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An Infinitesimal Liouville—~Arnold Theorem as a Criterion of
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Abstract—We prove a criterion for the variational equation about a quasiperiodic solution of a
Hamiltonian equation being reducible to a constant coefficient equation. We discuss applications of
this criterion to the stability problem for lower dimensional invariant tori.

1. INTRODUCTION

The subject of investigation is a Hamiltonian vector-field H; on a 2N-dimensional
symplectic manifold (M, w), which is integrable on some invariant symplectic submanifold
JCM, dim7=2n<2N. So 7 is foliated into invariant tori T’ depending on an
n-dimensional parameter p e PCCR", and the flow on every torus T, is of the form
g =V,fo(p) (fo is a restriction of the Hamiltonian f to 7). Let (TF)* C TyM=
UmesT M be the (skew-)normal bundle of 7. If S, is a flow of Hy, then the normal
bundle (T=/)* is invariant for the tangent flow S,,. We call the restriction of S on (T)*
‘the flow of the normal variational equation (NVE) of H; along 77, and study the question:
under what conditions is this flow reducible to the flow of a linear equation with
coefficients independent of the point g € T'j, (so-called reducibility problem; see e.g. [1]). If
such reducibility occurs then in the ‘nondegenerate case’ =7 is ‘KAM-stable’. That is most
of the tori T, p € P, survive after a small Hamiltonian perturbation of the system (this
results from a perturbation theorem for lower-dimensional invariant tori of a linear system,
see [2-4]).

It is known that if no additional conditions are imposed then the NVE may be
non-reducible (see e.g. [5]). On the other hand, if in a neighborhood of 7 the conditions
of the ‘degenerate Liouville-Arnold theorem’ are fulfilled, then the vector-field H; is
integrable in the vicinity of 77 and NVE is trivially reducible (for the degenerate
Liouville-Arnold theorem see [2] and its bibliography).

Our aim in this paper is to obtain some criterion of reducibility of the NVE, which is a
rather straightforward infinitesimal version of the Liouville—Arnold theorem. In the
important case of codimension 1 (N = n + 1) this criterion gives as a test for reducibility
some zero-curvature equation.

We are most interested in elliptic invariant submanifolds 7. For such a 7 with reducible
flow of the NVE we give a definition of a frequency spectrum of the flow and formulate
the nondegeneracy condition sufficient for KAM-stability of 77 in terms of this spectrum.

When a previous version of this paper was done, I was informed that a result similar to
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theorem 1 had been proved by Ju. Vorobjov. See [6] for the statement of the result and its
applications to the quantization problem.

2. CRITERION OF REDUCIBILITY

We shall formulate the results in an analytic case. So all the manifolds and the mappings
are supposed to be analytic. Let the symplectic manifold (M, w) be provided with Riemann
metric dm (this is not a restriction due to the Grauert embedding theorem) and the
submanifold 7 is symplectomorphic to (T" X P, dpAdg), T"={q}. That is, /=
=o(T" x P) for an (analytic) map

Zp: T"X P—> M, Zqw = dp A dq.

Below we identify =7 with T" X P.

If S, is the flow of the Hamiltonian vector field H;, then the subbundles
T-M=Ups T oMCTM, TTCT;M and (T7)* C T7M (the skew-normal bundle to
T in T 7M) are invariant for the tangent flow § .

Definition 1. The flow S, of the NVE of the vector-field H; along -/ (together with the
underlying normal bundle (T)*) is called reducible if
(1) there exist a symplectic trivialization of the bundle (T )",
Tt x Px Y —> (T7)*
N / 2.1
7

where the fiber Y = Ri’" =R}, xRy, m=N—n, has the usual symplectic structure with
the form dy, A dy_.

(2) There exists an analytic symmetric 2m X 2m-matrix A(p) such that under this
trivialisation the flow S,. on (TZ)* corresponds on T"x PxY to the flow of the
equation

q= on(p), p =0,y =JA(p)y (2.2)

where J(y., y_) = (=y-, y+) (we use the same notation for operators and their matrices).
In the situation of the definition 1, we will say (with some abuse of language) that the
NVE is reducible.

Definition 2. The flow S, is called complex-reducible if its complexification in the bundle
(T7)*®3C is reducible in the category of complex symplectic bundles, with some
symmetric complex matrix A(p).

Proposition 1. If the bundle (TT)* can be trivialized [i.e. if there exists an isomorphism
® as in (2.1)], then some neighborhood of 27 in M is symplectomorphic to a neighborhood
0 of To=T" x Px {0}in T" x P X Y with 2-form dp A dg +dy. ndy_.

Proof. Let us consider the restriction on (T)* of the time-one shift along the geodesic
flow on TM and take its M-projection:

= (T » M, (x, E) - expi&,

for x €
O) € (Tg

is a line
=z=od ¢

Now |
'“’n X J

and (¢

Propt
(9. p

Proc

Her

on
The
eqt

As
tre
ite
ec




dits

ings
ann
the

lles
to

he

1)

th

1s
1e

ooy

An infinitesimal Liouville-Arnold theorem 261

for xe M, Ee (TJ);. Let (TF)¢ be the zero-section of (TF)*. Then for arbitrary (x,
0) € (T'); the tangent map

24(x, 0) : Teo(TN* = T, T & (T, ) = T.M (23)
is a linear symplectomorphism. So by inverse function theorem the restriction of the map
= 0 & on some neighborhood O' of 7y in T" X P X R" defines an isomorphism and

(Eo®)*w|y, =dp A dg +dy, Ady_.
Now by the relative Darboux theorem (see [7-9]) in a smaller neighborhood 0O of
T" x P x {0} there exists a change of coordinates V such that
V*ITy(M) =id (2~4)

and (Eo@oV)*a =dp Adg+dy, ndy_. B

Proposition 2. If the NVE for Hy along 7 is reducible, then in the symplectic coordinates
(g, p» y) from proposition 1

(g, p- y) = folp) + § < AP)y, y > + Oy (2.5)

Proof. Let us write f(q, p, y)asa series in y:
= 4. p) + (f'(a. p)y) + £ {fa. Py, ¥} + OWyD)- (2.6)

Here f' is a vector in R*" and f? is a symmetric linear operator. As the manifold
7 = {y =0} is invariant for the vector-field H,, we have f 1= 0; as the restriction of H;
on 7 is the Hamiltonian system with the Hamiltonian fy(p), we also have o= fo(p)-
Then the flow of the NVE along -/, for the system with Hamiltonian (2.5) is the one of
equations

g = Vfop), p =0,y = Jf*(q. p)y. (2.7

As Eq(x,0)|r 7 is identical map Vx € 7 and V.(m) is identical Vx € </, then the map )
transforms solutions of the system (2.7) into trajectories of the flow S rl(rmye- So by the
item (2) of definition 1 the set of solutions of equations (2.7) is equal to the one of the
equation (2.2). Thus f*(g, p) = A(p).®

In what follows for an analytic function g on M we write g(m) = o(dist(m, 7))°, p € Z,

p =0, if in every local chart Q on M with coordinates (x1, . . ., X,y ) We have:
\a —~ g(x)| = o(dist(x, TN Q) ey Vaez?, |af < p.
X
Theorem 1. Let fi, ..., fo be analytic functions in some neighborhood of -7 such that
fl = f and
(a) [f, film) = o(dist(m, 7))* Vj, k, (2.8)
(b) VgeT", pe P the vectors H;(d, P). - - H;(q, p) are linearly independent and are

tangent to T = {(q, p) € Jlp =P}
Then Vp, € P there exists a ‘neighborhood P, of pg such that the NVE for H, along
T, =T" X P, is complex-reducible.

Remark 1. The assumption (b) of the theorem results from (a) and the following three
assumptions:
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(i) f(m) = o(dist(m, 7)) VY,
(ii) Hess f(p) #0 :
(iii) Vg, p the vectors H; (G, P)s -+ H; (g, p) are linearly independent.

Indeed, by (i) the submanifold 7 is invariant for the flows S} of Hj, for all j and these
flows commute on J by (a) (see lemma 1 below). So a set
My ,=U ) ,110 -+ -08.(q, p) is invariant for S, for all (§, p) This set is n-dimen-
sional by (iii) and contains a closure of the trajectory of Hj starting from (g, p)- By (ii) the

last is equal to T for almost all p. So M4,=T5 V4, P and the vector-fields Hy,, .
H, are tangent to T5.

.« .9

Proof of the theorem. Let Si(j=1, ..., n) be the flows of Hj and S{'be the tangent

1

flows on TM. By the assumption (b) of the theorem the manifold (T'7)* is invariant for
SiVj.

Lemma 1. _Restrictions of the flows S’;‘on (TN, j=1, 2,..., n, commute. In particular,
the flows S!| ; commute.

Proof. We shall prove that the restrictions of the flows ($Hs on TyM commute. The
statement is local and it is enough to prove it in a local chart Q on M with coordinates (X,

..., xn). Let in this chart
Hp=V= (V',..,V¥?N), H; = W= (W, ..., w¥)

for some 1< j, k=<n, and TV: T™M — T(TM) be a vector-field of a variational equation

for V. Let (xy, .. Xon» E, .... &) be coordinates on TQ. Then
TV(x,E) = (V(x), Z 3/3,, V(x)&.) and the commutator [TV, TW] of the vector-fields TV,
TW is equal to

[TV, TW] = (E(Wk EAA E-YV—)

axk axk
3%V . OV awi 3*W . oW avi
x;0x; dx; Oxy dx;oxy dx; Oxy

The right hand side of the last equality is equal to T[V,W]. So
[TV, TW] = T[V, W] = THy; s,

and

[TV 7om. TWlrm] = THys, ralom

because the commutation of vector-fields is a natural operation with respect to imbedding.
By the assumption 28 H [fj‘fk](m) = o(dist(m, 7)). So the right hand side in the last
equality is equal to zero, the restrictions of vector-fields TV, TW on T7M commute and
the lemma is proved. W

Let us fix a point go€ 1", o= 0mod2nZ", and fix some analytic trivialization of the
restriction of (TZ)* on g X P,

(TT)*|gxe = P X E. 2.9)

For p e P, let (TT,)* be the restriction of (T'7)* on the torus T},. To prove the
theorem, it is enough to trivialize the symplectic bundle (T ,)* by a map which depends

on p in an analytic way, and to check that the restriction of the flow S, on (T ,)* is of
the form (2.2).
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Let (ey, ..., €,) be the usual basis of Z" and yi(q, p) =(q + te;, p). By lemma 1 and
assumption (b) of the theorem we can see that there exists a nondegenerate analytic matrix
D ;(p) such that

n

1 Swlr; =2vj (2.10)

=1

(this is the first step from the classical proof of Liouville-Arnold theorem, see [7, 8, 10]).
Let us denote by y; (p) the flow on (T ,)*,

X{,(P) = 11—11 (Sioj,)*, j=1,...,n.

—

These flows are well-defined by lemma 1. By (2.9) the monodromy operators x{;,,‘, i=1,
-+, 1, define linear symplectomorphisms of (T'77), , = E. By lemma A1 (see Appendix)

X (p) = ™ @2.11)

with some analytic on p linear Hamiltonian operators B/(p) in the complexification
E® = EQ3C of E (that is the matrix of B/ in E°=C, xC, is of the form B/ = JB/*);
here J is the matrix of the operator J(y., y.)=(-y-, y,) and B® is a symmetric
matrix). As the operators x{;,,', j=1,..., n, commute, their logarithms B/(p) commute as
well (these results, for example, from the representation (A3) for B/(p)). Now we can
trivialize the bundle (T'7,)* ® C with the help of the map

T" x {p} x E° - (T7,)* ®C,

(¢, p, & -1 xf,,-,(p)(O, P Hl e 1BUIE|, (2.12)
j=1 i=

The definition of this map is correct because the image does not change if the vector (91,
- .2 gy) is replaced by q, ..., q;x2m, ..., gq,). It is symplectic because every map
exptB/(p) : E°— E° and every flow x1,are symplectic. The map (2.12) depends on p in
an analytic way because matrices B/(p) are analytic. Let us define a map @ in (2.1) in such
a way that ®|ny(,xg: is equal to the map (2.12).
Let us write for brevity

. % ,
q - xp)=[1x.0). g Bp)=2 qBi(p).
From (2.10) we see that

Si.=tD7 « x (2.13)

here Dy is the first row of the inverse matrix Dj '. So if under the trivialization (2.12)
(T‘:]p)l- ®Cs n= (q7 P, E) and S},'Iz (ql, P El)’ ie. if

n<—(q. p, &
!
Stn<t— (g1, p, &),

then g, = ¢ + tD{ and
£, = e PPy o ((—1D] - q) - 2) © (D7 * 1)

°(q * 20, p, e™'%E) = (0, p, e BY)
(here Ily is a projection of (T'77,)* ® C),,=T" X Y on Y°).
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So (2.2) holds with A(p) = Di(p)-B(p) and the theorem is proved. B
An ‘almost inverse’ statement t0 theorem 1 easily results from proposition 2:

Proposition 3. If the NVE for H along 7 is reducible, p € P and P, is a small enough
neighborhood of p in P, then in a neighborhood of 7y=T" x Py there are n analytic

functions with the properties (a), (b).
To prove the statement it is enough to write the Hamiltonian f in a form (2.5) and to

choose f,= f, and for i=2 f(q, p y) = fi(p), where the vectors Vfi(Po), VfApo)s -+ -

Vf.(po) are linearly independent. ]
For the last proposition 2 natural question is whether the reduction of theorem 1 can be

done in the category of real bundles. This is true if in (2.11) the logarithms Bj(p) of the
monodromy operators can be constructed as real matrices. For lemmas A1, A2 this is true

if
() N (=01 = @ V] (2.14)
(o = spectrum) of if xﬁ',,t, j=1,...,nare replaced by their squares. The last takes place if
the tori T, are replaced be their 2"_sheets covering ‘doubled tori’
Ty = Tpdq — 2q.

This covering induces a bundle (T )i With the induced flow (S;+)ind in it.

Corollary 1. Under the assumptions of theorem 1, the bundie (T )ina can be trivialized as
a real bundle. For this trivialization the flow (S,%)ina 18 Of the form (2.2).
To realize the first possibility let us mention that (2.14) holds if

oxhs) € IR V. (2.15)

Definition 3. An invariant manifold </ is called linearly stable for a vector-field Hj, if all
the Liapunov exponents of every solution of Hjon 7 are equal to zero.

Lemma 2. Under the conditions of theorem 1 the assumption (2.15) holds if and only if
the invariant manifold 7 is linearly stable for every vector-field Hy (j = 1, ..., n).

Proof. Let us suppose that 77 is linearly stable ¥V Hy,, j=1,...,n Then by the definition

of the flows x’,"( p) for every €= 0 there exists C, such that
Ik 2an(P)l = Cee™ (2.16)

and so (2.15) is true.
Let us suppose that (2.15) holds. Then (2.16) is true Ve >0 with some C.. By (2.13),
(2.16) we see that sy ll=C leen and the same is true for all S]. So 7/ is linearly stable for

all Hy. &

Theorem 2. Suppose the invariant manifold =/ is linearly stable for H; and for some
po€ P H(po) #0- Then the NVE of Hy along Jo=T1"X% P, (Po is a small enough
neighborhood of poin P)is reducible if and only if there are analytic functions fi, - - -» fn
such that f;=f and the assumptions (a), (b) of theorem 1 are fulfilled for o= Tos

together with
(c) Tois linearly stable for all Hy, j=1, ..., 10

In such a case the spectrum of the operator JA(p) is pure imaginary.
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Proof. If the NVE is reducible then we can construct the functions f,, ..., f, as in
proposition 3. The manifold </, is linearly stable for all Hy. trivially.

Suppose now that the assumptions (a)-(c) are fulfilled. Then by lemma 2 the assumption
(2.15) holds and by lemma Al the matrices B;(p) (and, so, the trivialization ®) can be
chosen real. The last statement of the theorem is trivial because a system of the form (2.2)
is linearly stable if and only if the spectrum of JA(p) is pure imaginary. W

Remarks 2. Propositions 1, 2 and theorems 1, 2 have direct smooth versions with the
same proofs.

3. Our proof of theorems 1, 2 (but not of lemmas Al, A2) does not use the finite
dimensionality of the fibers of the bundle (T'7)*. If in (2.9) dimY =« and we have
sufficient spectral information on the flows S}, and can construct ‘regular’ logarithms B;(p)
of the monodromy operators x5.. [see (2.11)], then our proof is valid.

4. The reducibility of the NVE along -7, was proved via its reducibility along the tori
{(q. p) € 7|p = const}. So the proof can be used for proving the reducibility of a linear
Hamiltonian equation

Gg=ow,y=JA(q)y (qeT", yeY)

to a constant-coefficient Hamiltonian equation y = JAy by means of symplectic transfor-
mation y = C(q)y. This reduction is possible if in the phase space T" X R" X Y there are
functions flq,p,y) (j=1,2, ..., n) of the form f;= w;-p + 3(A;(q)y,y) such that
o =w, A=A, oA ... Aw,#¥0and Vj, k

3 (0, AKG) — § (0 V)A(9) + Ar(9)Ai(q) — Af(9)JAq) = 0.

5. In the special case n =1 we need no ‘infinitesimal integrals’ other than f, = f, and the
assumptions (a), (b) of theorem 1 are fulfilled in a trivial way. For n =1 theorem 1 and
corollary 1 coincide with the Floquet theorem (see [7]). For a less trivial example, see
Section 4 below.

3. ELLIPTIC CASE

Definition 4. The invariant manifold -/ is called weakly elliptic if the NVE of H; along -7
is reducible and operator JA(p) in (2.2) has pure imaginary spectrum {* id,(p)}. 7 is
called elliptic if it is weakly elliptic and operator JA(p) is complex-diagonalizable Vp € P.
One can treat theorem 2 as a weak ellipticity criterion.
Clearly, submanifold -/ is elliptic if it is weakly elliptic and 4,(p) # A,(p) for j # k.

Remark 6. Finite-dimensional elliptic invariant submanifolds of infinite codimension
appear in the study of nonlinear partial differential equations which are integrable in terms
of theta-functions. See [3], section 4.

For an elliptic invariant submanifold 7 the spectrum {+* ii,(p)} is not defined in an
unique way:

Proposition 4. Let the submanifold -7 be elliptic and the flow S,}; be nondegenerate:
detdw/3p # 0, w(p) = Vfy(p). (3.1)

Let us consider some another trivialisation of S, with ®' and A’ in (2.1) and (2.2) instead

of ® and A. Let o(JA'(p))={iy;(p)}. Then for every j there exist k = k(j),
s =5(j) € Z" such that
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wi(p) = £ h(p) + s~ (p) Vp. (3.2)

Moreover, every n numbers of the form w;(p) = Ai(p) + 5;- w(p), s; € Z", may be achieved
as a spectrum of a Hamiltonian operator JA'(p) for some trivialisation ®'.

Proof. Let {gi(p)}, <p,-‘(p)=5f(p), by symplectic basic of Y° such that JA(p)g; =
+iA(p)p;. Then the mapping ®":T" X PxY—(T5)", which maps (¢,p,¢;) to

exp (Fs;° q)(pf, j=1,2, ..., n, transforms the flow S, into a flow of an equation (2.2)
with an operator A’(p) such that

JA'(p)gF = *i(s;- w(p) + 4(P)@; Vi
Thus the second statement is proved. o
To prove the first one let us mention that @' 0 ®'(q + wt, p, e'i'@;*) is a solution of
(2.2) (here JA'g;* = =*ipg'*®). Let dltod'(q, p, ¢°)= Sxi(q,p)@i. Then the
solution may be rewritten as exp (iuit)fo(q + wt, p)g;. So

. + a + . +
ipxi + 3% xi = *ikxy Vk. (3.3)

Among the functions xi there are nonzero omes. Let us suppose that x ,fu(q, p) #0. By
(3.1) the components of the vector (@, ..., w,) are rationally independent for almost all
p € P. Then by (3.3) xi = C(p)expis - q for some s € Z" and p; = *A,, — s . Thus the
first assertion is proved, too. B

Let us consider a family of subgroups of additive group Z of a form w(p)-Z", p€ P,
and corresponding factor groups G(p) = Z/w(p) - Z". For a weakly elliptic submanifold 7
let us define elements A;(p), . . -, A.(p) of G(p) as follows:

A(p) = 4(p) + w(p)-Z" € G(p). (3.4)
The following definition is motivated by proposition 4.

Definition 5. 1f 77 is a weakly elliptic invariant submanifold, then depending on the p € P
set

A(p) = {£ AP, - £ Au(p)} C G(P)

is called the frequency spectrum of NVE.

The important reason to prove the reducibility of the NVE is proposition 2 which
provide a Hamiltonian f(q. p,y) with the useful normal form (2.5). For nondegenerate
Hamiltonians of the form (2.5) (see the condition (3.5) below) one can prove that the
family 7 = Z¢(T" x P) of invariant tori Z(T" % {p}), pe P, is KAM-stable in the
following sense:

Definition 6. A family of invariant tori o = Zo(T" X P) of the Hamiltonian vector-field
H; is called KAM-stable if for an arbitrary analytic function f and for £ small enough, the
vector-field H;. .y has an invariant set T, =2Z(T" x P,). Here

(1) P, is a Cantor-set in P and
mes (P\P,) — 0(¢ — 0),

(2) the map £.T" X P.—> M is Lipschitz and

dist (EE(T" X {p}), 2o(T" % {P})) <d(e)—>0(—0)

for all p € P
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(3) the tori Z,(T" X {p}), p € P,, are invariant for the vector-field Hp,y.

To prove the KAM-stability of 7 one has to apply a theorem on perturbation of a linear
system (see [2-4]) to the vector-field H; with f in the form (2.5) after a simple
space-dilation (see [3], Section 1). In such a way the following result may be obtained.

Theorem 3. Suppose the invariant manifold =/ is weakly elliptic for the NVE of Hy and
for the frequency spectrum of NVE we have

detdw/dp # 0, A(p) #FOVj, = Ai(p) # A(p) Vj # k. (3.5)
Then =7 is KAM-stable.

Remark 7. There is a natural smooth version of theorem 3. In order to prove it one has
to write down a smooth version of the perturbation theorem for lower-dimensional
invariant tori using the usual smoothing techniques of J. Moser. Clearly it is possible but
this work still has not been done.

Remark 8. In order to prove KAM-stability of -7 via a smooth version of the arguments
(see remark 7) it is enough to prove ‘KAM-reducibility’ of NVE. That is, for every 6> 0
we must be able to find a smooth trivialisation (2.1) such that in the equation (2.2) the
matrix A(p) does not depend on q if p lies out of some Cantor set of measure 6.

Remark 9. 1n [1] the hyperbolic situation was considered. It was proved that if the normal
bundle (T°7)* is trivial and the flow §,, has full Sacker-Sell spectrum then NVE is
KAM-reducible and -7 as a family of ‘doubled tori’ (see corollary 1 above) is KAM-stable.

4. EXAMPLE

Let N = n + 1 and suppose the symplectic Riemann manifold M is polarizable. Then the
bundles TM and T/ are trivial and so the bundle (T )" is also trivial. This results from
the fact that the symplectic bundles TM, T/, (T"J)* can be given complex structures (see
[7,10]) and that a one-dimensional complex bundle which is a factor-bundle of a trivial
complex bundle is trivial (see [11]). So by the proposition 1, in a neighborhood of 7 in M
there are symplectic coordinates (¢, p, y)(qeT", pe PCR", y= (y4, y-)e0C R?)
and 7 = {y = 0}. In this coordinates the Hamiltonians f,, ..., f, we are looking for, can
be written in the form

fi(q. p. y) = fX(p) + 5{A(q. p)y, y) + O(yl).
So [f;, fil = (ctylq, p)y. y) + O(y]*) with
Ay =L (V0 VA =V, fe-V,A) + AJA; — AJA,.

Let us denote

fo? =w;(p) = (W}, ..., w;,) € R",
ti(p) = JAi(p) € sl(2) = sI(2,R).
The assumptions of theorem 1 are fulfilled if we can construct the functions f;, ..., f, and
the matrices ¢#(, ..., ¢f, € s[(2) in such a way that f, = f, and «f, = JA, (fy, Ao are
given), for every p € P the vectors w,(p), - .., w,(p) span R" (i.e. w; A ... A @, #0),

and




268 S. B. Kuksin

J(?'Z"k = (wj'vq)("’lk - (wk 'Vq)("ll' + [('7{k, (‘[]] = 0 (4.1)
Vi, k=1,

Let us suppose that Hess fo(po) #0 and, so, near po the map p+— @=Vfy(p) is
invertible. Then to prove KAM-reducibility of NVE (see remark 8), by remark 4 we have
to construct smooth vectors w; = w;(w) and smooth matrices «#;(g, @) (j=2, - - n)
which solve equations (4.1) with @, = @, ¢ 1, = (g, p), Vi(p) = @, for w out of a set of
small measure & in such a way that

PR (N

Y

w, A...Aw, F0. 4.2)

In particular, if n= 2, then we have to find a vector @, and a matrix « 4,(q) € s/(2) such
that

((0‘ 'Vq)(‘"flz - ((Hz'Vq)(”Il + [("f‘lz, (7;[1] = 0, W, N Wy #* 0 (4.3)
(the last relation excludes the trivial solution «#, = A+, 02 = Awy).

The equation (4.3) is the equation of zero curvature (see [12]) with non-standard

periodicity conditions (that is, the periodicity is not with respect to the directions w;, Wz,
but to some other directions). Well-known gauge transformations [12]

Ay = (- V)GG™! + GG
A, = (0,-Y,)GG™ + Gct,G™!

(G=G(q) is an analytic symplectic matrix) transform solutions of (4.3) into new ones. It
provides a means to construct new solutions of (4.3) from the trivial ones.
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APPENDIX: ON LOGARITHMS OF ANALYTIC SYMPLECTIC MATRICES.

Let Cp. pe P. be a symplectic matrix of order 2m analytic on p. Let for some pge P the matrix Cp, be
invertible.

Lemma Al. There exist a neighborhood Py of pg and an analytic complex matrix B,. p € Py, which is a branch
of Ln Cp,:
r

exp B, = C,. (A1)
The matrix is Hamiltonian

(JB,) = (JB,)' (A2)
and may be chosen real if the spectrum o(C ;) contains no real negative points.

Proof. As o(Cp,) $ 0, there exists a contour I' C € such that o(C py) lies inside T and 0 lies outside T'. The same
is true for o(C}), p € Py if P is small enough. For 4 € T let us fix some branch In 4 of Ln A and set

1 § Ind
= e - dA. A3
Bp 2mi A Cp - A ( )

Then exp B, = C, (see [13], Ch. VII) and so (Al) is proved. To prove (A2) let us mention that:

(1) the operator B, in (A3) depends on C), in a continuous way:

(2) single-spectrum symplectic matrices are dense among symplectic matrices (e.g. because symplectic matrices
form a connected analytical manifold [7,10] and double-spectrum matrices form there a nontrivial analytical
subset):

(3) a single-spectrum symplectic matrix is diagonal in some symplectic basis and for it (A2) is evident.

So it remains to prove the last statement. It is well-known [7, 10], that for an invertible symplectic matrix C, the
spectrum  o(C) consists of pairs of points 4, A~1(AeR); pairs of points A, A(|A|=1) and quadruples
MAATLAI-1(Ae C\R,JA| # 1). So in the present situation o(Cp) =51 U (52U 83), where S, = (4;} CR,,
S;={u;} C{AlmA>0}. Let us take a (nonconnected) contour Iy of the form Fp=U y TA)u i
[T(u;) U — T'())). Here T'(4;), I'(y;) are small circles centered at A;, y; (thus I'(4;)= I'(A;) VA;). We can do it in
such a way that g N (—,0] = ¢, and so we can take for In z a branch of Ln z which is real for 1 e R,. With
such a choice of ' in (A3) one can see in a trivial way that B,=B, @

Lemma A2. Under the assumptions of lemma Al there exists an analytic real Hamiltonian matrix B p» PE Py
such that exp B, = C%, p € Py.

Proof. Let T'eC be a contour containing all negative eigenvalues of C, and no other eigenvalues. Then for
P € Py (Pq is small enough) there exists a smooth splitting B2 into two invariant for C, symplectic subspaces,
R2m = E, @ E,, such that the spectrum of Gl E, is negative and lies inside I' and the spectrum of C"Iﬁ’ lies
outside I' and out of (—,0]. Then by lemma Al C,|g, = exp Bﬁ,z) for some real Hamiltonian operator B'?), and

|
(CplE,)? = exp BY). Now we can take B, = B ® ZB?’. This operator has all the properties we need. 8




