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The nonlinear Klein-Gordon equation on an interval as a perturbed 
Sine-Gordon equation 

ALEXANDER I. BOBENKO and  SERGEJ B. KUKSIN 

Abstract. We treat the nonlinear Klein-Gordon (NKG) equation as the Sine-Gordon (SG) equation, 
perturbed by a higher order term. It is proved that most small-amplitude finite-gap solutions of the SG 
equation, which satisfy either Dirichlet or Neumann boundary conditions, persist in the NKG equation 
and jointly form partial central manifolds, which are "Lipschitz manifolds with holes". Our proof is 
based on an analysis of the finite-gap solutions of the boundary problems for SG equation by means of 
the Schottky uniformization approach, and an application of an infinite-dimensional KAM-theory. 

Introduction 

The  pape r  is devoted  to smal l -ampl i tude  so lu t ions  of  the n o n l i n e a r  K l e i n -  

G o r d o n  e q u a t i o n  

u ,=uxx- -mu+f(u) ,  u=u(t,x),  0 < x  <re ,  (1) 

where  m > 0 a n d  f is a n  analyt ic  func t ion  o f  the form 

f(u):~u3+O(lul'), ~ 0 ,  (2) 

at  zero. 

This  a s s u m p t i o n  is fulfilled, in par t icular ,  if f is an  odd  func t ion  such that  

f"(O) r 0 a n d f ' ( 0 )  = 0 ( the  lat ter  is a n o r m a l i z a t i o n  - we abso rbed  a l inear  par t  o f  

f to - m u ) .  
The  cases u > 0 a n d  ~ < 0 can  be t rea ted similarly.  Below the case 

• > 0  (2 ' )  

is cons idered .  We  discuss the changes  one  should  m a k e  to hand le  with negat ive  

at the end o f  the in t roduc t ion .  

The first author was supported by the Alexander yon Humbold Foundation and the Sonder- 
forschungsbereich 288. 
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The assumptions (2), (2') hold for many important equations of  mathematical 
physics. In particular, for the cp4-equation 

Utt  --~" U x x  - -  m u  -Jr x u  3 

and for the S ine-Gordon  equation 

Utt  -~  UXX - -  sin u, 

where now m = 1, u = 1/6. 

o r  

((p4) 

(SG) 

We consider equation (1) under Dirichlet or Neumann boundary conditions: 

u(t,  O) = u(t ,  n)  =-- 0 (D) 

ux( t ,  O) = u.~(t, 2z) =- O. (N) 

The results and the proof  in (D)- and (N)-cases are parallel. So we mostly restrict 
ourselves to the Neumann problem and give a brief reformulation of the main 
results for the Dirichlet problem. 

To simplify the formulas we suppose that m = i; by a trivial rescaling of u in (1) 
we can achieve • = 1/6. So below 

m = 1, u = 1/6. (2") 

The equation ( 1 ) + ( N )  (as well as ( 1 ) +  (D)) defines a dynamical system in the 
phase-space Z of pairs 0(t, x) = (u(t,  x), v = u(t, x))l (Z should be given some 
Sobolev norm II" [[, for example, one can take Z =/r ~ ) x  L2(0, rt) in the 
Dirichlet case). The equations (SG) + (N) and (SG) + (D) are well-known to be 
hamiltonian: one should supply the phase-space Z with the symplectic structure 
given by the 2-form co2, 

c02((ul, v,), (u2, v2)) = ~0" (ul v2 - v~ u2) dx, 

L In fact, for technical reasons in the main part of the paper we use as the phase-vector of the 
equation the pair U = (u(t, x), (~2/~x2 + 1) - IJ2,~(t, x)). In the intrqduction for the sake of simplicity we 
present trivial reformulation of  the results in terms of  the phase-vector (_7. 



( v2 + mu 2 + u 2) 

where F,  = f .  
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and consider the hamiltonian 

+ F(u) )  dx, 
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Let us consider the linear K l e i n - G o r d o n  equation, which describes infinitesimal 
oscillations in (1): 

u,  = Uxx - u. (KG)  

The equation ( K G ) + ( N )  is a linear oscillating system with the frequencies 
0", I*, 2* . . . . .  where we denote 

j*  = x/ j  2 + 1 

(if in (1) m # 1, then the frequencies j*  will change. In the main text below we 
discuss how this affects our results). The solutions with frequency j*  have the form 
(uj, vj), where vj = ~j and 

uj(t, x) = / j  s inj*(t  + epj) cosjx ,  /j > 0. 

Fix any n > 1 wave-numbers j, 

j ~ V  = {V ~ . . . . .  V ~ c ~ u { 0 } ,  (3) 

and consider superpositions (= sum s)  Un=(Un, V n) of  solutions (uj, vj) with 
j e V, u n = u~ + �9 �9 �9 + u,, v ~ = v~ + �9 " �9 + v~. They are time-quasiperiodic solutions 2 

O* of  ( K G )  + (N) with the frequency vector co = (V ~ . . . .  V, ). Altogether the solu- 
tions 0 N fill the 2n-dimensional linear subspace E 2~ of  Z, 

E2n.'= span{(cos V~ 0), (0, cos V ~  = 1 . . . . .  n}. (4) 

Each solution 0 ~ lies in an invariant torus Tn(I), where dim T~(I) = n if a l l / j  > 0. 
So the space E 2" is foliated into invariant tori and 

E 2 ~ ' ~ R  ~ x T ~. (5 )  - + 

2 We recall that a solution 0 : ~ ~ Z is called quasiperiodic with n frequencies if there exists a 
continuous map Z : T ~  Z and an n-vector w, called the frequency vector of  the solution, such that 
O(t) ___ Z(o0. So the solution 0 lies in the invariant n-torus Z(T~). 
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We are going to attack the following problem: do the small-amplitude solutions 
0"  and the invariant tori T~(I) of the linearized equation persist in the equation 

(1) + (N)? How do solutions of  (1) + (N) behave near the tori? The question looks 
rather naive - even in the finite-dimensional situation the behavior of  the perturbed 
linear hamiltonian system can be very complicated (see e.g. [M]). Still, the purpose 
of our paper is to prove that the answer to the first question is "mostly affirmative" 
and that the surviving quasiperiodic solutions are linearly stable. In fact, the 
persistence of  the quasiperiodic solutions 0 ~ has the natural explanation: under the 
assumptions (2), (2") we have 

--u + f (u )  = --sin u + O(lup), 

so small-amplitude solutions of (1) can be approximated by solutions of the 
(SG)-equation, which is known to be integrable! 

The final results of  our analysis are given in Theorem 6.2. In a somewhat 
simplified form they can be stated as follows: 

THEOREM.  For each invariant subspace E 2~ as in (4) there exists a subset 
ff~ c E 2n ,'~ ~n 7Y ~ o f  the form ff~ ~- 371 • -~; a Lipschitz map ~ : ft, "~ M x ~" ~ Z,  - -  + X 

analytic in q ~ -~,  and a Lipschitz map W : M ~ ~ such that 
(i) the subset E ~ E 2~ has unit density at zero3; 

(ii) the curves t ~ ~(t~, D + tff '(#)), where (1~, D) e ff~, are quasiperiodic solu- 

tions o f  (1) + (N). All Lyapunov exponents o f  these solutions are zero; 

(iii) the set ~-2~= ~ ( ~ )  has a tangent space at zero, coinciding with the space 
g 2n, 

By the last assertion of the Theorem one can treat ~ - 2 n  a s  a partial central 

manifold of  (1) + (N), corresponding to the invariant subspace E 2n of the linearized 
equation (KG)  + (N). 

In particular, taking n = 1 we obtain 

COROLLARY.  The equation ( 1 ) +  (N) has time-periodic solutions, forming 

infinitely many families. The fami ly  number j consists o f  solutions with the frequencies 

close to j*; these solutions are parameterized by the points o f  some one-dimensional 

set o f  positive Lebesgue measure. 

3 That is, the intersection of g with the 6-ball centered at zero fills most part of the ball when 6 ~ 0. 
See Part 6 for the exact definition. 
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Altogether the manifolds ~-2,, n = 1, 2 . . . .  , are "infinitesimally dense" at zero: 
the union of their tangent spaces at zero is dense in ToZ ~-Z. So their union 

= w ~ z ,  is a linearly stable set which is "dense near zero" - it intersects each 
open nonempty cone with the vertex at zero (see Part 7). Sufficiently small solutions 
of (1) + (N) are close to ~ ;  for a long time they follow quasiperiodic solutions in 

and look "regular". The phenomenon of regular behavior of small-amplitude 
solutions of (~o 4) + (N) is well-known from numeric experiments [ZIS] (for some 
time there was a hope that this equation is integrable). 

The proof  of the Theorem goes as follows. We start with an analysis of 
time-quasiperiodic (=finite-gap) solutions of (SG) + (N) of small amplitude p ,~ 1 
and prove that they form smooth submanifolds j -2 ,  of the phase-space Z with the 
tangent spaces at zero equal to the spaces E 2n. Next we study linearizations of the 
(SG) + (N) equation on the solution in q-2~ and show that these equations can be p 

reduced to constant-coefficient linear equations. After this an application of the 
KAM-theory for infinite-dimensional systems (see [KI, K4]) 4 proves persistence of 
most of the (SG)-tori in the equation (1) and complete the proof. 

The equation (SG) has well-known finite-gap solutions, given by the theta- 
formula 

u(t, x; X, D) = 2i log O(i(Vx + Wt + D + A)), (6) 
O(i(Vx + Wt + D)) 

obtained first by Kozel and Kotlyarov [KK] and Its (see in [Mat]). The solution (6) 
defines (and is defined by) its spectral curve X which is a hyperelliptic Riemann 
curve with a real involution. In general any hyperelliptic curve X with a real 
involution determines a solution of the SG equation. Moreover, there are usually 
many connected components of the solutions corresponding to the same X, which 
makes a general picture rather complicated (for details see [BBEIM, DN, EF]). The 
picture simplifies if we consider only small-amplitude solutions. In this case the 
genus g of the curve equals the number of nontrivial spectral branches of the 
corresponding L-operator (see [McK, EFM, BBEIM]); the branching points of X 
are {0, ~}w{2~,)-{~;. . . ;2g,2g},  where 2 j ,~  ( j =  1 . . . . .  g) are the edges of  the 
nontrivial spectral branches. The vectors (21 . . . . .  2g) E C ~ - t ~  2g and D e T g are 

parameters of the solution. 
The analysis of the formula (6) we give in Part 1 (following [Bo] and [BiK]) 

shows how to single out among the g-gap solutons (6) real-valued 2n-periodic 

4 For the classical finite-dimensional KAM-theory see e.g., [A2], [M] and [P]. 
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solutions, which are even or odd in x. The solutions from the first group satisfy 
Neumann boundary conditions, and from the second group - the Dirichlet. More- 
over, solutions 0 = (u, ti) of ( S G ) +  (N) thus obtained form 2n-dimensional ana- 
lytic varieties j -2 ,  = Z, n = [g/2] + 1, and similar with the solutions of the Dirichlet 
problem. The solutions in ~--2, of an amplitude < p  form a smooth analytic 
manifold .q-2, foliated to invariant tori of  (SG) + (N)" 

oq'~"= U T"(X),  (7) 
x = x(~) 

where an n-dimensional # parameterizes all the curves X giving rise to solutions (6) 
which satisfy (N). 

The tangent spaces to the manifolds .y-2n at zero are exactly the spaces E z" as - -  p 

in (4). So the spaces E 2" (or, equivalently, the vectors V as in (3)) parameterize the 
manifolds -q- 2, 

The manifolds .~2, are symplectic submanifolds of Z and (SG) + (N) restricted p 

to oj-2, is an integrable hamiltonian vectorfield with a singularity at zero. We prove 
(with some efforts) the following statement which substitutes the Liouville-Arnold 
theorem for systems with singularities" in .q-2, there exist analytic Darboux coordi- - -  /9 

nates (p, q) such that the hamiltonian of the system on .~2, depends only on the - -  p 

actions p2 + q2, j = 1 . . . . .  n. 

Next we study linearization of the equation (SG) about the solution (6): 

vtt = Vxx -- (cos u(t, x))v. (LSG) 

The integrability of the (SG)-equation exhibits itself in the linearized equation in 
the following way: the equation (LSG) has infinitely many complex x-periodic 
"Bloch-like" solutions #+ (t, x), v~ (t, x) of the form 

(#• , ffl+_)(t, x )  = e ~ i W J ' ~  (W"t  + D")(x), j = n + l, n + 2 . . . . .  (8) 

where W" and D" are the vectors formed by the first n components of the vectors 
W and D from (6); the frequencies wj and the functions ~ (D")(x) depend on the 
curve X(#). The even in x parts of (8) give solutions of (LSG) + (N) of the same 
form but with ~ replaced by ~ ( x ) =  ( ~ ( x ) +  ~ ( - x ) ) / 2  ~ Z. 

Critical for the perturbation techniques we are going to apply to the manifolds 
3 -~ ,  as well as for the subsequent investigation of the manifolds, is the following 
nonresonance property: 

W " ' s + w j ~ O ,  W " ' s + _ w j + _ w ~ O  (9) 
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as functions of the curve X, for all s e Z ~ and all j ~- k (see [K4, Part 4) for a 
discussion of the relations (9)). 

Relations (9) as well hold for the (SG)-equation under Dirichlet boundary 
conditions, but not under the periodic ones! In the latter case the frequencies w s go 
in pairs wj_+ in such a way that [wj+ - w s_ [ < exp - j / C .  So the periodic boundary 
conditions are asymptotically resonant and our techniques can not be applied there. 

Our calculations also prove the nondegenerate amplitude-frequency modulation 
for solutions forming the manifold .~-2,. 

det a W"la# I~ = o v ~ O. (10) 

Thus, the vectors W ", corresponding to the solutions (6) of (SG) + (N), form an 
n-dimensional domain. 

The nonresonance and nondegeneracy relations (9), (10) jointly with asymp- 
totics for the solutions (8) as j ~ o o ,  allow us to prove that for fixed D",/~ the 
vectors { ~  (D n, 11) ]j > n + 1} forms a skew-orthogonal basis of the skew-orthog- 
onal complement in Z to the tangent space to 3-~ ~. Next an application of an 
abstract theorem from [K2-K4] supplies us with a symplectic coordinate system 
(q, p, y) in a neighborhood of .q-2~ in Z, such that y varies in a symplectic subspace - -  p 

Y c Z of codimension 2n; the manifold {(q, p, 0)} equals J ~ "  with the Darboux 
coordinates (q, p) in it, and the hamiltonian of (SG) + (N) in these variables equals 

h(1) + ~ ( A( I)y, y )  + h3(q, p, y). (11) 

= ~(pj + q~),j = 1 . . . . .  n, are functions o f p  only; h 3 = o(lly [13), the opera- Here / j  1 2 
tors A(I) are diagonal in an /-independent basis of Y and the hamiltonian linear 
operator in Y with the hamiltonian �89 y )  has the frequencies {wj(I)}, where 

wj are the same as in (8). 
Now an infinite-dimensional version of the KAM-theory from [KI] can be 

applied to prove that most of the tori {I = const, y = 0} (which are exactly the tori 
T"(X(#)) written in the new variables) persist under perturbing the equation by 

higher-order terms, thus proving the Theorem. 
In fact, the invariant Lipschitz manifolds ~ 2 ,  from the Theorem "remember" 

that they are perturbations of the manifolds 3-~ " (not the spaces E 2" only): 

AMPLIFICATION. At the set {(p, q) ~ E2" l p} + q] < 2p 2} c~g the map .~ is 
close to the map Oo parameterizing the manifold J '~" : I l l ,  p, q) -  o<p, q)ll --- 
O[(p, q)l 3-" for each e > O. Thus, at zero the Lipschitz manifold ~-2~ has a 

second-order tangency with .q- z, v p , 
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The analytic manifold oq -2" is a partial central manifold of  the integrable 
equation (SG) + (N), corresponding to the invariant subspace E 2" of the linearized 
equation (KG) + (N). The Theorem states that the equation (1) + (N) has a partial 
central manifold which is a "Lipschitz manifold with holes" and the Amplification 
states that at zero this manifold is well-approximated by j-2, .  

Now we briefly discuss equation (1) with x <0 .  Suppose for simplicity that 
m = 1. We can rescale u to achieve u = -1 /6 .  Then 

- u  + f ( u )  = -s inh(u)  + O(lup), 

and (1) is a higher-order perturbation of the S inh-Gordon  equation 

Utt = U x x  - -  sinh u .  

This is again an integrable equation similar to (SG) but simpler than the latter 
(because the L-operator for this equa t i on -  not for the ( S G ) I -  is selfadjoint). So 
we can proceed exactly as above to construct the finite-gap manifolds filled with 
solutions of the equation under (N) or (D) boundary conditions; to put the 
equation into the normal form (11) in the vicinities of the manifolds and to apply 
the infinite-dimensional KAM-theory. As a final result of the analysis we obtain 
that both the Theorem and the Amplification also hold for n < 0. 

Now we turn to a comparison of our theorem with the known results. In our 
work we study persistence of small-amplitude finite-gap solutions of  an integrable 
equation under higher-order at zero perturbations of the equation. Persistence of 
finite-gap solutions of order one under small perturbations of the corresponding 
integrable equation was proved before. See [K2] for an abstract theorem and its 
application to nonresonant families of finite-gap solutions of the KdV equation and 
see [BoK1] for a proof  that in the KdV case all the finite-gap families are 
nonresonant; see [BiK] for the perturbed (SG) equation 

u,, = uxx - sin u + e~o(u). 

The results of  the present paper essentially depend on the local (near zero) 
theory of finite-gap manifolds ~ ,  based on the Schottky uniformization. It turns 
out that zero is a rather complicated point of the finite-gap manifolds (as far as we 
know, even smoothness of the manifolds f ~  at zero has not been proved before 
our work). Still, large-amplitude finite-gap solutions of the (SG)-equation possess 
some additional properties with respect to the ones of small-amplitude solutions. To 
present a more complete picture of the (SG)-equation and its perturbations we end 
each part of the paper with a brief discussion of the corresponding properties of 
large-amplitude solutions, following [BiK]. 
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Results similar to ours were known for the nonlinear string equation with a 
"typical" potential V(x), 

u,, = Uxx - V ( x ) u  + e f ( u ) .  (12) 

It was proved [K1, K4] that if the potential V(x) depends on an n-dimensional 
external parameter in "a nondegenerate way", than for most values of the parameter 
time-quasiperiodic solutions of the linear equation (12) K=0 with < n frequencies 
persist in (12) (the equation should be supplemented by (D) or (N) boundary 
conditions). Similar result was obtained by Wayne [W] provided that the potential 
V(x) is random and the funciton f(u) satisfies (2). See in [CW] another approach to 
prove persistence of time-periodic solutions which is also applicable to the equation 
(12) under periodic boundary conditions. 

Time-periodic solutions of (1) + (N) and (1) + (D) have been studied by many 
authors (see survey [Bre]). Still, results of the Corollary also are new: in the previous 
works under different restrictions on the nonlinear term f(u) of the equation it was 
proved that the equation has a countable family of time-periodic solutions. We prove 
that the time-periodic solutions form infinitely many one-dimensional families. 

Notations 

We denote by D2p ~ and D~ the polydisc of radius p and its complexification: 

D~"={(p ,q )~2"[p~  +q~ <2p}, D~={p,q)~C~"llpj[2+lqj[2<2p}; 

1 2 by/~j we denote the actions/~j = ~(pj + q~) and by M ;  and M~ the polydisc in the 
action-representation and its complexification 

M~- = {/z e ~+ [0 <'#j < p}, M; = c" I I ,Jl < p}. 

By C, C~ etc., we denote different positive constants in estimates and denote by 
p, p'  positive radii of manifolds Y'o, different in different parts of the text (so the 
manifold Yp in Part 1 is larger than in Part 6). 

1. Small-amplitude finite-gap solutions of boundary-valued problems for the 
Sine-Gordon equation 

We consider the Sine-Gordon equation 

u. = Uxx - sin u (SG) 
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under Neumann 

u'( t ,  O) - u' ( t ,  ~) =- 0 (N) 

or Dirichlet 

u(t, O)=u(t, n ) = 0  (D) 

boundary conditions. 
In a contrast with the tradition we treat (SG) as a system of first order (in time) 

equations not for pairs of functions (u(t, x), u,(t, x)), but for the pairs (u, A -~/2u,). 
Here A is the differential operator -02 /~x2+ 1, supplemented by the boundary 
conditions (N) or (D). The operator A is positive selfadjoint, so the square root 
A 1/2 and its inverse A-,/2 are well defined. We write down (SG) + (N) (or +(D))  

a s  

,~ = - , , / J~ ,  ~ = , , / - J ( , + A  - ' ( s i n u - , ) )  (1.1) 

(the function v can be excluded from the equations; after this reduction we obtain 
for u exactly the (SG) equation). The linear part of equations (I.1) is symmetric 
with respect to u and r, which is convenient for our analytic tools. 

We denote 

U(t, x) = (u(t, x), v(t, x)) 

and observe that the first component u(t, x) contains all the information about the 
solution, because v = - A - '/2tL 

We start with some basic facts from the finite-gap theory of the (SG) equation 
(see [McK, EF, DN, BBEIM] for the proofs and details). Let X = {P = (;t, #)} be 
the hyperelliptic Riemann surface of  the polynomial 

g 

2 = 2  I-I (2 - - ,~ , ) (2 - -~ ) ,  (1.2) 

where 2 ~ , . . . ,  ;tg are pairwise different complex numbers from the upper half-plane 
C+ (we restrict ourself to the solutions with complex branching points because the 
small-amplitude finite-gap solutions we are interested in are of this type). We denote 
the hyperelliptic involution and the conjugation involution as follows: 
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Let us make on X the cut Y0 = [0, ~ )  and the cuts Yi, i = 1 . . . . .  g, where ~i is a 
path from ,~ to 2i; let us choose the canonical basis of  circles (ai, hi), i = 1 . . . . .  g, 
on F in such a way that the circle a / sur rounds  the cut 7j (see Fig. 1), and fix a'basis 
of  holomorphic  differentials dco~ . . . . .  de~g of  X normalized by the conditions 

f ,  co~ = 27zifi,,j, . . . . .  g. j ,m  1 
m 

The Riemann matrix B = (Bin/), 

B,,,j =~. foi, j ,m  = 1 , . . .  ,g, 
d o  m 

defines the theta-function 0, 

(' ) O ( z I B ) = ~ e x p  ~ ( B m ,  m ) + ( z , m )  . 

This function has the matrix of  periods (2~iI, B). 
The function x//2 is not single-valued on t". To  correlate the local parameters 

x /~  at the points 2 = 0 and 2 = oo we should fix a branch o f  x /~  on X. This branch 
is fixed if a contour  2 '  on .g is specified, where ~ has a jump alternating its sign 
(x//2 is analytic on Jf - ~ and boundary values of  x /~  at two edges of  2, ~ differ by 
a sign, x /~  1~§ = - x / ~  I~_).  We choose ~ to be a union (see Fig. 1) of  the 
contours surrounding the cuts ~i, which are mapped to ~,j's by the projection 
(2, ~t)--* 2. Let us consider the Abelian differentials dt2~, dr20 with zero a-periods 

( 
bs§  I 

w 

Figure 1. The spectral curve with the canonical basis. 
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and such that  dt2oo has the only pole in oo and dO o has the only pole in zero: 

df2oo(P) = d ( x / ~  ) (P ~ oo), dt2o(P) = d ( ~ 2 ) ( P  ,0) .  (1.3) 

We denote the b-periods o f  dOoo, dO o as B ~176 B~ 

Bff, ~ = ~ .  dl2~'~ 

and define the vectors 

1 1 v = fi (Boo - 8 %  w = ~ (Boo + B~ 

The ant iholomorphic  involution z2 acts on the basis o f  the cycles and on the 

local parameters as follows: z2a~ = a~, ZEb~c = - b , r  + aK, z * x / / ~  = --X//~. These re- 
lations imply 

z* df2oo= -dOoo,  z~ df2~ = - d r 2  ~ 

and prove the realvaluedness o f  the g-vectors V, W. 

The finite-gap (theta functional) solutions o f  (1.1) are given by the formula 

O(i(Vx + Wt + D + A)) 
u(t, x; 2, D) = 2i log , (1.4) 

O(i(Vx + W r +  D)) 

where 2 = (2~ . . . . .  2g), V = V(/.), W = W(2); iA = i (Tz, . . . ,  n) is the vector of  the 
half-periods and D ~ q]-g = ~g/2rc2~* is the phase o f  the solution. 

The construction just described assigns to each vector 5 2 = ()-t . . . . .  2g) E 9J/g, 

where 

~ *  = {(;., . . . . .  ;.,) I ;~J ~ c + ,  ;.j ~ ;.k vj ~ k}, (1.5) 

the toroidal family o f  the finite-gap solutions (1.4), where the phase D varies in the 
g-torus.  

s In fact, to each set {).1 . . . . .  2g}. With some abuse of notations we do not distinguish a vector 
(21 . . . . .  2g) from the set {21 . . . . .  ,;.g}. 
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For it e ~O/g we denote by it ~ e ~lJ/* the g-vector with the inverse components, 
(it-l)j = (2 j ) -~ , j  = 1 . . . . .  g, and denote by ~0f~gy m a set of  all it ~ ~01 g such that 

1211 < 1 . . . . .  12,1 ~ 1 and i t - l=~Sas  sets, 

where 

Since all 2j's are different, t h en  

[2nl=l  Vite~0/g i f g i s  odd. 

We denote by T3 the g x g matrix 

I 
T 3 =  . 

. o .  

1 

LEMMA 1.1. Suppose that it e ~Ol~y m. Then the solution (1.4) is even in x i f  

1) = T3 D and is odd i f  17 = T 3 D + (re . . . . .  rr). Besides, T3 W = W, T~ V = - V and 

the vectors V, W are given by the formulas  Vk 1 ~ =z(Bk - - B • + l - k ) ,  Wk = 
1 ~(Bk + Bg+ l - k). 

For a proof see [Bo, BiK, BoK2]. 
A solution U = (u, v) of (1.1) satisfies Neumann boundary conditions (N) if it 

satisfies "even periodic" boundary conditions with the doubled period: 

U(t, x)  = U(t, x + 270, U(t, x)  = U(t, - x ) .  (EP) 

Similarly U(t, x)  satisfies Dirichlet boundary conditions (D) if it satisfies the "odd 
periodic" boundary conditions: 

U(t, x)  =- U(t, x + 2n), U(t, x) =- - U(t, - x ) .  (OP) 

By Lemma 1.1, to extract from the set of even (odd) solutions (1.4) the 
solutions of  (SG) + (OP) ((SG) + (EP)) we should solve the equation 

(V,  . . . . .  Vg)(it) ~ 7Z* (1.6) 
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for 2 e ~/sgym . We start an analysis o f  this equation with simple small-gap limits for 
V and W vectors when ;t e ~O[~gy m tends to a real vector i with positive components:  

V(it) , V~ wOO , W~ as it , ! e R~,  

where 

V~ = V~ - 
W?(l) = wo(6 )  = ~ + (1.7) 

g (see [McK,  EFM] and Theorem 1.2 below). As 2 ~ ~J~sym, then for the limiting 
vector 1 we have: 0 < l~ . . . . .  l, -< 1 < l, + l . . . . .  lg. 

We suppose that all components  o f  the vector I are different. Then, after 
unessential reordering o f  the first and the last n o f  them, we have: 

o < l .  < . . .  < l ,  ~ 1 < l ,  . . .  < 1 . + , ,  6.t~+,_:=I vj. 

After this reordering the components  o f  the vector Vo are increasing: 

v ~  ~  ~  ~ ~  ~ 

As a suitable parameter  for the families o f  solutions we choose the integer n-vector 
v _ ( v  o, v o, o . . . .  , V,), varying in the set ~ g ,  where n = n(g) and 

~v'g = {V = (VI . . . . .  V,) ~7/" I V, > . . - >  V, > 0 ,  V~ = 0  i f f g  is odd}. 

For  V E ~ g  fixed we denote 

N .  = ~ . ( v )  = ( ~  u { 0 } ) \ {  - v ? . . . . .  - v~ }. 

We treat V = { -  V ~ . . . . .  - V ~ } and N, as the lists o f  open and closed gaps o f  the 

solution (1.4). 
By (1.7) components  W ~ o f  the limiting vector W ~ have the form 

= ( ~ ) * ,  l ~ j ~ g ,  

where for real I we denote l* = x / ~  + 1. 
Small-amplitudes solutions we are discussing now correspond to the situation 

when all the cuts in Fig. 1 are small. They are studied in our  work [BoK2]. Below 

in Theorem 1.2 we give the final results o f  this analysis. 
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T H E O R E M  1.2. For every V e 1eg there exists p > 0 and real-analytic map 

M r = C" < P Vj} 

such that 

_ c c~ R+ the vector 2(I0 lies in ~0f~sgym C C % and the Riemann (a) f o r  # e M ;  - Mp 

surface (1.2) with 2 = 2(/~) satisfies (1.6); 
(b) the maps 

# ~ U(t, x; ,~(#), D), kt ~ W(2(p)) 

are analytic in M c and U(t, x; 2(0), D) = 0, Wj(0) = W~j; 
(c) the vector V(s equals to V~ f o r  all #; 

(d) the matrix  ~W/Op at the point I~ = 0 equals to 

,J'-16/W ~ j # k ,  (1.8) 
I.=0 = [ _ 1 2 / w  o, j = k ;  

(e) f o r  I~ = (0, . . . , #j . . . . .  0), where t~j > O, 

U(0, x; 2(/~), D) = 16x/%j(cos V ~ x cos Dj, cos V ~ x sin Dj) + O(#). (1.9) 

C O R O L L A R Y  1.3. The map M c - * c  ", /~ ~-~(W~ . . . . .  W,)(#), is an analytic 

diffeomorphism on its image, provided p is sufficiently small. 

Proof. We should check that  det dl'Vj/Ol~k # 0 at # = 0. This determinant  differs 
by a nonzero factor from the determinant  o f  the matrix m = (mjk), where mjj = 3 
and mjk = 4 if j # k. The matrix m clearly defines an invertible linear map,  so 
d e t m  V:0. [] 

Thus,  g -gap  solutions U(t, x; #, D) = U(t, x;  2(l~), D) of  (SG) + (N)  analytically 
depend on p, D and are parameter ized by the discrete paramete r  V e "V "g. Below in 
parts 2 - 5  the vector V is fixed. 

Due  to the symmetry  relations, the vectors V, W and D are uniquely defined by 
their first n components  (belonging to R" and -F"). With some abuse of  notat ions we 
denote these n-vectors by the same symbols V, W and D. 

The coordinate  system (#, D) is singular in the points, where some/~i vanishes, 
because for /~j = 0 the zone [2j, ~.] shrinks to a point and the solution U does 
not depend on the phase Dj. This observat ion hints that  the functions 
{ (x /~J , /92 )  [ j  = 1 . . . . .  n} form a " g o o d "  polar  coordinate  system and the solution 
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u analytically depends on the corresponding Cartesian coordinates (p, q), 

pj = x//~j  cos Dj, qj = ~ sin Dj. 

Direct calculations, given in [BoK2], prove this conjecture: 

LEMMA 1.4. The map 

~o : D~" := {(p, q) [p] + q~ < 2p vj} ~ H,., 

is real-analytic for every s ~ f~, and 

�9 o (0 )  = 8 , , / 5 ( c o s  VOx, 0), ~pj 

q)o(P, q)(x) = U(O, x; p, q), 

(I.lO) 

Moreover, the map ~o is odd: q~o(P, q)(x) - -q~o( - P ,  -q)(x) .  

In the lemma we denote by H~. the Sobolev space of vector-valued even periodic 
functions U(x) = (u(x), v(x)). That is, 

{ } 14, = U(x) [ t/(x) - u ( - x )  =_ U(x + 2~), [ , ~ U ( x ) [  2 a x  < o0 Vl _< s . 
do 

The formula (1.11) results from (1.9). The last statement of the lemma follows 
directly from the formula (1.4), since the transformation D ~ D + A interchanges 
the numerator and the denominator of the logarithm's argument in (1.4). 

The following statement (with p sufficiently small) is an immediate consequence 
of the lemma: 

COROLLARY 1.5. The set ~--p = ~o(D~") & a 2n-dimensional analytic subman- 
ifold of  Hs. This manifold passes through zero 0 E H~ with the tangent space 

ToUr p = EZn,=span{(cos V~ 0), (0, cos V~ [j = 1 . . . . .  n}. 

The manifold & &variant under the flow of(SG) + (N) and is foliated by the &variant 
analytic tori of  the form 

4~o(T"(#)), Tn(#) = {p} + q} = 2pj > 0 [j = 1 , . . . ,  n}. (1.12) 

The dimension o f  the torus 7"(#) equals n in general case and drops by one if  some 
t~j vanishes. 

,~o(O) = 8 , , / 5 ( 0 ,  co s  V~ (l .1 l) 
uqj 
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Thus, equation (1.6) defines an n-dimensional analytic subvariety of the g- 
dimensional domain ~01gym. Due to Theorem 1.2, this subvariety has nonempty 
components 9Y/gv, parameterized by the vectors V from ~e'g. The g-gap solutions of 
(SG) + (N), corresponding to vectors from ~ff/~r form in H= a 2n-dimensional 
variety y-2n = ~2n(V), diffeomorphic to ~ v  x T". The intersection of ~7-2, with a 

small enough neighborhood of zero in the phase-space forms smooth analytic 
manifold; its closure is a 2n-dimensional smooth analytic manifold Y'p = Y-p(V), 
diffeomorphic to the 2n-dimensional polydisk DzL 

Due to Corollary 1.5, manifold 3-p is stratified as follows: 

where ffp~-~ = ~ - 2 . ~ - - p  is an open part of 9"-p, filled with g-gap solutions, and 
nonconnected analytic submanifolds Y-p,=,, are filled with (g '  < g)-gap solutions of  
(SG) + (N). 

The object of this paper is to study behavior of solutions of (SG) and perturbed 
(SG) equation near manifold Y'p, including its lower-dimensional submanifolds 
Jp,g,, g ' < g. 

In [BiK] the whole variety ~--2, without lower-dimensional subvarieties Jp,=, was 
considered 6. The variety J"  is formed by the components of 9--(V), containing 
small-amplitude solutions. It does not exhaust all finite-gap solutions; in particular, 
because the solutions in y-2= have trivial topological charge. So the theory, 
developed in [BiK] can be called half-global. The local situation, which is being 
considered in this paper, can not be covered by the half-global theory from [BiK], 
because small-amplitude solutions were excluded there from the consideration. 

2. Solutions of the linearized equation 

We consider eqt.ation (1.1) linearized about the g-gap solution U = (u, v): 

3fl = - w / A  fv, 3(J =x/-A (6u + A - l ( c o s u ( t , x ) t S u - 6 u ) ) .  (2.1) 

Clearly, we can exclude 6v from this system and obtain for 6u(t, x) the linearized 

6 It was stated in Lemma 2 of [BiK] that the variety .y-2n is smooth. At this moment both the 
authors of [BiK] can not prove this more general statement. However, the information about ~" we 
possess (an analytic variety, smooth near zero) is quite sufficient to carry out the proofs of [BiK]. 
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(SG) equation: 

6ii = OU~x - (cos u(t, x))~u,  (LSG) 

supplemented by (N) (or (D)) boundary conditions (because the functions 6u and 
6v belong to the domain of definition of the operator A). 

There is a natural way to construct solutions 3U = (flu, 6v)(t, x) of (2.1): 

(1) to write U(t, x; I~, D) =- U(t, x;/t(/~), D) as a degenerate (g + 2)-zone solution 

U(t, x; #, D) = U "+ l(t, x; #, I~. + 1 ; D, D.  + 1)[u. + ,=o, 

where U ~§ is a (g + 2 ) - g a p  solution of ( S G ) +  (N), corresponding to a 
vector V" § ~ = (V, V~+~ ~) ~ ~ g  + 2(V ~ V ~ corresponds to the solution U and 

V ~  1 e ~.); 
(2) to obtain a solution of  (LSG) as 

1 0 U , , +  1 
lim , (2.2) 

u , , + t ~ o  ~x//~+tt3D,,+l 

(the factor #~-+~/~ appears in the formula because not (Dn+ ,, # , + , )  but 

(P, +~, q, + 1) forms a smooth coordinate system near #n + ~ =  0). 

The solution (2.2) depends on the choice of  the phase D, + t. Different solutions 
are parameterized by elements of  the set ~dn which enumerates the closed gaps of  

the solution U. 
We recall that by D~, we denote the set {(p, q) ~ C 2n I lpJl 2 + IqJ 12 < 2p vj}. 

T H E O R E M  2.1. For each j = V ~ +1 ~ ~ there exists a linear combination 3j o f  

two solutions (2.2) with different phases Dn + t, having the fo rm 

3i (D, t; #)(x) = e'Wj (u),~J(W(lOt + D, lO(x), (2.3) 

where wj and ~J are analytic functions. The frequency wj(#) equals to the (n + l) ' th 
component o f  the W-vector o f  the solution U" + 1 with Pn + 1 = O. It can be analytically 

extended to some complex polydisc M~, = {t Jl < p},  where 

I w j ( u ) ' - j * l  < C min(lu I, (1 +j)-~). (2.4) 
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The function ~J is even in (p, q). It can be analytically extended to some domain 

~gp = {(p,q) ~D~;} • {x E C l [ I m x  ]<p} ,  

where it is close to (cosjx, i cosjx): 

~ J =  (cosjx, i cosjx) + ~J~ + D, tg)(x) 

and 

1 
7~J~ #) = ~ (e~ #)(x) + e -~Jx~J'(D, #) ( -x ) ) .  (2.5) 

The function ~jl is analytic in x and (p, q)-variables and everywhere in C)p 

cl#l(l +j)- '  (2.6) 

Proof. In [BoK2] we construct a linear combination of solutions (2.2) with the 
u-component equal to 

7t~ = ei,./(cos j x  + ugh), 

where wi(#) satisfies (2.4), the function ~u~ is analytic in (92v with some p > 0 and 
has the form (2.5) with 71 j* replaced by 7t~ ~ . The function ~j~t does not exceed 
cl#{(1 +j)- ' .  

Since v = A - l/2~}(t, x) and 

A -i/2 sin(cos)(kx) = k * - l  sin(cos)(kx), 

then the v-component of the solution equals 

v(t, x; D, #) = ieiw/( cos j x  + ~ v  ), 

where the function ~u~ has the form (2.5) and the analytic function ~u{' is bounded 
in (gp by c ' l# l ( i  + j ) - ~ .  To obtain this estimate one should use the direct and 
inverse estimates for the norm of an analytic function in a complex strip via its 
Fourier coefficients (see [A2] and [K1], appendix B to Part 3). 

The v-component of the solution is analytic and even in (p, q)-variables as well 
as the u-component. [] 

It occurs that the frequencies wj satisfy nonresonance relations, important for 
subsequent constructions. 
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PROPOSITION 2.2. For all s ~ 27. and all l > r in ~d n we have 

Wj.(#)sj + 2w,(#) ~ 0, (2.7) 
j = I  

~. Wj(#)sj + w,(#) +_ wl(#) ~ O. (2.8) 
j = l  

Moreover, for  each function as in the l.h.s, o f  (2.7) or (2.8) either the function itself, 
or its gradient does not vanish at # = O. 

Proof. We proove more complicated relation (2.8) only. Denote the 1.h.s. in 
(2.8) by •(#) and suppose that 

Z(0) = 0, ~ Z(0) = 0 j = 1 . . . .  , n. (2.9) 

Abbreviating ~ j~v  to ~ j  we can rewrite the first relation in (2.9) as 

0 = z(O) = ~ . j*s j  + r* +_ l*. 
J 

Using (1.8) we can rewrite the second one as 

4) 
--4 ~-~ Sk - - ~  + ~-~ ___ =0 ,  j = l  . . . . .  n; (2.10) 

in particular, sj/j* = C for all j in V with some real C. Hence, 

C ~ k * 2 + r  * + l *  = 0  
k 

and 

4 4 C(4lv [ - 1) + ~ 4- ~ = 0. (2.11) 

We can eliminate C from these equations and find that 

/ 
(r 2+  I)(I 2+  I ) = ( r ' l * )  2= - ~.W--  I I .  
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Thus, ( r  2 + I)(12 + 1) = 1 6 N  2 with some integer N. We have obtained a contradic- 
tion because a number  m 2 + 1 with integer m never can be divided by four. [] 

We have proved Proposi t ion 2.2 for 2n-periodic solutions. I f  the period equals 
2n/L  with some L > 0, then the numbers  ~ = j *  in the statements (b), (c) o f  
Theorem 1.2 should be replaced by x/ j2L 2 + 1 and it becomes more complicated to 
prove that  the system of  (n + 1) equations (2.9) has no integer solution (s~ . . . . .  s,). 
We do not prove the statement in this general setting, but observe the following: 

A M P L I F I C A T I O N  2.3. (1) The set of  all L > 0  for which the statement o f  
Proposition 2.2 fails has no more than finitely many points in each finite segment 
[a,b], O < a  < b  < oo. 

(2) The statement holds for  all L t f V  = {0, 1, . . . ,  n - i } (i.e., i f  all thefirst gaps 
o f  the finite-gap solution (1.4) are open). 

Proof  of  the first s tatement see in [BiK]. 
To prove the second one we observe that all the formulas  from the above p roof  

of  Proposi t ion 2.2 till (2.1 1) remain true for an arbi trary L > 0 if we define r* as 
r* = x/r2C-~ -7 + 1. In particular,  the numbers  s, . . . . .  s, have the same sign (and are 
nonzero). We rewrite (2.10) with j = n - 1 as follows: 

"x~ l Sk Sn-1 _ + 4  4 
4 (2.12) 

k=ok*/-' ( n - -  1)* - - l*  r* 

As [Sk! --> 1 for all k, then the modulus of  the l.h.s, is larger than 

. - i  1 1 4 n  - 1 

4 k~  -- > ' o Lx//L~+ 1 x/L2(n - 1)24 1 ~/L2(n - 1 ) 2 4 1  

and the modulus  of  the r.h.s, is less than 8/~/L2(n - 1)2+ I. So (2.12) is impossible 
i f n  > 3 .  

I f  n = 2  the equality is also impossible because Is0[+ls1[ > 3 (the choice 
Is, l--Is21= 1 contradicts the equality so/O*=s, / l*) .  For  n =  1 the equality is 
impossible for similar arguments.  [] 

As we explained in Par t  1, g -gap  solutions (1.4) of  the equation (SG) + (N)  
form 2n-dimensional  analytic varieties embedded into the phase space Z. The 
connected components  of  these varieties, containing 0 e Z in their closures, were 
denoted as ~ J 2 " = 3 - 2 " ( V ) , V e  ~ g .  Their  closures are smooth  near zero and 
contain the small-ampli tude manifolds 3rp we are studying. The Bloch-like solu- 
tions (2.3) 
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can be also constructed for the equation ( S G ) +  (N), tinearized about a solution 
U = (u, v) c j-2n. For large/,  (corresponding to a large-amplitude solution U) the 
functions wj (t0 can have nontrivial branching points. After crossing these points the 
functions w: become complex [EFM, BiK] and the solutions (2.3) become exponen- 
tially growing as t ~ oo. The branching points for the functions wj can occur outside 
the singularities of ~--2~ (and only outside the manifold 3-p). 

The statements of Theorem 2.1 remain essentially the same when Yp is replaced 
by ~z-2,. Besides, due to uniqueness of the analytic extension the claims of 
Proposition 2.2 hold for the Bloch-like solutions corresponding to U c :-2,.  

3. Sympleetie structure of the phase space and manifold ~-p. 
Action-angle variables on ~-p 

We start with defining some functional spaces we need in what follows. 
Let 3k be the Sobolev space H~ § t(S I) of even 2n-periodic scalar functions (i.e., 

the space of even 2n-periodic functions with square summable derivatives up to the 
order k + 1). We provide 30 with the scalar product 

~0 )'Tt (u,  v )  = (uxwx + uw) dx 

and provide 3~, s > O, with the scalar product 

( u, v ) , = ( A "/2u, A '/2w ) , 

where, as above, A "/2 is a power of the positive selfadjoint in 30 operator 
A, A(u) = --uxx + u. By the definition of the spaces 3 , ,  the operator A isomorphi- 
cally maps 3 ,  to 3 , - 2  (i.e., A is an isomorphism of the scale {3, } of order two). 

Let us define the Hilbert spaces Z~ of vector-valued functions, 

z,=3, x3,, s 2 0 .  

The scalar product, inherited by Zs from 3, ,  will be also denoted ( ' ,  ' )s .  We 
abbreviate ( " , .  ) = ( - ," )0. 

The operator J(u, v) = ( - ,v/-Av, v/-Au) defines unbounded skew-symmetric op- 
erators in the spaces Z, and defines an isomorphism of the scale {Z, } of order one. 
The operator J-~ is bounded skew-symmetric in Z,,  s -> 0, and defines there the 
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2-form 

o~ 2 = _ ( j - 1  dz, dz  ) .  7 

1 2 The functional Let us set r(u) = - c o s  u - ~ u  . 

H ( u ( x ) ,  v (x) )  = r(u(x))  dx  

is analytic in the spaces Zs, s > 0. Its gradient with respect to the scalar product  
( . , . )  is 

V H ( u ,  v) = (A - l r ' ( u ( x ) ) ,  0). 8 (3.1) 

Under  the symplectic structure given by the two-form co2, the Hamiltonian 
equation corresponding to the hamiltonian 

1 
~V(z) = ~ (z, z ) + H(z), z e Z, 

has the form 

= JV~'~(z) ,  z = (u(x) ,  v (x) )  ~ Z (3.2) 

(see [K1]). By (3.1), the last equation may be written as follows: 

I.e., the Hamil tonian equation with the hamiltonian g is exactly the (SG) 
equation, written in the form (1.1). 

Now we turn to the manifold ~7" o = ~0(D 2") and denote by ~2 the form in D~", 
equal to the pull-back o f  ah:  

7 By definition, _ ( j - i  dz, dz)(3 l, 32) = -(J-131,8:).  

s T o  prove the formula one should observe that 

(VH(u, v), (ul, vl ) )  = dH(u, v)(u I , v t ) = f r'(u(x))ul (x) dx = ( ( A -Jr'(u(x)), 0), (u I (x), v I (x))). 
J 
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By (1.11), ct:(O) = ~, B f  dpj A dqj, where B] = 128nj*. In the dilated variables 

~j = Bjpj, qj = Bjqj, ~j = B~ ttj 

the form ~2(0) is just dfi ^ d~. We pass to the tilde-variables and (as usual) omit the 
tildes in what follows. So 

~2 = d p  ^ dq + o(Lv, q [), 

and the form ~2 is nondegenerate on J - ;  provided that p is sufficiently small. Thus, 
Y ;  carries the natural symplectic structure. 

The restriction of equation (1.1) to ~-; is a Hamiltonian vector field Vh with the 
hamiltonian h equal to the restriction of ~f~ to ~--;. The open dense subdomain j 0 ,  

~-o = {(/1, D) e J - ;  I ttj # 0  Vj}, 

if filled with the invariant n-tori T"(p) as in (1.12): 

~--o = U { T . ( p  ) i p j>  0 Vj}, (3.3) 

and restriction of Vh to the torus T"(#) is the Kronecker vector-field, 

8 
Vh [r-(m = Wj(p) dDi' (3.4) 

Due to Corollary 1.3, 

det c~ Wj/Ottk ~ 0, (3.5) 

and for almost all tt trajectories of (3.4) are dense in the torus T"(p). It occurs that 
the decomposition (3.3) and the nondegeneracy relation (3.5)jointly imply the 
Liouville-Arnold integrability of Vh (see appendix 1 below). So locally near each 
torus T"(I0 we can construct analytic action-angle variables (L ~0), where the 
actions I vary in some n-dimensional domain, angles q~ ~ q]-" and 

0 )  2 -~- d l  A dip, h = h(I). (3.6) 

Fortunately, the variables (I, ~0) may be analytically extended to the whole domain 
~'p : 
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THEOREM 3.1. I f  p is sufficiently small, then there exists an odd analytic 
transformation 

(p, q) ~ (/5, q-), (3.7) 

such that (/6, ~) = (p, q) + O([p, q[2), co 2 = d~ ^ d~ and the hamiltonian h, written in 
I - 2  " 2  �9 the (~, ~)-variables, depends on the actions/j = ~(pj + q: ), j = 1 . . . . .  n and does not 

depend on the angles q~j = arctan ~j/~j. In the variables (/~, D) and (L q~) the transfor- 
mation (3.7) has the form 

(#, D) ~-~ (I = I(#), r = D + q~o(#)), 

with some analytic map q3 ~ 

This statement is a version of the Liouville-Arnold theorem for a hamiltonian 
vector-field with a singularity. For rather sophisticated results of this type see [Ito] 
and references therein. We give a simple proof of the theorem in appendix 1 (our 
situation is much simplified by a priori knowledge that the tori (1.12) are invariant 
for the equation). 

We finish with a brief discussion of the half-global analytic variety ~7-2,. The 
restriction of the symplectic form co 2 to f 2 ,  is nondegenerate almost everywhere 
(because it is analytic in ~--2, and nondegenerate in Y-p) and the restriction of 
(SG) + (N) to ~ 2 ,  is an integrable equation outside some subvariety 3-c, of a 
positive codimension. So Y 2 " \ ~ c ,  is a smooth analytic symplectic manifold with 
the integrable system on it. Locally (near each invariant n-torus) the action-angle 
variables can be introduced. 

4. Symplectic structure of the infinitesimal vicinity of manifold ff'p 

In Part 2 we constructed "Bloch-like" solutions (2.3) of  the linearized Sine- 
Gordon equation (2.1) and proved nonresonance relations (2.7), (2.8). In this part 
we show that the corresponding vectors ~J, ~PJ, j e l~,, form a symplectic basis of 
the skew-orthogonal complement to the tangent space to the manifold ~J-p. It is 
remarkable that this important property is a rather simple consequence of the 
nonresonance relations and the asymptotics (2.4) (cf. direct proofs of similar 
statements in [EFM], [Kri]). 

THEOREM 4.1. I f  p is sufficiently small, then for each (#, D) the vectors 
{'PJ(#, D), ~J(#, D) [j ~ N, } lie in the complexification of the skew-orthogonal corn- 
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plement to the tangent space Ttu ' o)~ in Z,. and form a complex basis o f  this space 
such that 

co2(~j, ~ t )  = ~o2(~j; 7t/) = O, ~o2(~ j, ~ t )  = 6u2inj*xi(#) , (4.1) 

where • is real and 

[xj(#) - 1[ ~ C min(l~ l, (1 + j ) -  '). (4.2) 

The basis from this theorem analytically depends on (#, D).To state the corre- 
sponding result we observe that by (2.5), (2.6) 

~Jo..= TtJ( O, O; x) = ( cos jx,  i cos jx),  j e r k , ;  

and by Corollary 1.5 the tangent space ToJ-p equals to E 2n. (In particular, for 
(#, D) = 0 the statement of the last theorem is trivial). 

Let us denote by Y~. the skew-orthogonal complement to E 2" in Z~, 

Y~ = span{Re ~u~, Im 7/6 IJ e ~.},9 

and denote by q~0 the natural embedding of Y~ to Z~. The system of the complex 
vectors { ~Jo, ~g [j e N, } forms a symplectic basis of  the complexification Y~: of the 
space Y,: 

o92(~,  ~ )  = co2(~ ,  ~) )  = 0, ~oz(~{~, ~o) = 6j,2ircj*. (4.3) 

Let us define the map 

�9 , .Dp" 2. x Y ~  Zs, (~, ~, y) ~--~ ~(/~,  ~)y, 

which is linear in the third variable, for fixed (/~, ~) sends a vector 7% to 
'W(/~, ~)uf~/2(/~) and is extended to all of Y~ by linearity ((/~, t~)-variables are the 
Cartesian coordinates in ~q-p, corresponding to the action-angle variables (L ~o), see 
Theorem 3.1). By (4.1) and (4.3) for each (/~,~) the map ~( /~ ,~)  : Y ~ Z  is 
symplectic. 

The following regularity properties of the map qh mostly result from the 
estimate (2.5): 

9 Here and below bar above a set means  its closure. 
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T H E O R E M  4.2. For s > 0 the map q~l is Fr~chet-analytic jointly in both 
arguments. The following estimate for  the linear map ~ (~, ~) holds after an analytic 

extension to D~ : 

'~, (.D, '1) - '~~ II,.s+, -< C, I(.v, 't)1, (4.4) 

provided that p is small enough. The map q~l is even in (~, ~). For f ixed (~, ~) it 
defines a symplectic isomorphism of  Ys and the skew-orthogonal complement to 
T~, o~Y-p in Z , .  

Theorems 4.1, 4.2 are proved in Part  4 of  [BiK]. Below for the reader 's  
convenience we sketch the proofs: 

Proof o f  Theorem 4.1. To  prove that 

F(D, I~)'= o)2(~PJ, ~ l ) (  D, #) = 0 

we shall check that the function 

~o(D, t; I~) ,=e '~w, + w, )too217JJ(Wt + D, It), 7tt(Wt + D,/~)] 

-= e)2[3j(O, t;/~), g~(O, t; #)] 

vanishes identically. As the skew-product  of  any two solutions of  the linear 

equat ion (2.1) is t ime-independent,  then d/dt q~ - O. Thus, 

d t =o OF 0 = q9 = i(wj + w , ) F + ~ q  W. 

Write F as Fourier  series: 

F(D, #) = ~ e" ~ #). 

From the last identity we have 

P(s, ~)((wj + w, ) + s �9 w)(~)  = 0 

for all s and p. By (2.8) the second factor is nonzero for a lmost  all p, so .P(s, tt) -= 0 
and F(q, lO = O. 
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In a similar way one proves that co2(q j, qk) = 0 and O)2(tP j, I//k) ~ 0 i f j  r k. 
The skew-product ~o2(~P j, re j) is D-independent because the corresponding func- 

tion tp as above is time-independent. The estimate (4.2) results from (2.5) and (4.3). 
To prove that each vector ~PJ and ~J is skew-orthogonal to the tangent space to 

~'p one should consider the skew-product of the solution 3j with any trajectory of 
(2.1), starting from a tengent vector to 3-p, and use the relation (2.7). 

By (4.2) we have in (4.1) zj(/~) # 0. So the vectors {~J, ~J [j E ~} are linearly 
independent. By (2.5), (2.6) and Fredholm theorem 

codim span{~ uj, ~J [j ~ N,} = codim Ys c = 2n. 

As the vectors T J, ~J lie in the skew-orthogonal complement to the 2n-dimensional 
space T(u,D)~-p, and are linearly independent, then they form its basis. L3 

Proof of  Theorem 4.2. The estimate 

~ 0  [[r 0 -  c ,  . 

results from (2.4), (2.6) because the norm of an operator in a Hilbert space can be 
estimated by supremum of the P-norms of  the rows and columns of its matrix. This 
estimate implies analyticity of the map O1 - 0% because each matrix element of the 
latter is analytic in (/~, q) by Theorems 2.1 and 3.1. Now (4.4) results from the 
Cauchy estimate. ~- 

The vectors TJ and the map I~ l a r e  well-defined on the half-global variety 
2n c Z outside its singularities, zeros of the functions • (see (4.1)) and branching 

points of  the exponents wj. Proposition 2.2 (the nonresonance relations) and the 
asymptotics (2.4), (2.6) also hold there. So the statements of Theorems 4.1, 4.2 
remain true for ~'-p replaced by 3 2", after we cut of from the latter a "bad"  

analytic subvariety ~ ' b a d  of a positive codimension. 

5. Normal form of the SG equation near manifold J p  

By d~s( p, D~") where s > 0, p > 0, we denote the set 

~s(p ,D 2") = D~" x {y ~ rs I Ilyll  <P},  

endowed the symplectic structure by means of the 2-form ~2 = d/~ ^ d4 �9 ua2 ]y. 
In what follows we omit the tildes and write (p, q) instead of (/~, 4). We consider 
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where h ~ is a vector in Y and h 2 is a selfadjoint operator. 
As the set {y = 0} is invariant for the equations, then h ~ = 0 and h~ q) = h(I), 

see (3.6) and Theorem 3.1. 

the map 

: (%(p,D~")--*Zs, (P ,q ,Y )  ~-~ q~0(P, q) + ~ I ( P , q ) Y .  

Clearly, 

q~(p, q, 0) .(6p,  6q, &y) = q%(p, q),(6p, 6q) + qh(P, q)6y. 

By Theorems 3.1, 4.2 the map ~(p ,  q, 0) .  sends the form ~22 to e%. Thus, if p is 
sufficiently small, then q~ is an analytic diffeomorphism (onto  its image) and 

�9 = + o (  Ily IlJ. 

The map q~ is odd because q~o is odd (Theorem 1.2) and the map (p, q) ~ qh(P, q) 
is even (Theorem 4.2). 

Now we can apply the Moser-Weins te in  theorem [Wei] to get an analytic 
diffeomorphism 

A �9 C~(p', D~") --* C~(p, D~ n) 

(p '  is some positive number) such that 

A .  [02- • {0~ = id 

and A *(q~*cn2) = ~22. Then 

~*0~2 = ~22 for ~ = r o A. 

The map A, and so also the map ~, is odd. 
The pull-back of  the vector-field of  the equation (1.1) is a hamiltonian vector- 

field in C~(p', D~") with the hamiltonian K = ~r o ~ and has the form 

~1 = VpK, p = - V~K, ~ = JVyK. 

Let us write K as 

= hO(p ' q) + <h~(p, q), y> + 1 <h2(p, q)Y, Y> + h3(p ' q, y), K 
Z 

h 3 = o ( l l y  I1 ), 
(5.1) 
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In the (L tp, y)-variables the finite gap solutions U(t, x) take the form 

I(t) = const, q~(t) = tp 0 + t W(I), y --- 0. (5.2) 

So the equation, linearized about these solutions, (i.e., the equations (2.1) in the 
(q, p, y)-variables) has the form 

61 = O, 649 = W(I) ,6I ,  69 = jh2(1, q3(t))6y. (5.3) 

The map ~ ,  transforms solution of (5.3) to solutions of  (2.1). As 
~ , ( L  ~o(t), O)6y = 41(L r then by the construction of the map q~ the map ~ ,  
sends the curves 

eiWj(I)t~Jo, j ~ N~, 

to solutions (2.3) of  (2.1). Thus, these curves are solutions of (5.3) and so 

h2(/, q))~) = ).; ( I ) e~ ,  where 2 ;  = wj(I)/j*, 

because J ~  = ij*~Jo. So the operator 

h2(1, r = A(I) 

is a q~-independent linear operator with the double spectrum { 2 ; ( I ) [ j  ~ I~,}, 
diagonal in the basis {Re P~, Im 7J~ I J e ~ ,  } of  the space Y. 

Now we discuss the last term h3(p, q, y) in (5.1). As the map ~ is odd and the 
hamiltonian ~r is even, then K is also even. So h 3 contains no cubic terms and 

h 3= O(IlYl}2)" o(llpll + Ilq][ + Hy[IA. (5.4) 

An additional nontrivial and essential property of  h 3 is its smoothness. This 
function turns out to be as smooth as the hamiltonian H (see (3.1)): 

L E M M A  5.1 (see [K2, K3]). For s > 0 the map 17yh 3 may be analytically 
extended to a bounded analytic map 

Vyh3: D~ x {y e Y~ I [ly[l~ < p}--' r~+=, (5.5) 

where Y~ is the complexification of the space Ys. l~ 

~o Hem and in similar statements below p > 0 is sufficiently small and depends on s. 
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We have obtained 

T H E O R E M  5.2. The odd map ~-~ transforms solutions of equation (1.1) into 
solutions of  hamiltonian equation on the domain (9~(p, DZ'q with hamiltonian K of the �9 - - p p  

form 

K(p, q, y) = h(I) + ~ (A(I)y,  y )  + h3(p, q, y). (5.6) 

The function h 3 satisfies (5.4), the gradient map (5.5) is analytic and bounded. 
In the half-global situation the normal form (5.6) is available in a neighborhood 

of ~-'2"\~d--b~ d (see the end of the previous part). As some frequencies wj, corre- 
sponding to solutions in Y-2"\Fba d with large norms, can be complex, then the 
spectrum of the operator JA(I)  can contain a finite number of points with 
nontrivial real parts (these points are not real and form quandruples +2,  +)~). 
Now the operator A(I) has some more complicated form: it is diagonal in the basis 
{Re (Im) kv~} only "up to a finite subsystem" of these vectors. See [BiK] and Part 
2.7 in [KI]. 

6. Perturbed Sine-Gordon equation 

Now we start to study perturbations of solutions ( 1.4), which fill some finite-gap 
manifold ~Y-p c Zs. The number s > 0 and the set V c ~e ~g of open gaps are fixed 
and we abbreviate 

I]" [I = II " II,. 

We recall that ~--p is an image of the map ~0, 

: - - ,  Z , ,   o(0) = 0.  

In D~" we use the coordinates (/~, ~) constructed in Theorem 3.1 (and omit the 
tildes), or the corresponding action-angle variables (/, q~). So 

{(p, q)} = D~" -~ M + x V", M + = {I}, ~-" = {q~}. 

The solutions U = (u, v) of (SG) + (N) on the manifold J-p have the form 

U(t, x) = ~o(1, tp + W(I)t)(x) 
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and fill the invariant toil T"(I), 

T"(I)  = ~o({I} x ql-"), I e M r .  

The tangent space at zero T0~-p equals the image of the tangent map ~o,(0) and 
equals the space E 2n (see Corollary 1.5). 

We are going to attack the following problem: how do the solutions U(t, x) and 
the invariant tori Tn(I) they fill behave under higher-order perturbations, in the 
equation 

u,t = uxx - sin u + Fu(u, x), (PSG) 

ux(t, O) = ux(t, ~) =- O, (N) 

where F is an analytic in u, C s § ~-smooth in x, u function such that 

IF(u, X) l ~-- C[ul6; F(u, x) =- F(u, x + 27z) -= F(u, - x ) .  (6.1) 

| 3 Observe that sin u = u - g u  + O(lup). So the equation (PSG) may be rewritten as 

1 u3 ff~(u, x), (6.2) Utt ~ Uxx - -  U dr- g .~_ 

where ff also satisfies (6.1). 
The boundary-valued problem ( P S G ) + ( N )  may be written down as the 

Hamiltonian system (3.2) with the hamiltonian 0~ = 3r 

(Y = JITYrpe~t(U), U = (u(x), v(x)) ~ Z,  

where 

1 
�9 . ~ p e r t ( U )  = -~ < U ,  U >  .-~ H(U)  + Ha(U) ,  ~0 2n Ha(U)  = F(u(x),  x) dx. 

The functional Ha is analytic in Z~. and its gradient map VH,~ is two-smoothing 

(it sends Zs to Zs+ 2). 
We can perform the change of variables ~ from Theorem 5.2 and rewrite 

(PSG) + (N) as the system 

?1 = "VpK1, p = - -  V q K 1 ,  .~ = JV.vK l (6.3) 
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in Cs(p, D~") = D~" • {lly [I < P} where K, = K + Ka, Kn = H a ~  ~ and the hamilto- 
nian K is as in (5.1). For the perturbation K~ the gradient map 

VyKa "D c • {IIYl}* < P} + YC+2 

is analytic. This follows from analyticity of  the map 

H~e + '(S')  , H~ + 1(S1), u(x) ~--~f(u(x); x) = Fu(u(x), x), 

( "e"  stands for "even", s > 0), which in turn results from analyticity of  the map 

H ~+ 1(S') , H ~+ 1(S'), u ~-+f(u, x), (*) 

since (*) preserves the closes subspace H~ + l(Sl) c H s+ l(Sl). 

Remark. Analyticity of  the maps VyK~ and tZH~ is less obvious in the odd 
periodic case which corresponds to the Neumann problem ( 1 ) +  (N). Now the 
maps clearly are analytic (with the same proof) if f ( u , x ) = f ( u , x + 2 n ) = -  
- f (  - u ,  - x )  (this holds if F is 2n-periodic in x and even in (x, u)). Consider f 
which is not odd and for the sake of simplicity suppose that it is x-independent: 
f = f ( u ) .  We pass from the space H~o + 1($1) ( "o"  for odd) to the space H~ + l(0, zt) 
of  the traces on the segment [0, rr] and accordingly modify the phase space Zk. This 
change is inessential since the trace-map defines an isomorphism of HSo +t and 
H~+ 1. For s = 0 (this choice agrees with the restrictions of  our theorems) we have 
H~,(0, n) =/~1(0, zr) and the map clearly is analytic. We omit discussion of the 
higher-smoothness case (s > 0) but just mention that under the restriction (2) the 
map (*) is analytic in H~, + 1 if s < 5. 

We study perturbations of  solutions (1.4) with a norm of order ( ,~ 1. This is 
equivalent to suppose that the corresponding actions l ' s  vary in the domain a t of 
the form 

J = J ( O  = { I t  R"IO < / s  < ~2 VJ} �9 

We cut away solutions with one of the actions too small and consider the solutions 
with I e at,, where 

J ,  = or162 = {I E R" I r( 2 < / J  < f2 Vj} 

and r < 1 is fixed for a moment. In the new variables the invariant toil T"(I) have 
the form {I = const, y = 0}. To study the perturbed equations near some n-torus 
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T"(I)  with I �9 J ,  we stretch the variables by means of the substitution 

I : =  I + (2~, tp ,= t~, y . ' = 0  7 . (6.4) 

In the tilde-variables the perturbed equation has the form (6.3) with the hamilto- 
nian K2, 

1 
K2 = const + Vh(I) �9 I +  -~ (A(I) f i ,  9 )  + if, 

where 

/~ = ~ -2((h(I + (2T) - h(I) - ( 2Vh( I ) .  I)  

+ ~2((A(I + (2T) - A(I))y, j~) + h~(I + (2T, r (~) + K~(I + (27, O, U')). 

The functions h ,h  3, K,~ and the operator A are analytic in {I/"] < r /2}  x T " •  
{11  It < 1}, and h a satisfies (5.4). So the hamiltonian/~ is analytic, the gradient map 
V fl~ is 2-smoothing as in (5.5) and 

o((2(1  2 + 1/7 II 2 + I1 113) + 

Now we treat I as a parameter of  the equation, which we shall study for small 
)Z The parameter I varies in the domain J r  of the "effective radius" 6, = (2: 

diam J r  <-- C6,, mes J~ ~ C-~6,~, 

with some (-independent C. We denote e = ~4 and treat e as a magnitude of the 
perturbation. Then e = (4 = 6~. 

The function h" and the operator A are analytic in I from the complex polydisc 
M ; ,  so their gradients in I �9 J can be estimated via the Cauchy inequality. The 
functions h 3 and K~ can be analytically extended to a complex neighborhood of J~  
of the radius 6,r/C.  So their / -gradients  for I in J r  are majorized by C ( 6 j ) - ~ l h  31 
and C(6,r)-~IK~ I" 

We summarize our knowledge about the hamiltonian K2 as follows: 

(i) the map 

oJ : j ~ R n, I w. r = Vh(I) (6.5) 

is an analytic diffeomorphism (so we can pass from the parameter I �9 J r  to 
co �9 Vh(J,));  
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(ii) I~1 + ran IV,~I = O(aa(I/7 = + Iiqll~ll = + I1~113) + ~) and the gradient map Vy/~is 
two-smoothing as in (5.5); 

(iii) the operator JA(I )  is diagonal in the complex basis { ~ ,  ~6 } with analytic 
in I E .~/eigenvalues { + i % ( I ) } ,  obeying (2.4); 

(iv) for each finite system of resonance relations 

W(I)  �9 s + 2wj(l), W(I)  �9 s +__ %(1) + Wk(I), 

I sl < M I '  j < k  < j l  

there exists if-independent C .  > 0 such that each function as above or its 
/-gradient is > C ,  ~ everywhere in J ,  provided that ~ is small enough. ~ 

By the properties ( i ) - ( iv)  the abstract theorem on perturbations of finite-dimen- 
sional invariant tori in parameter-depending linear hamiltonian systems [KI, K4] 
can be applied to prove persistence most of the tori T"(I), I ~ J , ,  in the perturbed 
equation. 

An application of Theorem 3.12 from [KI, p. 53] with co as a parameter, 
co e s = Vh(~r implies (see Appendix 2 for a correction), that 

THEOREM 6.1. For each given 0 < r, 7 < 1 and for  0 < ~ < ~(r, 7) there exists a 

Borel subset 3r c J , ,  mes(J , \ JT , )<  "t m e s J , ,  lz and for  I ~ T ,  there exists an 

analytic map 

and an n-vector if/r(1) such that the curves 

t ~ "Zz(cp + ff' ,(I)t) (6.6) 

are time-quasiperiodic solutions o f  the system with hamiltonian K2. All Lyapunov 

exponents o f  these solutions equal zero. The vector ff'r is close to W and the map 

: 3 ,  x T " - ,  R" x n"  x r , ,  (L ~) ~ Z,( r  

~t This statement is a reformulation of Proposition 2.2. 

~2 rues = Lebesgue measure. 
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is close to the map 2;(1, tp) = (0, q,  0): 

t W -  Wr [  "( C( 4, L i p / ] W - -  I~:r] -<- C( 2, (6.7) 

1]~ - -  ~" ][ ~<- C(2 '  Lip,p 11:7 - z II -< c~  2, Lip / l i e  - z II -<- c (6.8) 

with some C = C(r, y).13 

N o w  we use the formulas  (6.4) to go back to the variables (L q , y )  in the 
domain  Os(q, D~n). After this we pass in D~" f rom the action-angle variables (L q~) 
to the Cartesian variables which we denote (p, q) in the preimage and (Pr, qr) in the 
image. We use the map ~ to go to the "usual" variable in a neighborhood of T. in 
Z3. and denote the resulting map  by Cr : 

D~" ~ (p, q) ~-+ (I, q) ~-+ Z(I, q)  = (Z r, E ~, Z -~) 

x'x~pr , qr,:r) E 03,(/9 , D~') 

~(Pr, q~,Yr) ~Z~ 

As ~ <l(p.q,)l=2./~l<-./5~ for  j = l  . . . . .  . ,  then as a trivial conse- 
quence of  (6.8) we get the estimate 

I1~, -~011 ~ c1~ ~. 

More cumbersome  but as e lementary as above arguments  show that  

L i p l l ~ ,  - ~01l <-- c|ff =. 

In part icular,  the m a p  r is an embedding because it is Lipschitz-close to the 
embedding q~0. 

The  constant  C| in the last inequalities (as well as C in (6.7), (6.8)) depends on 
r and 7. To  avoid this dependence we observe that  for each ~ > 0 the inequalities 

13 In (6.8) by Lip~ [[~--rl] is denoted the Lipschitz constant in r of the map ( s  Z):3 7, • 
T" ~ R" x ~-n x y,, etc. 



Klein-Gordon and Sine-Gordon equation 

imply existence of  ('(r, 7), 0 < (" < ((r, 7), such that 

tiptl~, - a'oll < r  

and 

IWr-- W [ ~  4 ~, 

99 

(6.9) 

Lip[kV r - W] < ~2-~, (6.10) 

provided that ~ -< ~(r, 7). We can suppose that the positive function ~'is monotonic:  

~'(r, 7) > ~'(r,, 7t) if r > r~, 7 > 7~ 

(otherwise we replace ~" by the function which sends (r, 7) to sup, ~ ,. ~ ~ ~ ~'(r~, 71)). 
Now we shall iterate the application of  Theorem 6.1 to construct perturbations 

of  arbitrarily small finite-gap solutions (i.e., without the restriction /j > ~2r). We 
remind that a Borel subset 3~r of  a Borel set M, M c ~", has a density ~(0 < ~ < 1) 
at a point m ,  c M, if 

mes{m ~ ~r I ]m - m ,  I <v} 
~ a s v  ~0 

mes{m ~ M l ]m - m , l  < v } 

(we suppose that the denominator  does not vanish for positive v). Clearly, a subset 
A~t has density ~ at m ,  if and only if M\h~t has there density 1 - ;~. 

T H E O R E M  6.2. For each x > 0 there exists a Borel subset D "~ ffl • o f  

D~ ~ ~ M~ x -~, having density one at zero and Lipschitz maps ~ : 19 x - ~ - *  Z, ,  

W : M ~ ~ such that the curves 

t ~-* ~ (L  ~p + ff'(I)t) (6.11) 

are time-quasiperiodic solutions o f  (PSG) + (N) with zero Lyapunov exponents. The 

map ~ is close to q~o and the vector IT/is close to W for  small (p, q): 

II~(P,q) -r < CI(p,q)I  3-~,  L i p l ] ~ -  q~011 < Cp2-U; (6.12) 

life(p, q) - W(p,  q)[ < cl( p, q)4-  ~, LiPlff '  - W I < Cp z -  ~ (6.13) 

C O R O L L A R Y  6.3. The set ~'p = $(D)  has the tangent space at zero, equal to 
E 2~. This set is o f  positive Hausdorff  measure 9~ 2" and 9~2"(J'p)/gct~2"(~-'p)~ 1 as 

p ~ O .  
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Proof. The first statement results from the first estimate in (6.12). The second 
one follows from the basic properties of the Hausdorff measure and the second 
estimate in (6.12), because a map, which is Lipschitz-close to the identity, changes 
ag '2~ only a little [Fe]. [] 

Proof of  Theorem. For j = 0, 1, 2 . . . .  let us set 

(j = 2-J(, rj  = r j r ,  yj = r j r ,  

where Fo = 1, Fjx,,,O ( j -+  oo) and (j < ('(rj, yj). The sequence {Fj} exists because the 
function 

(0, 1] , R, F v-~ ~(Fr,  F),), 

is positive and increasing. 
F o r j  = 0, 1, 2 . . . .  we can apply Theorem 6.1 to the sets J J =  J<,(Q) (first two 

of them are represented on Fig. 2 below) and construct the subjects a t j c  i s ,  the 
maps ~J:og j x ~'"--+Z, and the n-vectors lg/J(I), I e J J, satisfying the estimates 
(6.9), (6.10) with ( = (j and defining solutions of ( PSG) +  (N) of the form (6.11) 
with ~ = ~J, if" = ff'L 

For v > 0 we denote by K(v) the cube 

K(~) = { / t o  ~ ~', <- ~ w }  

(so J J c  K((])) and construct the subset o11 c Mp + as the disjoint union 

= 0 (J,\K(r 
j = O  

LEMMA 6.4. The subset J1 c M + has density one at zero. 

We omit an elementary proof which follows from the convergences 7]'X0, rj",,0. 
Choose in (6.9), (6.10) , q=n /2  and define the maps ~ : J z  x qY"--+Zs and 
: --~l ~ R "  be equal to ~ and l~J in ffJ x T" , j  = 0, 1 , . . .  It results from (6.9), 

(6.10) that the map ~ meets the first estimates in (6.12), (6.13) everywhere in 
at~ x T". The map ~ is analytic in q; both maps ~ and lg" are Lipschitz in each 
component (3J\K((]+ ~)) • T", but they may be discontinuous in I at boundary 
points of the cubes K((]). To improve this imperfection we cut off from the set J~ 
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small neighborhoods of the boundaries of the cubes and denote 

~t = J t  \ J c ,  
j = l  

with v = ~12 (see Fig. 2). 
Now we can estimate the increments of the map ~ -  ~0, corresponding to 

points in different components o f / )  = ~r x -IF n, by the first estimate in (6.9) and the 
increments, corresponding to points in the same component of/~i by the second one. 
Thus we obtain the estimate (6.12) for LipH~-  011s and the estimate (6.13) for 

tiPl if" - Wol. 
The set J (  has zero density at zero. So Lemma 6.4 implies that ~r has unit 

density at zero. As dp dq = dI dqJ, then the set/~ = .Q • T" has unit density at zero 
as well, and the theorem is proved. [] 

Theorem 6.2 deals with small-amplitude solutions of the (PSG) equation 
(equivalent to (6.2)) under even 2n-periodic boundary conditions (equivalent to 
(N)). The only part of the proof where we have used the exact value of the period 
is Proposition 2.2. So Theorem 6.2 remains true for even T-periodic solutions if for 
this value of the period we can prove Proposition 2.2. In particular, Amplification 
2.3 implies the following result. 

~ i b l l l l l i l i i /  ., 
l'~'rllil/"/llll /'v 

2 2 
u 

Figure 2. The set )fir 
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A M P L I F I C A T I O N  6.5. (1) I f  V = {V ~ . . . . .  V ~ } = {0 . . . . .  n - !} ~'*, then the 

s tatements  o f  Theorem 6.2 remain true f o r  all periods T. (2) The s tatements  are true 

f o r  all V and all periods T ~ ff~ + \7s where 7s is a discrete set which has no more  than 

f in i te ly  many  points  in each f inite segment  [a, b], 0 < a < b < oc. 

Remark .  Due to the complete analogy between Dirichlet and Neumann  
boundary  conditions (see Part  1) all the results proven above remain true for the 
(PSG)  equat ion under the boundary  conditions 

u(t, O) - u(t, ~) - O, (D)  

if we replace 9"-p by a 2n-dimensional  submanifold  of  the phase-space, filled with 
finite-gap solutions of  (SG)  + (D)  (and accordingly replace cos 's  by sin's in the 
definition of  the spaces E2"). L] 

In the half-global situation one deals with finite-gap solutions filling the mani- 
fold ~7-2~ = 3-2n(V)-~9J/~r • T n (see the end of  Part  1). Now the equat ion (SG) 
should be perturbed by a small function ( ra ther  than by a higher-order term as in 
(PSG)) :  

u ,  = uxx - sin u + eFt(u ,  x), (6.14) 

where the function F is analytic in u, C" + t -smooth in x and 

F(u,  x)  =- F(u,  x + 2n) ~ F(u, - - x ) .  

The half-global analogy o f  Theorem 6.2, proven in [BiK], states existence of  a Borel 
subset ~0/~ c ~ r  such tha t  mes(gJ/~r \gJ/,) --+0 as ~ ~ 0  and the solutions (1.4) with 
in ~0/~ persist in the per turbed equat ion ( 6 . 1 4 ) +  (N). 

7. Application to the ~p4-equation 

The tp4-equation with positive mass has the form 

u,, = Uxx - mu  + Cu 3, (~p4) 

where m > 0 and C ~ 0. Suppose C > 0 (as  we explained in the introduction,  the 

t4 i.e., if the first n gaps of the solutions (1.4) forming the mainfold 3-~ are open. 
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case C < 0 can be treated similar with the Sine-Gordon equation replaced by the 
Sinh-Gordon) .  We start with the unit-mass case: m = 1. Then by means of a trivial 

dilation of the u-variable the equation can be normalized as follows: 

1 3 
Ut, =Uxx--U + ~ U  . (Ntp 4) 

This is exactly equation (6.2) with F =  0, and the results of  the last part are 
applicable to study its small-amplitude solutions under Neumann boundary condi- 

tions (N). 
We denote by i the natural embedding of the space E 2n t o  Z s and formulate 

assertions of Theorem 6.2 as follows: 

T H E O R E M  7.1. There is a Borel subset ff~ c E:" "~ •+ • T" o f  unit density at 

zero and o f  the form ff~ ~- f l  • T" and a Lipschitz embedding ~ : E ~ Z,,  analytic in 

~o e T", such that 
(i) the tori ~({/~} x ~") = Z~, # e ~I, are invariant for  (Nq~ 4) + (N) and are 

filled with time-quasiperiodic solutions with zero Lyapunov exponents; 

(ii) the Lipschitz constant Lipllq ~ - ill < ~ and for ~ in E, ~(~) = i(~) + O(1~12). 
Moreover, the sets ~- = ~(ff~) and the manifold 3-f, have second-order tan- 

gency at zero. 

In the general case (m, C > 0 )  we rescale x-, t- and u-variables to rewrite 
(q~4) + (N) as the normalized equation (Ntp 4) under the boundary conditions 

ux(t, O) - ux(t, x/-m rO - 0 .  (7.1) 

Now the linearized at zero equation has the form u, = ux~ - mu, so the wave-num- 
bers in the definition of the invariant spaces E 2" should be replaced accordingly: 

E z" = span{ (cos (V~  0), (0, c o s ( V ~  IJ = 1 , . . . ,  n}. (7.2) 

We can apply Amplification 6.5 to get 

A M P L I F I C A T I O N  7.1. (1) Statements o f  Theorem 7.1 remain true for  the 

equation (q~4) + (N) with an arbitrary m, C > 0 and the space E z" defined as in (7.2) 
provided that 

{V ~ . . . . .  V ~ ={0, 1 . . . . .  n - 1}. (7.3) 
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(2) I f  the wave-numbers { V ~ } are just any n numbers, then the statements hoM 
provided that m r {ml, m2 . . . .  }, where the only possible limiting points for the set 
{ml, m2 . . . .  } ~ g~+ are 0 and ~ .  

So the equation (~o 4) + (N) has many small-amplitude time-quasiperiodic solu- 
tions. To make this statement quantitative we rescale u = e~, e ,~ 1, and obtain for 

the equation 

t~, = ~ - mt~ + C ~ 2 / ~  3. (7.4) 

Denote by QP~ c Z~ the "quasiperiodic set of  the equation", equal to the union in 
the phase-space Z~ all the curves corresponding to time-quasiperiodic solutions of 
(7.4) + (N) with zero Lyapunov exponents. 

PROPOSITION 7.3. For any 3(x) ~ Z~ 

distzs(3, QP,) , 0  as e --*0. (7.5) 

Proof. Fix any 6 > 0. For n large enough one can find a point 3~ in the space 
E 2" as in (7.2), such that 113-3 11 <6/3 .  This point lies in some ball 
B = {3 ~ I 11311 < R}. Under the rescaling u = e~ this ball corresponds to the ball 
eB in the linear subspace E 2" of the phase-space of (cp 4) + (N). Consider the subset 

c/~2. ,  constructed in Theorem 7.1 ~5. As E has the unit density at zero, then for 
sufficiently small E has nonempty intersection with the e6/3-neighborhood of the 

point e3~ e eB. Fix any point e32 in this intersection. By the statement (ii) of 
Theorem 7.1 we have 11 32- ( 3=)11 2, The point e '~(e32) lies in OPt. So 
dist(]2, PQ~) < Ce < 6/3 if e is small enough. Thus, 

dist(s, QP,) < 113 - 3, tl + 113, - s2 II + dist(32, QP~) < 6, 

if e is sufficiently small. The statement is proved. [] 

Remark. Results similar to Proposition 7.3 hold for nonlinear wave equation 
with random potential Vo,(x) with "good randomness properties", 

u,,  = ux~ - v o , ( x ) u  + e ~ ( u ) ,  (7.6) 

if we replace in (7.5) the usual convergence by the convergence in probability. This 

is We use amplification 7.2. 
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statement is proved in [K1, Part 2.4] for nonlinear Schr6dinger equation with 
random potential; the same proof  holds for (7.6). 

Appendix 1. Liouvi l le-Arnold theorem near singularity 

By Dp = D~" we denote the polydisk 

1 
{(p, q) ~ ~2. [#j = 2 (p~ + q~) < p Vj};16 

by M = M~- the open n-cube {# ~ R" I 0 < #j < p } and by Mo the half-closed cube 
{# I 0 -< #j < p}. The polydisk D~, is given the symplectic structure by an analytic 
2-form 092 such that 

co2 = dp ^ dq + O([p, q I)" (A.1) 

In Dp we consider hamiltonian vector field Vh with analytic hamiltonian h such that 
Vh(0) = 0 and for all # e M, Do e T" the curves 

# = const, D = D O + W(#)t (A.2) 

are trajectories of  Vh, where W : M ~ R" is an analytic map. 

T H E O R E M .  I f  det OW/O# ~ 0, then after decrease p, in Dp analytic coordinates 
(if, ~) may be constructed such that 

(i) (p, ~) = (p, q) + o(lp,  ql2), 
(ii) dfi ^ d~ = 092, 

(iii) the actions Ij. i -2 = ~(pj + q}) and the angles ~pj = arctan t~j//~j forms action- 
angle variables for the vectorfield Vh : 

where the hamiltonian h is analytic in Mo; 
(iv) the transformation (#, D) ~ (I, ~p) has the form 

(It, D) ~ (I = I(#), go = D + ttt(~)), 

where the maps I(#) and ~(p) are analytic in Mo. 

t6 The angles, correspnding to #/s, are denoted D/s. See (1.10). 
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Proof. Denote 

D_ = {(p, q) ~Dp I PJ > 0 Vj}, 

and for # ~ M denote by T"(p) c D the n- torus  {(#, D) [ p = fixed}. 

L E M M A .  Near each torus Tn(lO the vectorfieM Vh is Liouville - A r n o M  integrable. 

Proof. The vectorfield Vh restricted to Tn(#) equals ZW/(p)d/aDj ,  and by the 

theorem's assumption the flow of Vh on Tn(p) is ergodic for almost all p. The tori 

with ergodic flow of the form (A.2) are Lagrangian [Her] 17. So all the tori Tn(#) are 

Lagrangian.  

Consider  the functions 

f j : ( p , q ) ~ - - * p j ( p , q ) ,  j = l  . . . . .  n. 

A s ~ ' s  are constant  on each torus Tn(p), then for q ~ T"(#) and r E/7  ..= TqTn(#) we 

have 

0 = (dfj(q), r  = roz(V6(q), r 

Thus, the vectors Vy/(q) lie in the skew-orthogonal complement  to /7 ,  equal H because 

the torus T"(p) is Lagrangian.  Hence, the functions ~ are in involution:  

[~,fk](q) = a~2(Vh(q), V;-~ (q)) = O. 

Similarly [~ ,  H] = 0, and the lemma is proved. [] 

For  ( p , q ) = ( # , D ) ' E D  a n d j = l  . . . . .  n we define 

Cj(p, q) = {(p', D ' )  [# '  = #, D~ = D, for 1 C j,  D~ E q]-~}. 

We use (A.1) to construct  an analytic Liouvitlean form 091, dm~ = co 2, such that 

COl = pdq + O(~v, qp). 

~7 We sketch the proof. Denote by O 2 the form m2 restricted to some ergodic torus. As the flow of 
V h preserves the form co 2, then the flow of the ergodic vectorfield ~,W/O/SDj on the torus preserves 0 2. 
Thus 0 2 = ~.i <j aa dDi ^ dD~ with some constant coefficients air The coefficient a o equals averaging 0 2 
along the two-torus {q I qt = 0 if l v~ i,j}. So it vanishes because the form 0 2 is exact as well as the form 
O9 2 �9 
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Fix # ,  ~ M. Due to the lemma and Liouville-Arnold theorem in the vicinity of 
T " ( # , )  there exist analytic action-angle variables (L ~) such that 

/s (I*, D) = q~ o01 , j = 1 . . . . .  n. 
jcj (p, D) 

The actions depend only on the n-torus. S o / j  =/ j ( /0 .  

LEMMA. The functions ~ are analytic in M o and 

6(~) = ~,(1 + o(1~1). 

Proof  By the formulas for Cj(p,  q) and ah, the functions ~ are analytic in Dp 
and /j =/~j + O(~p, q[3). Denote 

zj = & + iqj = ~ eln,, j = 1 . . . . .  n. 

As the functions Ij(p,  q) are analytic, then 

4 = E a•,e z = J  = ~-, a;,,  I-I (2#,) '/2(~' +")eiD'(=' ~`) 
�9 ,3 at,13 l 

As /s is D-independent, then a•. a = 0 if ~ :~/3. So 

6 = E a';,= fz?" = E a';,=(2~)" 

is an analytic function of # such tha t / j  = # / +  o([#]). As /j vanishes with #:, then 

o(1~1) = ,,jo(l~t). [] 

LEMMA. Near the f i x e d  torus T " ( p , )  we have �9 = D + gJ(p) with some map 't' 

which is defined and analytic near # , .  

Proof. On each torus T"(#) with /~ near # ,  the vectorfield Vh equals 2~I, Vj(/~) 
O/aD z (by (A.2)) and equals Sff's(#)3/3O s, because (/, q~) are the action-angle 
variables. As the trajectories (A.2) are dense in T"(#) for most /~, then 

= L D  + ~(/~) with some unimodular matrix L. By the formulas for the actions 
the cycles ~j on the tori T"(/~), 

8 i = { ~  {~,is  fixed for l # j ,  ~ j e g l } ,  

are homologous to Cj. So L = Id. [] 
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As dI  A d~ = co 2, then the last lemma implies that 

0.) 2 = d I  ^ dD + dl  ^ d~/~~ -= ~1 -{" ~)2" (A.3) 

Observe that the form 71 is analytic in D~ 8. As 72 = ~02 - 71, then the form 3:2, 
originally defined in the vicinity o f  T"(/~.) can be analytically extended to D~,. 

exists a 2-form f2, L E M M A .  There 
~2 = 17 "~2 where 

defined and analytic in Mo, such that 

l l  : Dp_ ~ M, (p, q) w-~ L 

Proof. For  j = 1 . . . . .  n denote 

zj = xj + iyj, z + = zj, z f  = 2j, z-j + = Yj, Yj = z/. 

As the form Yz is analytic in Dp, then 

72 = ~, ~" a~V(z, ~) dzf  ^ dz;, 
L j =  1 I~,v= + 

where the functions a~ ~ are analytic in D , .  Near  the torus T" (# . )  

' ( ' /  
) ' 2 = ~ A i j ( l ) d I i a d I J = 4 ~  A i /  2]z]2/u, vZz~z;dz~ Adz ; .  

These two representations for the analytic form 72 jointly imply that the functions 
Aq are analytic in Mo, and the lemma's  assertion follows. [] 

Observe that 72 = ~ dIj ^ dT~j = d(7  j dI). So the form 72 is exact and closed and 
the form f2 is closed. By the Poincar6 lemma there exists an analytic in Mo 1-form 
tp~ dI, tp~ = 0, such that d((p~ dI)  = 72. By (A.3) ,  

co2 = dI  ^ d(D + q~O(i)). (A.4) 

So (Ltp = D + ~0~ are action-angle variables. 

~8 Because dlj = d#j + d(#jJJOt)) with some analytic in M o funcitons J~ (by the first lemma) and the 
form dg ^ dD is analytic in Dp. 
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Define the Cartesian variables 

/3j = ~ cos q~j, ~j = ~ sin ~oj. 

By the first temma, 

fig = x/1 + O ( / ~ ) ~ j ( c o s  Dj cos q~o(#) _ sin Dj sin q~o (/~)) =pjpj(#) _ qjQ~(#), 

where Pj, Qj are analytic in M0 and Pj(O) = 1, Qj(O) = 0. Similar with ~j. So the 
analytic map (p, q) ~ (/3, ~) has the form given in the statement (i) of  the theorem. 

Statement (ii) results from (A.4). 
In the coordinates (/5, ~) the vectorfield V, is hamiltonian with the analytic 

hamiltonian h(/3, ~), depending on the actions I only. By the same arguments as in 
the proof  of  second lemma, h = h'if), where the function h" is analytic in Mo. So the 
statement (iii) follows. 

The last statement results from the definition of  (L r 

Appendix  2. Correction 

In Part  6 above we essentially use Theorem 3.1.2 from [K1]. The secon author  
(S.K.) admits that the p roof  of  Theorem 3.1.2 (more exactly, its reduction to the 
main theorem of  [K1]) contains a gap which was drawn to his attention by J. 
P6schel. The gap affects the theorem exactly in the specific case we use above. 
Below we give the corrected statement. 19 We use notations of  [K1]. 

C O R R E C T I O N  (to Theorem 3.1.2 in [K1]). I f  d l= 1 (i.e., if  the frequencies 
2j(0) of the unperturbed system have linear growth), 2~ then the spectral asymptotics 
(1.12) ([K1], p. 50) should be strengthened as 

12j(O) - K~J" - K~ I <- K , j - ' .  (1.12') 

Besides, the radius 6~ should be larger than C-I~ I -~, where # > (2 - A)/(4 - A) with 
A = min( 1,--dH) and dH is the (negative) order of the nonlinear part of the 
perturbation. 

~9 It is somewhat weaker than the one given in [K1] but is sufficient for the purposes of the current 
paper. 

20 As the frequencies {w t} in (2.4). 
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For  the perturbed (SG)-equation (1.12") is fulfilled, d n = - l ,  ( 2 - A ) /  
( 4 -  A) = 1/3 and p = 1/2. So the theorem can be applied to (6.3). 

The mistake is contained in the estimate (4.11), p. 77 (which is needed for the 
case dt = 1): the correct version of the estimate has no factor 6a in the r.h.s. 

Therefore under an appropriate choice of  the small "bad set" O 2, for "good 
parameters" 0 r O 2 o n e  has 

IO] > . C(m)(s)~ 

(not ID] > 6a . . .  as in the book) .  So 

(1) the proof  given in the book works without additional corrections if 
6 a ---=6 > C - 1 8 1 / 2 - u "  with p '  > 0  (see (8.11), p. 88, where 6 -1 should be replaced 
by 6-2).  

This restriction is too hard since it is not fulfilled for the (PSG)-equation. To 

obtain a better result we make one more observation. 
(2) For b ~ [0, 1) one can construct a small "bad set" 0 2 in such a way that 

[D] >,5~_~, ( j - k >  
( k  )bC(rn) (s )  ~2 

for 0 r 0 2. With denominators like that the nonlinear part  of the transformed 

vectorfield will loose b "units of smoothness". So if we take b ~ [0, A = 
m i n ( 1 , - d n ) ) ,  then the transformed nonlinear vectorfield will be still of  the 
negative order d~ = d n + b < 0 - i.e. still smoothing. With this choice of  the bad 
set after the first step of the normalizing procedure we get as a new magnitude of 
the perturbation e~l) = e2t~2-b. As # > (2 -- A)/(4 -- A), then one can find b e [0, A) 

such that 

62>C-1~17~", # ' > 0 .  

After this we can proceed as in 1). 
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