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AN AVERAGING THEOREM FOR DISTRIBUTED CONSERVATIVE SYSTEMS
AND ITS APPLICATION TO VON KARMAN’S EQUATIONS*®

S.B. KUKSIN

An averaging theorem, of the Krylov-Bogolyubov-Mitropols'kii type,
is _proved for oscillatory processes in spatially-multidimensional
conservative systems. Von Karman's equations are considered as an
example.

1. Statement of the problem. Oscillatory processes in distributed conservative
ssystems can be described by means of Hamiltonian equations in an infinite-dimensional phase
space Z equipped with a symplectic structure /f1-3/. As in the finite-dimensional case /4/
wrlti?g the eguations in Hamiltonian form is equivalent to expressing them as variationai
pr;n?lples (the latter approach is much more popular for the equations of mechanics of
continuous media; see, e.q., /5/).

Equipping Z with a symplectic structure is equivalent to defining a Poisson bracket
#,, H,] for functionals H,, H;:Z—R (see /2-4/}). In the simplest case, Z is a Hilbert
space with scalar product (., .> and the Poisson bracket is

LE,, B, (u) = CVH, (), TVH, (W), ves Z (1.1)
?erg d is an‘antiselfadjoigt operator in Z (possibly non-bounded) and V is the gradient
relative to the scalar product in 2, i.e.,
Hy(u+ ev) = H, (u) + & {VH, (u}, &> 4 2 (e)
With this symplectic structure, a functional ¥ on Z is associated with the following

Hamiltonian equation:
we=JVH (. u=u() =2 1.2)

In most cases Z = Ly (Q; RY), where © is an n-dimensional region (n=1), and # 1is
a functional of variational calculus /1, 2, 5/. Then VH (u) = 8H/8u(r) 1is the variationai
derivative of A. A more complicated example of an infinite-dimensional symplectic space 1S
presented below {Sect.3}), in connection with von Karman's equations.

We will consider the problem of small oscillatlions in system (1.2). To that end we
focus our attention on the gquadratic term in H and substitute u = &:. This gives an eguation
for z({{} with Hamiltonian M, (2} = (dz, 23/2 + eH, {z, €), where 4 is a selfadjoint operator:

£ =J{4z4+eVH, (z.8) (1.3)

We shall assume that the spectrum of the operator J4 is pure imaginary.

An averaged m-th approximation solution (m > () of Eq.(1.3) is defined as a curve
z, () which for O<(t<{ L (), where &L (e}l —>00 as: e—0, dJiffers from the exact solution
z(f) by o(e") /6/.

The averaging problem for equations of type (1.3) describing oscillations of spatially
one-dimensional systems has been intensively researched (see, e.g9., /7, 8/ and the
bibliography therein); Maslov and his students have averaged the solutions of equations of
type (1.2) with rapidly oscillating initial conditions /9%, 10/.

Our purpose in this paper is to average Eqs.{l1.3) without assuming that the system is
spatially one-dimensional. More precisely, we wish to construct averaged trajectories of
(1.3) corresponding to non-resonant conditionally periodic solutions of the unperturbed
linear eguation

r = JAz {1.4)
(i.e., solutions of Eg-{l1.4) under which a finite number of modes are excited). Solutions
of Eq.(1.3) that are close to conditionally pericdic seolutions of (1.4) must also be found
when one is studying oscillations in non-autonomous Hamiltonian systems of the form

2 = Jdz + eJVH, (2, ol . . ., wyl) (1.5)
w;=R, j=1,...n
where the Hamiltonian H, (z, &y, ..., L) is 2n-periodic in B
In fact, we define auxiliary cyeclic variables 4, ... gn g= (g ... ga) =T = RYiZZ",
and variables (f, ... I, =7e<Rg" System (1.5) 1s equivalent to the autonomous Hamiltonian
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system with Hamiltonian /-w+ (42, 232+ el (s, ¢) in the extended phase space "X R'x Z:
qj' =, IJ' :—s—; H,{z, ), o = (4s-+eV H(z q)) (1.6}
System (1.6) in turn is equivalent to a certain autonomous system of type (1.3} in the
space R - Z, considered in the neighbourhood of a conditionally periodic sclution of the
linear system (see Eq.(4.1) below).
Let us assume that Z is spanned by an orthonormal basis {¢&|j=1,2, ...} with the
following properties:

A) Jp/ft=FhygpF, Apt= m%i” Viz1,
B) A= Kal4 +0(i*), Mg =Ki¥ 4 0(i¥), da.ds=0.

In particular, the operator J4 has a pure imaginary spectrum {=ik;]j > 1}, where
A = Maby = Ky + 0o (), d) =dy 4+ d;.  Hence all solutions of Eg.{l1.4) are almost periodic
functions of time, and the solutions corresponding to excitation of only a finite number of
modes are conditionally periodic.

For example, solutions in which the first 7 modes are excited are

()= gl V25, (cos (gt + v @t - sin (At + vi) ) (1.7)
v 2[0.20), h=Aahs L0, k=1,... .n

The trajectory (1.7) lies on an n-~dimensional torus
T =y e 070+ e Yy =2, VO Z

It turns out {see Sect.2, Theorem 1} that under certain conditions implying lack of
resonance, if the initial condition u, of Eq.(1.3) is distant from 7T"(/) by a quantity of
the order of ¢* 0« e<{1, then the averaged trajectory of order m,0 < m<a is a curve
of type (1.7). The frequency vector (A, ..., L)) characterizing the curve is replaced by a
similar vector o'= R", which is determined by averaging over 7" (/) certain quantities
derived from the perturbation &H,.

In Sect.3, as an illustration of system (1.3}, we shall consider von Karman's equations
for the small oscillations of a thin plate (/11/, Chap.l, Sect.4; /12/):

u” + @Aty — Ve luy, ) =0, a,A%u, + Ve lu, w) =0 (1.8)
ay ay > 0, up = uy (1, 2), uy = uy (1, 2), 2 = (z, =)
fw, vl = D2uD,?v + DD v — 2D, DuD D, D; = 8/dz,

Here A® = AA is the iterated Laplacian (with respect to the variables z).

System (1.8) is reducible to the form (1.3), and it will follow from Theorem 1 that if
the initial conditions u, (0), u,” (0) can be approximated to within &, 0< e<{ 1, by sums of
n eigenfunctions of the operator A% then there exists one and only one solution for (< t<
L (e), where L (g) = ¢™L The effect of the non-linear increment to the solution "in the
large" is to modify the natural fregquencies of the linear system by quantities of the order
of e, while the eigenfunctions themselves remain unchanged, provided that the initjal set of
frequencies is non-resonant.

2. Statement of the theorem. In the sequel €, C,, C, ... will denote various positive
constants independent of g and [/, (#) will denote the open sphere of radius o> 0
centred at the zero of a Hilbert space B,

Let Y be the closed linear span in 2 of the vectors {g,x |4 >n + 1}). For z=
DatpEt=Z  we define
flz Hﬁ=§iz,il*;’=’, se2R @1
y{z) =¥ e + ¥ Cons + yqu:-;s Foony pE=2Ek
and define polar coordinates &, g . in the planes (), I=14,..., n:

L=(" a2 —1, q=Amg(z"+iz), l=1,....,n
in the neighbourhood of the torus I™(J) 1in Z we define coordinates (g, &, p), where
gET" =RJR2rL"), Lt O0(R"), y=0s(Y) >0
Eq.(1.7) has - very simple§ofutiony in terms of the coordinates (g, 8, 9): @ =v, +
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Ay, £ =const, y = 0. Let Z, be the space of elements z = NnEed with finite norm |izl,
(see (2.1}), and Y, =¥ Z, {in particular, Z, = Z, Y, =7Y). By condition B, the operators
J and A define continuous mappings J ;ZM_,.-> Zyy A :ZMA - Z, for any e R.

Definition. Let M >1. A vector ne= R is said to be M-non-resonant if there
exists 'p >0 - such that
In-s|=p|s|™, ¥Vs=2Z", s0 (2.2)
]n-sikﬂ}p(i-{-]s[)‘-"‘, VEzn+1, Ve Z® (2.3}

Otherwise 7 is called an M-resonant vector.

Proposition I. If 'dy >0, A, 5= 0 for all kZ»n4+1 and M>n +d7t — 1, then the
set of a —resonant vectors has measure zero.

Proof. It will suffice to prove that for p< min(i, inf {[A&[}} and any L>0 the set of
points ne0p (R%) not satisfying condition (2.2) or (2.3) has measure at most Cp, ¢ = ¢ (L),
The set of points e 0, (R®) violating condition (2.3} is the union of the layers
I, ={0 €0 (R |osthy [<pd +15)™), 540
If Js5{< o, where oy = max (1, (A — 1)/£), then ”f,s = . But if |s|»o,, then the

measure of the layer is at most Cp | s "™, Therefore

mes {J ﬂ‘\:!:’ < 3y E |5 l-.ll.r—l gCQPU;Mﬁ-n—i
s =Y

and by condition B the measure of the union of all non-empty lavers is at most

Cs?{i-f- EJ k'd‘(M'“*‘“)gC‘p
Fznd-1

A similar estimate holds for the measure of the set of points g0, (RY violating
condition (2.2).
Let Z;° be a complexification of the space Z, (d=R).

Theorem 1. Let conditions A and B be satisfied; assume that dy = dy + d; >0,h #0
for k2>nrn+1 and

1) there exists d;>>{0  such that Hy(-,e) and VH,(-.&) can be continued as
analytic mappings

—~—
]
[y

Ha{-,8): 2,6 -5 C, VHA{(-1€): 24— 25.a, .4)
bounded on bounded sets uniformly in e ez (0 11;

2} the vector ' — {%,....%) is M-reSonant for some AJ = 1.

et p>0 be the number corresponding to w° figuring in the definition of M-non-
resconance. Then constants K and K, exists, independent of p and &, such that if z{0) =
Zo = (g0 B0, Yo} in (1.3) and for some a 0 < a1,

I8 1+ 1l o lls, << &7 (2.5)
then for sufficiently small e>0 the solutien of Eq.{1.3) is such that z(t) and ' ()
are bounded in Z, and Zy.4,, respectively; it exists and is unique for 01 Le) =
el lne"V/K,, K, > K. The solution moreover satisfies the estimate

lz{8) — (g0 + 2wt, 0, 0) Iy, < Kap2*p™2, 0 < ¢ << L (&) (2.6)
where w!' €= R™ is the vector with components
Of =hytehy | = Ha@0.0:0)dg = § 10, Hal-10))0,0.0 dg (2.7)
P ™

and =% (M) >0 %0 as Ky —> o,

o :
Remarks. 1°. 1f M>n+d™—1,  then it follows from Proposition 1 that the set of
vectors ° not satisfying condition 2 has measure zero.

o
2°. The second half of condition 1 is understoed in the sense that estimate (4.2)

(see below, Sect,4) is valid uniformly in e=(0, 1].

o
37. Higher-order averages have been constructed only for a few spatially one-dimensional
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systems of type (1.3} /7, 8/. For such systems A= Kof*+ o(""). 4 =1. We showed /13/
that in that case the '"non-resonant” conditionally periodic solutions of system {1.4)
correspend to nearly conditionally periodic sclutions of system {1.3).

3. Applications to von Karman's equations. For simplicity, we will confine our atten-

tion of solutions of system (1.8) which are periodic functions of x:

;{2 S 2y =u {2, 2ny=u,; (5, 2), j =1, 2 (3.1)
2n 23
S S wilt, oy, L) dr da, =0, j=1,2 (3.2)
3 0

By (3.1}, the functions w,(f, -}, uy (f, -} may be considered defined on a two-dimensional

torus TI,?= R,2nZ®. Let (, denote "Green's operator", i.e., the operator inverse to A’
on T,? under conditions {(3.2). It then follows from (1.8) that
u" 4 oAty -+ eyt [uy, Gy ([, 'Y =0 3.3y

Let L,® denate the space of functions in [?(F,?) with zero average. The operater A’
defines a selfadjoint positive operator N, in L;® with domain H,*{7,?} and a linear iso-
morphism N, : H.2 (7.5 — H,* (7,2 (where H¢ (T.")is the subspace of H’ (T.?) consisting of the

functions with zero average; H’ are the Sobolev spaces). Put N, =V N, G, = N,;'; then
G, = G
Put Z° = H2 (T, [[ulf = (V) de; Z =22 2° )| (. 0)llg* = ) wif* 4 vi®. We define in 2
an antiselfadjoint operator J and a functional H,:
J(u, v) = {(Nv, —Nu) (3.4)
Hy (u, vy = §§ &, ([u, ul))? de {3.5)
Lemma 1. The functional H, is analytic in Z and
VH, (u, v) = 4 (G, [, Gy [, w1, 0 (3.6}
Proof, Given ve 2, let Hyy (W equal the right-hand side of (3.5). To prove the
lemma it will suffice to show that H,, is anaiytic on £° and to determine its gradient.
Analyticity follows from the estimate Hy, (o)< Cfuff (see f12, 13/). For u, v=si° we

have

A gy (w0 =4 §§ 61 ([, w1 6u (01 dx = 4§ Go s D [, 07 02

We know /12, 13/ that the trilinear form
(u, v, w)rr SS [a, v) (2} w (2) dx
is symmetric. Therefore,

AH o (u) v = Sg v {5) [, WY (=) dz = <o, Ge [z, W]

where W = 46, [x, u]'". Thus VH,, (s = G [u, W], implying (3.6).
Consider the Hamiltonian
Ho(2) = Yyl 2l Vay 4 Yae (@ Vo)™ Ha (2), 2 = (u, v) 3.7y

_ It nas the form of the Hamiltonian of system (1.3) if A is taken to be the operator
Vel (I is the identity operator in Z}. By Lemma 1,

VH, (u, v) = (Vo + & (@) @) G [u, G, lu, ull’, Va,w)
Thus the system corresponding to H, is
W=V U= —Ay (Va4 ea,7Cy (u, Gy lu, ull (3.8)

If (u, ¥ is a solution of system (3.8), then u (¢ 2) satisfies Eg.(3.3). Thus

system (1.8} is equivalent to Eq.(1.3) with Hamiltonian (3.7), provided that the operatar
figuring in the definition of the Poisson bracket (1.1} is (3.4). Let {y; i i} be a
complete system of eigenfunctions of the operator N, and Ngp; = Ay By the known asymptotic
behaviour of the spectrum of an elliptic differential operator, u; = K + o0{j). Therefore,
if g7 = (. 0. g, = (0.1, then Jot = =5 e F. j=1,2, ..., and the operators A and J
corresponding to system (3.8) satisfy conditions A and B, withly = p;. tin = Vap dy =0, dy =
= 1,

Lemma 2. for natural numbers $, the norm in Z, is equivalent to the norm in HXH(T.0 >

2542“"?#“
HET.Y).

7
E']
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are resonant. To get nontrivial examples one has to study (1.8)

Remark. The example of item 3 is trivial because all solutions of (1.8),
under Dirichlet or Neumann boundary conditions in a 2-dimensional domain

R
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Lemma 3. The mapping VH,: Z,— Z,, is analytic if m>> 2,
The proof of Lemma 2 follows from the inequalities
1 )BT (@ ) P < C i, ) )2
since

Awcup = ({1 ¥t paz = (C18%upaz

which is equivalent to the square of the norm in FM'?(7.%).

To prove Lemma 3, we let |-|, denote the norm in A, (T.3. Then 16, (0 |su<Cluls for all

8. If s=»2, then |[u, o] h<<C |t |ne|v|ye, whence it follows that the mapping VH . Ho™ (Ty?) —

© BT (fY is _analytic for m» 4. Together with Lemma 2, this implies the required assertion.
Thus, system (3.8) satisfies the assumptions of Theorem 1 for d,> 2 and if the

vector @® = (W5, ..., 'ks) 1S non-resonant then the averaged solutions of system (3.8) are
curves of type (1.7) with Ay = w,). The averaged solutions of Eq.(3.3) are the curves
/ u(t)= 3 VI sin @t + 1) i (2)

4. Proof of Theorem 1. To abbreviate the discussion we omit the dependence of the
Hamiltonian on e, all estimates in this section are uniform in e (0. 1],

Transform system (1.3} from the variable z to variables (g, E, " 22 Oy = T" X 05 (R") x
05 (Y,), where

4 =y (i'“ + SaingA (7. & H)) , == EMJ—;Q—}HA (g. 5 1)
¥ =J(dy + eV, Ha (g, & ¥) (4.1)

The tangent space to (s at an arbitrary point is identified with Z,.
Isolate the terms in H, that are linear in { and y:

Hy =gl + 52 (0) + <y n (0> + Hy (g, 8. 1)

Modifying H, by a constant if necessary, we may assume that g =0 (the bar denotes

E‘weraging over ge= TM). Write the Hamiltonian of system (4.1) as follows:
=
Q
% H ="+ efy) 3+ o (Ay, ) +eH;
af & A= (Ma, oo hpa), Hy=H -+ Hy
o .
=R g Hy=g(@)+Ehi@+ & @ h=h—F
—~ w0
— 1)
o, 3 Continue the functional H, analytically to a complex domain of the form

0G0, = Us, X O, (C") X 05, {YaS), 6 >0
Us, = (9= C"/2aZ" |}imq| < 8,)

where ¥¥ is a complexification of ¥,. By condition 1 of Theorem 1, the following estimate
is true everywhere in 03,8, :

|Ha (0. 50|+ 11 Vo Ha (0.5 9) e, <€ (4-2)
Our assertion now follows from (4.2) and the Cauchy inequality.

Lemma 4. There exist &,> 0 and constants C,, C,, C; such that for g Us and
il - :
(4. & )& Ois,

le@ |+ 1h(@ |+ (R ]+ (g laea, << G
| o g, By 1S G (LS 1y ™ (4.3)
[VeHo (@ B i) | + 1| Vo (g0 & 9 o, <5 Cs (] + Ny lla)

Define an auxiliary Hamiltonian &Z, where

E=g (g + Ly () + <, Mo (g1>

Th'e corresponding canonical transformation § is the displacement per unit time along
the trajectories of the Hamiltonian system with Hamiltonian £=:



gi =eFfigh & =eFit ), y==2F'Q) (4.4}
F# = hho;(g), F¥= In,{g)
cx 8o (g) 80 (g} i {g) 4.5
Fim =iy (5 Tl 200 4 (y, TR ) (4.5

5 is a canonical transformation, taking system {4.1} inte the system with Hamiltonian
Hig, E y=H(S(2 & v)) fsee /3, 4/). Write S as follows: gwr ¢+ £¢*, E+ & - b, y =y +

ey’ Then ¢! =F +e.., B =Fte.,p=F +te.. Therefore, putting(g, & ¥) =z, (¢, £, 1) = 2
and A," + &h; = ©? we can write the transformed Hamiltonian as

B =0 g+ dcarn e~ (Dt (S aper) +

=1 ’

[ 1y
o bt - (U 3% Mg )+ CAys To (@) +

E@+E-R(@+ vnigh) + el (2} + O )

Let o'=R" denote the vector with components o' = w%;. Since h,;(g) = 8H, (g, 0,
0y/8t;  and for any functional H'we have [q,, H'] = hy;0H/ 19E;, it fellows that Apyhy; (9) = lg;,
H,l {g, 0, 0). Hence the vector w'is of the form (2.7).

Equating the expression in square brackets to zero, we obtain homological equations

for go, hy and m,:

8 (g)/00* = @'-Vg, () = g () + edg (0),  Ohe (9)/0wt = R (g) +
Ak (g) (4.6)

ino (g)/8w* — AJdn, (9) = % {g) + eAn (g) (4.7)

where eAg, eAh and eAn are admissible small increments.

Lemmiz 5. For some 6, >0,
al there exist functions g,, Ag, k, and Ak, analytic in Us, and satisfying (4.6), such
that everywhere in {Jj,,

JAg (D 1+ 1Ak (g 1< Cey L go R | + | 2o ) | < Cp7? (4.8)

b} There exist mappings 1y, Av, analytic in U}, and satisfying (3.7}, such that every-
where in [
10 (@ (ltsrayea << Co7% M1 AR laea, < Ce (4.9}
Proof. We will confine ourselves to proving the more difficult assertion (b). To that
end we define H’ji:(q;j*iiwj—}flff. Then AW =t W*  FExpand the mappings mwe W and ay
in terms of the basis elements Wiing=NnEfww* etc. Functions of g will denote

Fourier transforms with respect to g:

ntig= 3 gEie’

=z

and so on. It feollows from Lemma 4 and known estimates for the decrease of the Fourier
coefficients of analytic functions (/14/, Sect.4.2) that [y, 12y S Cexp (=8 |s)l. Hence there
exists a number ¢, =C, (8, — &, such that if

An= ) mg)e¥, M,=C,lnet (4.10%
S Y
then 8n satisfies estimate (4.9). Then the quantities n (s vanish for |s|> M,, while
for |st< M,
n% (5) = — inE (e F Ay) CREN

Since
}w'-s?lk]},]m”—s:i:?xki—sim“-s[, ‘”}’=Hlj?‘j.!
it follows from condition 2 of the theorem that
(of s R0 2 e+ s ™+ o (14 Ctney™ — (g lnen

Therefore, 1f ¢ is sufficiently small, the absolute value of the denominator in (4.11)

EUTRE -
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is at least Yp{ +{sp™ and
UM () U4, + 1910 (@i00? lsoa, < €07 gEUg, b

(see /14/}. Consequently, it follows from the estimate for An and the form of Eq.1{4.7} that
1 AFn, (g "d.mJ,gc,p-x for ge= Uy, The estimate for 1,(;) now follows from condition B.

As bfore, let § be the displacement operator along trajectories of {4.4) and let
8 (z) = £ + es. Then if z(f) is the trajectory of (4.4) with initial condition z, we have

1
dw{FPema, F=@, P M
o0

Thus Lemma 5 implies the following
Lemma 6. There exists 68,>>0 such that the mapping §: 0,3, — (s, is analytic for

B

s E‘[‘—-sl. s4ly, 8§y =dy+dr+ dy, s, =d, + dy + ds. Moreover,

g <iCp™ [B1<Co (L +lylla) 11l < Cp2
Vs&l—syal 145@ e, 2, <2 11dS(2)— I — edF (3) ||z, 7, < Celp™?

(we recall that e is assumed to be sufficiently small and the tangent space to Oy 8 is

identified with Z,).
Let z& O, 8, S(2) = z | ez. Then

H(S(z)) = - E+ Y, (Ay o> + e [(B — FY - o], +
e[{dy, gt — F¥]y 4+ Y2 [CAY, 925 ]; + & [— 2gp/00? - g, +
& [(~= Phyfdat - k) - E], + & [{Iny/d0t — ATny — 0, 1)) +
e[Hy{z + e3t) — H, (2)], + eH, (2)

Denote the functional in square brackets [.]; (together with its coefficient) by AH.

Lemmas 5 and 6 imply the following.

Lemma 7. 1f z&= Og,a, where §; < §,, then for j=1,..., 7

FAH |+ )| V,0H ayea, <5 Ce?p?

X

Thus,
H{S(z) = - F+ 1 (dy. u> + 2H,(5) 1 eH, ()
where the functionais H,{z) and H,(z) are analytic in Oy, and
VH @)+ 11 V5 (2 laea, < CO72 (4.12)

The transformed system of equations may be written as

95 = OF + ey (O )eH ; + H,) (4.13)
B = — ehy (9/0g;)(eH, -+ Hy) (4.19)
Y= (Ay + eV H + eV H,) (4.13)

Since the mappings JV,H, and JU, H, are analytic (see (4.12) and Lemna 4), this
system is obtained by perturbing the system ¢ = !, £ =0, y — J4, by a vector field
satisfying a Lipschitz condition. Since the unperturbed system defines a group of isometric
transformations of the domain Oa,8,, 6, < 0;, the solurion of system (4.13)-{4.15) is unique
and exists at least up to the time at which the boundary of the demain (4,5, 1s reached
(see, e.q., /15/, p.105). Let (g{1), E (8, y{t) =2 (8 be the solution of the system such
that .S (# () = 25 = {q,, Lo, yo)- By (4.14}, Lemma 4, estimate (4.12) and the Cauchy in-
eguality, we have

dlE{NYdt<Ce Clep™ + [EP + 1l yil® {4.18)
Let P be the lineayr operator carrying ¢ into g j=1,2 ..., Then
I Pylle* = <P, 1> =l ylla® JAy, Pydp =0 {4.17)
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Multiplying Eq. (4.15) by Py (t) in Y (scalar product) and using (4.17), we obtain
a8 (Y, PRy /e = €2 (JV H,, Py + € (JV H,, Py

By (4.12) and Lemma 4, the right-hand side of this equality does not exceed: Cell ylla,
(ep™ + | &1+l yl). Hence
dll yllafdt < Oy (%4 e [E |+ el ylla) {418}

Assume that ||y (&), + 1§ (t) | < 1. Then by (4.16), (4.18},
(@E(I B 1+ 1y D) < Coe (1 ylla, + ep7®)
Hence, by Gronwall's Lemma,
PE@ 1y (e, < (ep™ + 1E(O) | +1) p (0) 1)) St — g2 (4.19}

By condition (2.5) and Lemma 6, |E{0) | + |l ¥ (0) llo, < Cyp2e°. Therefore, if 0«7 2b< a < 1,
then for O0< i< L{(s) = blineYe.) we have

[E@ ]+ 1y (0))le, <C, (%2 e® (4.20}
Consequently, if ¢ is sufficiently small, the solution z' (f) exists at least for 01
L {&}). If z, () = (g, + %, 0, 0), it follows from (4.20) and (4.13) that

12" (£) — 2 (1) |1, < o™ b2
Therefore, by the estimates in Lemma &,

IS G ) — 20 O ey S (27 (@) — S (24 () e =+ | S (25 (1)) — Za (1) g, <
212" (@) — 24 () lla, + Coep™ < Creo-tp™?

But S {z' (t)) = z{t) is the solution of system (1.3) with initial condition 2.
Estimate (2.6) is proved if one puts x = 24 (and if & is sufficiently small).
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