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HAMILTONIAN PERTURBATIONS OF INFINITE-DIMENSIONAL LINEAR SYSTEMS
WITH AN IMAGINARY SPECTRUM

S. B. Kuksin UDC 517.957

We consider the linear equation in a Hilbert space Q

w = Jow, we Q. (0.1)

Here a is an n-dimensional parameter, and Ja° is an anti-self-adjoint operator with discrete
spectrum *i)j(a), Aj ~ de. We prove that if d > 1, then for most values of the parameter a
the quasiperiodic solutions of (0.1) with n basic frequencies are preserved under small Hamil-
tonian perturbations of the form

W= J), (w4 eVH ), 0< e 1. (0.2)

Equations of form (0.2) arise in the description of one-dimensional conservative physical
systems [l], in particular, the nonlinear string; the corresponding equation is studied as an
example.

The theorem proved in this paper has well-known finite-dimensional analogs. So, if Q =
2N < » and N = n, the results of our work follow from more general theorems of Kolmogorov—
Arnol'dMoser (see, for instance, [2, 3]), and if N > n, they follow from the works of Mel'nikor
[4, 12], Graff [13], and Moser [5].

We remark the comnection of our results with the works of Nikolenko [6, 7], where the
existence of conditionally periodic solutions for nonlinear perturbations of (0.1) is studied
with no Hamiltonian assumptions (but under other fairly hard restrictions).

1. Statement of the Main Results

Let Q be a real Hilbert space with inner product «-., ->», and let Wy, a & RP, be a family
of self-adjoint operators in Q such that We = I and K > W, 2_Kf‘ V a (here and further K, Ko,
Kis ... are positive constants). Let us denote by Q, the space Q with the inner product <<u,,
uz>>, = <<Wyu;, uz>>. Let Ja° be an unbounded anti-self-adjoint operator in Q, such that for
some orthonormal basis {Wji (@)} j >-n + 1}C Q4 we have

Towf (a) = Ty (@i (a), A; (@) >0 Vi=> —n + 1. 1)

Let us assume that locally the n-dimensional family {Wg, J;°} may be parametrized by the
vector w = (A_pt1s A—ptzs -ees Ao),

(JJEQ():{OJERn|I®—(O*I<K0},O<KO<1/2,|m*l<K1 (2)

and a(wx) = 0. Assume that for w & Qo a continuously differentiable function HA° (o3 w):
Q,~ R is given, and let VWH,° (-3 w): Qy > Qbe its gradient. Let us consider the family of Hamilton-
ian equations in Q, with Hamiltonians Hy (u; w) = <u, uw»u/2 + gHp® (u; w), 0 < gq < 1:
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i = Jy (u + e, VOH} (u; o). (3)
Let us make in (3) the substitution u = Uy(w), where Uy: Q + Q, is a unitary map, taking
wit = wit(wx) into w5*(w), j > -m + 1. Then
W3V HY, (1 ©) = Vo HY (4; 0) = UV, Hy (U (w); 0), (4)
where V = VW%, Therefore
@ = JoV (Kw, wdD/2 + gH 4 (w; 0)), (3
Jo=UadoUs, Hp(w;,0)=Hr Uy, w); o).
By (1),
Jwi=Th@u] Viz—n+1l ha@=0, I=1....n

Let us decompose Q into the direct sum Q = Qo ©® Zg, where Qo = R®® is the linear span of
the vectors {wj* |j < 0}, Zg is the closure of the linear span of the vectors {wj* [j > 1}.
Let us denote 3% = Aj (wx), Jw) = J*(w) 'ZR’ Jx = J(wx) and let us assume that

2 i 12 M) =K' Vos=Q, Vi1, (6)
Let <+, *> be the inmer product in Zg (induced by the inner product in Q) and let Y5,
s > 0, be the domain of the operator |Jx|S, endowed with the norm [y |} =<|J, £, | J. ¥
In particular, YR® = Zg, ||- ||, is the norm in Zg and if §=((r,p), Y = Qy ® Zr = Q , then
iplo=1rP<—1ipP+|lylf. We denote by YR™S the space orthogonal to YR® with respect to
the inner product <e, e>, Then
; Nyl =2 15F I Vy=ZSytef F=R), Vs=R (7
Let
YS=Y§<§Q %= (0, QOXY* Vs=R; . =QRC.
R ‘ R
Let us extend <, > to bilinear pairings Y% x Y75 —-(C, s =R over C.

For g€o = 0 and all ¢ the space Qo is invariant for Eq. (5) and is foliated by the invari-
ant n-dimensional tori

2 2
T (I) = {ofwiy -+ 0GWien + - -« + 0wy |} +af =21, j=1,...,n}.
On the torus TW(I) there occurs the quasiperiodic motion élj = Wy, éj =0, j=1, ..., n, where
9y = Arg (& + o), & = (o + )2 — I, (8)

Let us consider the family of tori T™ (), i J (Y is a measurable set in R%). Let us assume
that the set (J {T" ()| =J}C Q together with its complex neighborhood of radius K ' is
contained in a bounded domain O Q¢ and that

K1/>/Ik,,>/K;1 V’k:is-'-an) VIZ‘-([K,---,L&)E;Y. (9)
For a set M = {u}C R™® , a Banach space B and a map ht M + B we write

[ ()]5 = sup |2 () ~ 2 () s /|y — pa] + siplh(u} ls.

¥ 5
THEOREM 1. Assume that conditions (6) and-(9) hold and that:

1) the maps Hp and VHp may be extended to Frechet complex-analytic maps Hp: 0 + C,
VHpA: O + Q¢, and

| Hy (w, Yo <K, |VHy (0, Y5 < K Vw=0 (0 = Q) (10)

2)
K1 Ay, <K 1M () =M, KK Vi, (11)
KV R — @ < Ay — M, | W B (12)

where d > 1, and if d = 1, in addition there exist K; > 0, d; & (0, 1] and a function ! N -+
R such that
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[A; () — Kof — L (Do << Kj vi > 1,

PeE+ D) =TI B4 VE 1> 1. (42

Then there exist natural numbers j, and M; depending on K, K, d and n (or on K, K;, Kz,
n and dy, if d = 1) such that if

3) [ -0y + vihy, + Yoy, | = 3Ky> 0, (14)
ls'_(”* + vidj, | > 3K, (15)
for every s = ZB, Isl <My, 1 <3<k <31, Yis Y2 = #13
4) K, < min (K,/(M, + 2K), K™*4), (16)
then for g, = (0, g,], where e, > 0 is sufficiently small, there exist a measurable
subset 0, C 0, =9, X J and smooth imbeddings
2=3:T"—Q,3(TC %!, 0=(a,I)= 6, Qa7
with the following properties:
a) mes {o & Q, |(0, I) &£ 6;,} >0

as go > 0 uniformly with respect to I & J;

b) dist (So (7™), T (I)) = 0 (s5) VO = 6., Vp < 1/3;

c) for w e Qo and for every I such that 8 = (w, I) & Og,, the tori Z(T™) are invariant
with respect to the flow of Eq. (5) and are filled with its quasi-periodic solutions. Under
the imbedding I the trajectories of (5) are carried on T® into trajectories of the equation
¢ =6 (0) , where &:0, —R" is a Lipschitzian map close to the projection (w, I) ¥ u.

Remark. Assume that the domain Q, C Q¢ contains J{ U, (0) |o=Q,}. By Eq. (4), condi-
tion 1) of the Theorem is fulfilled (for some large K), if Hp°: 0, + C, VHpA®: 0, - Qc are
Frechet complex-analytic maps; for all w & 0, the estimates (10) hold with replacement of Hp
by Hp® and moreover

| U 8, 30+ | W 32, 904 | U |8 o < K. (18)

The proof of the Theorem is carried out by the following scheme. We construct a sequence
of domains 0 HOFf HDOF ..., NOr =T"() and canonic maps Sp: Op4iR + OyR taking (5) into
an equation of the same form but with a smaller e¢o. After this we set the map I equal to the
restriction of the composition S¢o 8;0¢ ... to TR(I). The proof is given in Sec. 2., It is
based on lemmas from Secs. 3 and 4. In Sec. 5 we give an application of Theorem 1 to the non-
linear string equation.

We use the following notation: C, C,, ... are positive constants, independent of e, and
m (m is the iteration index); C(m), Cy;(m), ... are functions of m of the form C;mca; Cx(m),
Cxy(m), ... are fixed functions of the form C(m); e(m) = (17 + ... + m=?)/yo, vo = 2(172 +
2”2 + ...). The space of continuous linear maps Y°—>7Y? a, be=Z is denoted by Z.» and
the norm in % is denoted by l'la b3 we denote by %ie. a >0, the symmetric maps with re-
spect to the pairing <e, >, If P, and P, are complex Banach spaces with real elements P,g,
P2p, if 0 is a domain in Py, O Pir#%= ¥, and M = {p} C RN , then we denote by Ag! (0, Pj)
the set of maps F: 0 x M + P, that are analytic in the first variable, map (O (] P;z) X M into
P,R and are such that | F (p, ‘)b, << C = C (F) for every pe= 0. By the real elements of %,
we mean the maps taking Ygp@ into Ygb.

The references to formulas from a different paragraph are made as follows: (2.3) means
Sec. 2, formula (3).

2. Proof of Theorem 1

Let us write the Hamiltonian of Eq. (1.5) in the variables q, £, y [éee (1.8)]:

Hy(g, 8 3 I, 0) = [l w ||s/2 + Ha (w; @), "

n
w=w(g.Ey I)= 2 (2 E; + 1)) (cos gwin + sin quin) + y.
Let us set =1
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U@E)={=/22" | |Ing | <8}

0@ )y=U0) X fesC |lEi<exX{ys Y|y, < el

By (1.9) for sufficiently small e, and o the function (1) maps analytically O(eo, 8o) onto a
subdomain of O and has a Lipschitzian dependence on I & J. .

(22

Let 0 < p < 1/3. Let us define sequences {ep} and {8;} and numbers §pJ, 1 < j < 4:

smzaf,”")m. S8p=8(1—e(m), m>1, &,= é«g—i—&m + -g—ﬁmﬂ, (3
Let us denote
Upn=U(8n)s Op="0m8m)s Un=U L), Oh=0(27%,,8). )
Let us assume that Oy C Qo is a Lebesgue measurable set such that for every I & J

mes Op, [71 > K4 (1 — v (M), v € (0, 1], Ky = mes Q,, (5)

Let us consider in the domain Op the Hamiltonian
Hy=Hm € y;0) + enll am (0, & 13 9), (6)
Hyp=8-(15 + 6 (0)) + (4w (0) ¥, 1>/2,
where 1, =(1,.. )& R A, =T + 4;,(8) &,:0, >R, |6, () < e (m),

ApttF =B @) 0Fs B ()P <Sele(m)hii Vi1 N
Assume that (Hym, V,Han) & A2 (Op, C X Y?) (6 = 0,), and that for every b= Om
[Ham (5 )P + e | VyHam (5; ) [S < Cy (m) = K7L, (8)

For m = 0 and sufficiently small e¢ and 8§, the Hamiltonian H, has the form {6) with &, =0
and A, = 0. Condition (8) holds by condition 1) of Theorem 1 and the analyticity of the map
(1.

Let us denote

Q&:Tg X Rg X Y}ﬁ?s jeZ; Qﬁzzom N Q;x {9)

We identify the tangent space to Q;° with Q and introduce in Qﬁ" the metric of Q. To the
(

Hamiltonian Hy there corresponds the system of equations in Oy~ (we omit the parameter 6)
{’,}' = @ (1 + @mj -+ Smé)/@ng.Am), ‘%j = &)jei?z@;’&ngﬁfim, (10}
=J (A + enVyH am)- 11

This system is a Lipschitzian perturbation of the equation (f), £, ).7) = (0, 0, Jy), whose
operator has domain Q' and defines a group of isometric transformations of the space Q;°.
Hence for §(0)= 0% N Qy and sufficiently small T Eqs. (10) and (11) have a unique solution:

5O =@,y ) S0 N0 0<tT; $ELJOT;Q) (12)

{(see [14] and [8, pp. 105, 106]). Taking the inner product in Zr of Eq. (11) by y(t) and using
estimate (8), we obtain

didt 11y (2) 1o << C (m) &, {13)

Let us assume that [[¥(0) ||, <<elZ/2 and TC(m)el<1/2 . Then ||y () o <<&s and by (8) we
obtain from Egqs. (10):

J dJdLE ()| +ene | d/dt (g (t) — g 0) — &"t) | < C (M) &y 05 =0 (1 + SE). (14)
From estimates (13) and (14) we have the following assertion.

LEMMA 1. If € << 1 (i.e., if €o > 0 is sufficiently small), § (0) = Q% and | & (0)] < €2/3,
g (0) Ho<<e2/2, then for T = 1 there exists a unique solution of the system of Hqgs.
(10), (11) of the form (12). It satisfies the following estimates:
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lg () —q(0) — 0"t | < C(meh, |E@)]<en/2, ly @Ol < em. (15)

Let us single out from Hpy the linear terms in ¢, as well as the linear and quadratic
terms in y:

Ham=g(3,0) +E-21(9:0) 4 <y, 4(5;0)) + (B1(¢:0) 9, 4> -+ Hym (9, 35 O);
B, & AR (O, %5, 0)-

Changing if necessary Hpp by a constant we may assume that g(8) = 0 (the bar above the symbol
means averaging with respect to q & TR),

Let us define a linear operator Be: Y° + Y°:

B, (0)uwf = F; (0) wk/2, b;(g,0) = (Bwj,wiy 4+ {Bwi, ;> Vi. (16)
We set
B—B,— By h—ly—Fy Gums—=Cp + enfiyr Amss = Ay, + 26,8, (17)

and rewrite Hy as follows:
Hy=Hymi1 G ¥:0) + enllin (0, 8,4 0);  Hyn==Hypn + Hom

. (18)
Hym = g(9;0) + E-h(g;0) + <y, 5 (g 8)> + <B (g; O)y, »>
[the functional Hepy: is the same as in (6)].
LEMMA 2., If €0 << 1, then: a) for q= Uy
& (g ) [P < Co (m), 303 +) 15 < Co (m) €57,
(g ) P << 2C, (m) €™, | By () 1P < Co () ™
| B (5 ) lo,2 << 20 () € |5;(+) [0 < A5demC (m) Vs
b) if H & Opys and Ks in (8) is sufficiently large, then
| Haym (5 ) P+ eniea | VoHom (85 ) 3 << Co (m + 1) €60/2; (19)
c) for the map A;p+: = Aim + 2epBo conditions (7) hold with the replacement of m by m + 1;
d) [Gmir (N0 ehe(m + 1), 06, (20)

Proof., The assertions of part a) follow from inequalities (8) and Cauchy estimates ap-
plied to the following functions of the argument t & C, ltl < 1l: Hpp (q, tns 8), V HAm (q,
tns e): where (Ch n) & O and n = (E.:’ 0) or n = (0, Y)

Let b =1(¢ & y) < Omu and v = ep®/®. Then (q, (t/v)2g, (£/v)y) € Op for |t] < 1. Let
us consider the function

Ham (g, (¢1)?8, (t)y; 8) = fo + fit + fut® +

By (8) we have f < Cx(m) for all k. Since Hypm (§; 0) =fsv° +fv* + ..., then | Hsm (h; 6) | <

Cy (m)en/(1 — v) < Cy (m + 1)eh/8 . We estimate similarly the Lipschitz constant for the func-
tion Hsp. The estimate for VHsp is obtained analogously. Assertions c) and d) of the lemma
follow from a). I}

Let us define the auxiliary Hamiltonian ep=?
= &y, (g; 0) + % (¢; 8) + <¥:9 (g5 0)> + <G (g5 O)y, V> (21)

To (21) there corresponds a canonical transformation Sp, which is a time ome shift along the
trajectories of the system of equations

¢y = Fl(@:0), &= 5@ Ey0), J=1....m (22)
g =eaf? (¢, & ¥; 0); (23)

Fi— — o, (-0%/0q; + 0%/0q; + <y, 99/99;> + (9G/¢;)) y-¥>)»
FY=J®(q) + 2G(q)y)-

Let us write S as
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g—~q+eug', EE-g8, y—y+ eyt (24)

Then q* = Fd + gy ve0oy £ =F + Ep vuwy y' = F¥ 4+ ¢y ... . Omitting the parameter 6 and de-
noting (¢, & ¥) = b, (¢~ &, ¥") = h' , we write the transformed Hamiltonian as follows:

Hy (S ([)1 0); 0) =Hymu (%v y) + Smgl (1, + c"‘E"mﬂ) +

+ & CAmasth U +€m Ay ¥1D/2 + £ (g (9) + E-R (g) -+
+ 5@ +<B@D Y YD) + &m (Ham (5) + Hym (b + €6Y) — Hyn (H))-

We set ©; = @; (1 + Gmuj (@, 1)) and denote w'-Vq = 3/3w’. Then the transformed Hamiltonian
equals
s Hom (8 y) + &m [—§-0x/00" — In/00" — (y, 09/00"> — (dG/0w'y, y> +
+ {Amnrls IO + 2<Anuy, JGY> + g (9) + 50 () + <y, 5 @) + <B@Qy. I +en’. ...

Equating to zero the contents of the square brackets, we obtain the following homological
equations for x, x, G, and 9:

n/de’ = g (¢; 8), 0y/de’ = h (¢; O); (25)
@G/dw' Jr GJ ((D)Am+1 (6) — Am+1 (G)J ((D)G =B ((1- e) e EmAB (Q- 6), (26)
é@/ﬁw’ - /'1'm+l (6) J ((.0) @ = 3 (q: 9) "!' SmAs ((l 8)~ (27)

where we denoted by endB and emAf admissible small discrepancies.

LEMMA 3. 1If €o << 1, then in Op there exists a measurable subset Op4: such that mes (op\
Omt+1) [I] < YKo (m + 1)7%/yo for every I &= [see (5')]. For 8 € Oyt

a) equation (26) has a solution x &= Af (U, C), % € Ag (Uh, C"); everywhere in Up' the fol-
lowing estimate is valid:

| (@5 ) 19+ em x5 ) 1P << C (m); (28)
b) equation (26) has a solution G, AB = A% (Ur,, £52) . TFor some ¢ > O independent of go,
60 and m, for every q & Up* the following estimates hold:
| AB (g5 -) loa < € (m) &n®, (29)
16 (g3 )ba < € (m) e In &5, (30)

[ {Amid G — GT A i) (13 -)lon << C (m) e In° e 1)

c) equation (27) has a solution 9, Ay= Ag (Un, Y?). For q = Up® the following estimates
hold:
C (m)enn, (32

I A% (g5 ) |s <
i< (m) em” In? ek,

RACHON (33)

Lemma 3 is proven below in Sec. 3. Assume, as before, that Sy is the time one shift
operator along the trajectories of Eqs. (22) and (23).

LEMMA 4. If 0& Opy and €6 << 1, then:
a) Sm & A% (Omsr, %) and the restriction of Sp to Opt1} [see (9)] is the canonical map
Sms Om.HR + OpR satisfying
ldr(Sm“])lgx...xQ,Q<Cr(m)stIn"s,_nl, r>=0, (34)
[¢*| + 8:/’151] + &y I <<C (m)en Inf 5k (35)

b) under the map Sy the equation on OpR with Hamiltonian Hy is carried into an equation
on Op4,R with a Hamiltonian Hp4: satisfying conditions (5)-(8) with the replacement of m by
m+ 1.

Lemma 4 is proved in Sec. 4.
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Let us set Qe =10, . Then Og, 1s a measurable subset of Q¢ and.

mes Qg 7] > (1 — vy,/2)mes Q, VIeJ. (36)

For =0, and m > 0, N > 0 we consider the maps

ZZ‘IH-N+1 (9) = Sm (B) °...oSmy (6) : 0$n+N+1 —_>0§’L'
LEMMA 5. If e€o << 1, then as N -+ « the maps
S (0): 76 = T" X {0} X {0} — O

converge to a smooth limit map 37 (0): Tg'»Oﬁ such that:

a) Za (8) (7o) C O
b) for every 0 < m < m’
Zmo2h =3T;

c) the norm in Q;° of the difference Z™(0) — I and its Lipschitz constant do not exceed

P, The same is true for (I™(8))~* — I.

€m
The lemma follows from estimates (34) and (35).

By the recurrent formula for &4, [see (17)] as m + =, the restrictions of the maps Gp
to 0g, converge to the Lipschitzian map

€, 10, —R", |8, (+) ~T10 <& (37

We fix 0, = O, and denote ,, = &, (8)), © =&, (8,) . By (17), we have | ¢m — Ony; | < C (m)e"s,
j > 1. Let us consider on the torus To" the curve ¢~ §, (f) = (¢ + t0,0,0), 0 <L t<<1 . Under
the map IL.(6o) it is carried into the curve b, (t) = (gm (), Em (), ¥m (t)) , and by part c) of
Lemma 5 and (35) we have

gm (&) — gm (0) — to | < 3em, (38)
16 )] + & [ Y (6) |y <€ (m) 8, InC ey (39)

Hence if ¢o << 1, then by Lemma 1 the system of Eqs. (10) and (11) has a unique solution H(t),

0 <t< 1, with the initial condition §,(0). From (15), (38), and (39) it follows that

| B (t) — B (t)|Q< Cem, 0t <( 1. Carrying out the transformation Z;°, we find that the distance

from the curve ho(t), 0 < t < 1 to the solution of the initial system with initial condition
° (q, 0, 0) is no larger than CiepP. Letting m tend to », we obtain that b, () = 2% (by ()

is a solutlon of the original Hamiltonian system of equations. Assertions b) and c) of the

theorem are proved by setting Zg(q) = £»°(8) (q, 0, 0).

In order to prove assertion a), we set in (5) vy, = y, (M) \\ O , where M is a natural para-
meter tending to infinity. Assertions b) and c¢) of the theorem are valid for g4 = ex(M) > O,
and we may assume that ex(M) \ O. Then by (36) for e, & (e, (M + 1), &, (M)l  mes (Qy \ O, [1])
< v (M)/2 N0 . The theorem is proved.

3. Proof of Lemma 3

Everywhere in Secs. 3 and 4 we write e, & instead of ep, 8m and sometimes we omit the
argument § for functions and maps. In the deduction of estimates, we use systematically the
condition go << 1.

The assertions of the lemma will be proven for O,,, =0, \ ©0'|) ... 6%, where 0T
are measurable sets, and forr = 1, ..., 4
mes 07 (I) < 7K, (m + 1)/ (4y) VIEJ. (1)
By Lemma 2 the map
0 o, 0] = 0; (1 + Sz 5 (@, 1)) (2)

is a Lipschitzian homeomorphism for all I, changing the volume by a factor no greater than
two. Therefore, if
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OM={0=0, || k—o |[<M+OTETIC vheEZY k0], (3)

then 6 is a measurable set satisfying condition (1) (see [2, Sec. 4.1]). For 8& 0,3\ 8,
g &= Uk, the solutions of Egs. (2.25) are given by convergent trigonometric series and satisfy
the estimate (2.28) (see [2, Sec. 4.2]).

We turn to Eq. (2.26). We set WF = (wj == w;)/V2. Then JdnuWF = =4 it; (0)(1 +
By mes OWWF, | WF |, = 1.

Since the operator B e A% (On. %,.) satisfies the estimates of Lemma 2, then

B(q)=23¢B (s), |B(5)]0a<<C (m)ehe-oil (4)
(see [2, Sec. 4.2]1). Therefore, if M = C{m) Ine~? and
eAB(g)= 3 ¢<B(s),
=M

Isi=
then for q & Up', AB satisfies (2.29). Let us set BV (q) = <BWP, Wi, bk, j=1,2,..;
Yis Yz = 1 (if y = #1 figures as an upper index, then instead of y we take its sign). We
define B{% (s) and GV (q) analogously. Be definition of the operator By [see (2.16)], we
have BYY (0) = 0.

We look for GP in the form
AF @)= 3 TC(), ETO0)=0. (5)

Then (2.26) is equivalent to:

Y3 sy =BYF (YD (ke i)y Dk, ) =105 + ihic + b, )

where Ap' = Aplw) (1 + Bppyr (8)) and vy = vz, if k = j and s = 0.
LEMMA 6. There exist measurable sets 0%, 0®( Oy satisfying (1) and a constant ¢ > 0
such that for § =0, \ (6* | ©% and for every k, j, s (]s} <My Yis Y2
[ D™k, 75 ) <CC (m)( 4 |s P2 (Inf e™)/(1 + | M, — Ay, ) (N
Proof. If s = 0 then v, =1y, for k = j, and by conditions (1.ll) and (1.12)

lD { = I}“?\* - }"]'ak UZ + Kﬂ/z - ZKKO — i;\*kﬁh m+1i “i;\‘jﬁj m.}l{-

Consequently, if s = 0 then from conditions (1.16) and (2.7) for ep << 1, the inequality
ID] > (1 + [Agx — Ag%])/C follows, which implies (7). If 2|w'es| < |y ' + vakj'), then for
small ¢o inequality (7) clearly holds. Hence we assume below that s # 0 and

2108 1> | v + bl

)]

If d > 1, then from (8) it follows that eitherk=jork,j < 1 + (e)*/{d-1), which sim-
plifies further reasonings. Therefore we restrict ourselves to the consideration of the more
complicated case d = 1, From (1.6), (1.11) and (1.13) we obtain that for every I >1

12— R | K9 (B + 000, M (+) — D P < (1 K) 15, (9)
From (8) and (9) it follows that

To fix the ideas, assume that k < j. Depending on the relation between k and s, we con-
sider three cases.

1) Let |s| <4 (K+ 1)k"d1+1/2, Then k < (8 (K+1))1/d1, || < 4K + 5. From (8) it
follows that |AsV| < |a'] + 2 |w'es|. Hence

3
[hpe [ S K@K+ DPWh 42 (1 + K) + 2 (4K +5) (J oy | + 1)

Let us choose j, in the assumptions of Theorem 1 such that from (1.11) and this inequality it
follows that j < ji. Then by (9), (1.14) and (1.16),
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[D | 2] ops+ vihix + poh | — (| s | + 2K)0K, + €5) > K,
from here and from (10), estimate (7) follows.

2) Let ISI >4 (K+ Dk-dr +1/2, k < Cx1(m) 1n?' e, n' = (n+ 1)/d; (we choose below
the function Cx;). By (10) there are no more than CCg;(m) ln“"n e~ ! such pairs k, j, and by
9

I.S‘ l> 2 I ‘Yl}“;l (') —i— 'YZI‘.’? (.) - Yl;"h* h Y27\’J* Ia + 1/2. (ll)

Let us set T = (C, (m) |s[* In ¥ &)1 and O =0 (hj, s v.7={0E06, 1D |1}
QUI=Q k, ..., WUl ={o" (0, ) |oE® ((k,...,v) ]} . Let 62 = LJO’ where the union is
taken over all k, j, s, v:.s Yz such that 1/2 + 4K+ Deh s <M, BT k<< Cxy (m) In 7Y,
[ Ay — hpx | << CM.

The map (2) is invertible, and for all I the Lipschitz constant of the map w' » w does
not exceed 4/3. The set of values t= R, such that o' (f) = w, - s/ |s | Q" [I], is contained in
the set

{11t]s ] e+ (e @) + ees | < T (12)
By (11) the)Lipschitz constant with respect to t of the function (yii' + yal "Y' (t)) does
not exceed (2 ls — 1)/3. Consequently, the set (12) does not contain p01nts t:, tz such that

|ts — t2]| > 6T/(|s] + 1). Since the vector wo' may be chosen arbitrarily, we have Q'[I] < CT/
(|s] + 1). Therefore, under a suitable choice of the function Cx.(m) we have mes J Q’ []]
VK4 (m + 1)7%/(8v,). Since the map (2) changes the measure of the sets by a factor no greater
than two, the set 02 satisfies (1). If 0e©,\ 0% then|D|>7, and from here and (10),
estimate (7) follows.

3) Let k > Cxs(m) 1nt' ¢~%, Then by (8) we have y, = —yz;. From (1.13), (9), and (10)
it follows that

N

[ Ay~ A — Ky (b — )| << 2Kk + L (k) — L ()| < 2Kk + Kk-4C,M < CCi I~ (13)
Let us set
={0S 0,0 @O 6 Nse2m, 1<|s|<M Nei,
[V | < CM},

Q" (s, N) = {0 |10 — oy | <1, |05 — NK, | < C3 (m) In"e"}.
Since mes ¢ Q" < €/(Cy3(m) |s| In? €~!, then mes 63[I] < CC, 3'l(m)Mn In-neg~ !, Therefore condition
(1) for ©° holds if Cxa(m) is sufficiently large. 1If 66563, then by (13)

|D| > CaiomIn™e™ — CCT (m) In~" €71 > €™ (m) InT"e™,

if Cgy(m) is sufficiently large. Hence from (10) we obtain (7).

Since the collection of vectors {AsWi} forms an orthonormal basis in Y_a [see (1.7)],
then by (4)

[MEBYY (5) Lo, o < C (m) eV, v. (14)

[we denote by Z%(k, v,) the space of l?-sequences in k, y;]. By (6), (14) and Lemma 6, for 6 =
0., \ (6% 8% we have

| MG (6) s, v < T (B + g — A )7 < T8, (15)

where T, = C (m)e-le: (In° e~ 1)(1 - | s )2»*3 and in the deduction of the last inequality we used
condition (1.12).

Since B (s) = %i,: , then by (4) | B ()%, 0 << C (m)e*he~® , Therefore, by the interpolation
theorem (see, for instance, [9]), |B (5|, <X C; (m)e~he-ls5 , Hence

| R g BEY (8) s, vy < €y (m) e2oe00 - Wk, y,

and consequently

AZAZ2 e
A (16)
e

2 AV 0 _—
| MiGr'; (S)Il'(i,ve)<CT1( - T T hpg — &
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From (15) and (16) by Schur's criterion (see [10, p. 33]) we obtain that |& @)h s CT, ,
whence for q & Up' follow estimate (2.30) and an analogous estlmate for 3G/3w'. Estimate
(2.31) follows from the form of Eq. (2.26). The inclusion G &= A% (Un, %5,5) follows from an
analogous fact for the operator B. Part b) of the lemma is proved.

The existence of a measurable set 0 satisfying (1) and the assertions of part c) are
proved analogously.

4, Proof of Lemma 4

Let us denote by Eg the space Ci'z X Y° with the norm |(q, & ¥l = (g P+ e [E ]+
eyl , and by Eg* the space conjugate to Eg with respect to the pairing <<e, >> with
the norm (g, & y) feg =g P + ¢4 [E+eh|y|%. If eo << 1, then for j =1, 2, 3,

distg, (OB, Om \ Oh) > C™* (m) (1)

[see (2.4)]. By (1), Lemma 3 and the Cauchy estimates
Fe A% (0% By, el F ()5 <<C(m)e's In®e™, (2)
e|F (8) ~ F (5) o < C (M) 61— ol €' In°e™ 3

for every 6, §. b, = O . We denote (q(t), £(t), y(t)) = B(t) and rewrite Eqs. (2.22), (2.23)
as follows:

= &l (p (1)). 4)
By (1) and (2), for 0 < t <1 and g0 << 1 the solution of (4) depends analytically on § (0) =
03m and does not leave Op®. Let St: 0m + Op%, 0 < t <1 be the shift by time t along the
trajectories of (4). From (2) and (3) it follows that
|5 — S (B) oy << C (m)te™Incet, (5)
|8 (5) — b — teF (6) |Gy < C (m) % In** ™. 6)
Since the map F is linear in ¢ and quadratic in y, then by Lemma 3 and Cauchy inequality
for p=0p* and r =0, 1, 2, ...
[ @F (B)lox...x0, @ << Cr (m)e=h In® 71,
whence estimate (2.34) follows.
Since G (9) = ¥, , then |G(q)|_2,o = G|(qQ) ]o.z2. Therefore, by the estimates of Lemma 3
for § = 0% [edF (b) i, oy < {C ()t In el and for § & On

|7 —dS" (9) (-0, (- <EC (m) &¥s In°e™,s (7
| — dS*(§) + te dF (§)| (e, (o << £°C (m) €*'s In* 6™ ©

Let H(t) be a solution of (4) and § (0) = (¢, & ¥o) = O% . Then y(t) is expanded in a con-
vergent series in powers of e: y(t) = yo + ey (t), ey (t) = ey, (t) + e?ya(t) + ..., where

y () =79 (q(v) + 26 (g (v) , dv,
t

Y ) =27 G (g () yy (V) dv, k>1.

Using Lemma 3 and estimates (5)-(8), we conclude from these formulas that for y' = y'(1), yy =
Yj(l), i=1, 2, ...

&5 [ 18+ e (dyt oy + | dyt e, ) < € (m) Ince, )
Ty —yo s + e d (1" — yo) oo + |4 (1 — 11) |%e0) << C (m) InT &, (10)
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1Vy CAmaays 8 (g — F9)y 2 < C(m)e In e, - (11)
From (5) and (9), the estimate (2.35) of Lemma 4 follows.

By (2), & (Omis) C Om ; the transformation St is canonical as a shift along the tra-
jectories of a Hamiltonian flow [3, 14]. Assertion a) of the lemma is proved.

Let D= Opyy, Swm () = b+ eh! . We write the transformed Hamiltonian as follows:
H,, (Sn(h; 0); 0) =Hymi1 (§, 45 0) + e[(E' — F¥)-(1,, + Sy}, +
+el{dmnys ¥ — FU31, + (8%/2) [ Ayt Yyl + e[ — dx/ow’ + gh+
+ & [(— 0x/00 + R)-E); — £[<09/06" — AmiJ D — 4§, yDls — (12)
—&[{(0G/00 — 241 JG — B)y, yl; + & Hym (9 + €8) — Hyp ()]s - € [Hagpm ()],.
We denote by AjH the functional in the brackets [+]j (together with the preceding factor).
LEMMA 7. For §H &0, and j =1, ..., 8 the following estimates hold:

| AH B < C (m)e's 1n2® 71, (13)
I V,A;H 19 < C (m)e In?® e71, (14

Proof. Estimates (13) for j = 1, ..., 7 follow easily from inequalities (5), (6), and
for j = 8 tt they follow from (1), (5), (2.8) and the Cauchy estimate.

Let us prove inequalities (14). Let Iy: E_py Y? be the natural projection. Then
[ IL, |2, 9,2 << &5 Since

V!/ (8 (§1 - F%)'(in =+ 6m+1)) = Hy od (Sm —I— BF)* (b) (01 111, + Gnus O)v
then for j = 1 estimate (14) follows from (8). Since
VyAzH = Vy CAmnl, 8y — F¥)) + eAmu (0 — ¥ + ed (' — y)* Amalys

then for j = 2 estimate (14) follows from (10) and (11). By the equality VA H = e?d(ey®)*-
Appaey', estimate (14) for j = 3 follows from (9).

By Lemma 3, AH = AgsH = 0 and
| VAGH |3 =¢2 | A [ < C (m)es, || VAH |§ =262 | ABy |3 < C (m) e,
which proves (14) for j = 4-7.
It remains to verify (14) for j = 8. Let us write VyAgH as follows:
VyroH =& [V H 1 (§ + €9') — VyHym (§)] -+ eIl (deh?)* Vo H i (5) [=s-pesr-

From (1), (5), (2.8) and the Cauchy estimate it follows that the first term in the right hand
side of the inequality satisfies (14). Since |VyHyp (§) k2. << C (m), the estimate (14) for
the second term follows from (7).

Assertion b) of Lemma 4 follows from inequality (12), Lemmas 2 and 7, and the fact that
£o << 1.
5. Equation of Oscillations of a Nonlinear String

Let V (a,2)= C> R" x [0, nl), =Yy <{ Vg, 2) < K; . The Sturm—L10uv111e operator —3%/3x? +

V(a, x) defines a self-adjoint positive gperator 4, in La, D (A4,) = At N = (here and
everywhere further le L. (0, m), A = H! (0, ), ...). Let us set Q = H! x Hl, Mg
Aoy X Agy | W g = IM(‘,’ w i,xz, . Let us define in Q the following families of operators. W, =

M s M,, Jb (0!, w?) = (ALuw?, ,/41/*11;1) . Let {gj(a,-)|j> —n-+ 1} be an La-orthonormalized
system of eigenfunctions of A, with eigenvalues uj (@, j > + 1 depending smoothly on g
such that

W (@) > w (@) Va, Vi1 1)

Since V > —1/2, then i (@) > 1/2 for all j. Let us set wj = (9;, 0)/A;, wi = (0, @;)/A;, A; = we.
The family {ws* |3 > o+ 1} forms an orthonormal basis in Q, satisfying (1.1).
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Let f(u, x) <= C¢* (€* x [0, ©]), £(0, x) £ O be a function holomorphic in u that is real
for real u. We demote fi=sup {|f (4, 2)ll |u] <¢ z=[0,n]} and define the functional

H (@ (@), v* (2)) =7 (@' (2), x)dx. Then

VEHY (w0, w?) = (AP, (W' (z), z), 0) (2)
and in the case under consideration Eq. (1.3) becomes
W= AL, W= — AW+ edT s (0 (z), 7). (3)
Hence
i = (9202 — V (a, 2)) w* — egp (W' (2), ). 4)

Equation (4) is the equation of oscillations of a string in a nonlinear-~elastic medium.

By (1) and the asymptotics of the spectrum of the Sturm-Liouville operator, we have

lpj(@) =G +n?I<C Vi, Va (5)

Moreover, uj # pg for j # 1. Therefore, applying the perturbation theory to the simple eigen-
value pj (see [11]) we obtain that QDj and uj are differentiable functions of the parameter ¢
and that for all j}

dp;loa, = § (9V/0ay) lda, (6)
[ @i (a, @) — @5 (a2, 2) I, < Clay —a 1 /j; layl,la <2 <

From (5) and (7) for every j > 1 and 1 > 0 by induction on I we obtain for |a:|, |az| < 2 the
inequalities

[ 9j (2, 2) — @5 (05, 2) [t < Cr |2y — ay [ -2, 8)
Assume that the following general position condition is fulfilled for the family V{a, x):}
Ky=|det (Ap) |50, Ag= ()" § 9V (0, 2)/dax) 95 (0, 2) da. 9)
Then by (6) the map '
@0 = (hn, Raony « sy ho) (10)

defines a diffeomorphism of a closed neighborhood of zero onto a ball Qo {see (1.2)], w, =
w(0). The radius Ko of the ball may be chosen depending only on Ky, K¢, n, and Z,.

Equations (3) for ¢ = 0 and w & Qo have invariant tori U, " (), I J C R® determined
as in Sec. 1. Let us verify that for Eqs. (3) and the families T®(I) conditions 1) and 2) of
Theorem 1 are fulfilled. Let 0,CCQc be bounded domain containing U (U, hiled, a2}
Since f(u, x) is analytic in u, the map O - H!, (w*, w*) = @', (w'(x), %) is bounded and an~
alytic. Therefore, by (2) and the remark following Theorem 1, in order to verify condition 1)
it suffices to show that (1.18) is valid.

Let us consider the linear operator Uy® in Ht carrying ¢ (0, x) into ¢i(a, x). Let us
introduce in % the inner product <uy, UsDs = (Aol AgUs)r, . Tﬂe family of functions {g; (0, z) | |
>>-~n + 1}, 95 = @;/p; (0), is an orthonormal basis in # . By (8), for 1 = 2 we have | ¢;, (g,, 2) —

Pz (2, 2) | L Clayg—ay [/j. Hence

10 150, 32 <<CLU e, 52 << G (11)
‘Since Up = I, then for sufficiently small Ko the estimate for the first term in (1.18) follows
from (11). The estimate for the third term follows from (7).

For |a| < 2, we have | 4, % + | A Iy < € . Therefore |.4;' o A.few << C, , whence
the estimate for the second term in (1.18) follows.

Condition 2) of Theorem 1 for d = d, = 1,k, = 1, £(j) Z n follows from (5) and (6). We
observe that the constant K in (1.10)-(1.14) and the constant Ko in (1.2) depend only on J, n,
Kes K7, 1, and the function fy that characterizes the growth of f£(u, x) as iu[ -+ o,

Let
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U ={Va (@, )= C> ||V, (3, 2) =V (a, 2) o < Ky} (12)

be a neighborhood of the family V(a, x). If Kg is sufficiently small, then for every Vix(a, x)
from %, we have |det (A;)|> K,/2 . Therefore, for V =V, = %, the numbers M, and j, in
part 3) of Theorem 1 may be chosen to be independent of Vi. Let us set T (V) =1II (s-a, + yAs

+ voAix) , where the product is taken over all s, y;, vz, k, j as in part 3) of the theorem. The
functional T(V) is analytic and not identically zero.

THEOREM 2. Assume that conditions (1.9) and (9) hold and let the function £(u, x) and
the set ¥, be the same as above. Let Kg > 0 be sufficiently small, Vo, =%, and Y (V,) s 0.
Then there exist an g, > 0 and a sufficiently small neighborhood ¥, of a = 0 in R”™ such that
for V=19V, and ¢ € [0, 57.‘_] there exist a measurable subset 8, 0, = %, X & smooth imbedding
X =2 I">0Q,8=0, and linear maps U, @ — Q, a = ¥,, with the following properties:

a) (M CH XH, Ug(HXH)=H X H;

b) for a= ¥, and all I such that 0 = (a, I) = O, , the tori U,X, (T"} are invariant with
respect to the flow of Egs. (3). Under the imbedding U,Zy the trajectories of (3) are carried
on TM into the curves of ¢ = &, (0) , where &;: 8, > R" is a Lipschitzian map;

c)mes{a= ¥, |(a, )£ O} >0 as € » 0 uniformly with respect to I < J.

6. Change of the Symplectic Structure in Equation (0.1)

In the notations of Sec. 1 let us assume that Wy = I, Q; = Q and that J;° = JgA,°, where

A,° = |3,°| and the operator Jg does not depend on g¢. Then

a
Jaf (@) =Fuf (@), A (@)= @)vf () 1)
Let us consider a perturbation of (0.1) that is Hamiltonian with respect to the symplectic
structure given by the 2-form <<Jge, e>> (see [3, 14]):

W = J, (Adqw + eVHY (w, a)). (2)

As in Sec. 1, let us pass from the parameter a to the parameter w e Q,, wy = )\j-n(a). By
conditions (1), the map Uyt Q -+ Q is canonical. It takes Eq. (2) into

W =J, (Aew + eVH, (w, 0)),

+

* + + : 0 (3
Ao} =hy(@)uf, vF=uF @)l J>—n+1 Hi=H (Vo) o).

Let us define the tori I"(I)(I & J), the domain O and the spaces %" as in Sec. 1. Let
us denote Oy = O \%'%.

THEOREM 3. Assume that for d > 2 conditions (1.6), (1.9)-(1.11) of Theorem 1 are ful-
filled and the maps Hp and VHp may be extended to Frechet complex-analytic maps H,: Oy — C,
VH,: Oy > %" , and

VHa (w5 +) |2 + | Viols 0; ) |30, < K VweOy.

Then there exist natural numbers j,, M, and a real number K; > 0 depending on K, K,, d,
and n such that if for every ls| <My, 1 <j<k<j; and vyis, Ya = %1 conditions (1.14) and
(1.15) hold and K, < Ko', where Ko' > O depends only on K, K,, d, n, and Ks, then for 0 <
€o < €%, where ex > 0 is sufficiently small, there exist a measurable subset @, CC 0, = Q, X J
and smooth imbeddings

2=3:T"—Q, (T C %, 0=(0, )= 0,

satisfying assertions a)~c) of Theorem 1 [with the obvious replacement of Eq. (1.15) by (3)].

The proof of Theorem 3 is based on the same ideas as the proof of Theorem 1. It will be
published in an author's paper in the journal "Izv. Akad. Nauk SSSR (Ser. Mat.)."

As an example of application of Theorem 3 let us consider the boundary-value problem for
the one-dimensional nonlinear Schrodinger equation with real potential V(x, a) (@ =RD is a
parameter) :

i =1i(—u" +V(za)u+ 289, (|ul? 2)u), (4)
u=1u(t,z), ze= (0, n), u{t, 0 =u(, n) =0.
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The potential V(x, a) and the function ¢(w, x) are as in Sec. 5. Problem (4) is a par-
ticular case of Eq. (2) for Q = Ly (0, 73 C) with the inner product (u, v) = Re\ u (v) 7 (z) dz
and ¥

T = iy, AL = —%102% + V (2,0, B} =S o (1w P (@), 2) da.
Assume that conditions (1.9) and (5.9) hold, and the set ¥; is as in (5.12).

THEOREM 4. Assume that the number K; defining the set %; is sufficiently small. Then
there is a nontrivial analytic function I: %, - R such that if ¥ (V,) = 0, then there existe, > 0
and a neighborhood %, of a = 0 with the following property. For V =V, and 0 < € < €, there
are a measurable subset €, @, _.Qg x 4, satisfying assertion c) of Theorem 2, and smooth imbed-
dings

Z:T"—Q, Zg(T")C(HlﬂIﬁ)(O w;C), 0=(a, )= 0,
such that the tori Ze(Tn) are invariant for the problem (4).

Theorem 4 is deduced from Theorem 3 in the same way as Theorem 2 is deduced from Theorem
1.
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