in B(R), Q =B x -+ x B (n times) has cardinality
of order CR"™.

The family on n-sets {a1, ..., a,} in Q such that |a;| = |ax| for some j # k has cardinality
< C'R™~! (the constant C’ as well as all other constants in this section depend, without
saying, on n,d). Its complement in Q is the set Quqm = Qaam(R) of admissible n-sets in

B(R). Hence
#Qadm(R) 1 —1 _
T 1-0O(R™), R— .

We provide the set 2 with the uniform probability measure P and will call elements of
Q n-points random R-sets. The calculation above shows that

P(Qagm) — 1 as R — oo. (C.1)

That is, admissible n-points random R-sets with large R are typical.

To consider strongly admissible sets, let S(R) be the sphere of radius R in RY, i.e. the
boundary of B(R), and let S(R) = S(R)NZ% (this set is non-empty only if R? is an integer).
We have that, for any € > 0 there exists C; > 0 such that

Tra:=|S(R)| < C.R¥?* VR>0. (C.2)

Indeed, for d = 2 this is a well-known result from number theory (see [HWO08], Theo-
rem 338). For d > 3 it follows by induction and an easy integration argument. For example
for d = 3, then

S(R)={aeZ®:|a’> = R?} = U {a = (a1,a9,a3) € Z3 : a? + a3 = R* — a3}
a?<R?
S0
Tra= Y Tymm,<C. Y (R2-n?)?<C.R Y (1—(3)2)6/2
s R2—n22 — Y& = Ve R )

n2<R? n2<R? n2<R?

which is < C.R*(2R + 1) < CLR'*=.
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For vectors a,b € Z% we will write a/Zb iff aZa+ b. Consider again the ensemble
Q = Q(R) of n-points random R-sets, Q = {w = (a1,...,a,)}, and for j = 1,...,n define
the random variable ¢; as &;(w) = a;. Consider the event

Q ={&2¢ forall i#j}.
Then Qs adm = Qadam N2 is the collection of strongly admissible sets. Clearly
P(Q\Q ) < nn — 1)(1 - P{! 22€2}). (C.3)

So if we prove that

1-P{et 2%} <CR™, (C.4)

then, in view of (C.1), we would show that
P(Qsadm) — 1 as R — 0. (C.5)

Below we restrict ourselves to the case d = 3 since for higher dimension the argument is
similar, but more cumbersome. We have that

1-P{¢' 226} = B(R)|2C*, C* =4#{(a,b) € B(R) x B(R) | not az£b}, (C.6)
and, denoting a + b = ¢, that
O™ < #{(a,c) € B(2R) x B(2R) | not a Zc}. (C.7)

Now we will estimate the r.h.s. of (C.7), re-denoting 2R back to R. That is, will estimate
the cardinality of the set

X ={(a,b) € B(R) x B(R) | not a Zb}.

It is clear that (a,b) € X, a # 0, iff there exist points a’,a” € S(Ja|) such that b lies
in the line II, 4 4, which is perpendicular to the triangle (a,a’,a”) and passes through its
centre, so it also passes through the origin. Let v = vg4,4/ o~ be a primitive integer vector in
the direction of 11, 4/ 4. For any a € 7% a # 0, denote

A(a) = {{a’,a"} C S(la)\{a} | ' # a"}.
Then
|Ala)| < T, 3 <CFR*, 6 =03,
see (C.2). For a fixed a € B(R)\{0} consider the mapping
Aa) > {d',a"} = v =144/ .

It is clear that each direction v = v, 4/ 4 gives rise to at most 2R\v\’1 points b such
that (a,b) € X. So, denoting

X, ={beB(R)| (a,b) € X},
we have

[ Xal S2RY vaw.ar|™!, ifa#0,
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where the summation goes through all different vectors v, corresponding to various {a’,a”} €
A(a). As |v| 7! is the bigger the smaller |v] is, we see that the r.h.s. is < 2R 2 veB(R)\{0} lv| =1,
where R’ is any number such that |[B(R')| > |A(a)|. Since |A(a)| < F|2a\,3’ then choosing
R' = R}, = CT?/’, we get for any a € B(R)\{0} that

4/3

‘Xa‘ S QCRZB(R;)\{O} ‘U|_1 S ClRfB(Rﬁl) |.Z"_1 dx S CQR(R;)Q = C3RF‘G|73.

Since 0 £ b for any b, then Xy = {0} and

B 4/3
X|= Y IXJ<1+CR > T
a€B(R) a€B(R)\{0}

Evoking the estimate (C.2) we finally get that
(X< OB Y aemim(0) ja] #% < CoR [5R) |z|3% do < C3RV3+30 = CyROH1/3+e",

with any positive ¢’. Jointly with (C.6), (C.7) and the definition of the set X this implies
the required relation (C.4) with k = 2/3 — &', and (C.5) follows. That is, n-points random
R-sets with large R are typical, for any d and any n.

Appendix D. Two Lemmas
D.0.2  Transversality

LEMMA D.1. Let I be an open interval and let f : I — R be a C’-function whose j:th
derivative satisfies

’f(j)(x)’ >0, Vxel

Then,

meas{x € I : |f(z)] <} < O().
0
C'is a constant that only depends on |f|c;y)-

Proof. Tt is enough to prove this for e < 1. Let [; = I, 6; =6 and g, = fUF, k=1,...5.
Let 01,02, ...0;41 be a deceasing sequence of positive numbers.
Since ¢} = fU) we have |¢} (z)| > 6; for all z € I, and, hence, the set

F, = {JC el: ‘gl(fﬁ)‘ < 52}

has Lebesgue measure < g—f. On I, = I\ E; we have |gh(x)| > 02 for all z € Iy and, hence,
the set

E2 = {.’IJ S IQ : ‘gg(.’l))‘ < 53}

has Lebesgue measure < 5—;’. Continue this j steps. On I; = I;_1\E;_; we have ‘gj(x)! >4,
for all € I; and, hence, the set

Ej={vel;:|gj(x)] <dj1}
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5;
has Lebesgue measure < ~5.
J

Now the set {z € I : |f(z)| < 41} is contained in the union of the sets Ej which has
measure

i

S
9j

=8

- Take now 05, = n*~16. Then this measure is < 7 and §,41 = n?d. Chose finally 1 so that
o =e. ad

D.0.3 Extension

LEMMA D.2. Let X C Y be subsets of Dy such that
dist(Dp\Y, X) > e,

then there exists a C*°-function g : Dy — R, being = 1 on X and = 0 outside Y and such

that for all j > 0
C J
9lci(py) < C (€> .

C' is an absolute constant.

Proof. This is a classical result obtained by convoluting the characteristic function of X

with a C*°-approximation of the Dirac-delta supported in a ball of radius < 5. a
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