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PERTURBATION THEORY FOR QUASIPERIODIC SOLUTIONS
OF INFINITE-DIMENSIONAL HAMILTONIAN SYSTEMS,

AND ITS APPLICATION TO THE KORTEWEG-DE VRIES EQUATION
UDC 517.957

S. B. KUKSIN

ABSTRACT. A perturbation theory is constructed for quasiperiodic solutions of non-
linear conservative systems of large and of infinite dimension.

Bibliography: 17 titles.

Introduction

Let Ζ be a real Hubert space with inner product ((·,·))> let Jz and Az be anti-
selfadjoint and selfadjoint operators on Z, and let Hz and Hz be analytic functions
on Z. Give Ζ a symplectic structure using the 2-form ωζ[ξ,η] = -{{(ΙΖ)~ιξ,η)).
Consider Hamilton's equation on Ζ with Hamiltonian

namely,
u = Jz(Azu + VH£(u)), u&Z; (0.1)

and small Hamiltonian perturbations of it:

u = Jz(Azu + VH${u) + e\7Hz(u)), 0 < e < l . (0.2)

Suppose that the operator JZAZ has purely imaginary spectrum {±ikj\j > 1},
and that

Xz = Cj^+o{jd^v), d{>\. (0.3)

Equations of the form (0.1) and (0.2) arise in the description of conservative
physical systems. As a rule, (0.3) is satisfied if the system is spatially 1-dimensional
(see [1] and [2]).

Up to now there have been rather a lot of examples of equations (0.1) and (0.3) that
are integrable Hamiltonian systems (see [2]-[5]). For such systems it is typical for
there to exist finite-dimensional invariant manifolds y = £7~n filled with quasiperiodic
solutions with n basic frequencies (n = 1,2,...)· There are well-known averaging pro-
cedures that enable asymptotic solutions for perturbed equations to be constructed,
starting from these quasiperiodic solutions (see the survey [4], and [6]). In this paper
we study the following question: under what conditions does the perturbed equation
(0.2) have exact quasiperiodic solutions close to those belonging to £ΓΊ
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The main result of the paper is Theorem 2 of §2. It is proved there that if dim<^ =
2n, if the variational equation for (0.1) along £Γ is integrable, and if on ΖΓ there is a
nonresonant solution (a solution for which a certain finite set of resonance relations
are not zero) then most nearby solutions on J7" are preserved under the perturbation
(0.2).

In §4 we consider the Korteweg-de Vries (KdV) equation, for which ΣΓ may be
taken to be the manifold of η-gap potentials (see [3] and [5], for example). Analy-
sis of the explicit formulas in [6] shows that the variational equation for the KdV
equation along J7" is integrable in the sense of Theorem 2. Thus most nonresonant
quasiperiodic solutions of the KdV equation are preserved under small Hamiltonian
perturbation.

The proof of Theorem 2 is based on previous work [7], [8] of the author, in
which a theory of perturbations of quasiperiodic solutions of linear equations (0.1),
(0.3) that depend on a vector parameter is constructed using an infinite-dimensional
Kolmogorov-Arnol'd-Moser (KAM) method (see [9] and [10], for example).

The author is indebted to B. A. Dubrovin and I. M. Krichever for numerous
discussions on the properties of KdV-type equations.

We use the following notation. C,C',C\,... are various positive constants that
do not depend on ε; δ,δ',δ\ ... are small positive constants independent of ε and
representing radii of analyticity. For Hubert spaces Z\ and Z 2 the space of continuous
linear operators from Z\ to Z 2 is denoted by L{Z\,Z{) and is given the operator
norm || · ||z,,z2· Analyticity of mappings defined on subdomains of Hubert space is
understood in the sense of Frechet.

References to formulas from another section are given as (2.3) (formula (3) from
§2), for example.

§1. Perturbation of quasiperiodic solutions
of completely integrable systems

Let Υ be a Hubert space with inner product (-,·), and let {Yt\t € R} be a family
of Hubert spaces such that YQ — Υ and Ytl c Ytl when t\ > ti, and such that the
spaces Yt and 7_, are dual with respect to (·, •): Y_, = Y*. Denote the norm on Yt

by || · ||/. Let AY: Yj+dA —»• Yj and JY: Yj+dj —> Yj,j ε R, be linear isomorphisms,
where dA, dj > 0, such that AY and JY define selfadjoint and antiselfadjoint (possibly
unbounded) operators on Y. Suppose that AY and JY commute, and that Υ admits
an orthonormal basis {(pf\j> 1} with the following properties:

1) AYtpf = XjA<pf and JY <pf = TXjjfJ for all j .

2) {j~'<pf\j > 1} is an orthonormal basis in Y, for all t e R.

Let S be a bounded domain in R", and J?f (δ > 0) its <5-neighborhood in C".
Let A(I) be a family of selfadjoint operators on Y, analytic with respect to / e J7,

such that for all j

A{I)<pf=kj(I)q>f, \kj{h)-lj{h)\<C\h~I2\ V/,/,,/2 6 / / , (1)

where the inequality assumes that λ^(Ι) is analytically continued into - ^ c . Fix a

point /QO £ J^, and write λ,-̂  = A (̂/oo) and Λ.9(/) = ̂  (/) - A^- Let

^(<J) = ̂ /(«J,^) = Τ" χ J? χ {y e Yd\\\y\\d < δ}.
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We identify the tangent space to ψά at an arbitrary point with E>Yd,E — R2n, and
give po a symplectic structure using the 2-form a2, where

a2 = (A;-)o, Λ = Ύχ^γ:Ε+Υ^ΕχΥ, (3)

in which (·, ) 0 is the inner product on Ε χ Υ, J?Y = -(JY)~1 and T(q,I) = (I, -q),
(q,I)GE = Rn xR".

Consider the Hamiltonian

\{A{I)y,y) + H2{q,I,y), (4)

l), do>dA/2,

and perturbations of it having the form β% = β? + e^Hi{q,I,y). To the Hamiltonian
^Λ there corresponds the following Hamiltonian system (see [10] and [11]):

? = V/^, / = -V,^A, y = JYVyJ?i = JY(A(I)y + VyH2 + elVyH3), (5)

where Vy is the gradient with respect to y relative to {·, ·). When ε0 = 0 system (5)
has invariant tori Γ"(/ο) = Τ" χ {/0} χ {0} filled with quasiperiodic orbits.

On making the following substitutions into (5) (see [9], p. 171)

q = φ, I = 70 + £QP, y = eoy', (6)

we find from (4) that in the new variables the Hamiltonian for system (5) becomes

2 + {A(I0)y',y')/2 + VA(/0) · ρ + ε0Η4.

The analytic function H4 = Η4(φ,ρ,y'; 70) and its gradients with respect to φ,ρ, and
y' are uniformly bounded for 0 < εο < 1. We regard the vector 70 as a parameter.

Suppose that
|aQX{d2hldIldIJ){h)\ >K0>0. (7)

Then on some neighborhood 21 c ΖΓ of the point 70 — I* the substitution 7o —> ω =
Vh(Io) is analytically invertible. Subtracting the constant term ε^2/ί(70) from %?, we
obtain that in terms of the variables (6) system (5) has the following form:

Ψ = νΡ%2, Ρ = -νφ%2, y1 = JYvy,jr2, (8)
%ϊ = ω • ρ + {A{o))y',y')/2 + e0H4(<p,p,y'; ω).

The vector ω is a parameter of the problem, and changes at the boundary of the
region Ω = V/?(2l) c R".

The torus Τβ = Τ" χ {0} χ {0} is invariant for system (8) when ε0 = 0 and for
all ω. From the author's earlier work [7], [8] it follows that for most values of the
parameter ω = V^(70) and for sufficiently small £o > 0 system (8) has an invariant
torus close to Γο" in ψάί). In terms of (5) the results can be stated as follows:

THEOREM 1. Suppose that the nondegeneracy condition (7) is satisfied as well as
the following conditions l)-3):

1) (Analyticity). For some δ > 0, do > dA/2, and d2 e R with d2 + dA > 2 and
2d2 + dA > dJt and for all d > d0 the maps

/ Yd+dl, j = 2,3, (9)

are analytic.
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2) {Spectral asymptotics).

\l%I)\<Cj<C V/, V / e ^ c ; (10)

XjA = Kxj
dA + o(jdA), kjj = K2j

d> + o(jdj),

Xj = XjAXjj = K^ +K4 + oUdi'l-K), (11)

where d\=dA + dj>\ and κ > 0. Here ifd\ = 1 then κ > 0 a«ii C, < Cj~K in (10).
3) {Local regularity). Ifdj < dj then for all 0 < εο < 1 solutions to (5) vwi/z initial

conditions in <fd3{S) with d^ = do + di + dA exist for all time up to some time Τ > 0
and remain uniformly bounded in Τ" χ J^ χ Ydy

Then with these assumptions there exist natural numbers j \ and Mx such that if the
following condition is satisfied:

4) {Nonresonance).

\s • Vh{I*)±lj{h)Xjj\ >K5>0 Vi e Z", | i | < Mu V/, 1 < j < ju (12)

\s • Vh{h)±XJ{h)Xjj±XA

k{h)XkJ\ >K5 Vs G Z", \s\ < Mu

Vj,/c, 1 <j<k<ju

then for sufficiently small SQ > 0 there exist in a neighborhood

of the point /* {where δ\ > 0 « sufficiently small and independent ofeo) a measur-
able set Θεο and a smooth embedding Σ/ο: T

n -+ (fdo{d),h e Θεο, νν/ίΛ the following
properties:

a) meas(^(ii)\0 £ o ) -• 0 (εο ̂  0).

c) r/?e map
Σ:Γχθ^^0(ί), (ί,̂ -ΣΗί)

w Lipschitz, and if3(q, I) = {q, 1,0) € p" then the norm of the difference Σ - 3 and
its Lipschitz constant are bounded above by ϋ{ρ\)ε^ for all p\ < 1/3.

d) The tori Σ/0(Γ") are invariant with respect to the flow of (5) and are filled with
quasiperiodic orbits.

e) The number δ\ and the speed of convergence in a) are independent of h {but
depend on the constants KQ and K5 in (7) and (12)).

REMARK 1. In the case when dj — di = 0 (that is, when the unboundedness of
the linear part of the system is due to the unboundedness of the Hamiltonian), the
theorem is proved in [8]. When dA = 0 (that is, when the unboundedness is due
to the unboundedness of the operator JY of the Poisson structure), it is proved in
[7]. The proof in the general case goes by repetition of the arguments of [7], taking
account of two observations: 1) In Lemma 3 of [7] the fact that B{q) e -2^ d +di

implies that G{q) e JzfJ d +d +d _l. 2) It is enough to prove the estimates of Lemma
1 of [7] with the a priori assumption ||y(/)||rf3 < C, with Τ = Cf1, and for initial

conditions (ς(0),ξ{0),γ(0)) such that |£(0)| < e%3/3 and ||y(0)|U < ^m β.
REMARK 2. Assertion c) of the theorem follows from intermediate lemmas of [7]

and [8] (which were not included in the statement of the theorem). To obtain the
estimates b), note that the first few open sets <fm that appear in the definition of the
subsequent changes of variables Sm of [7] can be chosen independently of ε. For the
corresponding changes Sm in the variables (q,I,y) we have \\Sm - Id||</0 < Ce^ = Ce.
For changes with high enough numbers in the list the estimate of Lemma 4 of [7]
suffices.
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COROLLARY 1. Suppose conditions l)-3) of Theorem 1 are satisfied, and KQ > 0.
Then there exist natural numbers j \ and Mu depending on Ko, such that ifSF0 <g ΣΓ is
an open set with smooth frontier, then, for all the points h that satisfy (7) and (12), for
sufficiently small SQ there exist a measurable subset Θ°ο c Sf° and smooth embeddings
Σ / ο : Τ" -> (fdo(S), /ο e Θ°ο, with the property that

meas(^°\e£°o) - 0 (ε0 - 0) (13)

and assertions b)-d) of Theorem 1 /zoW (vwi/z Θεο replaced by Θ°ο).

To deduce the corollary from Theorem 1 it is sufficient to approximate the region
from the inside by a union of nonintersecting cubes 3?{δ\). The convergence

(13) follows from assertions a) and e) of the theorem.
EXAMPLE 1. Analytic sequences of equations of the form

/, J" = 1,2,..., (14)
r, = (xf + xj2)l2

(where Η is an analytic function of its arguments) reduce to systems of the form (5).
The tori

T n { h ) = { x \ x f + x j 2 = 2 I 0 J , j = l , . . . , n ; 0 = x + + l = x " + 1 = x + + 2 = •••}

are invariant for (14).
Close to the torus Γ"(/ο), system (14) has the form (5) with ε0 = 0 after trans-

forming to coordinates (q,I,y), where / e J? c R", q e Tn, y = (yf,yf,...), and

qj = Arg(x+ + ixj), 1 < j < n; yf = x±+l, / = 1,2,.... (15)

Here λμ Ξ 1 and kj{I) = (d/dln+j)H(Iu...,In,0,0,...).
Theorem 1 can thus be applied to Hamiltonian perturbations of (14) if condition

(9) is satisfied (with d0 = dA/2 and d2 = 0) and

(d/dIn+J)H(Iu...,In,0,0,...) = Cjd + oUd-1), d>2. (16)

It is known that some equations of form (0.1) are completely integrable and by a
canonical change of variables they reduce to chains of equations as in (14) (see [2],
[5], and [12]). Roughly speaking, condition (16) indicates 1-dimensionality of the
system and is easily verifiable. Condition (9) is pretty restrictive. It is satisfied if the
change of variables taking (0.1) to (14) has the form

linear operator + smoothing.

For equations of Korteweg-de Vries type the integrating change of variables obvi-
ously does not have the necessary smoothing properties.

In §2 below we describe an approach that is applicable to a wider class of nonlinear
systems.

§2. Integrable variational equations

Include the space Ζ in a family of Hubert spaces {Z,\t e R} where Zo = Z, Zt] c
Z,2 for t\ > tj, and Zt = Z*_t, and suppose that the antiselfadjoint operator Jz on Ζ
defines an isomorphism Jz: Zt+dj —»· Zt, t e R, while the selfadjoint operator Az on
Ζ is a Fredholm mapping Az: Zt+dA -* Zt, t e R. Write fz = -(Jz)~~{.

Assume the equation (0.1) has an invariant 2«-dimensional surface £Γ which is
foliated into invariant «-tori, so that ST = Φο{Τη χ J^) where S is a bounded open
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set in R" and Φ ο : Τ" χ J^ —*• Z, is an analytic mapping for each t € R and the tori
Φ 0(Γ" χ {/}) are invariant for (0.1) for all / e / .

Suppose Og(<af) = dl Adq, where <wf = <{^ ζ·, ·)>, and the system (0.1) induces a
Hamiltonian vector field ο η Γ χ / with analytic Hamiltonian h{I) - ^Ζ(ΦΟ(<?, /)):

tf = VA(7), 7 = 0. (1)

Then «o(O = Φο(<7ο + t^h(Io)>Io) is a solution to (0.1). Consider the variational
equation for (0.1) along Uo(t):

ν = Jz(Azv + dVHg(uo{t))v). (2)

We continue with the notation used in § 1. Also, let

U(S) = {qe Cn/2nZn\\Imq\ < δ},

<?£{s) = <?<Hfi,Ss

c) = U{5)x^5

c χ {ye Yd

c\\\y\\d < δ},

where Y£ = Yd ®R C is the complexification of Yd. Let Z^ = Zk (g>R C and Ec —
£<8>RC = C2".

DEFINITION 1. The variational equation for (0.1) on ST is said to be integrable if
there is a mapping

linear in y such that the following conditions l)-3) hold.
1) For each (q, I) € T"x^f the mapping y H-> ΦΙ (q, I)y is a canonical isomorphism

between Υ and the skew-orthogonal completion (relative to ωζ) of Tqj{!T) in Z. The
symplectic structure on Υ comes from the form ω\ = {^Y•, •), ̂ γ — -(JY)~l.

2) For t > 0 the mapping

is an isomorphism. For some δ\ > 0 the mapping Φ, defines a complex-analytic
mapping Φ! : <f,c(Si) — Z,c.

3) The mapping y(i) H-+ ΦΙ(^Ο + tVh(Io),Io)y(t) takes solutions of the equation

= JYA(h)y(t) (3)

to solutions of the variational equation (2) (here the operators A{I) are the same as
in §1). >:

Write <£>(q, I,y) = <S>0{q, 7) + Φ, (q, I)y.
EXAMPLE 2. Let dim Ζ = 2NZ < oc, η = 1. Then equation (2) is linear with

periodic coefficients. Since the surface Of is 2-dimensional, the zero characteristic
exponent of (2) has multiplicity no less than 2. Suppose its multiplicity is exactly 2
and the nonzero characteristic exponents are purely imaginary and each of multiplic-
ity 1. Then, by the Floquet-Lyapunov theorem, equation (2) has complex solutions

7 f o), O ^ ( / o ) e R , j = 1,..., Nz - 1,

where w^(-;I0): Tl —> Z c is analytic and wj = wj. Let W+ = /lyRewt andj = wj. Let W
W~ — μί Imwj. By suitable choice of the real numbers μ} it is possible to arrange
that

( ( ^ z W]\ Wf)) = 5{j, 1)δ(α, -β) Vj, lVa,fi = ±.

Let Yqj be the linear span of the vectors {Wy±(?,7)|y > 1}, Υ — Yqojo, and let
Φι(ς,Ι) be the linear mapping taking Φ^ = I/^±(^o^o) to W^q,!). It satisfies all
the conditions of Definition 1.
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EXAMPLE 3. Under the conditions of Example 1 the mapping Φ = Φο + Φ! can be
expressed using (1.15) as (q,I,y) t-> χ. The variational equation for the chain (1.14)
along the surface {Γ"(/0)|/ο e / <E R"} is integrable in the sense of Definition 1.

LEMMA 1. Under the conditions of Definition 1, for all (q,I) Ε Τη χ J1', for some
δι > 0 and u = Φο(<?,/) we have

ΑΖΦ^Ι)

(5)

^ (6)

PROOF. It follows from clause 3) of Definition 1 that the function ux(t) = uo{t) +
εΦι(<?(ί),/οΜΟ> where q(t) = q0 + ?V/z(/0) and y{t) is a solution of (3), satisfies
equation (0.1) up to terms of order ε2. Therefore

), IQ)Vh{I))y + εΦι (q{t), IQ)y = ux

o=d£2 Jz{Azux+VHz{ux))

+ eJz (ΑΖΦ{ (q(t), h)y + dVHz
 (ΜΟ)(Φ,

Hence for all q, I, and u = Φ0^,Ι) we obtain

Thus (4) holds and

But Φ * ^ ζ Φ ι = /Ύ, and so (5) follows since Φι is a canonical transformation.
The estimate (6) holds for t > 0 by clause 2) of Definition 1. Since Φ, =

-/Ύφ^χ Jz and Φι is canonical, we have ||Of||/./ < C for / > dj, and so (6) holds
also for t < -dj. For t e (—dj,0) it now follows by an interpolation theorem (see
[13], for example). •

LEMMA 2. Under the conditions for Definition 1, for arbitrary t > 0 and S' c <f
there is δ > 0 such that Φ defines a complex-analytic isomorphism between <^c(<5, J^ ' c )
and an open set in Zf containing Φο{Τη χ J?').

This lemma follows from 1), 2), and the inverse mapping theorem.

THEOREM 2. Suppose equation (0.1) has an analytic invariant surface ΕΓ =
Φο{Τη χ <y) and the variational equation for (0.1) on ST is integrable. Suppose that
for d > do the maps H-j: Zd —> R and V//z: Zd —> Zd+d,, j — 1,2, are analytic, and

that Cj < Cxj~
dl in (1.10); suppose also condition 2) of Theorem 1 is satisfied, as well

as the analog of condition 3):
3') If di < dj, then for all 0 < εο < 1 there exist solutions to (0.2) with initial

conditions in an arbitrary ball in Zdi defined for all time up to some Τ > 0 and
remaining uniformly bounded in Zdy

Let KQ > 0. Then there are natural numbers j \ and Mx, depending on Ko, such that
ifJ?0 <g J? is an open set with smooth frontier then for all points h for which conditions
(1.7) and (1.12) are satisfied, for all sufficiently small ε there exist a measurable subset
Θ° c J^ 0 and smooth embeddings Σ/: T" —> Zd I e Θ|?, with the following properties:
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a) meas(J^0\e0) -» 0 (ε -» 0).

b) dist(l,(T")^0(Tn χ {/})) < Ce.

c) 77ze map Σ: Τ" χ θ° —• Zrfo, (#,/) ι-> Σ/(#) is Lipschitz, and the norm of the
difference (Σ—Φο)(<7, /) 0«ί/ /to Lipschitz constant in both variables is at most C{pi)ePi

for all ρλ < 1/9.

d) The tori Σ/(Γ") are invariant with respect to the flow of '(0.2) anrf are filled with
quasiperiodic orbits.

PROOF. We restrict ourselves to the case dj = 0, dj = 0, dA = 2, do = 1. The proof
in the general case differs from this only in that the notation is more cumbersome.

Let ω2 = Φ*(ω|) . By condition 1) of Definition 1, ω2(<?,/,0) = α2 for all q e T"
a n d / e S' (see (1.3)). Let w = (q,I) e f x / ' andA<y2(w,y) = &J2(W,^) = -a2.

For operators from a family of spaces {Yt

1} to a family of spaces {Yt

2}, write | | | | ί ι Λ

for the norm of the operator regarded as a map from Yt\ to Yt

2

2. In Lemma 3 below

we have 7/ = Yt

2 = EC xYt

c.

LEMMA 3. For all (w,y) € ^(<J) and 0 < θ < I we have Aco2(w,y) = (J^y-, •),
where Jf': <fe(S) —> L(E χ Υ-Θ,Ε Χ ΥΘ) is an analytic map. If δ' is small enough,
then for (w,y) e (ff(S') the following estimates hold:

γ\\-θβ < C\\y\\e νθε[0,1] ; (7)

l + ||>ΊΙ-β) V3 e yfl, V|0| < 1. (8)

The map f^y • Ε χ Υ —>• Ε χ Υ is given by the operator matrix

μ μι
Jwy Jwy

2i
Jwy

where

y

i2x 0
Jwy υ

θ>0.

r (&·)>•£)) (9)

(11)

(9)—(11) are analytic.
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PROOF. It follows from the form of the map Φ that

<x>i{w,y)[{dwx,5yx),{5w2,dy2)\

Since (02(10,0) = a2, these equations give expressions for the elements of the operator
matrix, and together with (6) they give estimates (7) and (8) and the analyticity of
the maps (9)-( 11). Μ

Let {·,·)£• be the euclidean inner product on E, and denote the inner product on
£ x r by <·,·)(,.

LEMMA 4 (Relative Poincare lemma; see [14]). The form Αω2 is exact:

Aa)2 = dcuu ωλ{υ),γ)[ξ\^{Ω.{ηι,γ),ξ)α,

where
Ω: d?0(S) ̂  Ε χ {0} c Ε χ Υ, {w,y)-+\{j%yy,Qi) (12)

is an analytic map. Moreover,

,0) = 0. (13)

PROOF. Since Αω2(νυ, 0) = 0, there exists a form ω\ such that da>\ = Αω2 on the
open set @ο(δ), where δ > 0 is sufficiently small, and ω\ is obtained from Δω2 by a
cone retraction process ([10], §36; [15], Chapter 4):

ω}(νυ,γ)[ξ]= f Aaj2(w,ty)[(0,y),?]dt,
Jo/o

where for ζ — {ξ>ν,ξγ) e Ε χ Υ we have ξ' = (ξν!, ίξγ). Lemma 3 gives

ί= ί {J'wty{^y)A%dt= ί t(j^y^w
Jo Jo

which implies (12) and all the assertions of the lemma. •
Let JQ = TxJY: ExY -» ExY (see (1.3)). Then Jo = -f~x. L e t ^ = Λ+tfwy

for 0 < t < 1. In view of estimate (7) the operator ,̂fv is invertible for small y (recall
that dj = 0).

LEMMA 5. If δ is sufficiently small, 0 < θ < 1, and (w,y) e <?f(d), then (9\lyY
x:

Yf -+ Yf is a bounded operator, depending analytically on (w,y) G <ff(d). We have

n=0

Consider the nonautonomous vector field on &$ (δ), 0 < θ < 1:

Ky = &!y)-1 Sl{w,y) = ~ f^itJo^ynTj^y, 0). (15)
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By Lemmas 4 and 5 the equation

η, ξ = {νυ,γ),0<ί<1, (16)

defines an analytic flow

S ' : 0 f ( S ' ) -+ 0 £ { δ ) , S ' { 0 e { d ' ) ) c 0 θ ( δ ) ; 0 < 6 » < 1 , 0 < ί < 1 ,

for some δ' > 0. By (13) we have

S'(w,0) = (w,0), dS'(w,0) = ld. (17)

LEMMA 6 (Relative Darboux lemma; see [14] and [15]). The map Sl takes ω2 to
ai\ that is, SuO3i = a2-

Let Uy be the natural projection from ψ — Τ" χ R" χ Υ to Y, and write

i(A(I)UYS'(w,y), nYS'(w,y)) = <8'(w,y).

LEMMA 7. There is δι > 0 such that the maps 03' - <8°: @\{δ{) -+ R and

(18)

\\Vy(<Bl-<30)(w,y)\U<C\\y\\l (19)

The lemma clearly holds in the finite-dimensional case. In the infinite-dimensional
case it is a consequence of Lemma 1. We give the proof in §3.

By Lemma 6, the transformation Φ ο S1 is a canonical diffeomorphism between
(&ι(δ),α2) and an open set in (Zi,<yf). Under this transformation equation (0.1) is
taken to an equation on @\{δ) with Hamiltonian ^ = 2?Ζ{Φ ο S^w^)). We shall
find %f in two stages.

LEMMA 8. For (w,y) ε@\{δ)

#l{w,y) = Jrzmw,y)) = \{A(I)y,y) + Hs(w,y), (20)

where the maps

are analytic.

PROOF. Since ^ Ζ ( Φ Ο ( ^ , / ) ) = h{I), we have

+ Φσ) - ΗΖ{ΦΟ).

By Lemma 1 the right-hand side of this equation is equal to the right-hand side of
(20) if we put

H5 = ΗΖ(ΦΟ + Φ,,) - ΗΖ(ΦΟ) + ({Φιγ,Α
ζΦ0)) + ̂ (OiaV,y)

The analyticity of //5 and VyHs follows from the form of H5. •
From (20) we obtain

) + H6(w,y),

By the analyticity of the flow S1 and Lemmas 7 and 8 the maps

H6: 0X (δ) -+ R, VyH6: 0X (δ) -> Υ{ (21)
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are analytic. Write

H6(w,y) = h°(w) + (h\w),y) + \{Ah{w)y,y) +H7(w,y),

H7(w,y) = O(\\y\\\)·

Since the surface !T is invariant with respect to (0.1), it follows that the surface
Τ" χ J^ ' χ {0} is invariant with respect to the equation with Hamiltonian %?. Thus
hl(w) Ξ 0. As the transformation Sl is the identity when y = 0, the curves q(t) =
qo + iV/z(/0), I{t) = IQ, are orbits of the equation with Hamiltonian %?. Therefore
h°(w) = h{I). Hence

Ah(w))y,y)+H7{w,y).

To the Hamiltonian %? corresponds the following Hamiltonian system:

q = V//z + i(V7(yl(/) + Ah)y,y) + V/AT7, (22)

(23)

(24)

Let 3ε(0 = (<?o + tVh{Io)jQ,ey{t)), where j>(f) = J y ^(/ 0 )y . From Definition 1,
the curve Φ(3£(0) satisfies (0.1) up to terms of order ε2. By (17)

(5 1 )- 1 3 e (0 = 3e(0 mode 2 .

Thus 3 ε(0 satisfies (22)-(24) up to terms of order ε2. From (24) we obtain

JYA(I0)y = JY{A(I) + Ah{w))y mod ε,

where w = w{t) = (q0 + tVh{I0),I0).
Consequently, A(IQ) + Af,(w) = A(IQ), and the canonical transformation ΦοΧ 1

takes (0.1) to an equation with Hamiltonian

JT{q,I,y) = h(I) + \{A{I)y,y) + H7(q,I,y), \H7(q,I,y)\ = O(\\y\\]),

that has the form (1.3), (1.4). In view of the analyticity of (21) and clause 3) of
Definition 1 the Hamiltonian %? satisfies conditions 1) and 2) of Theorem 1. Since
Φο5' is analytic, it takes (0.2) to an equation with Hamiltonian ̂  + eH&(q, I,y), and
for H% the analogs of the maps (21) are analytic. Therefore with εο = ε1/3 Corollary
1 can be applied to the equation with Hamiltonian %f + εΗ%, and this gives Theo-
rem 2.

§3. Proof of Lemma 7

Let HE : ExY —> Ε and Π^: Ε χ Υ —> Υ be the natural projections; let HE (e, y) —
ej, 1 < j < 2n, and

Then; if ξ(ή = {w{t),y{t)) is the solution to (2.16), we have

1 °°

y(t) = UY V< = - - Σ tmUY(J0^ly)
mnETj^yy. (1)

Therefore

, - .. (2)
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Let tmsm denote the mth term under the summation sign. Then

sm =

= {I\Ejuy= {I\Ejx

u

2

yJ
Y

2n ' ' δΦΛχυ"

From (2.10) we find that

In

By Lemma 1

From (2.5) of Lemma 1

2dwj

)y)) + (((A(I)-AY)y,y)}]
Ί

(using the fact that (d/dwj)A(I) = (d/dwj)(A(I) - AY)). Hence

2/7

Sm / J Sm Sm , Sm 11

7=1

From clause 2) of Definition 1 and the Cauchy estimate for the derivatives of an
analytic function, for w e U(S') χ ̂ c and 0 < θ < 1 we have

| | (0/0ω,-)Φ,(ιυ) | | β , β ^, > = 1 , . . . , 2 η . (3)

It follows from (3) and (2.7) that

\sti\<\\y\\l

for (w,y) e &£(δ). The estimates (4) and equation (2) give us (2.18). Turning now
to the estimate for the gradient of sm:

Vysm - Σ1 + Σ2, Σ1 = Σ{Vysj*)s£, Σ2 = Σsin V,i£

we find from (3) and Lemma 3 that

y Σ Σ
7 7

b||-+2- (5)

To estimate Σ2, consider the map sJJ: (fo{3) —* R. Write its differential with respect
to y in the following form:

7 / 7 - 1

/=o
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where

A (3) = UEj(Jo^y)l2 ^

From (2.10) and (2.7) with θ — 1 and the Cauchy estimate we have

\\DxO)h < Cx\\y\\7+x\\l\U-
From (2.10) with 0 = —1, (2.7) with 0 = 1, and the Cauchy estimate we have

p2(3)| | i<C2| | j>|ir+ 1ll3| |-i.
From (2.10), (2.7) with 0 = 1, (2.8) with 0 = - 1 , and the Cauchy estimate we have

Therefore |j Vy5^2|| ι < C4Aw||j'||™+1. This inequality together with (4) and (5) gives us
||Vj,sm||i < C5m\\yWC+l. Hence (2) implies (2.19) if <5i is sufficiently small.

§4. Perturbation of quasiperiodic solutions
of the Korteweg-de Vries equation

Equations of the form (0.1) which are integrable in terms of theta-functions (see [2]
and [16]) possess a large supply of quasiperiodic solutions. The variational equations
along manifolds filled with such solutions are integrable, and Theorem 2 can be
applied to the study of perturbed equations. We illustrate this using the example
of the Korteweg-de Vries equation in the space of 27r-periodic functions with zero
mean:

,2

/

Jo

= -uxxx + 6uux, (1)
, 2 *

/ u{t,x)dx = 0. (2)
Jo

Problem (1), (2) is an equation of the form (0.1), where Ζ is the L2-space of functions
on [0, 2π] with zero mean; Jz — d/dx; -J?z = (Jz)~{: Ζ —• Ζ is the operator
of integration with zero mean; Ηξ = J w3 dx; Az = -d2/dx2\ D(AZ) = {u e
Ηρ(0, 2π) Π Ζ} (where Ηρ(0, 2π) is the Sobolev space of 2;r-periodic functions).

We may take as the 2«-dimensional invariant manifold ΕΓ the family of «-gap
potentials u(x) e Ζ the spectrum of whose Sturm-Liouville operator Lu — -d2/dx2 +
u in L2(R) has η prohibited gaps (lacunae) [E2j,E2j+i], j = 0,..., η (Eo = -oo) and
a double periodic spectrum {e}\j € N\J^}, \JV\ = η (see [3] and [5]). Let μι,μ2,...
be the spectrum of the operator Lu on the space of functions with zero Dirichlet data
at the ends of the interval [0, 2π] and μ} e [E2j,E2]+\], 1 < j < n. The invariant
tori T"(I) consist of «-gap potentials with fixed gap boundaries (depending on /) and
with eigenvalues μ\,...,μη varying within the corresponding gaps.

By the Its-Matveev formula (see [3]) the map Φ ο : Τη χ J" -> ,T, <J c R", has
the following form:

Φο(<7,1)(x) = -2{d2ldx2)e{U,x + iq + Z,).

Here θ is the theta-function on C" having periods 2π//Ι,.. ., 2nifn and quasiperi-
ods ξ\,...,ξη (/ι,..., /„ are unit vectors in R" c C, while ξ\,...,ξη is a basis in R"
that depends on / (see [16]). The vectors [// and Z/ depend on / and are purely
imaginary, with Uj G iZ". Solutions to problem (1), (2) lying on !T are

-2(ϋ2/θχ2)θ(υ,χ + W,t + Zi), W, = iVh(I) e ;Rn, (3)
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where h(I) is the Hamiltonian of the restriction of (1), (2) to !T, expressed in terms
of the variables (q, I).

In [6] the following explicit formulas were given for solutions for the variational
equation along the solution (3):

wf(x, t) = e±lV?'—j—-2
7ZS OX (_ υ\ν[Λ τ /yji -r t^i) j ΙΛ\

= -e±iV'°>e±lsx(-l + Awf(x;W}t

nws(x,z)-

Here 5 e N\yT, Vs° e R, and A{es) e iW.
The restriction of θ to iW c C" defines an analytic function on the torus iT" =

iRn/2niZ", analytically depending on / and admitting an analytic extension to some
open set J ^ c , δ > 0. Since Vj e VLn we have t±wf{-, q) e 7/^(0,2π) for all k.

The vector ^4(es) has the following form:

where {Ω,} is a normalized basis of the holomorphic differentials on the Riemann
surface corresponding to the torus T"(I). Therefore 2A(oo) — L e Γ where Γ is the
lattice in C" generated by the period and quasiperiod vectors of the function Θ. Since
es = s2 + Cs where the Cs are uniformly bounded, we have

2Ai(es)-Li~ ΓΩι = ̂ 2απ
Js2 ^ = 1 Js2

{Pin+\ is a polynomial of degree In + 1). Therefore

\2Ai(es)-Li\<Cs-1. (5)

For q GTn ands G N\yF let

W+(x,q) = n-lReelsx(-l+Aw+{x,iq)),

LEMMA 9. For all q and s

{^zWs

±(-,q),Wr

±(;q))=0 Vr^s, (6)

s

+{;q),W-(;q))=cs?0, (7)

s

±(;qM)=0 We'TgF. (8)

PROOF. Let j7"2/!+4 be the manifold of finite-gap potentials which in addition
have open gaps corresponding to eigenvalues er and es with r, s e N\yV and r < s.
Let (ψι,Ιι, • • • ,φη,Ιη, <p'r,I'r, <p's,I's), where φ} e Κ/2πΖ and Ij > 0, be action-angle
variables for the system induced on J7~2"+4 (see [10] and [12]). Choose these in such
a way that {{φ, I)\I'r = /; = 0} = F. Let h2n+\lx,...,/„,/;, I's) be the Hamiltonian
system in these variables. Then solutions of the variational equation along ΣΓ that
are obtained by varying the sth gap take the form

δφμ (t) = const, δΙμ(ί) = const, μ=1,...,η,

SI'r(t) = O, SI's{t) = const, δφ'ί(ί)=δφ'1(0) + ί(3ίι2''+*/θΓ1)(Ιι,...,Ιη,0,0).
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However, the solutions (4) also correspond to varying the sih gap. Therefore their
real and imaginary parts are as in (9). This means that the linear span of the vectors
W± forms the tangent space at the point (φι,Ι\,...,φη,Ιη) e J7" to the surface

{(<p{,Iu...,cpnJn,O,O,cp's,rs)\<p'seR/2nZ, I's>0}.

This implies (6) and (8), since in the action-angle variables the symplectic form is
dl Αάφ.

Next we turn to (7). First we show that the left-hand side of (7) is independent
of q. Translation along the orbits of the variational equation from q0 to the point
<?o + tVh is a canonical transformation. By (4) it can be split into the composition
of the transformation

^ ( • . ( f o ) ^ *?(·,?<>+ 'VA) (10)

with rotation through an angle of ±Vs°t. The rotation transformation is canonical,
and therefore (10) is also canonical. Hence the left-hand side of (7) does not depend
on q. It is not equal to zero because of (6) and the nondegeneracy of ^ z . •

Let -2δ(#) be the closure in Ζ of the linear span of the vectors W±(q) = W±(-,q),
s e N\yf, and let 2\ (q) be the skew-orthogonal complement (relative to the form

z

LEMMA 10. For all (q,I) ε ? χ ^ we have 5?0{q) = 3\(q).

PROOF. Lemma 9 gives =2o(#) c 3\(q). Since the codimension of 3\(q) in Ζ is
2n it suffices to verify that codim^o(^) <2n.

Let the functional Η be the highest KdV equation whose critical point set is T"(I).
By Theorem 2 of [6] the splitting

L2 = L2(0,2n) =

has the form

L2 = Ker D2H

where Luy/{x,E[) = Ε\ψ{χ,Ε{) and ψ (χ + 2π,Ε{) = ψ (χ, Ει), Ι = 1,. ..,2η + 1.
Let Π ζ : L2 —» Ζ be orthogonal projection. Since Πζ =2ο — =2o, it follows from (11)

that Ζ = .5ο + Π ζ Ker Ό2Η + Hz^fi- There are real numbers ε χ,..., εη+\ for which

ειψ
2(χ,Ει) + ε2ψ

2(χ,Ε3) + • • • + εη+ιψ2(χ,Ε2η+ι) = 1

(see [5], §6, for example). Hence dimnz-2f2 < η.
From Theorem 1 of [6] it follows that D2H(Su) = 0 only if the variation in the 5u

direction does not change the periodic spectrum of Lu. Thus KerD2// = Tq(Tn(I)).
Hence dim Ker/)2// < n. This implies codimJSo < 2n, and the lemma is proved.

LEMMA 11. For all s e N\yf"

Vs° = s3 + C{s)s, \C(s)\<C. (12)

PROOF. The Vs° have the form

K° = / ω 3 ,
s

(see [3]). Since es = s2 + c'(s), we have Vs° = K's3 + O(s). Substituting w± into
the variational equation and considering only the terms of order s3, we find that
K' = l. Μ
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LEMMA 12. For all qeTn, se N\yT, and m e N ,

\\Awf(;q)\\m<C"(m)sm-1,

where \\-\\m is the norm on the space H™(0, 2n).

The estimate follows from (5), the Cauchy inequality and the fact that the theta-
function is bounded away from zero on the imaginary torus iW/iniU1.

Let

Zs = Zn Hs

p(0, In), Yc = 0 (Ceikx θ Ce~ikx) C Z c ,

Y.
Ys = Ycnzs, J = JZ

For 5 > 0 define the following maps:

Φ,: <?s

c(3,^c) - Zs, (q,I,coslx) - (

(<?,/, sin/χ) ι-> (n/y/cj)W-(x,q,I);

A{I): Yf -> Yf_2, e±Ux ^ (V,/l)e.

By Lemmas 9 and 10 the map Φι satisfies condition 1) of Definition 1, by Lemma
12 it satisfies condition 2), and by Lemma 11 and (4) it satisfies condition 3). There-
fore the variational equation for problem (1), (2) along the manifold of «-gap poten-
tials is integrable in the sense of Definition 1.

We consider a perturbation of problem (1), (2), namely the problem (13), (2):

( 3 2 ( ) ) , (13)

where φ is a real-analytic function. This problem is locally regular in the sense of
condition 3') of Theorem 2 (see [17], for example).

As above, let !T be the manifold of «-gap potentials (more precisely, its compact
part, which is invariant under the flow of problem (1), (2)). As a corollary of Theorem
2 with dA = 2, do — 1, dj = 1, and ^ = 0 we obtain

THEOREM 3. Let KQ > 0. There are natural numbers j \ and M\, depending on Ko,
such that if^0 c J^ is an open set with smooth frontier, for all points for which

\fe\d2hldlldl]\ = \detdWi/dIj\ > Ko (14)

and the nonresonance condition (1.12) holds, where V«(/») = W(h) andkj{h)kjj =
Vf (see (4)), there exist for sufficiently small ε > 0 a measurable subset Θ° c ^f°
and a smooth embedding Σ/: T" ->• H}(0, lit), I e θ°, such that the tori Σ/(Γ") are
invariant under the flow of problem (13), (2), are filled with quasiperiodic orbits, and
are such that assertions a)-c) of Theorem 2 hold (with Zdo = 7/p'(0,2π)).
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