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| nvariant Cantor Manifolds
of Quasi-periodic Oscillations
for a Nonlinear Schrodinger Equation

SERGEJ KUKSIN & JURGEN POSCHEL

1 I ntroduction and Results

This paper is concerned with the nonlinear Schrédinger equation
iUy = U — mu — f(jul®u, (1)
on thefinite x-interval [0, ] with Dirichlet boundary conditions
u,0) =0=u(t, n), —00 <t < o0.
The parameter m isreal, and f isrequired to bereal analytic in some neighbourhood

of the origin in C. Absorbing a constant into m we may assume that f(0) = 0.
Furthermore, werequire f to be nondegenerate in the sense that

f(0) # 0.

Aswe will seelater, the sign of the derivative of f isimmaterial for our results and
may be assumed to be positive for convenience. Then we have

iU; = Uyxx — MU — |ul?u + O(U®) 2)

after rescaling u appropriately.
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2 Section 1: Introduction and Results

We study this equation asahamiltonian system on some suitabl e phase space P.
We may take, for example, P = W3 ([0, ]), the Sobolev space of all complex valued
L2-functions on [0, 7] with an L?-derivative and vanishing boundary values. With
the inner product

(u,v) = Re/ uv dx
0
and the hamiltonian
H = 1(Au,u) +%f0 g(Jul?) dx, 3

where A = —d?/dx> + m and g = [, f dz, equation (1) can be written in the
hamiltonian form

u=iVH (),

where the gradient of H is defined with respect to (-, -), and the dot indicates
differentiation with respect to time.

We are going to study strong solutions of (2) in the phase space P given by
continously differentiable (even analytic) curves t — u(t) satisfying (1). We recall
that astrong solutionexistsnot for al initial datain P. Butif it exists, thenitisunique.

Our aim is to construct plenty of small amplitude solutions that are quasi-
periodic in time. Such quasi-periodic solutions can be written in the form

uct, x) =U(wrt, ..., ont, X),

where wy, ..., wy arerationaly independent real numbers, the “basic frequencies”
of u, and U isa continuous function of period 27 in al arguments except the last
one, called the hull of u. Thus u admits a Fourier series expansion

uct, x) ~ > " U(x) et

kezn

where k- o = Zj”:l Kiwj. A specia case are time-periodic solutions, which are

quasi-periodic with exactly one basic frequency. Solutions of thiskind may therefore

be interpreted as quasi-periodic oscillations for the nonlinear Schrodinger equation.
We achieve our aim by constructing the hulls as embeddings

Uu: ™—-2? 6~U@®, )

of the n-torus T" into the phase space P together with frequency vectors w such that
the straight windings t — wt + 6, on the torus map into solutions of equation (1).
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Thus those quasi-periodic solutions u arise from what we call rotational tori. These
are embedded tori, which are invariant, and on which the flow is linear in suitable
coordinates.

Now, al the rotational tori are not constructed individually, but they come in
Cantor families forming finite dimensional Cantor manifolds through the stationary
solution u = 0. They are the remnants of invariant linear manifolds for the linear
Schrédinger equation when the nonlinearity f istaken out.

To be more precise let

¢j(x)=\/gsinjx, A =j%+m, ji>1

be the basic modes and their frequenciesfor thelinear equation iu; = uyx — mu with
Dirichlet boundary conditions. Thenevery solutionisthesuperposition of oscillations
of the basic modes, with the coefficients moving on circles:

ut, ) =y g0, Gt =agleh.

j>1

Together they move on arotational torus of finite or infinite dimension, depending on
how many modes are excited. In particular, for every choice

J={li<jo<--<ijn}CN

of n > 1 basic modes thereis an invariant linear space E; of complex dimension n
which is completely foliated into rotational tori:

E;={u=au, + -+, :qeC"} = T,

| ePn

where P" = {I : I; > 0 for 1 < j < n} isthe positive quadrant in R" and

U‘J(I)={U=q1¢,-1+---+qn¢jn:Iqj|2=2lj forlsjsn}.

In addition, each such torusis linearly stable, and all solutions have vanishing Lya-
punov exponents. — Thisisthe linear situation.

Uponrestoring thenonlinearity f theinvariant manifolds E; will not persistin
thelir entirety dueto resonances among the modes and the strong perturbing effect of f
for large amplitudes. We show, however, that in a sufficiently small neighbourhood
of the origin alarge Cantor subfamily of rotational n-tori persistsandisonly slightly
deformed.
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That is, there exists a Cantor set ¢ C P", afamily of n-tori

Te = JT) cE
leC

over €, and a Lipschitz continuous embedding
®: T3[C] — P,

such that the restriction of & to each T;(1) in the family is an embedding of a
rotational n-torus for the nonlinear equation. The image &; of T;[C] we call a
Cantor manifold of rotational n-tori given by the embedding ®: 75[C] — &;.

The Cantor manifolds have anumber of additional properties.

— The embedding @ is a higher order perturbation of the inclusion mapping
®o: E; — P restricted to T3[C]. Itsrestriction to each torus T3 (1) isreal analytic,
and it maps into the space of analytic functionson [0, r], with uniform domains of
analyticity.

— The Cantor set C hasfull density at the origin. That is,

. 1en B
m-—-—-—-————
r—0 |]P)n ﬂ Brl

9

where B, = {I : ||I|| <r}, and |-| denotes the n-dimensional Lebesgue measure
for sets.

— In view of the previous remarks, &£; has a tangent space at the origin equa
to Ej:

To&] = EJ.
— The frequencies w of the rotational tori are diophantine, whence we also call

them diophantinetori. That is, there exist positive « and t such that

o
L

k-l >

for0£keZ".

The exponent t can be kept fixed, while o tends to zero as the tori approach the
origin.
— All the tori are still linearly stable, and all their orbits have zero Lyapunov
exponents.
Remarkably, the existence of such Cantor manifolds follows from the nonde-
generacy of the nonlinearity without any further assumptions.
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Theorem 1. Suppose the nonlinearity f isreal analytic and nondegenerate.
Thenforall me R,alne Nandall J = {j;1 <--- < jn} C N there exists a
Cantor manifold £; of real analytic, linearly stable, diophantine n-tori for equation
(1) given by a Lipschitz continuous embedding ®: T;[C] — &;, which isa higher
order perturbationof theinclusonmap ®q: E; — P restrictedto T3[C]. TheCantor
set € hasfull density at the origin, whence &; hasatangent space at the origin equal
to E;. Moreover, &; iscontained in the space of analytic functionson [0, ] .

A more precise description of the asymptotic behavior of ® and its analyticity
propertiesis given later.

Remark 1. One could show that ® isnot only Lipschitz across the tori, but
smooth in the sense of Whitney. We did not pursue this point.

Remark 2. The frequencies of the diophantine tori are also under control.
They are

o) =xr;+ Al +O(11?

for | € €, where 15 = (%j,, ..., %j,), and A isthe n x n-matrix with coefficients
Aij = (4= &ij)/4r.

Remark 3. For n = 1 the theorem says that for each j > 1 there exists
a“Cantor disc” €&; filled with time-periodic solutions of (1) which at the origin is
tangent to the plane corresponding to the eigenfunction ¢; . However, itisnot difficult
to show directly that indeed there existsa* solid” disc of thiskind, without any holes.
A more detailed statement is given in Appendix C.

Remark 4. As we will explain below the Cantor manifolds also exist for
nonlinearities f of theform

fov) =av+ Y fiovk, a + 0,

k>2

wherethe coefficients fy arereal analyticin x, or in some Sobolev space W3([0, x]),
S > % , With norms growing at most exponentially to ensure analyticity in v. Inthe
|latter, non-analytic case the resulting quasi-periodic solutions are of class Ws+2 in x.

The size of the Cantor manifolds &; is not uniform, but depends on m, n
and J, and in particular tends to zero as n tends to infinity. Thus, unlike the linear
spaces E;, they are not dense in some fixed neighbourhood of the origin. But they
are asymptotically dense in the following sense.

Corollary 1. Theunion of all Cantor manifolds £; intersects every nonempty
open conein W ([0, ]) with vertex at the origin.
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The result of Theorem 1 is not completely unexpected. Equation (2) may be
viewed as a higher order perturbation of the Zakharov-Shabat equation

iU = Uy — mu — |ul®u

onthereal linewith periodic boundary condition, which isknown to beintegrable. In
particular, the latter has plenty of x- and t -quasi-periodic solutions, given be exact
formulas — the so called finite gap solutions. Some of them also satisfy the Dirichlet
boundary condition [1]. The time-quasi-periodic solutions of our equation may thus
be thought of as perturbations of small amplitude finite gap solutions of the Zakharov-
Shabat equation.

This scheme may be converted into a proof, and exactly in this way a result
similar to Theorem 1 was obtained in [3] for the nonlinear wave equation

Uit = Uxx — MU + au® + O(u®), m>0 a0

on [0, =] with Dirichlet boundary conditions. Here the approximating integrable
system is the Sine-Gordon equation or the Sinh-Gordon equation.

But in this paper a different approach is taken. Instead of approximating the
problem by an integrable partial differential equation, we approximate it by an inte-
grable infinite dimensional hamiltonian system, namely the Birkhoff normal form of
the hamiltonian (3) in infinitely many coordinates up to order four.

To start, we use the complete set of eigenfunctions of the operator A with
Dirichlet boundary conditionsto write u =  ; gj¢; asinthelinear case. We obtain
ahamiltonian in infinitely many coordinates g; which isreal analytic near the origin
in some suitable space of complex sequences q = (0, Oz, ...). Its equations of
motion are

The linear equation in particular gives rise to the quadratic hamiltonian

A=3) Alg

i=1

2

b

while the nonlinearity f givesriseto terms of order four and more. Thus,
H=A+G, G=0(dl,

which describes an elliptic fixed point in infinitely many degrees of freedom.
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In classical hamiltonian theory, the standard tool to investigate such systems
near the equilibrium is their Birkhoff normal form, or its generalizations. Remark-
ably, the Birkhoff normal form up to order four is available here without any further
assumption, sincetherel evant nonresonance conditionsamong the A; hold uniformly.
The upshot isthat there is one global change of coordinates so that

H=A+G+0(al®. G=31> GijlaP|gl
i

for al m. Thus, the hamiltonian is integrable up to a perturbation of order 6 — a
reflection of the integrability of the Zakharov-Shabat equation.

Now KAM theory comes into play. There is no genuine infinite dimensional
KAM theory yet to establish the persistence of infinite dimensional rotational tori
for hamiltonians of the type above. But there are also plenty of finite dimensional
rotational tori, for which persistence results have been devel oped recently by the first
author [9]. For example, the n-dimensional tori

-]

aredl invariant, if the O-term isomitted. Upon itsinclusion, alarge Cantor family
of tori is shown to persist, forming a Cantor manifold of the kind described above.

Of course, KAM theory always requires some nondegeneracy condition, and
this case makes no exception. Here, they involvethe frequencies A; and the Birkhoff
coefficients Gjj, and it is remarkably easy and straightforward to verify the required
conditions for al choicesof m, n and J without making any further assumption or
restriction. The only requirement is the presence of athird order term in the nonlin-
earity f, no matter what sign. In essence, the nondegeneracy of the nonlinearity f,
as defined in the beginning, provides the nondegeneracy of the infinite dimensional
integrable hamiltonian given by the fourth order Birkhoff normal form.

Thetechnique described is not restricted to the nonlinear Schrodinger equation.
It applies equally well to the nonlinear wave equation

l;>0, 1<j<n
0, ] >n+1

Ut = Uy — Mu — f(U)

onthe x-interval [0, 7] with Dirichlet boundary conditions, areal parameter m > 0
and areal analytic nonlinearity

f(u) = au® + O(U®), a+0.

Theorem 1 holds mutatis mutandis also here, if for example the index set J =
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{j1 < - < |n} satisfiesmin j,— J,_1 = 1. Thesolutionsobtained arereal analytic
int and x. Detailswill be givenin[13].
One may also deal with more general nonlinearities of the form

fou) =aud+ ) fiou,
k>5

where the coefficients fx arereal analyticin x, or just in W5([0, ]), S > %,with
norms growing at most exponentially to ensure analyticity in u. In the latter, non-
analytic case, however, the resulting quasi-periodic solutions are of class W2 in x
only. The point is that the higher order terms have no bearing on the fourth order
Birkhoff normal form and may therefore be of a more general form. On the other
hand, any x-dependent coefficient of u® destroys the integrability of the Birkhoff
normal form. — An analogous generalization applies to the nonlinear Schrodinger
equation as mentioned above.
Finally, one may add a general perturbation term

€g(X, U) =€ ) g (X)U¥

k>0

to the nonlinearity f, with coefficients gy of the same type as the fx. Then there

still exist Cantor manifolds for all sufficiently small ¢, the smallness depending on

m, n and J. However, they have a hole at the origin instead of being dense there,

since the perturbation no longer tends to zero as we approach the origin.
Hamiltonian perturbations of the KdV-equation, such as

d
Ut = Uexx — Ulx — — f (W), f(u) =0,

are also susceptible to our approach. Here the unperturbed hamiltonian is nonlinear
and admitsanondegeneratenormal forminthesenseof section4. Soweobtain Cantor
manifolds of time-quasi-periodic, space-periodic solutions of small amplitude. Of
course, stronger and more global results are available based on the integrability of the
KdV-equation [8]. But they also require aformidable amount of machinery, whereas
by comparison the normal form technique looks elementary.

Our technique aso has its limitations. First of all, to get started the linear
operator involved needs to have a pure point spectrum with a complete set of eigen-
functions. Also, the point eigenvalues have to avoid certain lower order resonances.
Thisisreminiscent of the Lyapunov center theorem in the finite dimensional theory:
if, a an elliptic fixed point of areal analytic hamiltonian system with characteristic
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frequencies A4, ..., An, ONe has

ﬂgz_fZ 1< i

Jo

then there existsadisc through the originfilled with periodic sol utions of the nonlinear
system which is tangent to the plane of periodic solutions with frequency Ao for
the linear part of the system. The nonresonance conditions are necessary: given a
resonance there are nonlinearities so that such afamily of periodic solutions does not
persist [14].

For infinite dimensional systems there are similar results concerning the non-
per sistence of breathersunder generic perturbations. Seefor example[5] and[15], re-
spectively, for recent results concerning the sine-Gordon equation and certain classes
of nonlinear wave equationsin any space dimension, and thereferencestherein. Very
loosely speaking, the resonance occurs between the point eigenvalue of the unper-
turbed periodic solution — the breather — and the continuous spectrum of the unper-
turbed operator. These resultsindicate that the requirement of a pure point spectrum
not inlow order resonanceisnot atechnical shortcoming, but essential for persistence
results of the kind of Theorem 1.

Another limitation arises from requirements about the asymptotic nature of the
point eigenvalues A; of the linear equation. They have to be simple and tend to
infinity at least linearly. More precisely, Aj = j4+ --- + O(j%) withd > 1 and
8 < d—1. Thisrestricts our approach essentially to one-dimensional problems
with Sturm-Liouville type boundary conditions. Periodic boundary conditions are
not admitted as they give rise to (asymptotically) double eigenvalues. Some of these
restrictions, however, are probably of a technical nature. For example, Craig and
Wayne [4] could allow for double eigenvalues in the construction of Cantor discs of
periodic solutions for nonlinear wave equations. Their result may be viewed as an
infinite dimensional extension of the Lyapunov center theorem.

Investigations into the existence of time-quasi-periodic solutions for nonlinear
partial differential equations were started only rather recently, and independently, by
Wayne [16] and the first author [7]. The monograph [9] gives an extensive list of ref-
erences as well as some more historical background. All these results, however, are
based on the assumption that the unperturbed equation isintegrable and nondegener-
ate, or depends on sufficiently many parameters, which could be adjusted appropri-
ately and eventually are restricted to some Cantor set. The use of a nondegenerate
Birkhoff normal form, in this context introduced in [11], obviates the use of such
parameters and leads to more “natural” results. — Incidentally it was shown that all
known nonlinear integrable partial differential equations are nondegenerate [2,3].
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The rest of the paper is organized as follows. In section 2 the hamiltonian of
the nonlinear Schrodinger equation is written in infinitely many coordinates, and its
regularity is established. In section 3 it is transformed into its Birkhoff normal form
of order four. In section 4 another theorem about the existence of invariant Cantor
manifolds for hamiltonians in such normal forms is formulated, which allows us to
prove Theorem 1 in section 5. The latter theorem is subsequently reduced to arather
technical KAM-theorem about perturbations of families of linear hamiltonians. The
statements and details of the reduction fill the last two sections, whereas the proof of
the technical theorem is given in a separate paper.

This paper waswritten while both authors were guests of the Forschungsinstitut
fur Mathematik at the ETH Zurich, and we liketo thank theinstitute for its hospitality,
pleasant working atmosphere and helpful staff. In particular, we like to thank Jirgen
Moser for numerous stimulating discussions on the subject. We also benefitted from
aremark by Sigurd Angenent concerning the analyticity of the solutions. The second
author also thanks the Deutsche Forschungsgemeinschaft for their financial support
through a Heisenberg grant.

2 The Hamiltonian

The hamiltonian of the nonlinear Schrddinger equation is
H = 3 (Au, u>+%/o g(lul?) dx,

where A = —d?/dx? + m and g = [, f dz. We rewrite H as a hamiltonian in
infinitely many coordinates by making the ansatz

u=38q=7 g, ¢j=\/gSinJ'X, j=1 (4)

ji>1

Thecoordinates aretaken fromthe Hilbert space ¢ P of all complex valued sequences
g = (Q1, 02, ...) with

laliz, =" |o;|” i%Pe?® < co.

ji>1

Wefix a>0and p > % later. We then obtain the hamiltonian
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H=A+G
" 5
=22 % \qi\2+%fo g(18ql?) dx ©

j>1

on the phase space ¢2-P with symplectic structure IE >_; dgj A dg . Its equations of
motion are

G =2, =L (6)

They are the classical hamiltonian equations of motion for the real and imaginary
partsof g; = x; 4 iy; written in complex notation.

At this point we do not discuss the validity of this transformation or its sym-
plectic nature. Rather we take the latter hamiltonian as our new starting point and
make the following simple observation.

Lemmal. Leta>O0and p>0. Ifacuvel — ¢&P, t — q() isan
analytic solution of (6), then

ut, x) =Y gt ()

=1
isa solution of (1) that isanalyticon | x [0, x].

Proof. For a > 0 and p > 0, the sum is absolutely convergent in some
complex neighbourhood of the x-interval [0, 7] and some complex disc around a
givent in | . Thesameistruefor itstermwise t -derivative. Therefore u isanalytic
int and x, and we can differentiate under the summation sign. We find that

iU =) ¢

ji=1

==Y (qu,- +/0 f(ul®)ug, dX) i

ji>1

=—) A% — ) (/Oﬂ f(lu®)ug; dx) Pj

i=1 =1
=—Au— f(lu®u

by the orthonormality and completeness of the ¢; . I

To continue our investigation of the hamiltonian in (5) we need to establish the
regularity of the nonlinear hamiltonian vectorfield Xg associated with G.
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Tothisend, let ¢2 and L2, respectively, be the Hilbert spaces of al bi-infinite,
square summabl e sequenceswith complex coefficientsand all square-integrable com-
plex valued functionson [—x, ]. Let

1 y
F. 212 q+- Fq= Eque”x
j

be the inverse discrete Fourier transform, which defines an isometry between the two
spaces.

Let a > 0 and p > 0. The subspaces ¢)'° ¢ €2 consist, by definition, of all
bi-infinite sequences with finite norm

lal2 , = laol>+ > g |* 1] 2P €212,
i

Through F they define subspaces WP C L? that are normed by setting || Fq|, 0=
lallap- For a > 0, the space WP may be identified with the space of al 2 -
periodic functions which are analytic and bounded in the complex strip |Imz| < a
with trace functions on |Imz| = a belonging to the usual Sobolev space WP.

Lemma2 Fora> 0and p> 1,thespace ¢, isa Hilbert algebra with
respect to convolution of sequences, and

IG# Fllap < CliAllap I lap

with a constant ¢ depending only on p. Consequently, W2 P is a Hilbert algebra
with respect to multiplication of functions.

The proof isgivenin Appendix A.

Lemma3. Fora>O0and p > % the hamiltonian vectorfield X¢ isreal
analytic as a map from some neighbourhood of the originin £2-P into ¢2P, with

1Xallap = O(llal3 p)-

Thus, X is a genuine vectorfield on ¢2:P. On the other hand the linear
vectorfield X, isunbounded on ¢2-P, sinceit takes valuesin ¢2-P—2,
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Proof. We have
G f”
— = f (lul®)ug; dx, u=Sag.
8qj 0 | q

Let q bein ¢2P. Considered as a function on [—m, 7], u = 8q isin WP with
Iulla,p = ll9llap- By the agebra property and the analyticity of f, the function
f (Jul?)u also belongsto W2 P with

| fduPul, , < cllullf

in a sufficiently small neighbourhood of the origin. The components of the gradi-
ent G areits Fourier sine coefficients, so G5 belongsto £2P, with

IGall,, = I fauPul, , <clul}, <clal,-

Theregularity of X follows from the regularity of its components. 1

For the nonlinearity |u|?u wefind

G= 211/ lu)|*dx = 1 Z Gijw ¢ dj 9k (7)
0 i,j.kl

with
Giju :/o &i dj preh dXx.

Itis easy to verify that Gjjly = O unlessi £ j = k| = 0, for some combination
of plus and minus signs. Thus, only a codimension one set of coefficientsis actually
different from zero, and the sum extendsonly over i + j = k£1 = 0. In particular,
we have

b4

4 5 .o,
Gijij = sin?i x sin?j x dx

72 Jy
1 (" . .

= —2/ (1 —cos2ix)(1— cos2jx) dx
T Jo

1 /7 . .
== (14 2 cos2(i — j)x)dx
1
ZZ(Z‘F(SU),

using 2sinu = 1 — cos2u and 2cosucosv = Cos(U + v) + cos(u — v). These
coefficients determine the Birkhoff coefficients of the next section.
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From now on we focus our attention on the nonlinearity |u|?u, since higher
order terms do not matter.

3 The Birkhoff Normal Form

Lemmad4. Forthehamiltonian H = A +G with nonlinearity (7) there exists
areal analytic, symplectic change of coordinates I' in a neighbourhood of the origin
in 2P that for all real values of m takesit into its Birkhoff normal form up to order
four. That is,

Holl=A+G+K,

where Xg and Xk are real analytic vectorfields in a neighbourhood of the origin
in ¢&P,
= = 2
G=3> Gilallg
i,j>1

. IKI=0(lals ).
with uniquely determined coefficients Gij = (4 — &) /4r .

Thekey ingredient of the proof isthe observation that all therelevant divisorsin
the normalizing transformation are independent of m and uniformly bounded away
from zero, since they are nonvanishing integers.

Lemmab. Ifi+j+k+l=0and{i, j}+#{kI},then

Al FA — Ak — A =i2—|-j2—k2—|2750.

Proof. If one pair of indicesin thetwo setsisequal, say j =1, theni # k
by hypotheses, and so i? 4+ j2 — k? — 12 = i%2 — k? # 0. So suppose that there is no
pair of equal indicesin the two sets, but that to the contrary

i24+j2=Kk>+12.
We may asoassumethat i <k <I| < j. Fromi £ j £k +1 = 0 we conclude that

indeed i + ] = k4 1. Squaring and subtracting the first equation yields ij = ki,
and hencewefind (k —i)(k — j) = 0. Thisisacontradiction. I
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Proof of Lemma 4. Let I' = X}|,_, be the time-1-map of the flow of the
hamiltonian vectorfield Xg given by the hamiltonian

F=3 Z Fiji 0 9; Gkal
i LKl

with coefficients

Gijk ifi£j+tk+l=0
iFiju = Xi+)\j—kk—k|’ and {i, j} # {k, I} ’
0 otherwise.

Aswewill show inamoment, Xg isareal analytic vectorfield on £2-P of order three
at theorigin. Hence I" isareal analytic, symplectic change of coordinates defined at
least in a neighbourhood of the originin £2P.

Expanding at t = 0 and using Taylor’s formulawe have

HOF—HoXt}tl

1
= H 4P+ [ @=D((HF)LFo X
0

=A+G+{A,F)

1
+{G,F}—|—f (1—-t){{H,F}, F}o XL dt,
0

in a neighbourhood of the origin, where {H, F} denotes the Poisson bracket of H
and F. Thelast line consists of terms of order six or morein g and constitutes the
higher order term K . In the second to last line,

G+{A F}=1 Z (Giji — (A +Aj —Ak—1) Fijir ) 0 Gj 0k

i+j+ktl=0
Z Gijk 0 dj Gk

{i.j}=tk.I}

=1y Gijlal?|gl’ =

i,j>1

with ZG” = Giiii and Gij = Gijij for i 75 j Hence H o I” =A+G+K as
claimed.
It remains to prove the analyticity. In view of Lemma5 we have

IA

: Gij|logd] < Y [aigia-

’aq' :I:l:tj:i:k | +i+jLk=I
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Introducing the doubly infinite sequence p by setting p; = |q;j| for j # 0 and
po = 0 we can write

> lagal= ) pppc=(pxpxp),

it ] k=l i+ k=l

where the second sum extends over all integersii, j, k. Hence, by LemmaA.1,

|Fallp < IP% P pllap < clipld, < clalll,.

Finally, uniguenessis proven in the classical way [14]. 1

Thus, the hamiltonian is brought into the infinite dimensional analogue of the
classical fourth order Birkhoff normal form,

Hol' =, 1)+ 3 (Al 1)+K,

where | = (Ig, Ip,...) with I; = 1|q;|> and A} = G;j. This result is in fact
stronger than what we can make use of, since we have no KAM theory yet for infinite
dimensional tori of such hamiltonians. We rather focus our attention now on certain
families of finite dimensional tori, for which a partial Birkhoff normal form would
suffice.

With the normal form at hand, Theorem 1 could be deduced by applying an
abstract infinite-dimensional KAM-theorem from [9] in the same way as it was done
in[2] for the nonlinear string equation. There asimilar normal form was obtained by
an analysis of the time-quasi-periodic solutions of the sine-Gordon-equation. This
way one obtains Cantor manifolds of solutions which are t -analytic and x-smooth.
The x-analyticity then results from the uniqueness assertion of a version of the
Cauchy Kowalewski theorem due to Ovsjannikov, Nirenberg and Nishida[10], which
is applied to equation (1) with x astime and ul,_,, as analytic Cauchy data. The
point isthat u|,_,, isaready knownto be anayticin t for every xo in [0, 7].

Below we proceed in a similar way but deduce Theorem 1 from a somewhat
different KAM-like result, which is provenin [12].

4 The Cantor Manifold Theorem

In a neighbourhood of the origin in ¢2:P we now consider a hamiltonian H =
A + Q + R, where R represents some higher order perturbation of an integrable
normal form A + Q. Thelatter describes afamily of linearly stable invariant tori of
dimension n with quasi-periodic motions. The dimension n isfixed, 1 < n < oo.
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In complex coordinates g = (6, d) on (2P, where § = (qa,...,qn) and
q = (qn+1’ qn+2’ L ) ’ and Wlth

| = 30wl ..., la®,  Z =300l [Ohs2l?, ..,
the normal form consists of the terms
A= (o 1)+ (B, 2), Q= (Al 1)+ (Bl, Z),

where «, B and A, B denote vectors and matrices with constant coefficients, respec-
tively. Its equations of motion are

q

idiag(e + Al + B72)q, G = idiag( + B1)g.

They admit a complex n-dimensional invariant manifold E = {§ = 0}, which is
completely filled, up to the origin, by the invariant tori

Ty={q: |G|°=2l forL<j<n}, 1ePn

On T(1) and initsnormal space, respectively, the flows are given by

q

q

i diag(w(1))4, w(l)=a+ Al,
idiag(2(1)§, £2()=p8+BI.

They are linear and in diagonal form. In particular, since £2(1) isreal, § = 0 is
an dliptic fixed point, al the tori are linearly stable, and all their orbits have zero
Lyapunov exponents. Wecall T (1) anellipticrotational toruswithfrequencies w(l).

Note that although looking very much alike there is an important difference
between an n-dimensional space E; for the linear Schrodinger equation and the
space E for the nonlinear normal form hamiltonian. In the latter the frequencies
in general vary from torus to torus, while in the former they do not. This so called
amplitude-frequency modulation is essential for obtaining the stability result below.

Due to resonances the manifold E does in general not persist in its entirety
under the inclusion of the higher order terms R. Instead, our am is to prove the
persistence of alarge portion of E forming an invariant Cantor manifold & for the
hamiltonian H = A + Q + R.

That is, there exists afamily of n-tori

Te]=JT) cE

leC
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over aCantor set € ¢ P" and a Lipschitz continuous embedding
W TJ[C] — ¢&P,

such that the restriction of W to each torus T(1) in the family is an embedding of
an dliptic rotational n-torusfor the hamiltonian H. Theimage & of TJ[C] wecall a
Cantor manifold of eliptic rotational n-tori given by the embedding W: T[C] — €.

In addition, the Cantor set C has full density at the origin, the embedding W
is close to the inclusion map Wo: E — ¢2P, and the Cantor manifold & is tangent
to E at theorigin.

For the existence of & the following assumptions are made.

A. Nondegeneracy. The normal form A + Q is nondegenerate in the sense
that

det A # 0,

(I, B) #0,
(k, (1)) + (1, £2(1)) #0,

foral (k,1) e Z" x Z*° with 1 < |I| < 2,where w = a + Al and 2 = 8 + BI.
B. Spectral Asymptotics. Thereexistsd > 1 and § < d — 1 such that

Bi =i+ -+ 03,

where the dots stand for terms of order lessthan d in .
C. Regularity.

) D > ford > 1,
Xo, X € A(E*P, (2P, { P=P

p>p ford=1,

where A(¢2P, ¢2P) denotes the class of all maps from some neighbourhood of the
originin ¢2P into ¢&P, which arerea analytic in thereal and imaginary parts of the
complex coordinate q.

By the regularity assumption the coefficients of B = (Bjj)1<j<ni Satisfy the
estimate Bj; = O(iP~P) uniformly in 1 < j < n. Consequently, for d = 1 there
exists amaximal positive constant « such that

i_j‘:1+0(j‘K), > ],

uniformly for bounded | . For d > 1, weset k = co.
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Theorem 2 (The Cantor Manifold Theorem). Suppose the hamiltonian
H = A + Q + R satisfiesassumptions A, B and C, and

IRl = O(lldll;.,) + O(llallg )
with
4 — A .
g>44+ ——, A =min(p—p,1).
K

Then there exists a Cantor manifold € of real analytic, eliptic diophantine n-tori
given by a Lipschitz continuous embedding ¥: TJ[C] — &, where € hasfull density
at theorigin, and W iscloseto the inclusion map Wy:

IV — Wollg, 5.8, na1e] = OC?),

with o > 1 specified at the end of section 7. Consequently, £ istangent to E at the
origin.

Remark 1. The embedding W can be chosen to include a parametrization
of each torus in which the flow is linear (although the estimate is then worse, see
Section 7). Then, foreach | € € and vg € T(1),

Vi tH \Il(ei‘”(')tvo)

isareal anaytic solution curvein ¢2-P for the hamiltonian H = A + Q + R. The
frequencies w(l) arediophantinefor all | € €, so each such orbit is quasi-periodic
with n basic frequencies.

Remark2. Themap W isnot only Lipschitz but could be shown to be smooth
on TJ[C] in the sense of Whitney. But we did not pursue this technical question.
Moreover, ¥ may be extended to a global Lipschitz map W: E — ¢2P satisfying
the same estimates as W — see Appendix B. So € may be viewed as part of a global
Lipschitz manifold. Thelatter, however, has no invariant meaning for the hamiltonian
system outside the Cantor set.

5 Proof of Theorem 1

We prove Theorem 1 by deducing it from Theorem 2. By Lemma 3 our hamil-
tonianis H = A + G with A asin (5) and Xg in A({®P, £2P) where we can fix
a>0adp > % arbitrarily. The domain of analyticity is then, of course, deter-

mined with respect to the norm || - ||, ,. With the help of Lemma 4 we put H into
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its Birkhoff normal form up to order four by areal analytic symplectic map I", such
that HoT' = A +G+ K.

Now we choose any finite number n of normal modes ¢;,, ¢;,, ..., ¢;, and
renumber them in such away that they become the first n modes. With the notation
of the previous section we then write

A=(a,)+(8,Z), G=3(Al,1)+(BI,Z)+G,

where, after renumbering, we have « = (A1, ..., An), B = (Ant1, Any2, ...), and
A = (Gi))1<ij<n, B = (Gij)1<j<n<i - Theterm G comprises“therest” of G, which
isquadratic in Z and therefore satisfies

Gl = O(lIGlI3 ,)-

Thus HoT = A+ Q+ Rwith Q = 2 (Al, 1)+ (Bl, Z) and R= G + K, for
which we verify the hypotheses of Theorem 2.

Lemma 6. For any choice of finitely many normal modes the normal form
A + Q isnondegenerate. So condition A is satisfied.

Proof. We have Gi,— = (4 — 8ij)/4n , independently of any renumbering of
coordinates. Hence 47 A = 4X—1 ,where | istheidentity matrix and all components
of X arel. So X hasrank 1, its spectrumis o (X) = {0, n}, and

c(dnA) =4o(X)—1={-14n—1} %0,

whence det A # 0.
Clearly, (I, B8) # 0 for 1 < |lI| < 2. For the last nondegeneracy condition we
have to check that

(, k) + (B,1)£0 or Ak+BTI £0
forall (k,1) with 1 < |I| < 2. Suppose Ak+ BTl = 0. Multiplying by 47 we have
(4X — 1)k + 47 BTl =0,

and all coefficientsof 47 BT are 4. Thusall components of k are equal, say p, and
(4n — 1)p + 49 = 0, where q isthe sum of the at most two nonzero components
of |. The only integer solution to this equationis p =0, =0,so0k =0, and |
hasone‘l andone‘-1'. But then («, k) 4 (8,1) = A; —A; forsomei # j, andthis
expression does not vanish. 1
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Since Aj = j?+ m, the spectral sequence B satisfies condition B with d = 2.
Henceit is sufficient to have Xq, Xgr € A(¢*P, £2P), which follows from Lemmata
3and 4. Finadly,

Rl < 16|+ [K| = O(lal ) + O(lalS. ).

so aso condition C is satisfied with g = 6 > 4.
So Theorem 2 applies, and we obtain in particular

¥ — Wolla p.5ng1e) = OC?).

Composing with T" we obtain aCantor manifold £ of real analytic diophantine n-tori
in £2P carrying quasi-periodic solutions

Viw: tHQqQt)y=To \p(eiw(l)tvo)
for the hamiltonian H = A 4+ G. Going back to W#-P by the isometry

P> WP g 8= ¢,

=1

€ ismapped into another Cantor manifold of real analytic diophantine tori in WP,
which by Lemma 3 carry analytic time quasi-periodic solutions u of the given non-
linear Schrédinger equation. This proves Theorem 1.

6 TheBasic KAM Theorem

The Cantor Manifold Theorem is obtained from a KAM theorem that is con-
cerned with perturbations of afamily of linear integrable hamiltonians

N=>w@y+3 Y 2EU+0D),
i=1 j=n+1

givenin n-dimensional angle action coordinates (X, y) and infinite dimensional car-
tesian coordinates (u, v) with symplectic structure

n o0
> dxg Ady+ Y duj Ady.
=1

j=n+1

The frequencies w = (w1, ..., wn) and 2 = (£2n41, 2042, ...) depend on n pa
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rameters
£ell CcR",

IT aclosed bounded set of positive Lebesgue measure, in away described below.

For each & thereisan invariant n-torus Ty = T" x {0, 0, 0} with frequencies
w (&) . Initsnormal spacedescribed by the uv -coordinatestheoriginisanelipticfixed
point with characteristic frequencies £2(£). The aim isto prove the persistence of a
large portion of thisfamily of linearly stable rotational tori under small perturbations
H = N + P of N. To thisend the following assumptions are made.

A*. Nondegeneracy. The map & — w(&) between IT and its image is a
homeomorphism which is Lipschitz continuous in both directions. Moreover,

{8 (ko) + (. 26) =0}| =0

and
(I,2&))#0 onIl

for al integer vectors (k, 1) € Z" x Z* with 1 < |I]| < 2.

B*. Spectral Asymptotics and Lipschitz Property. There exists d > 1 and
8 <d — 1 suchthat

2i€) =%+ +0(j%,
where the dots stand for fixed lower order termsin j, allowing aso negative expo-

nents. More precisely, there exists a fixed, parameter-independent sequence 2 with
2j = j9+ .- suchthat thetails 2; = £2; — £2; giveriseto aLipschitz map

Q1 — E;S,
where ¢F, denotes the space of al complex sequences with finite norm |w|, =
sup; [wj| jP.
C*. Regularity. The perturbation P isreal analytic in the space coordinates

and Lipschitz in the parameters, and for each & € IT its gradients with respect to u
and v satisfy

_ p>p ford>1,
PU’ PU € ‘A(anpa Ea’p)v

p>p ford=1
To make this more precise we introduce complex neighbourhoods

. 2
D(s,r): [Imx| <s, [yl <r? |lullagp+livilap <
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of Jp and weighted phase space norms

1 1 1
Xy U vl =Xl + S Iyl + Cllullap + - llvllap.

where we omit a, p and p from the notation for brevity, and where | - | isthe max-
norm for complex vectors. Then we assume that the hamiltonian vectorfield Xp is
real analytic on D(s,r) for some s and r uniformly in & with finite norm | Xp], ,
and that the same holds for its Lipschitz semi-norm

Agr Xp
ol = sup 12Xl
g2 1§ —¢|
over the parameter domain IT, where Az Xp = Xp(-,&) — Xp(-, ).
To state the following theorem we also assume that

_1‘L <L <o,

L 5L
lolg +182[Z5. 1 = M < o0, ‘a) o) =

with Lipschitz semi-norms defined analogously to |Xp|~. Inthecase d = 1, let
k > 0 bethelargest exponent such that

21 — £
LT 1407, i > ],

i —
uniformly on IT. The following theorem is provenin [12].

Theorem 3 (The Basic KAM-Theorem). Suppose H = N + P satisfies
assumptions A*, B* and C*, and

o
L
€ = | Xpl.per) + M IXpl D < ve,

where 0 < o < 1 isaparameter, and y depends on the parameters described below.
Then there exists a Cantor set 1, c IT with |IT\IT,| — 0 as « — 0, a Lipschitz
continuous family of torus embeddings

®: T" x I, —> T" x R" x ¢&P x ¢&P
and a Lipschitz continuous map @: IT, — R", such that for each & in I1, the map

® restricted to T" x {&} isareal analytic embedding of an elliptic rotational torus
with frequencies @(&) for the hamiltonian H at &.
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Each embedding isreal analyticon |Imx| < s/2, and

o Ce
P — ol + 1 — o~ < —,
o

~ o L
Iw—w|+mlw—w| < Ce,

uniformly onthat domain and I, , where ®q: T" x IT — T isthetrivial embedding.
If the unperturbed frequencies are affine functions of the parameter &, then

1 ford > 1
M| <& e,  p= T
o= ’ ford =1,

K
k+1—m/4

where p = diamIl and 7 isanynumber in0 <z <min(p— p, 1).

The constants y and ¢, € depend on the parameters n, d, 8, «, p — p, S, the
product LM and the frequencies » and £2 in a‘monotone’ way. That is, y 1 and
C, € do not increase for closed subsets of IT. In addition, for d = 1, € also depends
on .

Remark 1. Thereisnot only afamily of embeddings but indeed a Lipschitz
continuous family of real analytic coordinate changes @ in a neighbourhood of Ty
such that

Hod =Y a@y+35 Y 2EW+v)+...,
j=1

j j=n+1

where the dots stand for higher order termsin vy, u, v, and the new frequencies are
strongly nonresonant. See [12] for more details.

Remark 2. Actually, IT, may contain isolated points, so it may not be a Can-
tor set in the strict sense. But it will be a Cantor set up to a set of measure zero.

Remark 3. Ther0le of the parameter « isthe following. In applications the
size of the perturbation usually depends on a small parameter, for example the size
of the neighbourhood around an elliptic fixed point. One then wants to choose « as
another function of this parameter in order to obtain useful estimates for |IT\IT,|.
The next section provides an example.
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7 Proof of the Cantor Manifold Theorem

We finally prove the Cantor Manifold Theorem with the help of the Basic
KAM-Theorem. Recall that we are given ahamiltonian H = A + Q + R in complex
coordinates g = (g, §), where R is some perturbation of the normal form

A+ Q= 1)+(B, Z)+ 3 (Al l)+(BI, Z),

with | = Z(jouf?, ..., on[®) and Z = 3(|Gn1al*, [Ons2l®, ... ). Assumptions A, B
and C are supposed to hold.

Sepl. Newcoordinates. Weintroduce symplectic polar andreal coordinates

by setting
{ V2E +ype™, 1<j<n,
a =

depending on parameters & € IT = [0, 1]". The precise domains will be specified
later when they become important. Then we have

%quj Adgj = Z dx; A dy; + Z duj A dvj,

j=1 1<j=n j>n+1

|l =&+yand Z = %(u2 + v?), with the obvious componentwise interpretation.
The normal form becomes

A+ Q= (0®),y)+ 3(2(6), u*+v?) + Q

with frequencies w (&) = o + Ag, 2(£) = B + B& and remainder Q = O(|y|?) +
O(||u? + v2||?). Thetotal hamiltonianis H = N + P with P = Q + R.

Sep 2. Checking assumptions A*, B* and C*. Themap & — w(§) isa
lipeomorphism of R" onto itself, since A isinvertible by assumption. The measure
conditionis satisfied, since (k, w(&)) + (I, £2(&)) isanontrivia affine function of &
by assumption, which vanishes on acodimension 1 subspace. Finaly, (I, £2(¢)) does
not vanish for small |&| because of the asymptotic behavior of the frequencies and
the assumption (I, 8) £ 0. So condition A* is satisfied.

Asto condition B* we have 2(¢) = 8 + B¢ with 8; = j9+--- + O(j°) by
assumption. We already noticed that the regularity assumption implies that Bj; =
O(i PPy uniformly in 1 < j < n. Hence 2 = £ — B is Lipschitz as a map
I — ¢25°P with finite Lipschitz constant [£2|5_, on IT.
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The above statements hold a fortiori, if § isreplaced by
Sy =maX(§,p—p) <d—1

So condition B* issatisfieswith thischoicefor 5. Finally, theregularity condition C*
follows immediately from assumption C.

The Lipschitz constants L = |0 Y|* and M = |o|* + |£2|%, are fixed and
finiteon IT. For convenience we may therefore ignore them in the following.

Sep 3. Domainsand estimates.  Now let r > 0 and consider the phase space
domain

: 2
D@, r): [Imx| <2, |yl <r? |fullap+Illvllap<T,

and the parameter domain

4
B, =U_ 428, E={£:0<&<r?}, x=§<1,

where U_, E isthe subset of al pointsin E with boundary distance greater than p.

The total hamiltonian H iswell defined on these domains, and |Q| = O(r%)
aswell as |R| = O(r% +r% = O@r* on D(2, 2r). Using Cauchy estimates for
Rx, Ry and the hypothesesfor R;, R, wethen obtain

. 2
X6l pary + IXRrl.par = OF9).

Using again Cauchy with respect to &, we have |XQ|§ + |XRIrL = O(r?/a) on
U_o/28;, @ > 0. Altogether we obtain

|XP|r,D(1,r) + o |xP|rL,D(1,r) = O(rz)
with respect to the parameter domain
M, =U_,&, o > 8r2

where « will be chosen as afunction of r |ater.
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Sep 4. Application of Theorem 3. To apply Theorem 3 it now suffices to
require that as afunction of r,

a(r) > cyr? )

for al small r with asufficiently large constant ¢; which depends on the parameters
indicated in that theorem, but not on the parameter sub-domain I1, and hence not
onr.

As a result we obtain a Cantor set I1,, C II, of parameters, a Lipschitz
continuous family of real analytic torus embeddings

& T" x Iy, — D(,1),

and a Lipschitz continuous frequency map & : I, , — R", such that for each & in
I, , themap @, restricted to T" x {&} isareal analytic embedding of an elliptic,
rotational toruswith fregnecies @y (&) for thehamiltonian H at & . Alsotheestimates

|®; — Do, + a [Py — Dol” < cr?/a,

&y — o] +aldy —o® <cor?

(9)

hold on |ImXx| < % and I1; ,, where the generic constant ¢ depends on the same

parameters as ¢; . Moreover, we have the measure estimate

Ca™
}Er\nr,a| =< res |Er | (10)
with aconstant ¢ independent of IT, and n depending on « and n. Hence, to obtain
anon-empty Cantor set we also need

ak(r) <ctr?,

The embedding &, describes the invariant tori in terms of the “relative” ac-
tions y. Thetransiated embedding ! = &, + T;, where T: (¢, &) = (0, &, 0,0),
givesthe sametori in terms of the “absolute” actions | = & + y. Itisasmall pertur-
bation of the trivial embedding ®f: (¢, |) — (¢, 1,0, 0), and we have ! — &} =
d, — dg. So the above estimates are preserved, and henceforth we will write again
®, for brevity.
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Sep 5. Patching up domains.  The Cantor sets I1; , by themselves are not
denseat theorigin. Toobtain suchaset we haveto taketheunion of asuitable sequence
of subsetsof I, . Fixsome 0 <y < 3 andset R = E(\E,r, R~ =U_,R, ad

Gr == HF,O{ ﬂ RT_'

. Cart
In view of (10) we then have |R\C/| < —, IR|. Now choose the sequence
K r
re = n°ro, k > 0, and set
e=Je

k>0

choosing ro small enough so that all the C,, are not empty. Define the embedding
®: T"x C— P =T"x II" x £3P x £2P by piecing together the corresponding
definitions on each component. That is, ® s, = Pry- Similarly for @. These
definitions are correct, since the C;, are disoint and even have a pairwise positive
distance to each other. So @ is certainly continuousin | and real analytic in each
fiber T" x {I}, | € C.

Sep 6. Estimates.  Wenow show that if r2/«(r) isanondecreasing function
of r,thenon |Im¢| < 1 and €N &, onehas

1413(® — o)l _ crf

S — Dy, , a(r )
e T T TN

(11)

provided | € G, . Thisholdsfor all k > 0. Analogous estimates hold for @, which
we forego. Moreover, if also o”(r)/r? isanondecreasing function of r , then

€N E,| . cak (ry)
= S 9
EN r&

To provethefirst estimate we observethat |® — ®g|, increasesasr decreases,
so that

|® — Poly, cng, = |SUEICD — Dol e,
>
= 2

< | — Do < s cr? _ o
< — Dol e, < < .
1>k TE =0 an) T oa(rk)

The second estimate we immediately obtain from (9), if 1 and J are in the same
patch C,, . Otherwise, J € C;, with | > k. Then |I — J| > a(rx) and

2

cr
1413(P — @o)ly, = 1P — Polr, ¢, + 1P — Dol e, = K
a(rk)

9
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from which the statement follows. Asto the measure estimate, let £ be the comple-
ment of C. Then

|emark|=Z\80Rr,|=Z|R,l\en\

I~k I>k

<SR < 2 g,

2 2
Er Mk

which gives the claim.

Sep 7. Theembedding . Themap & describesthe invariant tori in terms
of symplectic polar coordinates, and it also includes a parametrization of each torus
in which the flow is linear. To describe and estimate the same tori in symplectic
cartesian coordinates, however, it is advantageous to undo this parametrization in
order to obtain a“radial map”.

Let X: T" x € — T" bethe angular component of the embedding . By (11)
X isclosetotheidentity on [Im x| < % uniformlyin | , by choosingtheconstant c; in
(8) sufficiently large. Hencethereexistsaninverseoneachtorus, X 1: T"x € — T",
whichisreal analyticon |Imx| < % and satisfiesthe same estimate as X. So we can
define the embedding

UV=poXt T"xC— P,
which is of the form

¢'=¢, I'=1+y(@, ), U=u@l), v=uv(p )

and satisfies the same estimates as @ .
It remainsto estimate ¥ intermsof the cartesian coordinates. |ndeed, we show
that

cr2
W — Wollap < AL

(re)

uniformly on J[€ N &, ] for k > 0.
For the proof, consider § = /21 €% and § = u + iv, understood component-
wise. On J[C N R, ] we have
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1 .., .
7 4 —d| = ‘\/I +y \/_‘
-1
<yl (@é{l i)
<r2|\p_\p| ;
-k N Vatto
cr2
=
Ol(rk)
using o(r) > cir? and (11). By the same token,
N o
|4 Hap < llulla,p + llvllap = re ¥ — Yoy, =< 20 M

The right hand sides decrease as k increases, so this bound holdsalso on T[€ N R, ]
with | > k and thuson all of TJ[€C N E,].

Sep 8. Choiceof a(r). Eventualy we have to choose o asafunction of r
satisfying
cr? <ak(r) <c;ir®
foral small r. Thusweneed u > A. For d > 1 with u© = 1 thisclearly holds. For
d = 1, thiscan aso be arranged, since g > 4 + (4 — A)/k by assumption, hence
4 W< K
g T ri— A
and u < ft can be chosen arbitrarily closeto .

The choice @« = cr? would lead to a large Cantor set ©, but rather weak
estimatesfor W — Wy. Theother extreme o = ¢;'r? would lead to good estimates
for ¥ — Wy, but the density of € at 0 would not be 1. Unfortunately, we have no
unigueness results for the lower dimensional tori, so different choices of « may lead
to quite different and maybe digjoint Cantor manifolds € .

So some choice has to be made. For example, taking the geometric mean

ol (r)y =r*tH

and choosing . properly, the above condition ismet for all small r , the Cantor set C
has full density at the origin, and

W — Wyll, 5 < cr> i = crot, o=
[ ap

N Q@
|
Tl
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on J[CNE;]. Thelatter containstheset T[C] N B, , and so the estimate of Theorem 2
isobtained. The proof of Theorem 2 is now complete.

A TheBanach Algebra Property

Consider the Hilbert space ¢2-P of all doubly infinite complex sequences q =
(...,0-1,00, Q1, . ..) Wwith

lal, =Y Jo [ [11%P€ <00, [j]=max(jl. D).
i

The convolution q x p of two such sequencesis defined by (q * p); = >\ dj—k Pk

Lemma. Ifa > 0and p > 3, then |lg*plla, < ClldllapllPla, for
g, p € £*P with a finite constant ¢ depending only on p.

_ [ = KIK]

Proof. Let yjx = (il . By the Schwarz inequality,
2 ik ’ 2 2p |y 12 2 1
‘Z Xk) = Z—p =G Z)/jk Xk |”, G = Z_Z’
k k. Vik k Kk Vik
for al j. We have
1 [j—K+[k 1 1

=

- U-KK [-K K

30 that

CZ<Z< ! +1>2P<4pz L T2 <0
< - —— < e <<
P\ -k K [K]P
foral j. It followsthat for a = 0,
o P2 p = D LR D ok
j K
< 1Y P ajpe?
j K

=2 [j — KI?P [gj-k|* K [ px[?
j.k

‘ 2

2 2 2
= cllalZ , IpIZ ;.
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The case a > 0 isasimple variation of the last estimate. |

B TheKirszbraun Theorem

Let E and F beafinitedimensional and aseparable Hilbert space, respectively,
withnorms || - ||g and || - || . The Lipschitz seminormof amap f:E > S— F is

100 — (Yl
fle = su 3
s = s X =i
XAy

Theorem (Kirszbraun). Let SC E,andlet f: S— F beamap withfinite
Lipschitz seminorm. Then there exists an extension ¢: E — F of f with the same
Lipschitzseminorm: [¢]g = [f]s.

Proof. Let F; ¢ F, C ... beanincreasing sequence of closed subspaces
of F with |J,, Fn = F and orthogonal projections P, onto them. Let

fn: Pnf:sﬁ Fn.

By the finite dimensional Kirszbraun Theorem [6] thereisan extension ¢,: E — F,
of f, with

[¢n]le = [fals = [f]s.

Thus, the ¢, are uniformly Lipschitz with ¢n|s = f,.
Now choose a dense countable set X ¢ E — S. Since they are uniformly
Lipschitz and equal to f, on S, the ¢, are uniformly bounded on bounded subsets
of E. Hence, by theusual diagonal trick, we can extract asubsequence, again denoted

by ¢n, that converges weakly in every point of X toamap ¢: XU S — F. They
also converge pointwisein S sothat ¢|s = f. Moreover,

[Plxus < ”anion [#nle <[fls.,
since for weak limits,
le(X) —e(WIlg < |inr2iogf [&n(X) — Pn(W ¢ -

Hence we can uniquely extend ¢ to a Lipschitz continuous map ¢: E — F with
[¢]e = [¢]xus < [f]s. Butindeed [¢]g = [f]s, since gp|s= f. I
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C Time Periodic Solutions

We discuss the nonlinear Schrodinger equation
iUy = U —mu — f(Jul?)u (1)

with Dirichlet boundary conditionsand areal analytic nonlinearity f with f (0) = 0,
but not necessarily f’(0) ## 0. We show that there exist “solid” discsthrough u = 0
which are filled with time periodic solutions.

Recall that ¢; and A; are the basic modes and their frequencies for the linear
equation iu; = uyx — mu with Dirichlet boundary conditions.

Theorem. Suppose f isreal analytic near 0 with f(r) = O(r®) for some
s> 1. Thenfor every | > 1 there exists an embedded disc

& = {ut,x) =rvj(x,ne" o<r <r;}
of real analytic, time periodic solutions of (1), where
v = ¢ + Or®), nj = Aj + O@r®)
arereal analyticinr and x andin r, respectively.

Proof. Letu(t, x) = rv(x)e€*, wherethedependenceof x and v on j and r
isnotindicated. Then u isasolution of (1) with Dirichlet boundary conditionsif and
only if v vanishesat 0 and = and satisfies

Uv = —vgx + Mo + f(r?v?w. (2

This equation isindependent of t, whichiscrucia for our argument.

Fix somea > 0and p > % and let W2P be the space of al odd, 27 -
periodic functions in the space W2 P introduced in section 2. We solve equation (2)
by applying the implicit function theorem to the map

d: WAP xR xR — WP 2 xR
(v, @, 1) > (=vsx + Mo+ F(r? %) — po, [vl> - 1)

where || - || denotesthe L2-norm. The aim isto find solutions of
@ (v, u,r)=0.

We normalize ||v|| = 1 to make solutions locally unique.



34  Appendix C: Time Periodic Solutions

We have
®(¢j, 2,00 =0

forevery | > 1. Themap @ isrea anaytic in some neighbourhood of each of
these points (which dependson a, p and j ) by the same argumentswe used to prove
Lemma3insection 2. Its Jacobian with respectto v and  at (¢;, Aj, 0) isthelinear

map

WP x R — \/\{f"’p_2 x R
(w,v) — (—wxx +Mw — Ajw — v, Z(w, qu)).

Thisis an isomorphism, as one verifies by writing w = )., wk¢x and comparing
coefficients. Thus the implicit function theorem applies, and for every j > 1 we
obtain a unique real analytic arc of solutions

(=rj, 1)) = WP x R, r— (vj(r), )

through (vj (0), 1j (0) = (¢, Aj). By uniqueness, thisarciseveneveninr. More-
over, we have the standard estimate

lj (1) = v Ol + |1 (1) — 1 O)] = O D(¢j, 4j, I = O?),

which yields the asymptotic behavior of vj and ;. I

Remark1l. Thediscs &; arereal analytic outsidetheorigin. Attheoriginthey
are at least C2, since they have athird order tangency to the plane {q¢; : g € C}. It
would be interesting to know whether they are analytic at the origin.

Remark2. Forthediscs €; toexistthenonlinearity f need not beanalytic. It
sufficesthat f issmooth or sufficiently often differentiable. Of course, the regularity
of the periodic solutions with respect to x changes accordingly.

Remark 3. The argument applies equally well to nonlinear Schrédinger op-
erators on higher dimensional bounded domains 2. For the linearized equation to
define an isomorphism, the boundary of 2 hasto be regular enough so that standard
elliptic regularity theory applies.
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