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Invariant Cantor Manifolds
of Quasi-periodic Oscillations
for a Nonlinear Schrödinger Equation

Sergej Kuksin & Jürgen Pöschel

1 Introduction and Results

This paper is concerned with the nonlinear Schrödinger equation

iut = uxx − mu − f (|u|2)u, (1)

on the finite x -interval [0, π ] with Dirichlet boundary conditions

u(t, 0) = 0 = u(t, π), −∞ < t < ∞.

The parameter m is real, and f is required to be real analytic in some neighbourhood
of the origin in C . Absorbing a constant into m we may assume that f (0) = 0.
Furthermore, we require f to be nondegenerate in the sense that

f ′(0) �= 0.

As we will see later, the sign of the derivative of f is immaterial for our results and
may be assumed to be positive for convenience. Then we have

iut = uxx − mu − |u|2 u + O(u5) (2)

after rescaling u appropriately.
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We study this equation as a hamiltonian system on some suitable phase space P .
We may take, for example, P = W 1

0 ([0, π ]) , the Sobolev space of all complex valued
L2 -functions on [0, π ] with an L2 -derivative and vanishing boundary values. With
the inner product

〈u, v〉 = Re
∫ π

0
uv̄ dx

and the hamiltonian

H = 1
2 〈Au, u〉 + 1

2

∫ π

0
g(|u|2) dx, (3)

where A = −d2/dx2 + m and g = ∫
0 f dz , equation (1) can be written in the

hamiltonian form

u̇ = i∇H(u),

where the gradient of H is defined with respect to 〈 · , · 〉 , and the dot indicates
differentiation with respect to time.

We are going to study strong solutions of (2) in the phase space P given by
continously differentiable (even analytic) curves t �→ u(t) satisfying (1). We recall
that a strong solution exists not for all initial data in P . But if it exists, then it is unique.

Our aim is to construct plenty of small amplitude solutions that are quasi-
periodic in time. Such quasi-periodic solutions can be written in the form

u(t, x) = U (ω1t, . . . , ωnt, x),

where ω1, . . . , ωn are rationally independent real numbers, the “basic frequencies”
of u , and U is a continuous function of period 2π in all arguments except the last
one, called the hull of u . Thus u admits a Fourier series expansion

u(t, x) ∼
∑
k∈Zn

Uk(x) eik·ωt ,

where k · ω = ∑n
j=1 kjωj . A special case are time-periodic solutions, which are

quasi-periodic with exactly one basic frequency. Solutions of this kind may therefore
be interpreted as quasi-periodic oscillations for the nonlinear Schrödinger equation.

We achieve our aim by constructing the hulls as embeddings

U : Tn → P, θ �→ U (θ, · )

of the n -torus Tn into the phase space P together with frequency vectors ω such that
the straight windings t �→ ωt + θo on the torus map into solutions of equation (1).
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Thus those quasi-periodic solutions u arise from what we call rotational tori. These
are embedded tori, which are invariant, and on which the flow is linear in suitable
coordinates.

Now, all the rotational tori are not constructed individually, but they come in
Cantor families forming finite dimensional Cantor manifolds through the stationary
solution u ≡ 0. They are the remnants of invariant linear manifolds for the linear
Schrödinger equation when the nonlinearity f is taken out.

To be more precise let

φj (x) =
√

2
π

sin j x, λj = j2 + m, j ≥ 1

be the basic modes and their frequencies for the linear equation iut = uxx −mu with
Dirichlet boundary conditions. Then every solution is the superposition of oscillations
of the basic modes, with the coefficients moving on circles:

u(t, x) =
∑
j≥1

qj (t)φj (x), qj (t) = qo
j eiλj t .

Together they move on a rotational torus of finite or infinite dimension, depending on
how many modes are excited. In particular, for every choice

J = { j1 < j2 < · · · < jn } ⊂ N

of n ≥ 1 basic modes there is an invariant linear space EJ of complex dimension n
which is completely foliated into rotational tori:

EJ = {
u = q1φj1 + · · · + qnφjn : q ∈ Cn

} =
⋃
I∈Pn

TJ (I ),

where Pn = {I : Ij > 0 for 1 ≤ j ≤ n } is the positive quadrant in Rn and

TJ (I ) =
{

u = q1φj1 + · · · + qnφjn :
∣∣qj

∣∣2 = 2Ij for 1 ≤ j ≤ n
}

.

In addition, each such torus is linearly stable, and all solutions have vanishing Lya-
punov exponents. – This is the linear situation.

Upon restoring the nonlinearity f the invariant manifolds EJ will not persist in
their entirety due to resonances among the modes and the strong perturbing effect of f
for large amplitudes. We show, however, that in a sufficiently small neighbourhood
of the origin a large Cantor subfamily of rotational n -tori persists and is only slightly
deformed.



4 Section 1: Introduction and Results

That is, there exists a Cantor set C ⊂ P
n , a family of n -tori

TJ [C] =
⋃
I∈C

TJ (I ) ⊂ EJ

over C , and a Lipschitz continuous embedding

�: TJ [C] ↪→ P,

such that the restriction of � to each TJ (I ) in the family is an embedding of a
rotational n -torus for the nonlinear equation. The image EJ of TJ [C] we call a
Cantor manifold of rotational n -tori given by the embedding �: TJ [C] → EJ .

The Cantor manifolds have a number of additional properties.
– The embedding � is a higher order perturbation of the inclusion mapping

�0: EJ ↪→ P restricted to TJ [C] . Its restriction to each torus TJ (I ) is real analytic,
and it maps into the space of analytic functions on [0, π ] , with uniform domains of
analyticity.

– The Cantor set C has full density at the origin. That is,

lim
r→0

|C ∩ Br |
|Pn ∩ Br | = 1,

where Br = {I : ‖I‖ < r} , and | · | denotes the n -dimensional Lebesgue measure
for sets.

– In view of the previous remarks, EJ has a tangent space at the origin equal
to EJ :

T0EJ = EJ .

– The frequencies ω of the rotational tori are diophantine, whence we also call
them diophantine tori. That is, there exist positive α and τ such that

|k · ω| ≥ α

|k|τ for 0 �= k ∈ Zn .

The exponent τ can be kept fixed, while α tends to zero as the tori approach the
origin.

– All the tori are still linearly stable, and all their orbits have zero Lyapunov
exponents.

Remarkably, the existence of such Cantor manifolds follows from the nonde-
generacy of the nonlinearity without any further assumptions.
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Theorem 1. Suppose the nonlinearity f is real analytic and nondegenerate.
Then for all m ∈ R , all n ∈ N and all J = { j1 < · · · < jn} ⊂ N there exists a
Cantor manifold EJ of real analytic, linearly stable, diophantine n -tori for equation
(1) given by a Lipschitz continuous embedding �: TJ [C] → EJ , which is a higher
order perturbation of the inclusion map �0: EJ ↪→ P restricted to TJ [C] . The Cantor
set C has full density at the origin, whence EJ has a tangent space at the origin equal
to EJ . Moreover, EJ is contained in the space of analytic functions on [0, π ] .

A more precise description of the asymptotic behavior of � and its analyticity
properties is given later.

Remark 1. One could show that � is not only Lipschitz across the tori, but
smooth in the sense of Whitney. We did not pursue this point.

Remark 2. The frequencies of the diophantine tori are also under control.
They are

ω(I ) = λJ + AI + O(‖I‖2)

for I ∈ C , where λJ = (λj1 , . . . , λjn ) , and A is the n × n -matrix with coefficients
Ai j = (4 − δi j )/4π .

Remark 3. For n = 1 the theorem says that for each j ≥ 1 there exists
a “Cantor disc” Ej filled with time-periodic solutions of (1) which at the origin is
tangent to the plane corresponding to the eigenfunction φj . However, it is not difficult
to show directly that indeed there exists a “solid” disc of this kind, without any holes.
A more detailed statement is given in Appendix C.

Remark 4. As we will explain below the Cantor manifolds also exist for
nonlinearities f of the form

f (x, v) = av +
∑
k≥2

fk(x)vk, a �= 0,

where the coefficients fk are real analytic in x , or in some Sobolev space W s([0, π ]) ,
s > 1

2 , with norms growing at most exponentially to ensure analyticity in v . In the
latter, non-analytic case the resulting quasi-periodic solutions are of class W s+2 in x .

The size of the Cantor manifolds EJ is not uniform, but depends on m , n
and J , and in particular tends to zero as n tends to infinity. Thus, unlike the linear
spaces EJ , they are not dense in some fixed neighbourhood of the origin. But they
are asymptotically dense in the following sense.

Corollary 1. The union of all Cantor manifolds EJ intersects every nonempty
open cone in W 1

0 ([0, π ]) with vertex at the origin.
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The result of Theorem 1 is not completely unexpected. Equation (2) may be
viewed as a higher order perturbation of the Zakharov-Shabat equation

iut = uxx − mu − |u|2 u

on the real line with periodic boundary condition, which is known to be integrable. In
particular, the latter has plenty of x - and t -quasi-periodic solutions, given be exact
formulas – the so called finite gap solutions. Some of them also satisfy the Dirichlet
boundary condition [1]. The time-quasi-periodic solutions of our equation may thus
be thought of as perturbations of small amplitude finite gap solutions of the Zakharov-
Shabat equation.

This scheme may be converted into a proof, and exactly in this way a result
similar to Theorem 1 was obtained in [3] for the nonlinear wave equation

utt = uxx − mu + au3 + O(u5), m > 0, a �= 0

on [0, π ] with Dirichlet boundary conditions. Here the approximating integrable
system is the Sine-Gordon equation or the Sinh-Gordon equation.

But in this paper a different approach is taken. Instead of approximating the
problem by an integrable partial differential equation, we approximate it by an inte-
grable infinite dimensional hamiltonian system, namely the Birkhoff normal form of
the hamiltonian (3) in infinitely many coordinates up to order four.

To start, we use the complete set of eigenfunctions of the operator A with
Dirichlet boundary conditions to write u = ∑

j qjφj as in the linear case. We obtain
a hamiltonian in infinitely many coordinates qj which is real analytic near the origin
in some suitable space of complex sequences q = (q1, q2, . . . ) . Its equations of
motion are

q̇j = 2i
∂ H

∂ q̄j
, j ≥ 1.

The linear equation in particular gives rise to the quadratic hamiltonian

� = 1
2

∑
j≥1

λj

∣∣qj

∣∣2
,

while the nonlinearity f gives rise to terms of order four and more. Thus,

H = � + G, G = O(‖q‖4),

which describes an elliptic fixed point in infinitely many degrees of freedom.
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In classical hamiltonian theory, the standard tool to investigate such systems
near the equilibrium is their Birkhoff normal form, or its generalizations. Remark-
ably, the Birkhoff normal form up to order four is available here without any further
assumption, since the relevant nonresonance conditions among the λj hold uniformly.
The upshot is that there is one global change of coordinates so that

H = � + Ḡ + O(‖q‖6), Ḡ = 1
2

∑
i, j

Ḡi j |qi |2
∣∣qj

∣∣2
,

for all m . Thus, the hamiltonian is integrable up to a perturbation of order 6 – a
reflection of the integrability of the Zakharov-Shabat equation.

Now KAM theory comes into play. There is no genuine infinite dimensional
KAM theory yet to establish the persistence of infinite dimensional rotational tori
for hamiltonians of the type above. But there are also plenty of finite dimensional
rotational tori, for which persistence results have been developed recently by the first
author [9]. For example, the n -dimensional tori

1
2

∣∣qj

∣∣2 =
{

Ij > 0, 1 ≤ j ≤ n

0, j ≥ n + 1

are all invariant, if the O -term is omitted. Upon its inclusion, a large Cantor family
of tori is shown to persist, forming a Cantor manifold of the kind described above.

Of course, KAM theory always requires some nondegeneracy condition, and
this case makes no exception. Here, they involve the frequencies λj and the Birkhoff
coefficients Ḡi j , and it is remarkably easy and straightforward to verify the required
conditions for all choices of m , n and J without making any further assumption or
restriction. The only requirement is the presence of a third order term in the nonlin-
earity f , no matter what sign. In essence, the nondegeneracy of the nonlinearity f ,
as defined in the beginning, provides the nondegeneracy of the infinite dimensional
integrable hamiltonian given by the fourth order Birkhoff normal form.

The technique described is not restricted to the nonlinear Schrödinger equation.
It applies equally well to the nonlinear wave equation

utt = uxx − mu − f (u)

on the x -interval [0, π ] with Dirichlet boundary conditions, a real parameter m > 0
and a real analytic nonlinearity

f (u) = au3 + O(u5), a �= 0.

Theorem 1 holds mutatis mutandis also here, if for example the index set J =



8 Section 1: Introduction and Results

{ j1 < · · · < jn } satisfies min jν − jν−1 = 1. The solutions obtained are real analytic
in t and x . Details will be given in [13].

One may also deal with more general nonlinearities of the form

f (x, u) = au3 +
∑
k≥5

fk(x)uk,

where the coefficients fk are real analytic in x , or just in W s([0, π ]) , s > 1
2 , with

norms growing at most exponentially to ensure analyticity in u . In the latter, non-
analytic case, however, the resulting quasi-periodic solutions are of class W s+2 in x
only. The point is that the higher order terms have no bearing on the fourth order
Birkhoff normal form and may therefore be of a more general form. On the other
hand, any x -dependent coefficient of u3 destroys the integrability of the Birkhoff
normal form. – An analogous generalization applies to the nonlinear Schrödinger
equation as mentioned above.

Finally, one may add a general perturbation term

εg(x, u) = ε
∑
k≥0

gk(x)uk

to the nonlinearity f , with coefficients gk of the same type as the fk . Then there
still exist Cantor manifolds for all sufficiently small ε , the smallness depending on
m , n and J . However, they have a hole at the origin instead of being dense there,
since the perturbation no longer tends to zero as we approach the origin.

Hamiltonian perturbations of the KdV-equation, such as

ut = uxxx − uux − d

dx
f (u), f (u) = O(u3),

are also susceptible to our approach. Here the unperturbed hamiltonian is nonlinear
and admits a nondegenerate normal form in the sense of section 4. So we obtain Cantor
manifolds of time-quasi-periodic, space-periodic solutions of small amplitude. Of
course, stronger and more global results are available based on the integrability of the
KdV-equation [8]. But they also require a formidable amount of machinery, whereas
by comparison the normal form technique looks elementary.

Our technique also has its limitations. First of all, to get started the linear
operator involved needs to have a pure point spectrum with a complete set of eigen-
functions. Also, the point eigenvalues have to avoid certain lower order resonances.
This is reminiscent of the Lyapunov center theorem in the finite dimensional theory:
if, at an elliptic fixed point of a real analytic hamiltonian system with characteristic
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frequencies λ1, . . . , λn , one has

λj

λj0

/∈ Z, 1 ≤ j �= j0 ≤ n,

then there exists a disc through the origin filled with periodic solutions of the nonlinear
system which is tangent to the plane of periodic solutions with frequency λ0 for
the linear part of the system. The nonresonance conditions are necessary: given a
resonance there are nonlinearities so that such a family of periodic solutions does not
persist [14].

For infinite dimensional systems there are similar results concerning the non-
persistence of breathers under generic perturbations. See for example [5] and [15], re-
spectively, for recent results concerning the sine-Gordon equation and certain classes
of nonlinear wave equations in any space dimension, and the references therein. Very
loosely speaking, the resonance occurs between the point eigenvalue of the unper-
turbed periodic solution – the breather – and the continuous spectrum of the unper-
turbed operator. These results indicate that the requirement of a pure point spectrum
not in low order resonance is not a technical shortcoming, but essential for persistence
results of the kind of Theorem 1.

Another limitation arises from requirements about the asymptotic nature of the
point eigenvalues λj of the linear equation. They have to be simple and tend to
infinity at least linearly. More precisely, λj = j d + · · · + O( j δ) with d ≥ 1 and
δ < d − 1. This restricts our approach essentially to one-dimensional problems
with Sturm-Liouville type boundary conditions. Periodic boundary conditions are
not admitted as they give rise to (asymptotically) double eigenvalues. Some of these
restrictions, however, are probably of a technical nature. For example, Craig and
Wayne [4] could allow for double eigenvalues in the construction of Cantor discs of
periodic solutions for nonlinear wave equations. Their result may be viewed as an
infinite dimensional extension of the Lyapunov center theorem.

Investigations into the existence of time-quasi-periodic solutions for nonlinear
partial differential equations were started only rather recently, and independently, by
Wayne [16] and the first author [7]. The monograph [9] gives an extensive list of ref-
erences as well as some more historical background. All these results, however, are
based on the assumption that the unperturbed equation is integrable and nondegener-
ate, or depends on sufficiently many parameters, which could be adjusted appropri-
ately and eventually are restricted to some Cantor set. The use of a nondegenerate
Birkhoff normal form, in this context introduced in [11], obviates the use of such
parameters and leads to more “natural” results. – Incidentally it was shown that all
known nonlinear integrable partial differential equations are nondegenerate [2,3].
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The rest of the paper is organized as follows. In section 2 the hamiltonian of
the nonlinear Schrödinger equation is written in infinitely many coordinates, and its
regularity is established. In section 3 it is transformed into its Birkhoff normal form
of order four. In section 4 another theorem about the existence of invariant Cantor
manifolds for hamiltonians in such normal forms is formulated, which allows us to
prove Theorem 1 in section 5. The latter theorem is subsequently reduced to a rather
technical KAM-theorem about perturbations of families of linear hamiltonians. The
statements and details of the reduction fill the last two sections, whereas the proof of
the technical theorem is given in a separate paper.

This paper was written while both authors were guests of the Forschungsinstitut
für Mathematik at the ETH Zürich, and we like to thank the institute for its hospitality,
pleasant working atmosphere and helpful staff. In particular, we like to thank Jürgen
Moser for numerous stimulating discussions on the subject. We also benefitted from
a remark by Sigurd Angenent concerning the analyticity of the solutions. The second
author also thanks the Deutsche Forschungsgemeinschaft for their financial support
through a Heisenberg grant.

2 The Hamiltonian

The hamiltonian of the nonlinear Schrödinger equation is

H = 1
2 〈Au, u〉 + 1

2

∫ π

0
g(|u|2) dx,

where A = −d2/dx2 + m and g = ∫
0 f dz . We rewrite H as a hamiltonian in

infinitely many coordinates by making the ansatz

u = Sq =
∑
j≥1

qjφj , φj =
√

2
π

sin j x, j ≥ 1. (4)

The coordinates are taken from the Hilbert space �a,p of all complex valued sequences
q = (q1, q2, . . . ) with

‖q‖2
a,p =

∑
j≥1

∣∣qj

∣∣2
j2pe2 ja < ∞.

We fix a > 0 and p > 1
2 later. We then obtain the hamiltonian
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H = � + G

= 1
2

∑
j≥1

λj

∣∣qj

∣∣2 + 1
2

∫ π

0
g

(|Sq|2) dx
(5)

on the phase space �a,p with symplectic structure i
2

∑
j dqj ∧ dq̄j . Its equations of

motion are

q̇j = 2i
∂ H

∂ q̄j
, j ≥ 1. (6)

They are the classical hamiltonian equations of motion for the real and imaginary
parts of qj = xj + iyj written in complex notation.

At this point we do not discuss the validity of this transformation or its sym-
plectic nature. Rather we take the latter hamiltonian as our new starting point and
make the following simple observation.

Lemma 1. Let a > 0 and p ≥ 0 . If a curve I → �a,p , t �→ q(t) is an
analytic solution of (6), then

u(t, x) =
∑
j≥1

qj (t)φj (x)

is a solution of (1) that is analytic on I × [0, π ] .

Proof. For a > 0 and p ≥ 0, the sum is absolutely convergent in some
complex neighbourhood of the x -interval [0, π ] and some complex disc around a
given t in I . The same is true for its termwise t -derivative. Therefore u is analytic
in t and x , and we can differentiate under the summation sign. We find that

iut =
∑
j≥1

iq̇jφj

= −
∑
j≥1

(
λj qj +

∫ π

0
f (|u|2)uφj dx

)
φj

= −
∑
j≥1

Aφj qj −
∑
j≥1

(∫ π

0
f (|u|2)uφj dx

)
φj

= −Au − f (|u|2)u

by the orthonormality and completeness of the φj .

To continue our investigation of the hamiltonian in (5) we need to establish the
regularity of the nonlinear hamiltonian vectorfield XG associated with G .
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To this end, let �2
b and L2 , respectively, be the Hilbert spaces of all bi-infinite,

square summable sequences with complex coefficients and all square-integrable com-
plex valued functions on [−π, π ] . Let

F: �2
b → L2, q �→ Fq = 1√

2π

∑
j

qj e
i j x

be the inverse discrete Fourier transform, which defines an isometry between the two
spaces.

Let a ≥ 0 and p ≥ 0. The subspaces �
a,p
b ⊂ �2

b consist, by definition, of all
bi-infinite sequences with finite norm

‖q‖2
a,p = |q0|2 +

∑
j

∣∣qj

∣∣2 | j |2p e2| j |a .

Through F they define subspaces W a,p ⊂ L2 that are normed by setting ‖Fq‖a,p =
‖q‖a,p . For a > 0, the space W a,p may be identified with the space of all 2π -
periodic functions which are analytic and bounded in the complex strip |Im z| < a
with trace functions on |Im z| = a belonging to the usual Sobolev space W p .

Lemma 2. For a ≥ 0 and p > 1
2 , the space �

a,p
b is a Hilbert algebra with

respect to convolution of sequences, and

‖q ∗ r‖a,p ≤ c ‖q‖a,p ‖r‖a,p

with a constant c depending only on p . Consequently, W a,p is a Hilbert algebra
with respect to multiplication of functions.

The proof is given in Appendix A.

Lemma 3. For a ≥ 0 and p > 1
2 , the hamiltonian vectorfield XG is real

analytic as a map from some neighbourhood of the origin in �a,p into �a,p , with

‖XG‖a,p = O
(‖q‖3

a,p

)
.

Thus, XG is a genuine vectorfield on �a,p . On the other hand the linear
vectorfield X� is unbounded on �a,p , since it takes values in �a,p−2 .
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Proof. We have

∂G

∂ q̄j
=

∫ π

0
f (|u|2)uφj dx, u = Sq.

Let q be in �a,p . Considered as a function on [−π, π ] , u = Sq is in W a,p , with
‖u‖a,p = ‖q‖a,p . By the algebra property and the analyticity of f , the function
f (|u|2)u also belongs to W a,p with∥∥ f (|u|2)u∥∥

a,p ≤ c ‖u‖3
a,p

in a sufficiently small neighbourhood of the origin. The components of the gradi-
ent Gq̄ are its Fourier sine coefficients, so Gq̄ belongs to �a,p , with∥∥Gq̄

∥∥
a,p

≤ ∥∥ f (|u|2)u∥∥
a,p

≤ c ‖u‖3
a,p ≤ c ‖q‖3

a,p .

The regularity of XG follows from the regularity of its components.

For the nonlinearity |u|2 u we find

G = 1
4

∫ π

0
|u(x)|4 dx = 1

4

∑
i, j,k,l

Gi jkl qi qj q̄k q̄l (7)

with

Gi jkl =
∫ π

0
φiφjφkφl dx .

It is easy to verify that Gi jkl = 0 unless i ± j ± k ± l = 0, for some combination
of plus and minus signs. Thus, only a codimension one set of coefficients is actually
different from zero, and the sum extends only over i ± j ± k ± l = 0. In particular,
we have

Gi ji j = 4

π2

∫ π

0
sin2i x sin2 j x dx

= 1

π2

∫ π

0
(1 − cos 2i x)(1 − cos 2 j x) dx

= 1

π2

∫ π

0

(
1 + 1

2 cos 2(i − j)x
)

dx

= 1

2π
(2 + δi j ),

using 2 sin2 u = 1 − cos 2u and 2 cos u cos v = cos(u + v) + cos(u − v) . These
coefficients determine the Birkhoff coefficients of the next section.
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From now on we focus our attention on the nonlinearity |u|2 u , since higher
order terms do not matter.

3 The Birkhoff Normal Form

Lemma 4. For the hamiltonian H = �+G with nonlinearity (7) there exists
a real analytic, symplectic change of coordinates � in a neighbourhood of the origin
in �a,p that for all real values of m takes it into its Birkhoff normal form up to order
four. That is,

H  � = � + Ḡ + K ,

where XḠ and X K are real analytic vectorfields in a neighbourhood of the origin
in �a,p ,

Ḡ = 1
2

∑
i, j≥1

Ḡi j |qi |2
∣∣qj

∣∣2
, |K | = O

(‖q‖6
a,p

)
,

with uniquely determined coefficients Ḡi j = (4 − δi j )/4π .

The key ingredient of the proof is the observation that all the relevant divisors in
the normalizing transformation are independent of m and uniformly bounded away
from zero, since they are nonvanishing integers.

Lemma 5. If i ± j ± k ± l = 0 and {i, j} �= {k, l} , then

λi + λj − λk − λl = i2 + j2 − k2 − l2 �= 0.

Proof. If one pair of indices in the two sets is equal, say j = l , then i �= k
by hypotheses, and so i2 + j2 − k2 − l2 = i2 − k2 �= 0. So suppose that there is no
pair of equal indices in the two sets, but that to the contrary

i2 + j2 = k2 + l2.

We may also assume that i < k ≤ l < j . From i ± j ± k ± l = 0 we conclude that
indeed i + j = k + l . Squaring and subtracting the first equation yields i j = kl ,
and hence we find (k − i)(k − j) = 0. This is a contradiction.
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Proof of Lemma 4. Let � = Xt
F

∣∣
t=1 be the time-1-map of the flow of the

hamiltonian vectorfield X F given by the hamiltonian

F = 1
4

∑
i, j,k,l

Fi jkl qi qj q̄k q̄l

with coefficients

iFi jkl =



Gi jkl

λi+λj−λk−λl
,

if i ± j ± k ± l = 0
and {i, j} �= {k, l} ,

0 otherwise.

As we will show in a moment, X F is a real analytic vectorfield on �a,p of order three
at the origin. Hence � is a real analytic, symplectic change of coordinates defined at
least in a neighbourhood of the origin in �a,p .

Expanding at t = 0 and using Taylor’s formula we have

H  � = H  Xt
F

∣∣
t=1

= H + {H, F} +
∫ 1

0
(1 − t) {{H, F} , F}  Xt

F dt

= � + G + {�, F}

+ {G, F} +
∫ 1

0
(1 − t) {{H, F} , F}  Xt

F dt,

in a neighbourhood of the origin, where {H, F} denotes the Poisson bracket of H
and F . The last line consists of terms of order six or more in q and constitutes the
higher order term K . In the second to last line,

G + {�, F} = 1
4

∑
i± j±k±l=0

(
Gi jkl − i(λi+λj−λk−λl)Fi jkl

)
qi qj q̄k q̄l

= 1
4

∑
{i, j}={k,l}

Gi jkl qi qj q̄k q̄l

= 1
2

∑
i, j≥1

Ḡi j |qi |2
∣∣qj

∣∣2 = Ḡ

with 2Ḡii = Giiii and Ḡi j = Gi ji j for i �= j . Hence H  � = � + Ḡ + K as
claimed.

It remains to prove the analyticity. In view of Lemma 5 we have∣∣∣∣∂ F

∂ q̄l

∣∣∣∣ ≤ 1
2

∑
±i± j±k=l

∣∣Gi jkl

∣∣ ∣∣qi qj q̄k

∣∣ ≤
∑

±i± j±k=l

∣∣qi qj qk

∣∣ .
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Introducing the doubly infinite sequence p by setting pj = ∣∣q| j |
∣∣ for j �= 0 and

p0 = 0 we can write∑
±i± j±k=l

∣∣qi qj qk

∣∣ =
∑

i+ j+k=l

pi pj pk = (p ∗ p ∗ p)l ,

where the second sum extends over all integers i, j, k . Hence, by Lemma A.1,

∥∥Fq̄

∥∥
a,p

≤ ‖p ∗ p ∗ p‖a,p ≤ c ‖p‖3
a,p ≤ c ‖q‖3

a,p .

Finally, uniqueness is proven in the classical way [14].

Thus, the hamiltonian is brought into the infinite dimensional analogue of the
classical fourth order Birkhoff normal form,

H  � = 〈λ, I 〉 + 1
2 〈AI, I 〉 + K ,

where I = (I1, I2, . . . ) with Ij = 1
2

∣∣qj

∣∣2
and Ai j = Ḡi j . This result is in fact

stronger than what we can make use of, since we have no KAM theory yet for infinite
dimensional tori of such hamiltonians. We rather focus our attention now on certain
families of finite dimensional tori, for which a partial Birkhoff normal form would
suffice.

With the normal form at hand, Theorem 1 could be deduced by applying an
abstract infinite-dimensional KAM-theorem from [9] in the same way as it was done
in [2] for the nonlinear string equation. There a similar normal form was obtained by
an analysis of the time-quasi-periodic solutions of the sine-Gordon-equation. This
way one obtains Cantor manifolds of solutions which are t -analytic and x -smooth.
The x -analyticity then results from the uniqueness assertion of a version of the
Cauchy Kowalewski theorem due to Ovsjannikov, Nirenberg and Nishida [10], which
is applied to equation (1) with x as time and u|x=x0

as analytic Cauchy data. The
point is that u|x=x0

is already known to be analytic in t for every x0 in [0, π ] .
Below we proceed in a similar way but deduce Theorem 1 from a somewhat

different KAM-like result, which is proven in [12].

4 The Cantor Manifold Theorem

In a neighbourhood of the origin in �a,p we now consider a hamiltonian H =
� + Q + R , where R represents some higher order perturbation of an integrable
normal form � + Q . The latter describes a family of linearly stable invariant tori of
dimension n with quasi-periodic motions. The dimension n is fixed, 1 ≤ n < ∞ .
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In complex coordinates q = (q̃, q̂) on �a,p , where q̃ = (q1, . . . , qn) and
q̂ = (qn+1, qn+2, . . . ) , and with

I = 1
2 (|q1|2 , . . . , |qn|2), Z = 1

2 (|qn+1|2 , |qn+2|2 , . . . ),

the normal form consists of the terms

� = 〈α, I 〉 + 〈β, Z〉 , Q = 1
2 〈AI, I 〉 + 〈B I, Z〉 ,

where α, β and A, B denote vectors and matrices with constant coefficients, respec-
tively. Its equations of motion are

˙̃q = i diag(α + AI + BTZ)q̃, ˙̂q = i diag(β + B I )q̂.

They admit a complex n -dimensional invariant manifold E = {q̂ = 0} , which is
completely filled, up to the origin, by the invariant tori

T(I ) = {
q̃ :

∣∣q̃j

∣∣2 = 2Ij for 1 ≤ j ≤ n
}
, I ∈ Pn.

On T(I ) and in its normal space, respectively, the flows are given by

˙̃q = i diag(ω(I ))q̃, ω(I ) = α + AI,

˙̂q = i diag(Ω(I ))q̂, Ω(I ) = β + B I.

They are linear and in diagonal form. In particular, since Ω(I ) is real, q̂ = 0 is
an elliptic fixed point, all the tori are linearly stable, and all their orbits have zero
Lyapunov exponents. We call T(I ) an elliptic rotational torus with frequencies ω(I ) .

Note that although looking very much alike there is an important difference
between an n -dimensional space EJ for the linear Schrödinger equation and the
space E for the nonlinear normal form hamiltonian. In the latter the frequencies
in general vary from torus to torus, while in the former they do not. This so called
amplitude-frequency modulation is essential for obtaining the stability result below.

Due to resonances the manifold E does in general not persist in its entirety
under the inclusion of the higher order terms R . Instead, our aim is to prove the
persistence of a large portion of E forming an invariant Cantor manifold E for the
hamiltonian H = � + Q + R .

That is, there exists a family of n -tori

T[C] =
⋃
I∈C

T(I ) ⊂ E
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over a Cantor set C ⊂ P
n and a Lipschitz continuous embedding

�: T[C] ↪→ �a,p,

such that the restriction of � to each torus T(I ) in the family is an embedding of
an elliptic rotational n -torus for the hamiltonian H . The image E of T[C] we call a
Cantor manifold of elliptic rotational n -tori given by the embedding �: T[C] → E .

In addition, the Cantor set C has full density at the origin, the embedding �

is close to the inclusion map �0: E ↪→ �a,p , and the Cantor manifold E is tangent
to E at the origin.

For the existence of E the following assumptions are made.

A. Nondegeneracy. The normal form � + Q is nondegenerate in the sense
that

det A �= 0,

〈l, β〉 �= 0,

〈k, ω(I )〉 + 〈l, Ω(I )〉 �≡ 0,

for all (k, l) ∈ Zn × Z∞ with 1 ≤ |l| ≤ 2, where ω = α + AI and Ω = β + B I .

B. Spectral Asymptotics. There exists d ≥ 1 and δ < d − 1 such that

βj = j d + · · · + O( j δ),

where the dots stand for terms of order less than d in j .

C. Regularity.

X Q, X R ∈ A(�a,p, �a, p̄),

{
p̄ ≥ p for d > 1,

p̄ > p for d = 1,

where A(�a,p, �a, p̄) denotes the class of all maps from some neighbourhood of the
origin in �a,p into �a, p̄ , which are real analytic in the real and imaginary parts of the
complex coordinate q .

By the regularity assumption the coefficients of B = (Bi j )1≤ j≤n<i satisfy the
estimate Bi j = O(i p− p̄) uniformly in 1 ≤ j ≤ n . Consequently, for d = 1 there
exists a maximal positive constant κ such that

Ωi − Ωj

i − j
= 1 + O( j−κ), i > j,

uniformly for bounded I . For d > 1, we set κ = ∞ .
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Theorem 2 (The Cantor Manifold Theorem). Suppose the hamiltonian
H = � + Q + R satisfies assumptions A, B and C, and

|R| = O
(‖q̂‖4

a,p

) + O
(‖q‖g

a,p

)
with

g > 4 + 4 − �

κ
, � = min( p̄ − p, 1).

Then there exists a Cantor manifold E of real analytic, elliptic diophantine n -tori
given by a Lipschitz continuous embedding �: T[C] → E , where C has full density
at the origin, and � is close to the inclusion map �0 :

‖� − �0‖a, p̄,Br ∩T[C] = O(rσ ),

with σ > 1 specified at the end of section 7. Consequently, E is tangent to E at the
origin.

Remark 1. The embedding � can be chosen to include a parametrization
of each torus in which the flow is linear (although the estimate is then worse, see
Section 7). Then, for each I ∈ C and v0 ∈ T(I ) ,

ψI,v0 : t �→ �
(
eiω(I )tv0

)
is a real analytic solution curve in �a,p for the hamiltonian H = � + Q + R . The
frequencies ω(I ) are diophantine for all I ∈ C , so each such orbit is quasi-periodic
with n basic frequencies.

Remark 2. The map � is not only Lipschitz but could be shown to be smooth
on T[C] in the sense of Whitney. But we did not pursue this technical question.
Moreover, � may be extended to a global Lipschitz map �̄: E → �a,p satisfying
the same estimates as � – see Appendix B. So E may be viewed as part of a global
Lipschitz manifold. The latter, however, has no invariant meaning for the hamiltonian
system outside the Cantor set.

5 Proof of Theorem 1

We prove Theorem 1 by deducing it from Theorem 2. By Lemma 3 our hamil-
tonian is H = � + G with � as in (5) and XG in A(�a,p, �a,p) , where we can fix
a > 0 and p > 1

2 arbitrarily. The domain of analyticity is then, of course, deter-
mined with respect to the norm ‖ · ‖a,p . With the help of Lemma 4 we put H into



20 Section 5: Proof of Theorem 1

its Birkhoff normal form up to order four by a real analytic symplectic map � , such
that H  � = � + Ḡ + K .

Now we choose any finite number n of normal modes φj1 , φj2 , . . . , φjn and
renumber them in such a way that they become the first n modes. With the notation
of the previous section we then write

� = 〈α, I 〉 + 〈β, Z〉 , Ḡ = 1
2 〈AI, I 〉 + 〈B I, Z〉 + G̃,

where, after renumbering, we have α = (λ1, . . . , λn) , β = (λn+1, λn+2, . . . ) , and
A = (Ḡi j )1≤i, j≤n , B = (Ḡi j )1≤ j≤n<i . The term G̃ comprises “the rest” of Ḡ , which
is quadratic in Z and therefore satisfies

|G̃| = O
(‖q̂‖4

a,p

)
.

Thus H  � = � + Q + R with Q = 1
2 〈AI, I 〉 + 〈B I, Z〉 and R = G̃ + K , for

which we verify the hypotheses of Theorem 2.

Lemma 6. For any choice of finitely many normal modes the normal form
� + Q is nondegenerate. So condition A is satisfied.

Proof. We have Ḡi j = (4 − δi j )/4π , independently of any renumbering of
coordinates. Hence 4π A = 4X−I , where I is the identity matrix and all components
of X are 1. So X has rank 1, its spectrum is σ(X) = {0, n} , and

σ(4π A) = 4σ(X) − 1 = {−1, 4n − 1} �# 0,

whence det A �= 0.
Clearly, 〈l, β〉 �= 0 for 1 ≤ |l| ≤ 2. For the last nondegeneracy condition we

have to check that

〈α, k〉 + 〈β, l〉 �= 0 or Ak + BT l �= 0

for all (k, l) with 1 ≤ |l| ≤ 2. Suppose Ak + BT l = 0. Multiplying by 4π we have

(4X − I )k + 4π BT l = 0,

and all coefficients of 4π BT are 4. Thus all components of k are equal, say p , and
(4n − 1)p + 4q = 0, where q is the sum of the at most two nonzero components
of l . The only integer solution to this equation is p = 0, q = 0, so k = 0, and l
has one ‘1’ and one ‘-1’. But then 〈α, k〉+ 〈β, l〉 = λi − λj for some i �= j , and this
expression does not vanish.
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Since λj = j2 + m , the spectral sequence β satisfies condition B with d = 2.
Hence it is sufficient to have X Q, X R ∈ A(�a,p, �a,p) , which follows from Lemmata
3 and 4. Finally,

|R| ≤ |G̃| + |K | = O
(‖q̂‖4

a,p

) + O
(‖q‖6

a,p

)
,

so also condition C is satisfied with g = 6 > 4.
So Theorem 2 applies, and we obtain in particular

‖� − �0‖a,p,Br ∩T[C] = O(r2).

Composing with � we obtain a Cantor manifold E of real analytic diophantine n -tori
in �a,p carrying quasi-periodic solutions

γI,v0 : t �→ q(t) = �  �
(
eiω(I )tv0

)
for the hamiltonian H = � + G . Going back to W a,p by the isometry

�a,p → W a,p, q �→ Sq =
∑
j≥1

qjφj ,

E is mapped into another Cantor manifold of real analytic diophantine tori in W a,p ,
which by Lemma 3 carry analytic time quasi-periodic solutions u of the given non-
linear Schrödinger equation. This proves Theorem 1.

6 The Basic KAM Theorem

The Cantor Manifold Theorem is obtained from a KAM theorem that is con-
cerned with perturbations of a family of linear integrable hamiltonians

N =
n∑

j=1

ωj (ξ)yj + 1
2

∞∑
j=n+1

Ωj (ξ)(u2
j + v2

j ),

given in n -dimensional angle action coordinates (x, y) and infinite dimensional car-
tesian coordinates (u, v) with symplectic structure

n∑
j=1

dxj ∧ dyj +
∞∑

j=n+1

duj ∧ dvj .

The frequencies ω = (ω1, . . . , ωn) and Ω = (Ωn+1, Ωn+2, . . . ) depend on n pa-
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rameters

ξ ∈ # ⊂ R
n,

# a closed bounded set of positive Lebesgue measure, in a way described below.
For each ξ there is an invariant n -torus T0 = T

n × {0, 0, 0} with frequencies
ω(ξ) . In its normal space described by the uv -coordinates the origin is an elliptic fixed
point with characteristic frequencies Ω(ξ) . The aim is to prove the persistence of a
large portion of this family of linearly stable rotational tori under small perturbations
H = N + P of N . To this end the following assumptions are made.

A*. Nondegeneracy. The map ξ �→ ω(ξ) between # and its image is a
homeomorphism which is Lipschitz continuous in both directions. Moreover,∣∣ {ξ : 〈k, ω(ξ)〉 + 〈l, Ω(ξ)〉 = 0 }∣∣ = 0

and

〈l, Ω(ξ)〉 �= 0 on #

for all integer vectors (k, l) ∈ Zn × Z∞ with 1 ≤ |l| ≤ 2.

B*. Spectral Asymptotics and Lipschitz Property. There exists d ≥ 1 and
δ < d − 1 such that

Ωj (ξ) = j d + · · · + O( j δ),

where the dots stand for fixed lower order terms in j , allowing also negative expo-
nents. More precisely, there exists a fixed, parameter-independent sequence Ω̄ with
Ω̄ j = j d + · · · such that the tails Ω̂j = Ωj − Ω̄ j give rise to a Lipschitz map

Ω̂: # → �−δ
∞ ,

where �p
∞ denotes the space of all complex sequences with finite norm w p =

supj |wj | j p .

C*. Regularity. The perturbation P is real analytic in the space coordinates
and Lipschitz in the parameters, and for each ξ ∈ # its gradients with respect to u
and v satisfy

Pu, Pv ∈ A(�a,p, �a, p̄),

{
p̄ ≥ p for d > 1,

p̄ > p for d = 1.

To make this more precise we introduce complex neighbourhoods

D(s, r): |Im x | < s, |y| < r2, ‖u‖a,p + ‖v‖a,p < r
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of T0 and weighted phase space norms

(x, y, u, v) r = |x | + 1

r2
|y| + 1

r
‖u‖a, p̄ + 1

r
‖v‖a, p̄ ,

where we omit a , p and p̄ from the notation for brevity, and where | · | is the max-
norm for complex vectors. Then we assume that the hamiltonian vectorfield X P is
real analytic on D(s, r) for some s and r uniformly in ξ with finite norm X P r ,
and that the same holds for its Lipschitz semi-norm

X P
L
r = sup

ξ �=ζ

∆ξζ X P r

|ξ − ζ |

over the parameter domain # , where ∆ξζ X P = X P( · , ξ) − X P( · , ζ ) .

To state the following theorem we also assume that

|ω|L# + Ω̂ L
−δ,# ≤ M < ∞,

∣∣ω−1
∣∣L
ω(#)

≤ L < ∞,

with Lipschitz semi-norms defined analogously to X P
L
r . In the case d = 1, let

κ > 0 be the largest exponent such that

Ωi − Ωj

i − j
= 1 + O( j−κ), i > j,

uniformly on # . The following theorem is proven in [12].

Theorem 3 (The Basic KAM-Theorem). Suppose H = N + P satisfies
assumptions A*, B* and C*, and

ε = X P r,D(s,r) + α

M
X P

L
r,D(s,r) ≤ γα,

where 0 < α ≤ 1 is a parameter, and γ depends on the parameters described below.
Then there exists a Cantor set #α ⊂ # with |#\#α| → 0 as α → 0 , a Lipschitz
continuous family of torus embeddings

�: Tn × #α → T
n × Rn × �a, p̄ × �a, p̄,

and a Lipschitz continuous map ω̃: #α → R
n , such that for each ξ in #α the map

� restricted to Tn × {ξ} is a real analytic embedding of an elliptic rotational torus
with frequencies ω̃(ξ) for the hamiltonian H at ξ .
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Each embedding is real analytic on |Im x | < s/2 , and

� − �0 r + α

M
� − �0

L
r ≤ cε

α
,

|ω̃ − ω| + α

M
|ω̃ − ω|L ≤ cε,

uniformly on that domain and #α , where �0:Tn ×# → T0 is the trivial embedding.
If the unperturbed frequencies are affine functions of the parameter ξ , then

|#\#α| ≤ c̃ρn−1αµ, µ =
{

1 for d > 1,
κ

κ + 1 − π/4
for d = 1,

where ρ = diam # and π is any number in 0 ≤ π < min( p̄ − p, 1) .
The constants γ and c , c̃ depend on the parameters n, d, δ, κ, p̄ − p, s , the

product L M and the frequencies ω and Ω in a ‘monotone’ way. That is, γ −1 and
c, c̃ do not increase for closed subsets of # . In addition, for d = 1 , c̃ also depends
on π .

Remark 1. There is not only a family of embeddings but indeed a Lipschitz
continuous family of real analytic coordinate changes �̄ in a neighbourhood of T0

such that

H  �̄ =
n∑

j=1

ω̃j (ξ)yj + 1
2

∞∑
j=n+1

Ω̃j (ξ)(u2
j + v2

j ) + . . . ,

where the dots stand for higher order terms in y, u, v , and the new frequencies are
strongly nonresonant. See [12] for more details.

Remark 2. Actually, #α may contain isolated points, so it may not be a Can-
tor set in the strict sense. But it will be a Cantor set up to a set of measure zero.

Remark 3. The rôle of the parameter α is the following. In applications the
size of the perturbation usually depends on a small parameter, for example the size
of the neighbourhood around an elliptic fixed point. One then wants to choose α as
another function of this parameter in order to obtain useful estimates for |#\#α| .
The next section provides an example.
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7 Proof of the Cantor Manifold Theorem

We finally prove the Cantor Manifold Theorem with the help of the Basic
KAM-Theorem. Recall that we are given a hamiltonian H = �+ Q + R in complex
coordinates q = (q̃, q̂) , where R is some perturbation of the normal form

� + Q = 〈α, I 〉 + 〈β, Z〉 + 1
2 〈AI, I 〉 + 〈B I, Z〉 ,

with I = 1
2 (|q1|2 , . . . , |qn|2) and Z = 1

2 (|qn+1|2 , |qn+2|2 , . . . ) . Assumptions A, B
and C are supposed to hold.

Step 1. New coordinates. We introduce symplectic polar and real coordinates
by setting

qj =
{ √

2(ξj + yj ) e−ixj , 1 ≤ j ≤ n,

uj + ivj , j ≥ n + 1,

depending on parameters ξ ∈ # = [0, 1]n . The precise domains will be specified
later when they become important. Then we have

i

2

∑
j≥1

dqj ∧ dq̄j =
∑

1≤ j≤n

dxj ∧ dyj +
∑

j≥n+1

duj ∧ dvj ,

I = ξ + y and Z = 1
2 (u2 + v2) , with the obvious componentwise interpretation.

The normal form becomes

� + Q = 〈ω(ξ), y〉 + 1
2 〈Ω(ξ), u2+v2〉 + Q̃

with frequencies ω(ξ) = α + Aξ , Ω(ξ) = β + Bξ and remainder Q̃ = O(|y|2) +
O(‖u2 + v2‖2) . The total hamiltonian is H = N + P with P = Q̃ + R .

Step 2. Checking assumptions A*, B* and C*. The map ξ �→ ω(ξ) is a
lipeomorphism of Rn onto itself, since A is invertible by assumption. The measure
condition is satisfied, since 〈k, ω(ξ)〉 + 〈l, Ω(ξ)〉 is a nontrivial affine function of ξ

by assumption, which vanishes on a codimension 1 subspace. Finally, 〈l, Ω(ξ)〉 does
not vanish for small |ξ | because of the asymptotic behavior of the frequencies and
the assumption 〈l, β〉 �= 0. So condition A* is satisfied.

As to condition B* we have Ω(ξ) = β + Bξ with βj = j d + · · · + O( j δ) by
assumption. We already noticed that the regularity assumption implies that Bi j =
O(i p− p̄) uniformly in 1 ≤ j ≤ n . Hence Ω̂ = Ω − β is Lipschitz as a map
# → � p̄−p

∞ with finite Lipschitz constant Ω̂ L
p̄−p on # .
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The above statements hold a fortiori, if δ is replaced by

δ∗ = max(δ, p − p̄) < d − 1.

So condition B* is satisfies with this choice for δ . Finally, the regularity condition C*
follows immediately from assumption C.

The Lipschitz constants L = |ω−1|L and M = |ω|L + Ω̂ L
−δ are fixed and

finite on # . For convenience we may therefore ignore them in the following.

Step 3. Domains and estimates. Now let r > 0 and consider the phase space
domain

D(2, r): |Im x | < 2, |y| < r2, ‖u‖a,p + ‖v‖a,p < r,

and the parameter domain

)−
r = U−4r2)r , )r = {

ξ : 0 < ξ < r2λ
}
, λ = 4

g
< 1,

where U−ρ) is the subset of all points in ) with boundary distance greater than ρ .
The total hamiltonian H is well defined on these domains, and |Q̃| = O(r4)

as well as |R| = O(r gλ + r4) = O(r4) on D(2, 2r) . Using Cauchy estimates for
Rx , Ry and the hypotheses for Ru , Rv we then obtain

X Q̃ r,D(1,r) + X R r,D(1,r) = O(r2).

Using again Cauchy with respect to ξ , we have X Q̃
L
r + X R

L
r = O(r2/α) on

U−α/2)
−
r , α > 0. Altogether we obtain

X P r,D(1,r) + α X P
L
r,D(1,r) = O(r2)

with respect to the parameter domain

#r = U−α)r , α ≥ 8r2,

where α will be chosen as a function of r later.
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Step 4. Application of Theorem 3. To apply Theorem 3 it now suffices to
require that as a function of r ,

α(r) ≥ c1r2 (8)

for all small r with a sufficiently large constant c1 which depends on the parameters
indicated in that theorem, but not on the parameter sub-domain #r and hence not
on r .

As a result we obtain a Cantor set #r,α ⊂ #r of parameters, a Lipschitz
continuous family of real analytic torus embeddings

�r : Tn × #r,α → D(1, r),

and a Lipschitz continuous frequency map ω̃r : #r,α → R
n , such that for each ξ in

#r,α the map �r restricted to Tn × {ξ } is a real analytic embedding of an elliptic,
rotational torus with freqnecies ω̃r (ξ) for the hamiltonian H at ξ . Also the estimates

�r − �0 r + α �r − �0
L
r ≤ cr2/α,

|ω̃r − ω| + α |ω̃r − ω|L ≤ cr2,
(9)

hold on |Im x | < 1
2 and #r,α , where the generic constant c depends on the same

parameters as c1 . Moreover, we have the measure estimate

∣∣)r\#r,α

∣∣ ≤ cαµ

r2λ
|)r | (10)

with a constant c independent of #r and µ depending on κ and η . Hence, to obtain
a non-empty Cantor set we also need

αµ(r) ≤ c−1
1 r2λ.

The embedding �r describes the invariant tori in terms of the “relative” ac-
tions y . The translated embedding �t

r = �r + Tξ , where Tξ (φ, ξ) = (0, ξ, 0, 0) ,
gives the same tori in terms of the “absolute” actions I = ξ + y . It is a small pertur-
bation of the trivial embedding �t

0: (φ, I ) �→ (φ, I, 0, 0) , and we have �t
r − �t

0 =
�r − �0 . So the above estimates are preserved, and henceforth we will write again
�r for brevity.
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Step 5. Patching up domains. The Cantor sets #r,α by themselves are not
dense at the origin. To obtain such a set we have to take the union of a suitable sequence
of subsets of #r,α . Fix some 0 < η ≤ 1

2 and set Rr = )r\)ηr , R−
r = U−α Rr , and

Cr = #r,α ∩ R−
r .

In view of (10) we then have |Rr\Cr | ≤ cαµ

r2λ
|Rr | . Now choose the sequence

rk = ηkr0 , k ≥ 0, and set

C =
⋃
k≥0

Crk ,

choosing r0 small enough so that all the Crk are not empty. Define the embedding
�: Tn × C → P = T

n × #n × �a, p̄ × �a, p̄ by piecing together the corresponding
definitions on each component. That is, � |Tn×Crk

= �rk . Similarly for ω̃ . These
definitions are correct, since the Crk are disjoint and even have a pairwise positive
distance to each other. So � is certainly continuous in I and real analytic in each
fiber Tn × {I } , I ∈ C .

Step 6. Estimates. We now show that if r2/α(r) is a nondecreasing function
of r , then on |Im φ| < 1

2 and C ∩ )rk one has

� − �0 rk
, α(rk)

∆I J (� − �0) rk

|I − J | ≤ cr2
k

α(rk)
, (11)

provided I ∈ Crk . This holds for all k ≥ 0. Analogous estimates hold for ω̃ , which
we forego. Moreover, if also αµ(r)/r2λ is a nondecreasing function of r , then∣∣C ∩ )rk

∣∣∣∣)rk

∣∣ ≥ 1 − cαµ(rk)

r2λ
k

.

To prove the first estimate we observe that � − �0 r increases as r decreases,
so that

� − �0 rk ,C∩)rk
= sup

l≥k
� − �0 rk ,Crl

≤ sup
l≥k

� − �0 rl ,Crl
≤ sup

l≥k

cr2
l

α(rl)
≤ cr2

k

α(rk)
.

The second estimate we immediately obtain from (9), if I and J are in the same
patch Crk . Otherwise, J ∈ Crl with l > k . Then |I − J | ≥ α(rk) and

∆I J (� − �0) rk
≤ � − �0 rk ,Crk

+ � − �0 rl ,Crl
≤ cr2

k

α(rk)
,
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from which the statement follows. As to the measure estimate, let E be the comple-
ment of C . Then

∣∣E ∩ )rk

∣∣ =
∑
l≥k

∣∣E ∩ Rrl

∣∣ =
∑
l≥k

∣∣Rrl \Crl

∣∣
≤

∑
l≥k

cαµ(rl)

r2λ
l

∣∣Rrl

∣∣ ≤ cαµ(rk)

r2λ
k

∣∣)rk

∣∣ ,

which gives the claim.

Step 7. The embedding � . The map � describes the invariant tori in terms
of symplectic polar coordinates, and it also includes a parametrization of each torus
in which the flow is linear. To describe and estimate the same tori in symplectic
cartesian coordinates, however, it is advantageous to undo this parametrization in
order to obtain a “radial map”.

Let X :Tn × C → T
n be the angular component of the embedding � . By (11)

X is close to the identity on |Im x | < 1
2 uniformly in I , by choosing the constant c1 in

(8) sufficiently large. Hence there exists an inverse on each torus, X−1:Tn ×C → T
n ,

which is real analytic on |Im x | < 1
4 and satisfies the same estimate as X . So we can

define the embedding

� = �  X−1: Tn × C → P,

which is of the form

φ′ = φ, I ′ = I + y(φ, I ), u′ = u(φ, I ), v′ = v(φ, I )

and satisfies the same estimates as � .
It remains to estimate � in terms of the cartesian coordinates. Indeed, we show

that

‖� − �0‖a, p̄ ≤ cr2
k

α(rk)
· rk

uniformly on T[C ∩ )rk ] for k ≥ 0.
For the proof, consider q̃ = √

2I eiφ and q̂ = u + iv , understood component-
wise. On T[C ∩ Rrk ] we have
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1√
2

∣∣q̃ ′ − q̃
∣∣ =

∣∣∣√I + y −
√

I
∣∣∣

≤ |y|
(

min
I∈Rrk

∣∣∣√Ij

∣∣∣)−1

≤ r2
k � − �0 rk

1√
α(rk)

≤ cr2
k

α(rk)
rk,

using α(r) ≥ c1r2 and (11). By the same token,

∥∥q̂ ′∥∥
a, p̄ ≤ ‖u‖a, p̄ + ‖v‖a, p̄ ≤ rk � − �0 rk

≤ cr2
k

α(rk)
rk .

The right hand sides decrease as k increases, so this bound holds also on T[C ∩ Rrl ]
with l > k and thus on all of T[C ∩ )rk ] .

Step 8. Choice of α(r) . Eventually we have to choose α as a function of r
satisfying

c1r2µ ≤ αµ(r) ≤ c−1
1 r2λ

for all small r . Thus we need µ > λ . For d > 1 with µ = 1 this clearly holds. For
d = 1, this can also be arranged, since g > 4 + (4 − �)/κ by assumption, hence

4

g
= λ < µ̄ = κ

κ + 1 − �/4
,

and µ < µ̄ can be chosen arbitrarily close to µ .
The choice α = c1r2 would lead to a large Cantor set C , but rather weak

estimates for � −�0 . The other extreme αµ = c−1
1 r2λ would lead to good estimates

for � − �0 , but the density of C at 0 would not be 1. Unfortunately, we have no
uniqueness results for the lower dimensional tori, so different choices of α may lead
to quite different and maybe disjoint Cantor manifolds E .

So some choice has to be made. For example, taking the geometric mean

αµ̄(r) = rλ+µ̄

and choosing µ properly, the above condition is met for all small r , the Cantor set C

has full density at the origin, and

‖� − �0‖a, p̄ ≤ cr2−λ/µ̄ = crσλ, σ = g

2
− 1

µ̄
,
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on T[C∩)r ] . The latter contains the set T[C]∩ Brλ , and so the estimate of Theorem 2
is obtained. The proof of Theorem 2 is now complete.

A The Banach Algebra Property

Consider the Hilbert space �a,p of all doubly infinite complex sequences q =
(. . . , q−1, q0, q1, . . . ) with

‖q‖2
a,p =

∑
j

∣∣qj

∣∣2
[ j]2pe2a| j | < ∞, [ j] = max(| j | , 1).

The convolution q ∗ p of two such sequences is defined by (q ∗ p)j = ∑
k qj−k pk .

Lemma. If a ≥ 0 and p > 1
2 , then ‖q ∗ p‖a,p ≤ c ‖q‖a,p ‖p‖a,p for

q, p ∈ �a,p with a finite constant c depending only on p .

Proof. Let γjk = [ j − k] [k]

[ j]
. By the Schwarz inequality,

∣∣∣∑
k

xk

∣∣∣2
=

∣∣∣∣∑
k

γ
p

jk xk

γ
p

jk

∣∣∣∣
2

≤ c2
j

∑
k

γ
2p
jk |xk |2 , c2

j =
∑

k

1

γ
2p
jk

,

for all j . We have

1

γjk
≤ [ j − k] + [k]

[ j − k] [k]
= 1

[ j − k]
+ 1

[k]
,

so that

c2
j ≤

∑
k

(
1

[ j − k]
+ 1

[k]

)2p

≤ 4p
∑

k

1

[k]2p
def= c2 < ∞

for all j . It follows that for a = 0,

‖q ∗ p‖2
a,p =

∑
j

[ j]2p
∣∣∣∑

k

qj−k pk

∣∣∣2

≤ c2
∑

j

[ j]2p
∑

k

γ
2p
jk

∣∣qj−k pk

∣∣2

= c2
∑
j,k

[ j − k]2p
∣∣qj−k

∣∣2
[k]2p |pk |2

= c2 ‖q‖2
a,p ‖p‖2

a,p .
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The case a > 0 is a simple variation of the last estimate.

B The Kirszbraun Theorem

Let E and F be a finite dimensional and a separable Hilbert space, respectively,
with norms ‖ · ‖E and ‖ · ‖F . The Lipschitz seminorm of a map f : E ⊃ S → F is

[ f ]S = sup
x,y∈S
x �=y

‖ f (x) − f (y)‖F

‖x − y‖E
.

Theorem (Kirszbraun). Let S ⊂ E , and let f : S → F be a map with finite
Lipschitz seminorm. Then there exists an extension φ: E → F of f with the same
Lipschitz seminorm: [φ]E = [ f ]S .

Proof. Let F1 ⊂ F2 ⊂ . . . be an increasing sequence of closed subspaces
of F with

⋃
n Fn = F and orthogonal projections Pn onto them. Let

fn = Pn f : S → Fn.

By the finite dimensional Kirszbraun Theorem [6] there is an extension φn: E → Fn

of fn with

[φn]E = [ fn]S ≤ [ f ]S .

Thus, the φn are uniformly Lipschitz with φn|S = fn .
Now choose a dense countable set X ⊂ E − S . Since they are uniformly

Lipschitz and equal to fn on S , the φn are uniformly bounded on bounded subsets
of E . Hence, by the usual diagonal trick, we can extract a subsequence, again denoted
by φn , that converges weakly in every point of X to a map ϕ: X ∪ S → F . They
also converge pointwise in S so that ϕ|S = f . Moreover,

[ϕ]X∪S ≤ lim inf
n→∞ [φn]E ≤ [ f ]S ,

since for weak limits,

‖ϕ(x) − ϕ(y)‖F ≤ lim inf
n→∞ ‖φn(x) − φn(y)‖F .

Hence we can uniquely extend ϕ to a Lipschitz continuous map φ: E → F with
[φ]E = [ϕ]X∪S ≤ [ f ]S . But indeed [φ]E = [ f ]S , since φ|S = f .
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C Time Periodic Solutions

We discuss the nonlinear Schrödinger equation

iut = uxx − mu − f (|u|2)u (1)

with Dirichlet boundary conditions and a real analytic nonlinearity f with f (0) = 0,
but not necessarily f ′(0) �= 0. We show that there exist “solid” discs through u ≡ 0
which are filled with time periodic solutions.

Recall that φj and λj are the basic modes and their frequencies for the linear
equation iut = uxx − mu with Dirichlet boundary conditions.

Theorem. Suppose f is real analytic near 0 with f (r) = O(r s) for some
s ≥ 1 . Then for every j ≥ 1 there exists an embedded disc

Ej = {
u(t, x) = rvj (x, r)eiµj (r)t , 0 ≤ r < rj

}
of real analytic, time periodic solutions of (1), where

vj = φj + O(r2s), µj = λj + O(r2s)

are real analytic in r and x and in r , respectively.

Proof. Let u(t, x) = rv(x)eiµt , where the dependence of µ and v on j and r
is not indicated. Then u is a solution of (1) with Dirichlet boundary conditions if and
only if v vanishes at 0 and π and satisfies

µv = −vxx + mv + f (r2 |v|2)v. (2)

This equation is independent of t , which is crucial for our argument.
Fix some a > 0 and p > 1

2 , and let W a,p
o be the space of all odd, 2π -

periodic functions in the space W a,p introduced in section 2. We solve equation (2)
by applying the implicit function theorem to the map

�: W a,p
o × R× R → W a,p−2

o × R
(v, µ, r) �→ (−vxx + mv + f (r2 |v|2) − µv, ‖v‖2 − 1

)
where ‖ · ‖ denotes the L2 -norm. The aim is to find solutions of

�(v, µ, r) = 0.

We normalize ‖v‖ = 1 to make solutions locally unique.
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We have

�(φj , λj , 0) = 0

for every j ≥ 1. The map � is real analytic in some neighbourhood of each of
these points (which depends on a , p and j ) by the same arguments we used to prove
Lemma 3 in section 2. Its Jacobian with respect to v and µ at (φj , λj , 0) is the linear
map

W a,p
o × R → W a,p−2

o × R
(w, ν) �→ (−wxx + mw − λjw − νφj , 2

〈
w, φj

〉)
.

This is an isomorphism, as one verifies by writing w = ∑
k≥1 ŵkφk and comparing

coefficients. Thus the implicit function theorem applies, and for every j ≥ 1 we
obtain a unique real analytic arc of solutions

(−rj , rj ) → W a,p
o × R, r �→ (

vj (r), µj (r)
)

through (vj (0), µj (0) = (φj , λj ) . By uniqueness, this arc is even even in r . More-
over, we have the standard estimate

‖vj (r) − vj (0)‖ + |µj (r) − µj (0)| = O(‖�(φj , λj , r)‖) = O(r2s),

which yields the asymptotic behavior of vj and µj .

Remark 1. The discs Ej are real analytic outside the origin. At the origin they
are at least C2 , since they have a third order tangency to the plane {qφj : q ∈ C} . It
would be interesting to know whether they are analytic at the origin.

Remark 2. For the discs Ej to exist the nonlinearity f need not be analytic. It
suffices that f is smooth or sufficiently often differentiable. Of course, the regularity
of the periodic solutions with respect to x changes accordingly.

Remark 3. The argument applies equally well to nonlinear Schrödinger op-
erators on higher dimensional bounded domains , . For the linearized equation to
define an isomorphism, the boundary of , has to be regular enough so that standard
elliptic regularity theory applies.
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