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DIFFEOMORPHISMS OF FUNCTION SPACES

CORRESPONDING TO QUASILINEAR PARABOLIC EQUATIONS
UDC 517.946

$. B. KUKSIN

ABSTRACT. This paper considers a boundary value problem for a quasilinear parabolic
equation. In terms of Sobolev and Besov spaces the author determines a solution space A
and a space B of inital conditions and right hand members such that the operator
corresponding to the boundary value problem is a diffeomorphism. analytic in the Fréchet
sense. of the whole space 4 and a domain ¢ in the space B. The behavior of the inverse
operator of the problem around the boundary of ¢ is studied. and it is shown that for
different problems the domain ¢ can coincide with the whole function space or be a strict
subset of it.
Bibliography: 13 titles.

Introduction

In this paper.we consider a boundary value problem for a quasilinear parabolic
equation. We show that the operator corresponding to such a problem establishes an
analytic diffeomorphism of the whole function space of solutions and a domain € in the
function space of the initial and boundary conditions and right hand members. We study
the behavior of the inverse operator of the problem near the boundary of ¢, and we show
that for different problems the domain ¢ can coincide with the whole-function space or be
a strict subset of it. Qur main results appeared earlier without proof in [1].

In §2 we consider a boundary value problem for the second order quasilinear parabolic

equation

; 3%u . ,
- » oA (6 ) = o
ulz, x) > E (%) %, + F(Du) = v(s, x),

(r,x) e 2;=(0,T)XQ, u ,l‘,-n{ﬂ;f)Yiiﬂ =0 u ]mu = uy(x), (D
where @, u = (1, du/dx,,. .. 0u/8x,), 0 < T < o0, Q is a domain in R” with a sufficiently
smooth boundary 82, and F and £, ; are analytic functions on R**! such that FO=0
and the condition of uniform parabolicity is satisfied:

2 F(2)88,=8|6F, s>0vieR, R (2)

i =1

——
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360 S. B KUKSIN

We seek a solution of problem (1) in the Sobolev space
4= {u{r Y}EWE‘ A07) | =0},

the function pairs (uo( x), v(r, x)) being taken from thr. space B = Bf""/F(Q) X L Q7).
where B"’" /7(Q) is the Besov space of functions on Q. which are equal to zero on BQ (see
§1). We def:ne the operator of problem (1):

N:A-B,u(t, x)rs ( u |;:-r'- 2 E (9 )81 s + F(0u)

In §2 we prove the following theorem.

THEOREM 1. Let p > n + 2 Theﬂ the following assertions are true:

1) There exists a domain ¢ C B such that problem (1) has a solution u &
(ug. v) € . Moreover, such a solution is unique.

2) The mapping N: A — ¢ is a diffeomorphism analytic in the Fréchet sense ( see [8}

3) Ler the dcmzam Q be bounded and assume that (UL ed, j=1,2,.

and (uy’', ‘“)----(u{?’, o) € 8¢, where € is the boundary of ¢ in B. Then
N -Yu§?, o) Bl — .

A if and only if

We employ the symbol | -; Bll for the norm in B. From Theorem | we obtain the

COROLLAR\ 1) Ler the space B be continuously imbedded in B, let (i1,. ) € B.
(Uy. V) € B and assume that fori, £ iy and v = O there exists a solution u € A of problem
{l) Then. if |A|< 8 <1, it follows that for uy = tiy+ AU, v =6 + AV there exists a
solution of problem (1) of the form

ax

u(t, x) = X NU,  U=U(t,x; 85,0, 5,V) €4, (3)
F=0

and that for | A | < § the series (3) converges in the norm of the space A umfomu‘y with respect
oA,

2) If for a solution of prob!em (1) the a priori estimate {u; All < f(ll(uy, v); Bl) holds,
where f(-) is a continuous function, then & = B.

We remark that Corollary 1) can be considered as the basis of a perturbation method
for problem (1), since the coefficients U (1, x) are sought from recurrence formulas arising
from the substitution of the series (3) in ().

Problem (1) was studied earlier in.a large number of papers by various authors. In some
of these papers results were obtained which are related to ours. Thus, in the case of
periodic boundary conditions problem (1) was considered by Vishik and Fursikov [2].
They showed that the operator N of problem (1) has an analytic inverse in some
neighborhood of the origin of the space of function pairs (u, v). Conclusion 1) of the
theorem was obtained earlier by Babin [3], and result 2) was obtained by Pokhozhaev [4).

We consider a particular case of problem (1):

a(e, x) = Bu(e, x) + @(u) = o1, x),  ul_.,=uy(x), “lrr 0, (4)

where p(u) = qu + --- + g, u, @ * 0, M =2 As an example, problem (4) shows
that under the conditions of Theorem 1 it is possible to have both the case © = B and the

4]

case U # B,

THEOREM 2. 1) The

Let the domain £ be

D Ifn=2and ¢(:

3) If g(u) = =f'¢
vu € R, then ¢ = B.
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THEOREM 2. 1) The conclusions of Theorem | are valid for problem (4) when
f3 M—=1In+2
p = maxl b
2andp > (M — 1)}(n + 2)/2M. Then:

Le’ the (.“amm'n 2 be bounded, ,md letp =

-

3; Ij g{\a} = ----[Ucp(_ )dT and
vu & R, then ¢ # B.

an o >0 exists such that —up(u) = (2 + a)g(u) =0

f\s an f,xamplt the function ¢(u) = u’ satisfies the conditions of assertion 2) while

i\t the LOI‘[LIUSIOF of §2 we give an analog of Theorem 1 for the nonstationary
Navier-Stokes system of equations.

In §3 we show by way of example of a boundary value problem for a monotonic
parabolic equation that if the space of function pairs (u;. v) is not contained in the space
B or if the condition (2) of uniform parabolicity is not satisfied, then the operator of the
boundary value problem can have a continuous inverse which is nowhere analytic.

In §4 we consider a boundary value problem for a quasilinear 2b-parabolic equation for
which we prove analogs of Theorem 1 and corollaries from it. Such problems were
considered earlier in [3] and [4], wherein some of the results of §4 were obtained.

The author expresses his deep gratitude to M. I. Vishik for his constant interest in this
work.

§1. Auxiliary results

1. Notation. Throughout this paper ¢, § and C represents various real positive constants;
Q is a domain in R” with boundary 3Q; Q7 = (0, T) X @, T = (0, T) X 382, &, = {0} X
Q: here we always have 0 < T < 0. The notation 32 € C™ signifies that { is a domain
with an m-times uniformly continuously differentiable boundary (see [5] and [6]). If X is a
Banach space, we denote the norm in it by {|-; XIll. We use the following notation for
neighborhoods of elements from X: €(u, X) = (v € X|llv —u; Xl <¢}, O(X)=
£(0, X). If X is realized as a space of real functions on M, then X @ RY is the space of
functions @ = (¢,....,¢y): M = RY, ¢, € X, j=1,...,N, with norm llg; X® R"|| =
2l X

In denoting functions we often omit their arguments. Thus, 1{f, x) may be written as u

or u(z, -). We use the following notation for writing partial derivatives:
u(t, x) = du/dt, uif{t.x}«“«‘«' du/dx,,
g ; i 205 97
Dfu(f,x)zwu, Dxu(f,x)—a——;---mu,
t By

u(t, x) is a row containing all the N = N(m, 2b) partial derivatives of u(1, x) of the
for*n D*Du(t, x), where [p,v] =p+ |v|/2b<mand |v|=» + - v,. Finally, we
agree that the notation “if e < 1" signifies “if e >0 is sufficiently small”, while the
notation “if C » 1" signifies “if C is sufficiently large”. :

2. Function spaces. In this paper we employ: the Lebesgue spaces L () and Lp(QT)
% = p = |; the spaces C(R) and C(Q7) of functions uniformly continuous and bounded
on Q and Q? respectively; and the Sobolev spaces W, (Q} of functions on the domain £
with the norm

/p
fu(x); H’}jii = E D& u: LP(Q)[EP) i

ol =t
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here / is a positive integer and p = 1. In addition, we denote by I‘;"’(D) the closure in
"{Q) of functions smooth and finite on ; we also employ the anisotropic Soboley
spaces W 255(Q) of functions on the cylinder Q with the norm

L/p

gy PUFF2E5 1 — 1% 3 LI

%EH‘ H’" = (2#-»’2‘;&;!1 D! Dxﬂ’ LPHP) ’
where [, 7] =|»|/2b+p, p=1, and b and s are positive integers. In addition, we
employ Besov spaces of fum.nom on 2, Ty, and 39, in terms of which we define the traces
of functions from W,?*(Q;). For the definition of these spaces we introduce the
following norms:

[+ lul(x) —uly) yH
{u];“?s}z — { ] fzwdxdy] P, O{,O( 1.

Vol |x—p{TTPP

If Sisadomainin R" " 'and [" =(0,T) X S, we put

W) = ('/; ff tu(e, trr _—! ulfr’p a7 |pdt'dx’d:]

ult, x') —u(s, y') FF
[u) i = { fj L ) _(HM)E dy' dx'dt
L) *

Let />0 bean arbltrary nonintegral number We define the space B, /() as the closure
in the norm
lu; B = Hus W@+ 3 [Du]fe
: =1
of the set of smooth functions, equal to zero for large | x| , where [/] is the integer part of !
and {I} ={—[{]. If r >0 is a real number such that 2br is nonintegral, we define the
space B;**(I") as the closure in the norm

lus BJ** W= 3 I DfDyu; L(T + > (DD u)Bhsy oo
fp.r)sr (n.r)=(2br)/2b
e p [DrpD;“ i'{}{p‘w}.r.l"‘
[ AT L :
of the set of smooth functions defined on I'" and equal to zero for large [ x| . -

If 9Q is a sufficiently smooth surface (3@ € C'1*! in the sense of [5] and [6] or.
correspondingly, 32 € CI*¥71*1), then, with the help of the identity decomposition, we
can define the spaces B (392) and B’ 2b7(T;). The reader can find a detailed study of Besov
spaces in [8]. A defmmon of thesc spaces is given there for integral /. In this paper we
employ spaces of integral complex-valued functions and also complex Sobolov and Besov
spaces. These are denoted by L, 04 vas(Qr), C(QT) etc. Theorems concerning
traces and imbeddings (see [6]-{8]) are valid for complex and real Sobolev and Besov
spaces. We state them here for real spaces.

THEOREM 1.1. 1) If [p, ] < s — 1/p, then the mapping
H,;s,ﬁb:(QT) 5 Bﬁ,b{r‘{p,v]v—- I/p)(g), U > DruD;u l;-—::{}

is continuous.

) iffp.vi<s
”..-{_: ‘:b.i( Qg3

s CONTINHOWS.
Nifp<r—1

is CORTINUOUS.

HIfl>1/p..

s CONIINUOUS.

THEOREM 1.2.

then the mapping

.8
is continuous. If

is continuous. If
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function on RY,
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2) If [, v} <s — 1 /2bp, the mapping
W;"."”{Q;-} 2 B;_.;zb,!(l—\r). = Zb(s s [H‘ VD - 1/p, u(:‘. X)) D*Du 11}

is continuous.
3y Ifpe <r—1/p, the mapping
Bpr.zhr( [‘T) 5 ijf"'y"t//ﬂza(g}‘

® ]
> DE |, a0

IS CORLINUOUS.
4) If I > 1/p, the mapping :
BF(Q) — B;" i,f;;{;}Q), Wb i a0

P

is continuous.

THEOREM 1.2. If

= fa]
b n+2p "’

(5]

oy |-

_M'_?p‘. —4%>

then the mapping
WI;.EM(‘QT) - L, (07). s DEDIu
is continuous. If p(s — [p, v1) > n/2b + 1, the mapping
Wi (Qr) = C(Qr). ub D!D}u

is continuous. If the domain Q is bounded, these mappings are completely continuous (recall
that 0 < T < o).

We also need a lemma of Hadamard in the following:form.

Lemma L1 Let u, € W;2"(Qr), j = 1,2, and let f(-) be a continuously differentiable
function on RY, N = N(s5,,2b). If p(s = 5¢) > n/2b + 1, then

.-'r( ':"?‘{2"”“1_} o f‘ :":i\'_f:m“z] = U(t, -’C)'éﬁs{jb}(“n — u,),

So

where U(1, x) € C(Q;) ® RY.

PROOF. According to Theorem 1.2 we have Uy(r, x) = 02" u; € C(Qr) ® RY,j=12
The lemma is therefore a consequence of the equation

f(U|) "'f[lf"z) :j: Vf{Uz MUI - Uz)) dA- (U1 - Lz)

3. Analytic mappings. Let A and B be Banach spaces. The mapping N;: A — B is said to
be j-homogeneous if N(u) = N(u....,u), where N;: 4 X -+ X4 (j terms) — B is a linear
mapping. If 4 and B are complex spaces, N, is said to be j-homogeneous over C if N; is
C-linear. Let Q, and Q, be nonempty domains in 4 and B andlet F: O, = QOp.

DEFINITION 1. A) The mapping F is said to be analytic, and we write F € ®(Q,, Q5). if
Yu & Q,3e = e(u) > 0 such that Vv € € (u, 4)

oo
F(v) = F(u) + 2 F(u; 0= u),
gk
where F(u; ) 1s aj-homogeneous continuous mapping from A4 into B and

S sup HF(u;w); Bl < 0.
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In this connection, Fi{u; -} = dF(u): A — B is called the differential of F at the point u.

B) The mapping F is said 1o be complex-analytic. and we write F € ®(Q,. Q,).1f 4 and
B are complex spaces, F € ®(Q,, Q) and F,(u; -) is j-homogeneous over C.

DeFINITION 2. The mapping F € ¢(Q ,. Qa) is called an analyviic diffeomorphism if there
exists an inverse mapping F ™' € ®((Q,. @), and it is called a complex-analytic diffeomor-
phism if the spaces A and B are complex and F € ®-(Q,. Q). F' € ®(Q4. 0,,).

Yu € Q, 3e = e(u) >0 such that F: &(u, A) = F(c(u. 4)) is an analytic diffeomor-
phism.

Definition 1 is the definition of analyticity in the Fréchet sense (see [9] and [10]). We
note that in the case of complex spaces 4 and B a mapping cannot belong to @0 ;. Op)
and also belong 10 ®(Q ,, Q).

The following proposition contains some properties of mappings analytic in the Fréchet
sense. Its proof may be found in [9],

ProposiTiON 1.1. 1) If N: A — B is a j-homogeneous continuous mapping. then N, €
®(A, B).
2)If N: S (u, A) — B is defined by the series

oK
Nu+cy=Nu)+ X N(c), IN(v); Bl <Ce'liv; AllY, e<g.

of homogeneous continuous mappings, it follows that N € ®(¢ (u, 4), B).

NIN.N, € ¥(Q,. B)and a,, a, € R, it follows that aN, + a, N, € ®(Q0,. B).

4) If E is a Banach space, Qp a domain in E, and N, € ®(Q,, 0p), N, € ®(Q4. Qp).
then Ny o N, € ®(Q,. Op).

SYIfN, € ®(Q,. B). N, € ®(Q,. EYthen N, X N, € ®(Q,: B X E).

6) If A, B and E are complex spaces, then the complex analogs of 1)-5) are valid.

We give a number of examples of mappings analytic in the Fréchet sense.

PROPOSITION 1.2. Let N = N(m.2b), F € ®(R",R) and M € N be such that p(M — m)
> n/2b + 1. Then the following assertions are true:
1) The mapping

WHIM(Qr) = C(Qr).  wr> F(D,17u)

is analytic.
2) If K(0) = C. the mapping

WM2M(Q )~ L(Qr), ub> F(989y)

is analytic.
3) If F € ®(C".C) and the Sobolev spaces are replaced by complex spaces, items 1) and
2) remain valid,

ProOF. We first prove 2). Let u(r, x) € W}'2*M(Q;). Then. in accordance with
Theorem 1.2, 2"u € C(Q;) ® RY, N = N(m, 2b). But since

!1"(*-‘”‘3”%{:‘. x)) < C | D% y(1, x)| sup |dF(2)],

=G

Yo

where C; = Cy(u) = 14
¥

Therefore, F(DE"u) €
= ¢(u). Then, if e € 1,

F{ ok

=

where | (B))'DPF(DS

Therefore, if € € 1 anc
norm uniformly with e
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where G, = Gy(u) = 1232 u; C(Q7) X RY|l, we have

IE(DE8u); L(Q-) < Cyu)liu; WH2BMY,
Therefore, F(D' ") & L(Qr). Assume now that v € W0, Nl WM”’”'. <e

= ¢(u). Then, if e < 1, it follows that

Fag(u+ o) = 3 grofr(au)(@in), G
pe ?“

where | (81 'DPF(DGMu) < Ci(u)#, since
HDGPu; C(Qr) @ RYIE < Cylius WM.
Therefore, if ¢ < 1 and u + v € € (u; W¥2*M), the series (1.1) converges in the L (Q]r
norm uniformly with respect to v, and the proof of 2) is complete.
Assertions 1) and 3) are proved in a similar way.
COROLLARY. Under the conditions of Proposition 1.2 the mapping
WMM(Qr) = L(Qr),  wi DRDruF(D" ) (12)

is analytic, where {11y, vy} = M.

PrOOF. The mapping {1.2) is a composition of two other mappings:

W, 2Y(Qr) - C(Qr) X L,(Qr).
C(QT) X LP(QT) - L'p(Qr)~
which are analytic mappings by virtue of Propositions 1.1 and 1.2, Therefore the mapping
{1.2) is analytic in accordance with 4) of Proposition 1.1.

We give a theorem concerning the analytic inverse of a mapping in Banach spaces. ts
proof may be found in [10].

TR ( F( L;Df;‘”’)u}, Do Dlu'l :

( ra H.') > UW,

THEOREM 1.3. 1) Let Q, and Qg be domains in the Banach spaces A and B, let
FED(Q,,0g). u€ A, and let dN(u) be an isomorphism of 4 and B. Then there exists an
¢ = g(u) > 0 such that N(€ (u, A)) is a domain in Qg and N: € {u, A) — N(E(u, A)) is an

analytic diffeomorphism.

2) If A and B are complex spaces, N € D(Q ,. Qp), and dN(u) is an isomorphism of A
and B, there exists an € >0 such that N: C{u, A) - N(C[(u, A)) is a complex-analytic
diffeomorphism.

CoROLLARY. Let F & ®(Q,. Q). and for all u € Q , let dF(u) be an isomorphism of A
and B. Then F(Q,)= Qy is a domain in Qg and F: Q,— Qg is a local analytic
diffeomorphism. If, furrhemmre F is an imbedding, then F is an analytic diffeomorphism of

0, cmng

ProOOF. Let ¢ = e{u) be as in Theorem 1.3. Then the assertion that Qg is a domain
follows from the representation

0s= " N(O,,(x A)).
uEQ,

The remaining assertions follow immediately from the definitions.
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. §2. Second order quasilinear parabolic equations

We consider the first boundary value problem for the quasilinear parabolic equation

n

Az
d u

(1. x) — D) e + F(Du) = 0(1,x).  (L.x) €0y (2.1)

a(r, x) § F, (Du) Torey (D) =olr,x).  (,x)€Qr. (2.1)

uly, =0 uf_g = ug(x), (2.2)

where @ is the domain in R", 82 & C?. and where for brevity we have employed the

R"™' = R, 1 <i, j<n, are analytic functions, F(0) =0, and that the condition of
uniform parabolicity is satisfied, namely,
n

2 F(2)88=8]¢

I

5>0VEER .z € R (2.3)

Sometimes we shall consider a special case of (2.1) and (2.3): _
a(t, x) — Au(r, x) + @(u) = v(r, x). . x)2 00, (2.7

where g is an analytic function.

= 0}, while we take the function pairs (u,(x), v(r. x)) from the space

B=BXLJ(Qr), B={uyx)e€BZ Q) uylyg=0}.9>3/2.

N:4 -8B, ul(t, x) > (u)|

fem i

From Proposition 1.2 and its corollary we have

Lemma 2.1, Let g = n + 2 or, in the cuse of equation (2.1°), ¢ > (n + 2)/2. Then
NED(A, B)and

[ N2 "

T . L v |
dAN(HJU — L |f-_-_-_ VR Lt ; E : L‘f_r‘_,r{_f‘ X }zx';'a'x: R igl w:(f.r}"ﬁ;‘j i I"‘V‘(%{F, ).‘}'l} ' L]

d’u_ 4 6 8
wolt,x)= 3 g BB + 3o F( D).
ij= f )

Thus, dN(u) corresponds to a boundary value problem for the linear parabolic equation

a(t, x)— 2(}“_;(;’ r)_é.g\

xl’.

) II‘-,- =0, v Lo = x(x). (2.4)

oo 2wz, x)vy +wolt, x)v = ¢(1, x),

LEMMA 2.2, Ler the
a) g >3/2, 3R €«
parabolicity is satisfied

it
yiag

ig=1
w o= et 3
b} ,'.)r Hrj , “} .

€ LQr)J = Luuust

5=

p=

where £, and €, are pos
Then for each pai
Moreover, llv; All 2«

PrROOF. We introdi
taken over all cylind
domain @ with the a
shown that if the con«

c) the norms | wy, |27

where Q, .., = (1,1 -
assertions of the lem
Holder's inequality, v

l){!grzg

=S5

Therefore,

: “!U 'Lgr.r-v G! i

= 7!

G <

Since Iwd"; L(Q7)
from (2.5) for t = (
when p > p, this is
Lebesgue integral, t

~ with respect to ¢ as -




ons

T parabolic equation
(r.x)eo,, (2.1

(2.2)

we have employed the
hat F: R"*' =R, F .
that the condition of

ER:;-.‘—-!' (‘).Fz}

€ Q0r. (2.1)
1.x) E I-ir;r’-l(Qr}g wip,
ace '

=0}.¢>3/2.

g >(n+2)/2. Then

Jv \
}*:‘* -+ }\'U(f. x)v 3 3

!
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LEMMA 2.2. Let the following conditions hold:
a) ¢>3/2,3Q € C2, a, (1, x) € C(Qr), i, j = 1,...,n, and the condition of uniform
parabolicity is satisfied:

n
2 aw(:,x)éfgj?ﬁﬁiz, §>0¥(t,x) e Q0 EERY
(=1
by w, = w!" +w®, j=0,...,n, where w® € C(Qr). j=0.....n, wi? € L{Q7), w"
= L?(Q-‘,-).j =1,...,n, with :

L max(q,(n + 2)/2) forq#(n+2)/2,
SEIRT 42+ ¢

2, e o max(q,n +2) forg#n+2,
CPER = n+2+eg, forg=n+2,

where ¢, and €, are positive quantities.
Then for each pair (x,¥) € B of problem (2.4) there is a unique solution v € A.
Moreover, llv; All = Cll(x, ¥); Bl

PROOF. We introduce the norm |f|27 = sup, Il f|,,; L.(gr)li, where the supremum is
taken over all cylinders g, = (0, T) X w in which the base w is the intersection of the
domain © with the arbitrary ball of measure one. In [5], p. 383 (transl. p. 341), it was
shown that if the conditions a) are satisfied and also the conditions

or \w,|97.j = 1,...,n, are finite and

c) the norms [ wy [£7, | W,

lim (; wp |9+ 21w, %19;-"-') =0 uniformly with respect tot €[0, T),
r— +0 1 ! -
7

where Q,,.,= (t,1+7)X Q and 5, and p, are the same as in condition b), then the
assertions of the lemma are valid. We verify that the conditions c) follow from b). Using
Holder’s inequality, we find that, if ¢ >r=r > 1, '

gsz = sup ( L!Lif(t’ %) | dx d;)l,/n

o 1/r :
= Sup ?‘{r ..... rc_],/r(f‘}’f lf({, x) |'dx df) < T{r——rl)/’rlfi‘??..

0

Therefore,

i “‘b EEXQe.r-:-v él wf{)” ‘I‘;{h- s “;é.'z} lﬁr.av-r

: [ e .i,/s
< sl [ 1w ) de @)+ s L0

f +1 ME 9y L
2“}_ !E:.m < T(p—-P!!_,fp('[f LE WJ{H{T’ x‘) ]p dxd’r) + T'[/pi”H}f;;; LIl (2_5)

Since lIw"; L(OI < oo, w®: L(Qr) < co, the first of the conditions ¢) follows
~ from (2.5) for 1 = 0 and 7= T. The second condition also follows from (2.5). In fact,
when p > p; this is obvious; but when p = p,, by virtue of the absolute continuity of the
Lebesgue integral, the integral /77l wj‘”(r, ) L)l dr tends towards zero uniformly
with respect to ¢ as  — 0. Thus the lemma is a consequence of the results obtained in [5].
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THEOREM 2.1. Let g > n + 2. :

1) There exists a domain ¢ C B such that problem (2.1)~(2.3) has a solution u € A if and
only if (uy, v} € €. Moreover, the mapping N: A — € is an analytic diffeomorphism.

2) Ler the domain € be bounded. If

(V.U)ee.  (V.U)>(v.U) e e,

where O is the boundary of C in B, then || N °( V,U) Al » .
Let equarion (2.1), (2.3) have the form (2.1'). Then:
3) In1) and 2) it is sufficient to take g > (n + 2)/2.
I plu) = @u+ - + o u it is sufficient to 1ake
‘ 3 M= 17 2
N et

Moreover, under the conditions of 2),
INY V. U) LQ)I = oo, wherer = Mg.

In specific equations of mathematical physics we often have n<3 and ¢(u) a
polynomial of degree at most three. In such a case. thanks to 4), we can take g=2 in
which event 4 and B become Hilbert spaces and Besov space B coincides with Wl(Q).

PROOF OF THE THEOREM. 1) According to Lemma 2.1. dN(u) corresponds to the
boundary value problem (2.4). Moreover, according to Proposition 1.2, the terms forming
the coefficients of problem (2.4) have the following smoothness:

Vo, F(Qu) € C(Qr) R, “é‘lvvf-qu (Du) € L(Qr) @R,

dx,dx, te
o o L : @ g e
Ff.;(”'g}:“) € C(Qr). é‘;‘p(u’“lu} € C(Q; ). ;{;‘5;'}}.;{01:}“} < LQ(QT)-
Jx,0x,

Therefore, Lemma 2.2 is applicable to problem (2.4), and it follows that dN(u) is an
isomorphism of 4 and B.

We verify that the mapping N is an imbedding. Assume this 15 not so and N(u) = N(v).
u,v € 4. u — v = h. Then

9%u %
........ , _ N
dx;0x, ’J'( D,u) dx,0x; F’J( Do)
9%h 0%v
—_ on 1 = " :_’;a‘ o & &0 i
ax,-aij( Llu) il ax,ﬁx},(lc"-"(n ”;u) E;( j‘lﬂ))
in accordance with a lemma of Hadamard (Lemma 1.1)
3%
f“;.,r{LDJHJ - ax,axjﬁ‘f(@'v)
. 8231 o oy A pHi+l
= ax!.BXJ-F( Dyu) + b; ;(1, x)-D,h, b, € L(Qr)®R"™;

F(Du) = F(Dy0) = d(1, x)-D,h,  de C(Qy) OR™,

But since N(u) — NM(v) = 0, it follows that h(z, x) satisfies a boundary value problem of
the form (2.4), where x = 0 and ¢ = 0. Hence, in accord with Lemma 22, h =0 and
u = v. Therefore, the corollary to Theorem 1.3 applies to the mapping N this proves 1).

2) We assume th
(V. U)). We prove th

Lemma 2.3. If llu,
converging weakly in

PrOOF. We consid

Then 1°0"u: L(Q
after going over to th
Since \M{¥ is an iso
N =Dyu, u € A C

In view of the b
continuous. Therefo

‘F(C?Iun(_f'})
in C(Q5). But then

weakly in L (Q7) a

have a contradictio
3y The proof is si
4} In this case

However, for g > (
ous imbeddings

Therefore the mapy
G A -

is analytic. Hence, .

where @'(u) & L (1
But gM /(M — 1)
is an isomorphism

We verify that A
u,v € A. Thenif h

wherer(-, -)isap
s=gM/(M— 1)
1.3, N is an analyti
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LEMMA 2.2, Let the following conditions hold:
a) ¢ >3/2, 30 € C2, a, (1. x) € C(Qr). i, j = L,...,n, and the condition of uniform

parabolicity is satisfied:
S oa(tx)§E =816 8>0V(x)E0r {ER
=l
b) w, = w + w®, j=0.....n, where w® € C(Qr). j = 0,....n.w" € L(Q7), wiV
€ L(Qr)j=L1....n with
[max(q, (n+2)/2) forqg#(n+2)/2,
\(n+2)/2 +¢ forq=(n+12)/2,

. _ [max(g,n+2) forg#n+2
p=p= n+22+e, forg=n+ 2,

IE85 =

where ¢, and €, are positive quantities.
Then for each pair (x,¥) € B of problem (2.4) there is a unique solution v € A.

Moreover, llv; All = Cli(x.¥); Bil.

PROOF. We introduce the norm | |97 = sup,_Il fl;.; L(gy)li, where the supremum is
taken over all cylinders ¢, = (0, T) X @ in which the base w is the intersection of the
domain § with the arbitrary ball of measure one. In [5], p. 388 (transl. p. 341), it was
shown that if the conditions a) are satisfied and also the conditions

¢) the norms | wy |27, |w, [€7,j = 1,...,n, are finite and

im}n ( W, !?'f-f” + 2 W, Eg) =0 uniformly with respect tot €[0,T),
J.
where Q,,,. = (f, 1+ 7) X & and 5, and p, are the same as in condition b), then the

assertions of the lemma are valid. We verify that the conditions ¢) follow from b). Using
Holder's inequality, we find that, if e0 > r = r, = 1, '

fg;fbf(:,x)!ridm)w,,

. vy 1/r
< sup T"‘"’"*”’(f'f%f(t. x) k’dxdr] < TUTTLfIE
w \ 0 Yw /!

| f187 = sup

Therefore,

100 ree (10 e D10, 1ms
| wo |@eem | wgl? | Gres + | wf? [

1 L. /s
< om0l [ Juf(r,x) P dx df) + 75w L( Q7)1
\ Q

¢ e \ 1L/p .
(g e/l [ [ lw(r, x) P d dr) W Ll (25)
t Q

Since IwgDs LLO M < oo, |l ij; LQ < ec, the first of the conditions c) follows
from (2.5) for t =0 and 7 = T. The second condition also follows from (2.5). In fact,
when p > p, this is obvious; but when p = p,, by virtue of the absolute continuity of the
Lebesgue integral, the integral [/ *7llw!"(z, -); L (@)l dr tends towards zero uniformly
with respect to 7 as 7 — 0. Thus the lemma is a consequence of the results obtained in [5].
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THEOREM 2.1. Let g > n + 2.
1) There exists a domain ¢ C B such that problem (2.1)-(2.3) has a solution u € A if and

only if (uy, v) € €. Moreover, the mapping N: A — ¢ is an analytic dzjfeomorpiusm
2) Ler the domain € be bounded. If

y « B x
(V.U)ee,  (¥.U)-=(V,U)ede

1

where 8¢ is the boundary of € in B. then || NNV, U); All - .
Let equation (2.1), (2.3) have the form (2.1'). Then:
3) In 1) and 2) it is sufficient 10 take g > (n + 2)/2.
4 If o(u) = @+ -+, u™ it is sufficient 1o take
M—-=1 n+2 ]

(3 n+2
L ma"(\z‘ M 2

Moreover, under the conditions of 2),
INY YV, U) L(Qs) = o, wherer = Mg.

In specific equations of mathematical physics we often have » <3 and ¢(u) a
polynomial of degree at most three. In such a case. thanks to 4), we can take ¢ = 2. in
which event A and B become Hilbert spaces and Besov space B coincides with Jrf’:'(ﬂ).

PrROOF OF THE THEOREM. 1) According to Lemma 2.1. dN(u) corresponds to the
boundary value problem (2.4). Moreover, according to Proposition 1.2, the terms forming
the coefficients of problem (2.4) have the following smoothness:

e s : + 82 o n-+
v*"_‘qu(dD}“)EC(QT)@R" I‘ aXa\ leF.';( Diu)&Lq(QT)®R l’

32u

F (D) € (@), -5—[(( u) € C(0;), TR (D) € LQr).

Therefore, Lemma 2.2 is applicable to problem (2.4), and it follows that dN(u) is an
isomorphism of 4 and B.

We verify that the mapping N is an imbedding. Assume this is not so and N(u) = N(¢).
u,0 €4, u—v=~h Then

4

9 u 2 9%
a; 81 ( Dl“) o wg;—F (@'lu)

8°h
_ F (D ) — &)
dx,dx; F(Dyu) + Bx ax ( " D) = F, (L

In accordance with a lemma of Hadamard (Lemma 1.1)

82u 3%
" (D gy — U
axrax‘;‘ﬁ‘j( "lu) 'ax_axjf;._f( L%“")

_0*h
N E}xﬂx;—

¥

F(,u) + b; (¢, x)- 0,4, b, ; € L(Qr) ® R™;

iy

}'(“]u) F(“L D):d([,)’;)-d—bih’ deC(Qr)Qan-—i

But since N(u) — N(v) = 0, it follows that h(¢, x) satisfies a boundary value problem of
the form (2.4), where x = 0 and ¢ = 0. Hence, in accord with Lemma 2.2, h = 0 and
u = v. Therefore, the corollary to Theorem 1.3 applies to the mapping N; this proves 1).

2) We assume thi
(V.U ). We prove the

LemMa 2.3, If lu
converging weakly in

PrOOF. We consids

R ed
~"

Then || {"u; L (Q;
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3
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have a contradiction
3) The proof is sir
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However. for g > (!
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is analytic. Hence, A
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ButgM/(M - 1) >
15 an isomorphism o
We verify that N
u,v € A. Thenif h

where r(-, -)isapc
s=gM/(M—1). ]
1.3, N is an analytic




15 a solution u € A if and
“diffeomorphism.

l'q'._

we n=<3 and g(u) a
.+ We can take g = 2, in
ncides with W,'(Q).

u) corresponds to the
1 1.2, the terms forming

L(Q7) @R,
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it so and N{uw) = N(v.

AQr) @R,

3R,

lary value problem of
emma 2.2, h = 0 and
ig : this proves 1).
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2) We assume the contrary. Then |fu (s, x), Al <C, j= 1.2,..., where N(u;) =
(V- U). We prove the following auxiliary lemma.

Lemma 23 if llu; Al < C,j= 1,2,..., then the sequence {u,} contains a subsequence
converging weakly in A.

Proor. We consider the isometric imbedding
R L(Q;) @R, N=N(2.2). D

Then [[04%u; L(Q) ® RVl < (", but since L(Qr) @ R is a reflexive Banach space,
after going over to the subsequence we see that ‘0§ u, ,, —~ U weakly in L (Qr) @ | ]
Since “2{* is an isometric imbedding. it follows that “}{”(A4) is a closed subspace and
% = D,u, u € A. Consequently. u,, , — u weakly in 4, and the lemma is proved.

In view of the boundedness of € the imbeddings in Theorem 1.2 are completely

continuous. Therefore. *?,1,, ,, — “%,u in C(Qy) & R"™'; consequently,

F(Du

aj}

)~ F(D,u). FA.:'(“D:“nm) = Fi (D), k. I=1,...n,
in C(Q). But then '

97 u : 3%u s
mﬂ.:(“?s“ﬂm] —*mﬂ_f(‘i‘ﬁf)

weakly in L (Q7) and N{u ;) — N(u) weakly in B, whence (V. U) = N(u) € €. Thus we
have a contradiction.

3) The proof is similar to that of D).

4) In this case

N{w) = (u l', - U= A+ qut - *‘th“-”u'”‘),

However. for g > (M — 1)(n -+ 2)/2M we have. according to Theorem 1.2, the continu-
ous imbeddings

H_;ql.l( QT) e L;;m( QT’}‘ l=m=M. (26)
Therefore the mapping

§A=LAQr), ult,x)eou(t,x))=gu+ - +guu"

is analytic. Hence, N € ®( 4, B) and

dN(u)v = (v],_q, 0 — Ao + q}’(u)t)

where ¢ (1) € L{Q;), s = gM /(M — 1), since ¢'(+) is a polynomial of degree M — 1.
But gM /(M — 1) > max(q, (n + 2)/2); therefore, in accordance with Lemma 1.2, dN(u)
is an isomorphism of 4 and B.

We verify that N is an imbedding. Suppose that this is not so and that N(u) = N(v),
u,v € A. Thenif h = u — v, we have e '

h—Ah+ r(u,v)h =0, h|1-,,:ﬂshlrrn:0’
where r( -, - ) is a polynomial of degree M — 1 in u and v and, therefore, r(u, v) € L(Q4),

5 = gM /(M — 1). Hence, according to Lemma 2.2, h = 0. By the corollary to Theorem
1.3, N is an analytic diffeomorphism of 4 in the domain € = N(A4).
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Let M(u;) = (V. U), and assume that fu, 'L,,.E!.(QT)E? < C,. Then, since & is bounded,
flpu) Ll < C,. Therefore.

1;) a AH} - ”Jr‘ u} LtG = V;‘ u; Il‘r =0
where W, = U — ¢(u,) and (V. W) Bl < C,. From this and Lemma 2.2 it follows that

i u,. Al = C,. Hence, by Lemma 2.3, 1, ,,—u weakly in 4. Since the imbeddings (2.6} are
completely continuous, it follows that

aty) s Lqm{QTJ -0,

Therefore g(u, )} = @(u) In LQr) and N(u, ) — N(u) weakly in B. Consequently,
(V,U) = N(u) € €. Thus we have a contradiction. ;

Hu 1<m<M.

COROLLARY 1. If under the conditions of Theorem 2.1,2)
fuy Al < g,(1(uq. v): Bil),
or if under the conditions of Theorem 2.1,4)
ity Lag (@)1 < ga(il(ug, 0): B,
where g, and g, are continuous functions, then & =B.

PROOF. Assume that & = B. Then 3¢ # @ and there exists a (V. U} € 9C. We select a
sequence of points (¥, U)) from € which converges to (V. U). For such a choice it follows
from the conditions that | N*(K,, L«_’;); All = C, which contradicts Theorem 2.1,2). The
second conclusion is proved similarly with the use of part 4) of the theorem.

CoOROLLARY 2. If in (2.1) we have F!__j(_“?},u) =6, | F(%,u) |< C and the domain & is
bounded, then & = B.

PrOOF. In (2.1) we carry F(“D,u) to the right side. Then according to Lemma 2.2 we
have llu; All < Cli(u,, ©): Bl + C’. In accordance with Corollary 1 we find that € =

By the solving operator of problem (2.1)-(2.2) we shall mean the mapping ¥ which
makes the solution u{r, x) correspond to the given functions uy(x) and o(t, x).

COROLLARY 3. Ler B’ be a Banach space continuously imbedded in B, (ug, v') € B, and
assume that when u, = uj, and v = v’ there exists a solution u'(r, x) € A of problem
(2.1)-(2.3). Then for some ¢ > 0 there exists a solving operator ¥ € ®(€ ((uy, v'), B'), A) of
problem (2.1)-(2.3).

PROOF. Let & = € 1N B”. Then (u}, v') € ¢’ and ¢ is a domain in B”. We can therefore
select an £ > 0 such that €, = €((ug, v"), B') C ¥". It remains then to put ¥ = N'|,.

We consider equation (2.1") with the polynomial nonlinearity

plu) =@u+ - +@uu’, pyF= 0, M=2.

THEOREM 2.2. Let Q be a bounded domain, g = 2 and ¢ > (M — 1)}(n + 2)/2M.

WIfn=2and ¢ (u)>0Vu ER, thent = B.

2) If an a >0 exists such that —ug(u) = (2a + 2)g(u) =0 Yu € R, where g(u) =
[d@(T) dr. then € ¥ B.

Proor. 1) We denote the L,({2) norm by Il -1, and the inner product in L,(§2) by
¢+, ). Then, multiplying (2.1") scalarly in L,(£2) by —Au(r, +), we obtain '

~a(e, -), Aulr, )Y+ Hau(e, Y3 = (elulr, ), dulr, -))
= {0t -); Bult,~}).

Since ¢'(u) = 0, we

{@lu(t, -]

Therefore. by Gron

from which it follo

sup e
Q=T

and, by a Sobolev
fu;

It then remains to
2) We assume, «

an arbitrary uy €

%
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Since ¢'(u) = 0, we have
1d ) :
(@lu(t, ), du(r,-))<0  and Eaiéwx(r_.-)E§§=§:Eu(r,»)§;§_
Therefore, by Gronwall's lemma,

Ivu(e, )iz < il\"«’ueﬁgepo‘{}!ﬂv(‘r. 2dr,

from which it follows that

sup Hu(e, -); W@ < Cyllug; BZ72/9(Q)l exp Gy llv; L(Q)I1%,

0T
and, by a Sobolev imbedding theorem,
Hut; Lag(Q@r)1 < Gllugs B 2/4(Q)lexp G llv; L (@I,

It then remains to apply Corollary 1 of Theorem 2.1.
2) We assume, conversely, that & = B. Then problem (2.1")-(2.2) has for v = 0 and for
an arbitrary u, € b a solution u(¢, x) such that

u€ Wzl'z(QT)» ‘P(”) € LE(QT)' (2-7)

LeEMMA 2.4 (LEVINE [11)). Let the conditions of Theorem 2.2,2) be satisfied, and let u(t, x)
be a solution of problem (2.1)-(2.2) for v = 0 such that conditions (2.7) are satisfied. Then

Hugll3 238
“2[(3(“0(“‘)) =2 V"‘_‘o(x) 2) dx’ 5

if the denominator of this expression is positive.

T<T(uy) =

Assertion 2) of the theorem follows very simply from Lemma 2.4. Indeed, let us put
ug{ x) = Av(x), where v € CP(Q), v = 0, [v?(x)dx > 0. Then (since the denominator of
T{Av) is a polynomial in A of degree M + 1 = 3 with the coefficient of A¥*! positive) we
have T(Av) = 0 for large A and lim, _  T(Av) = 0, which contradicts (2.8).

In [11] a somewhat greater smoothness than that in (2.7) was required of the solution
u(r, x). Therefore, although under the conditions of Lemma 2.4 the proof from [11] is even
simplified, we give it here in its entirety.

PrROOF OF THE LEMMA (LEVINE). We define a function

p(e) = [Hu(m3dn + r(e+ 1) + (T~ Ollugll3,
0
where the constants 7, r > 0 and 0 < T; < T are chosen below. Then
p(e) = Nu(e 2 — Nugh2+ 2r(t +7) = 2f:<u(n), u(n)} dg+2r(t +7),
0

pr) = 4(a + V)1(1) + 25(s),

where

1,(1) :j;iiz';(r;)!i-’gdn +r; L) = {u,a)—2(a + 1)[ﬁ‘na(n)sﬁ§dn ~ (2a + 1)r.

For convenience we let p(¢) = a(t) + b(t), where

a(t) = j:?iu(n)%i%dn +r(t+ 1),

b(1) = (T, — t)llu,ll3.
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From (2.7) it follows that p(r) € W20, T). Therefo're.p is determined when 0 < r < T

and p > 0. We show below that we can arrange the constants 7. r and T, so that
(P Vi ljor,; =0, p(0)/ap(0) = T,

But then p~°(1) < p~%(0) + 1( p~°(0)); and the function p~° vanishes on {0, 7). Therefore
T(uy) = T,

The inequality ( p~%(¢)), < 0 is equivalent to
pp—(a+1)p* =4{a + 1}( al, — p*/4) + bi; + pl, = 0. (2.9)
We verify that ali the terms in (? 9) are posnw '

1) We verify that af, — p*/4 = 0. This inequality is a consequence of two other
inequalities, namely,

(i‘/;[(‘u(n)‘a('n)} dn:}z [lfu(n dnf lu(n)i2 dn,

2 [ (u(n). a(n)) dur(c +7) <rflu(mi3dn +r(c+ )’ [a(n)i dn.

2) Positiveness in /| is obvious,
3) We verify that /,(7) = 0

)= (ult), a(0))~ (2a + 1)r — 2a + l)j:(ﬂ(nl g'(u(n))) dn

2w+ ]){)r(u(n) Au(n)) dn

= —afu(1), Aule)) + ((u(r) g’(u(l_}))m 2({a + I)fg(u(t. x)) dx)

+2(a + i)((fﬂ(“u(x)) 4 ~ §<”“"5“”>_] = %{%r)

The first term is obviously nonnegative. The second is nonnegative according to a
condition of the theorem. Therefore, if we choose

& _[X{”u(x})

(we note that for such a Lhoéce r =0}, we have L, = 0 and (? 9) 1s satisfied.
Weput T, = llu,li3/er, v = {u,li1/ar. Then p(0)/ap(0) = T, and

T(U)‘-(-‘\T ?'Mﬁi‘)
’ ’ o®( fgluy(x)) — 3| vuy(x) Pdx)

- 2| Tyl x) iz dx

which establishes the lemma.

We can consider problem (2.1)-(2.2) in a space of complex functions. For this we
assume that F, E; C"*' = C are real-analytic functions; we define A¢, B and B as
complex versions of the spaces 4, b and B, and we specify the mapping

' d%u ,
Neidec = Be, uws ul,_,,u—3F (L‘“a o +F(‘~'9iu). (2.10)

THEOREM 2.3. 1) There exists a domain €. C Bc such that the assertions of Theorem 2.1
are valid upon replacing A by A, B by Be, O by €, and N by Np.

2)If F, (z) =8, ; and F is a holomorphic function, then No: A — ¢ is a complex-ana-
Iytic diffeomorphism.

The proof of this th
only to take into acco
of the results obtained

REMARK. Let us as
Then € =€ N B. In
morphisms of the wh
We note that in the «
polynomial diffeomor

A result analogous
equations, which desc
3Q € C*(see[10]):

ue, x) — ¢

‘where u(r, x) = (u'.

spaces: i
V= {u(x) € CF(&
K is the closure of ©
i’ is the closure of
W' = (u(t,x) €1
L, . is the orthogon
A= FRLI0 T
It is well known tha

{

We shall therefore wi
problem (2.11)-(2.12)

N:A -~

THEOREM 2.4. The

diffeomorphism. More
ggN-l(uBJ), JEAT Al
The proof is analog

note that the second
not know whether it i

§3. Ex:

We recall that a sa,
solution u(z, x) corre:
the uniform paraboli
imbedded in the spac:
solving operator ¥, W
is less smooth than 5




termined when0 <:< T
‘and T}, so that

shes on [0, T;]. Therefore
+pl, = 0. (1.5}
nsequence of two other

dn,

.—)Ijn’tsu(n)jzgdn.
‘(u(n))) dn
)fg(u(r. x)) dx)

)

egative according to a

i

B

(=}

0

satisfied.
,and

f'x) '

functions. For this we
fine A¢. B and B as
ping

FR@w)]. (2.10)
sertions of Theorem 2.1

~ Up is a complex-ana-
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The proof of this theorem does not differ from the proof of Theorem 2.1. It is necessary
only to take into account the fact that the complex analog of Lemma 2.2 holds by virtue
of the results obtained in [5]-[7].

REMARK. Let us assume, under the conditions of Theorem 2.3,2), that F(R"™') C R.
Then € = €¢ N B. In particular, Theorem 2.2, 2) furnishes examples of polynomial diffeo-
morphisms of the whole complex Banach space onto a strict subdomain in another space.
We note that in the case of finite-dimensional spaces C¥, N = 2, the existence of such
polynomial diffeomorphisms is a problem.

A result analogous to Theorem 2.1 can be proved for the Navier-Stokes system of
equations, which describes the flow of a fluid in a bounded three-dimensional domain £,
32 € C? (see [10)):

3
a1, 25 = 2, D u«'%+ vp=j dre=0, fne)elm @&

=1 -
oo =up(x), ulp =0, {2:12)

where w(t, x) = (u'.u? u®), flt. x)=(f', f% f°). We define the following function
spaces:

F= (u(x) € GX(Q) @ R*: divu = 0},

JC is the closure of Vin L,(2) ® R%;

(" is the closure of Vin W, (Q) ® R®;

K= {u(t, x) € W HQ,) @R | divu =0, u }Tr = 0},

L, . is the orthogonal complement to J in L,(2) ® R;

A=K X L0, T; Ly ) B =K' X (Ly(;) @ R).

It1s well known thatif { € L,(0, T; L, ), then

{=vp(t.x)., pl1.x) € L,(0, T: W;(2)).

We shall therefore write elements from L,(0, T; L, ) as Vp. We define the operator of
problem (2.11)-(2.12):

‘ 3
ot 2y - d
N:A—B; (u,vp)es |ulmg i — Au+ 2 ufma:
_ e .

+ %p |-

THEOREM 24. There exists a domain € C B such that N: A - & is an analytic
: - > B . , -
diffeomorphism. Moreover, if (u{’, fUY €€ and (uf’, f) = (u?, fO) € €, then
IN-Yul), O, Al - .
The proof is analogous to the proof of Theorem 2.1 and will not be supplied here. We

note that the second assertion of the theorem bears a conditional character since we do
not know whether it is true that 9¢ # @.

§3. Examples of continuous but not analytic solving operators
of problems of the form (2.1)- (2.2)

We recall that a solving operator of problem (2.1)-(2.2) is a2 mapping which makes the
solution u(r, x) correspond to the function pair (uy(x), v(t, x)). We proved above that if
the uniform parabolicity condition (2.3) is satisfied, and if the space B’ is continuously
imbedded in the space B, then in a neighborhood of the zero of B’ there exists an analytic
solving operator ¥. We now prove that if the space B” of the function pairs (uy(x), v(z, x))
is less smooth than B, or if condition (2.3) is not satisfied, then problem (2.1)-(2.2) can
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then have a continuous, but not analytic, solving operator. For this we consider the family
of problems depending on the parameter A = 0:

a1, x) = Nu—=F(u) =c(r,x),  u|_,=uyx) u !Tr:(}’ (3.1)
where (1, x) € @, = (0, T) X , Q is a bounded domain in R", 3Q € 2, and
_ o« 0 [ du }3
Fluy= 3 —|=—1.
= ax, { dx, |

We define the s;ﬁaces
A" = {u(r, x) € L0, T; W(Q)) lu € L, ,(0. T, W)},
B" = Ly(R) X L, ,5(0, T; W 5(Q)),
and we specify the operator of problem (3.1):
Ny:A” = B”, u(t,x) = (u)=g, t— NAu— F(u).

It is easy to see that Ny, € ®( A", B"). In addition, as Vishik [12] proved, the mappings N,
are homeomorphisms of 4” and B”. However, B” ¢ B and, furthermore, when A = 0 the

uniform parabolicity condition (2.3) is not satisfied for problem (3.1). It turns out that the
operators N;' are not analytic.
A much stronger result is valid.

THEOREM 3.1. There exists no domain Cg C B” such that for some A = 0 the mapping
Mol g — A" is continuously differentiable in the Fréchet sense.

PROOF. We assume that the domain €, and A = 0 exist. Assume then that N8 =¢€,.
We put

Ay ={e(t.x) €4 |suppr € [0,T] X Q. 2, c 2,80, € C?}.

The space A7 is dense in 4”. For the proof it is sufficient, with the aid of a partition of
unity, to rectify 3% and to note that if @ = {{xi,...,x,) ER"|x, >0} and v(1, x) € 4,
we can then put
01, %) = 8(0. %, = 1/m, x5....x,),
where © is the function v continued through the origin into {(t, x)|¢ =0, x, < 0}. For
g
such a choice v, € A and v, —v.
Hence there existsa x(r, x) € €, N Ay We define @' = 9\§x and we consider
C_‘R.,A = ("2 =3 d.r’\fh(x)ll(l, X)) ‘(U.T}Z‘(Q',

where m,(uy(x), v(7, x)) = ©(t, x) and the restriction on (0, T) X @ is considered as a
continuous operator from (0, T; W,"(Q)) into 9(0, T; W, (7). Then, since A: W)
— W (') is a continuous mapping, we have

T\(4) CD(0, T, w(Q). (3.2)

However, by assumption, N,: O, — O, has a continuously differentiable inverse mapping
Ny, Therefore dNy(x): A" = B” is an isomorphism. In particular, m, o dNy(x)(A) =
7,(B). From this and from (3.2) we find that

Le,5(0, T; W;;1(2)) lo.ryxer € D0, T3 W (@),

or, considering this ;

However, since @ is
W, A(R) D W),

It is inreresting t
RY — R" be an anal
there exists a dom
Theorem 3.1 supplie

We remark that &
In this connection, :
mappings of Banac
A — B is called a !
Fredholm mapping.

If A >0, problem
B - A4” is not ana
§>0,p> land m,
W21 Qr). That
a subspace B of sm
exists in the scale of

THEOREM 3.2, The

" PrROOF. We suppo

Since N, € ®(A4", B
= (uy.0) we can ec
obtain a sequence of

A
F]
j':

S(ug) L:g A

Flu,o,w) =

S;(”aL:a -
from which we obtai
with a nonzero facto

order less than 2/ d
function
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or, considering this imbedding on generalized functions independent of ¢,

Wos(@) C wii(e). (3.3)
However, since ' is bounded, we have the strict imbedding W, (') C W, 3(§), whence
}L’;:,‘J(Q) i W, (), which contradicts (3.3). This completes the proof ;;f the theorem.

It is interesting to compare Theorem 3.1 with the finite-dimensional situation. Let 0
RY — R" be an analytic mapping with the continuous inverse # ~'. Then by Sard's lemma
there exists a domain © C R¥ such that (R¥\£)=0 and R"! o is analytic. Thus
Theorem 3.1 supplies a counterexample to Sard’s lemma in the infinite-dimensional case.

We remark that N, does not satisfy Sard’s lemma because it is not a Fredholm mapping.
In this connection, see [13], where it is shown that Sard’s lemma is satisfied for Fredholm
mappings of Banach spaces. We recall that a continuously differentiable mapping F:
A — B is called a Fredholm mapping if Yu € A the mapping dF(u): A — B is a linear
Fredholm mapping.

If A > 0, problem (3.1) satisfies condition (2.3). Therefore, although the mapping N, "
B” — A” is not analytic, we can select, in accordance with Corollary 3 of Theorem 2.1,
§>0,p>1andm, m, € Nsuch that Ny' |, 5, € ®(Cy( B), 4”), where B = W,;"(R) X
IP;"”-E’”:(QT} That is, when A > 0 the operator N,”' becomes analytic after a restriction to
a subspace B of smoother functions. We prove now that when A = 0 no such space B
exists in the scale of Sobolev spaces.

THEOREM 3.2, There existnop > 1, m € N and 8 > 0 such that
Nnul Ié‘gru‘:’;’(ﬂnx{o} € @(‘85(%’"(9)), AH)'

PrROOF. We suppose the contrary to be true and we let S(uy) = Ny '(44,0). Then _

o
S(ug) = 2 Si(ug) Yu, € t1‘5("{{;“(9))- (3.4)
=1
Since N; € ®( A", B”), we can apply N, to the series (3.4) and in the equation N, o S{u,)
= (u,,0) we can equate mappings that are homogeneous and of the same degree. We
obtain a sequence of equations, where
n
Flu.om) = 3 v (ot ):

d
Sl{“a) L:o = Uy, ESI(“U) =4,

S!(”{)).-:é] = 0; ESE(UQ) = 2 %(Sz;(“o)v Sr3(”€3)1 _S:,(uﬁ))’ (=2,

fy+iy ey =i
rom which we obtain by induction that S,, (u,) = 0 and that S, . ,(u,) contains the term
t"(az"uo/’axf")(auo/ax! )25

with a nonzero factor, where v = »(r) € N and the derivatives of u, with respect to x, of
order less than 2/ do not appear. We can assume that 0 € Q. The if we consider the
function

x ok 2tV a2 20,
0, x, =<0,
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where k € C5(2), x(0) = 1, then 7, € W () and S, (ug) @ A”,if I > 1. The resulting
contradiction establishes the theorem.

§4. Quasilinear 2 b-parabolic equations
We consider in the cylinder r=0,T)XQ0<T< g, the quasilinear 2 5-parabolic
equation

Aulr.x)y= ¥ a;“(@if"”u)D}‘D:u(a‘, Xy a(‘fﬂ,ﬁf”)u) =f(1, x),
[wrj=M
(1, x) € 0, (4.1)
where [u, v] =lvl/2b+p,m, M, b EN,m < M, DZ wis a row of all the N = N(rm, 2b)
partial derivatives of the form DFDlu, [p, v] <m, and a,,() and a(-) are analytic

functions on RY, a(0) = 0. We assume the following uniform parabolicity condition to be
satisfied:

A) The roots of the polynomial

A(z: 4, p) =Za, (2)p*(i€)" =0
for arbitrary Z € R satisfy the inequality Re pP< 8¢ 6>0.
For equation (4.1) we pose the following boundary and initial conditions:

Go= ¥ g,,DDu fr,. =@, lI<j<Mp, (4.2)
{P-"}ﬂrl '
whererj >0.2br, €N, j=1,...,Mb;
Diul_,=ulx), O<k<sMm-1. : (4.3)

We assume that problem (4.1)—(4.3) satisfies the Lopatinskii condition:

B) Let x" € 39, let ¢ be a vector tangent to d&2 at x’, and let 7 be the normal to 98 at x".
Then the equation A(z; (¢ +y1), p)=01in ¥ has for |{| +|p|% 0 exactly Mb roots
Ty s-..Tayp With positive imaginary part, and the polynomials

S P +m)) ', j=1...m,

[porl=r
are linearly independent with respect to the modulus of the polynomial [T ( y — .7(2: ¢ p))
whenRep > -§,{% |p| +|{]#= 0.
We define the following spaces: A = WM,

Mb M1
b= {‘Pi’--w%m? Ugs-nslly,_ ) € H B;j'zm‘(rr) X H B;MM—J—VPJ l;A
k=1 /=0
i 5 . 26+ 1
=M-r - 2—55, 2} b,.,Dlu, 'aﬂ =g ’{a}xan; 2br + < ZMb}‘
{novi<r,

B=58 x L (Q7) (the space B is correctly defined according to Theorem 1.1).
We seek a solution of problem (4.1)-(4.3) in 4, assuming that the given functions
(@1s-. 1, ; f) belong to B. We specify the operator of problem (4.1)-(4.3):
Ned =B, ult,x) - (K(u), A(u)),
where
K:A4-BE, e, £ )es (Gi(u),...,GMb(u); | mgyne or » DMVt Lzo)'

I3

I p>(n+2b)
12. N € 9(4; B).
THEOREM 4.1, |
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If p=(n+2b)/2b(M — m), p > 1, then, according to Theorem 1.1 and Proposition
1.2, N € (4, B). Moreover, an analog of Theorem 2.1 holds for V. :

THEOREM 4.1, Let p > max({n + 28)/26(M — m), 1), let conditions A) and B) be
satisfied, and let 3Q € C*M*_ Then the following assertions are true:
1) There exists a domain € C B such that N: A — € is an analytic diffeomorphism.

B
2) If Q is a bounded domain and ®, €€, j = 1,2,...,0, -0 € 3%, then IN(©)); Al
- 0.

We sketch the proof of this theorem. It follows immediately from the definition of the
mapping N that d¥(u)v = (K(v), £ (v)),

Ele)= X (z“_y(i‘gff’)u)Dj‘D_fu

it

[.rj=M

: [ 6y (2 Vo2

+ (Df'D: u\‘i;g;muap‘,,( UD:H b’u) + V@;‘uhlua(ﬁﬂgb’u))@; b"l’,
[wel=M

1h)
i

where V;@wm a {63':

(FRel TO) A8

u) is the row of all the N(m, 2b) partial derivatives
aau.v(z )/a‘z_.' !.2:‘,3,‘,,3""5(‘ J = 1.-- ’e yiv- .

According to Theorem 1.2 we have "'y € C(Q;) X RY, and since conditions A) and
B) are satisfied, it follows from results of Solonnikov [6], [7] (see also [5], Chapter VII, §10)
that dN(u) is an isomorphism of 4 and B.
We verify that N is an imbedding. Assume this is not so and that N(u,) = N(u,),
W, =, j=1,2,u; = u, = v. Then
(K(v),E, () =0, (4.4)
where
f“!_h:(v) = 3 (ayl,(’“’lLl)Dj‘D:u + D;'*D;ul(aﬂy,(%l) - a#_l,(%z)))
[wrl<M
+a(U,) — a(,).

Since p(M — m) > 1 + n/2b, it follows from Hadamard’s lemma (Lemma 1.1) that
a#.k(szt 1} - a#.w{ﬁi’z) 2 /D’l;lb)t; -@a.v(te .X'), a(ﬁzL]) - a(%z) = GDLZMD -&}([1 x)s
tvhere &,, €€ C(Qr) € RY. Therefore, since D!Dlu, € L(Qr) for [p,»]< M, it

follows that

E, advk= 3 o (010D + X (@ﬁ{l(:,x)+-@,§?3,(z,x)jp,#1);u,

[p.o]=M [p.r]=m

where &) € C(Q;), €% € L,(Q7) and a, (U ) € C(Qy). It follows now from (4.4),
conditions A) and B), and the results obtained in [6] and [7] that v = (. Consequently,
%, = u,; N is an imbedding, and assertion 1) of the theorem holds by virtue of the
corollary to Theorem 1.3.

Assertion 2) is proved in the same way as in Theorem 2.1.

CoRrOLLARY. If under the conditions of Theorem 4.1,2) the a priori estimate
fhu, Al < h(I(@,,....f); Bl

'S obtained, where h is a continuous function, then & = B.
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REMARK. Results analogous to those obtained above are valid for a boundary value
problem for a system of quasilinear equations, 2b-parabolic in the Solonnikov sense (see
[6] and [7)).

We note that problem (4.1)-(4.3) was considered earlier in [3] and [4]. In [3] it was
shown that the set of those (@,,....f) € B, for which problem (4.1)-(4.3) is solvable
forms a domain in B. A proof of the above corollary to Theorem 4.1 is given in [4].
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