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We complete the proofs of two statements concerning finite-gap solutions periodic in x of the KdV equation: (i) most of these
solutions survive under Hamiltonian perturbations of the KdV equation, (ii) for most of the solutions of the perturbed equation,
which were close to some finite-gap potential at 1=0, the averaging theorem of Bogolyubov-Krylov type is valid.

Various approaches are known for studying weakly
perturbed integrable equations of mathematical
physics. In particular averaging procedures formu-
lated in terms of the finite-gap solutions of the non-
perturbed equation were suggested to solve some ini-
tial-value problems. As a rule, an estimate for the
disparity is not calculated. The sufficient condition
on initial data justifying an application of the av-
eraging procedure was obtained in refs. [1,2], where
the case of an integrable system with a discrete spec-
trum as a non-perturbed equation was considered
(the KdV equation with periodic boundary condi-
tion is an example of such a system ). This condition
represents itself some non-degeneracy condition for
the initial family of finite-gap solutions (see below
for the statement).

We prove the non-degeneracy of all the families of
the periodic finite-gap solutions of the KdV equation
~ith zero mean value. Our proof is based on the pa-
rametrization of the finite-gap solutions via the
Schottky uniformization [3-5].

Real N-gap solutions of the KdV equation

4u, = 61414,( F Uy ()
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are given by the Its—-Matseev formula

u(t,x)=202log 8(i(Ux+ Wi+D))+2c, (2)
where 0 is the theta function with the period matrix
(2nil, B) and U, W, DeR". The vectors W and D are
called the frequency and phase vectors respectively.

These solutions are parametrized by the hyperellip-
tic M-curves of genus N,

p2=(A=E)..(A=Eonsy) - (3)

Let us denote by £ the variety of these curves. We
consider eq. (1) in the space Z, of periodic func-
tions with zero mean value:

2n
u(t,x)=u(t,x+2mn), J u(t,x)dx=0, (4)

0

~and denote by %, = Z a subset, corresponding to the

finite-gap solutions with zero mean value. Every-
where below we fix the vector U. By (4),

c=0. (5)

We denote by R(U) the variety of the curves cor-
responding to solutions with fixed vector U and de-
note Ro(U)=R(U)R,.

The family of solutions (2) and (5) with D vary-
ing at the torus RY/2xZ" is called a toroidal family
of solutions. The toroidal families of solutions are in
one to one correspondence with points of %,(U). Let
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us consider Xe %,(U), generating the solution uq(¢,
x) of the problem (1) and (4), and the variational
equation along up(x):

4v,=3—a—vuo+vxxx. (6)
dx

It is known [1,6,7] that the substitution
v(t)=B(1)V(t) (where B(r) is a linear operator in
Z,, quasiperiodic in 7) reduces eq. (6) to a linear
equation in Zy V,=AyV with the operator Ay in-
dependent of 7. Non-zero eigenvalues of Ay are purely
imaginary, { +1A(X)}. The numbers 4;(X) are called
the fundamental frequencies of the variational equa-
tion. The frequency 4,(X) can be found by varying
the jth closed gap of the spectrum of uy(z, x). This
means that to find 4,(X) one should e-open the jth
gap and calculate the frequency vector (W), ..., Wa,
W;)(X, €) of the obtained (N+1)-gap solution.
Fundamental frequencies are given by the limit
[1,6,7]

2,(X)=lim W(X, €) . (7)
€e~0

Definition. The family %,(U) of N-gap solutions
of the problem (1) and (4) is called non-degenerate
if

(A) {W(X)|XeA(U)} is an N-dimensional
domain;

(B) fOI' any SGZN\ {O} and ja jla j2e[N: jl ?‘"jb

W(X)-s+20,(X)20, XeZ,(U), (8)
W(X)s+2;,(X) +2,(X)20. 9)

If %,(U) is non-degenerate then by the results of
refs. [1,2,7] the solutions of the perturbed equation
possess the properties formulated in the abstract.

Theorem. All families Z,( U) of N-gap solutions of
the problem (1) and (4) are non-degenerate.

This theorem shows that the theorems of refs.
[1,2,7] mentioned above are applicable to the KdV
equation. They justify the investigation of pertur-
bations. For details see these papers.

For the proof of the theorem we use the technique
of the Schottky uniformization [3-5], which we now
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briefly review. Let us consider the complex z-plane
with 2N circles orthogonal to the real axis such that
all the discs bounded by these circles are disjoint and
are arranged in pairs symmetric with respect to
z— —z. Each pair determines a hyperbolic transfor-
mation o, with the fixed points £ A4,

0,z2+A, z+4,
0,2—A, | z—A,

O<u,<1, A,eR.

The Schottky space S={(4, u)} is a full-dimen-
sional subset in R*" and is described explicitly [3,4].
The complement of the discs mentioned above is a
fundamental domain for the Schottky group G gen-
erated by gy, ..., on. Let Q be the region of discon-
tinuity for G. All hyperelliptic M-curves (3) can be
uniformized as 2/G with the point z=co as a pre-
image of A=oo0.

Let us denote by g the group of transformations on
. E,—E,+const with the same constant for all n.
The parameters (4, u) determine an element Xe %/
g. The solutions determined by X are of the form (2)
and one of them is with U= U, W= W, c=¢ given by
the following Poincaré theta series:

(771: Z [O'A,,—G'(—A,,)] 5
0eG/Gn
Wn= Z {(UAA)B_ [G("'An)]3}:
0eG/Gn
c= y=2. (10)
oeG, G#17

Here G, is a cyclic group generated by o, and
(¢ £)isaPSL(2, R) representation of ¢. The factor
A /g is isomorphic to %, the corresponding trans-
formation of the solution (2), (10) is the following:

U=0U, W=W-3cU, c¢=0. (11)

Lemma 1. There is an analytic isomorphism Se %,
It defines the analytic coordinates (A4, #) on %.

Below we consider the case of small gaps (small
potentials ). Let us remark that it corresponds to small

pusince |Es,y —Esy| =/ 1, (see ref. [5]).

Lemma 2. The map (4, u) - (U, W) determined
by the series (10) and (11) is analytic for | #| small
enough and may be analytically continued at each
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point (4, 0) from the closure of S. There this map
has the following leading terms:

N

U,,=2An+kzl Unitts TO(1 117, (12)
N 2
Wn=2A131+AE wnk#l\-"o(“‘l-)s (13)
=1
u _ 164, 4; (k#n), u,,=0
NA—Ai'—A,% s nn—\V s
484343
wnk"‘Az_A,;zl (k¢n)’ W,,,,=48A?,‘

This lemma follows from the explicit formulae
(10) and (11). The leading terms are given by the
summation in (10) over the elements {/, ,, 7', ...,
o, o' }eG.

Lemma 3. The sufficiently small parameters

=(uy, -, Un), uy>0, can be taken as coordinates
on a subdomain of #,(U°®), U°cZ". In other words
an analytic map u—A(u) exists such that the solu-
tions determined by (A(u), #) form a full-dimen-
sional subdomain in %,(U°). Furthermore,

W, w)| == a86,430)

EPR (14)

u=0

Proof. The series (12) is invertible with small y.
The equality U(A4, u) = U, due to the implicit func-
tion theorem determines A=A (u), and dA4/du=
—4dU/du. Tt gives

d 1 < dW,
— W, =W, - - -1
aﬂk H(A(u)il‘l) Whk 2 ; GA‘, Uek

and finally (14). The first statement of the lemma
follows from lemma 1.
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To complete the proof of the theorem let us sup-
pose that there is an expression of the form (8) iden-
tically vanishing on %,(U°). Then in particular it
vanishes on the subset of solutions with | u| < 1 dis-
cussed in lemma 3. Let us e-open the gap j preserving
(5). The obtained (N+1)-gap solution is charac-
terized by the parameter (4, ..., Un, ;) and the fre-
quency vector (W, W;). The functions W, can be an-
alytically continued to the point (x4, 0) and (7) gives

A1) =W,(1,0). (15)

Differentiating (8) with respect to u, we get

(W-s+24,)] =0.

u=0

A n

Together with (14) and (15) it gives A2s, =0 for all
n=1, .., N. Vanishing s proves (8). The same ar-
guments prove (9).

The authors are grateful for the hospitality of the
Max-Planck-Institut fiir Mathematik, Bonn, where
this work was done.
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