
A KAM–THEOREM FOR EQUATIONS OF

THE KORTEWEG – DE VRIES TYPE

Sergei B. KuksinAbstract. We study quasilinear Hamiltonian partial differential equations with one-dimensional
space variable in a segment of real line. We assume that the equation has a family of n-frequency
time-quasiperiodic solutions, depending on an n-dimensional amplitude vector, and prove that
most of these solutions persist under Hamiltonian perturbations of the equation by a nonlinear
term which contains less derivatives than the linear part of the unperturbed equation. The result
is similar to one proved in [K] for perturbations which contain no derivatives.

Introduction

In this paper we are concerned with quasilinear Hamiltonian partial differential equations
with nonlinearities depending on derivatives. We study the equations which are close to a linear
equation or to an integrable one. As good examples, let us consider the perturbed Korteweg-de
Vries (KdV) equation

(1) u̇(t, x) =
∂

∂x
(−uxx + 6u2 + ε2f(u, x)), x ∈ S1 = R/2π Z,

and a perturbation of the linear equation, similar to KdV:

(2) u̇(t, x) =
∂

∂x
(−uxx + V (x)u + ε f(u, x)), x ∈ S1.

Both (1) and (2) become infinite-dimensional Hamiltonian systems if we consider them as
dynamical systems in a space of periodic functions {u(x)} with zero mean value:

(3)

∫ 2π

0

u dx ≡ 0.

This restriction is correct for both equations since for their solutions the mean values in x are
time-independent quantities.

Consider the differential operator

(4) u(x) 7−→ ∂

∂x
(−uxx + V (x)u)
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in the space of square-integrable functions with zero mean value. For V = 0 the operator has
complete system of eigenfunctions exp ikx with the eigenvalues ik3/4, k = ±1,±2, . . . . If the
potential V (x) is not too large, i.e. if

(5) |V |C1 ≤ V0,

with an appropriate positive constant V0, then the operator (4) also has single pure imaginary
spectrum ±iλj(V ) corresponding to complex eigenfunctions wj(x), j = ±1,±2 . . . . These
eigenfunctions have the form

wj(x) = ϕ+
|j|(x) + i sgn j ϕ−

|j|(x),

where ϕ±
j (x) are some real functions (so w−j(x) = wj(x)). Besides, the functions wj(x) and

w−j(x) are asymptotically close to the exponents (jπ)−1/2exp ijx and (jπ)−1/2exp − ijx.1

Accordingly, solutions of (2)|ε=0, (3) can be written as

(6)
∞∑

k=1

ak eiλk(V )t wk(x) + c.c., ak ∈ C .

In particular, all solutions are almost periodic in time.2 The solutions

(7)
n∑

k=1

ak eiλkt wk(x) + c.c.

with n = 1, 2, . . . are time-quasiperiodic and jointly are dense in the function space.

It is well-understood now that solutions of the integrable equation (1)|ε=0, (3) look similarly:
for each n ≥ 1 the equation has so-called n-gap solutions which can be written as

(8) un(t, x) = Φn(q + ω(p)t; p) (x).

Here the analytic function Φn(q; p) (x) is 2π-periodic in the n-dimensional variable q (i.e.,
q ∈ Tn = Rn/2πZn), and p ∈ P ⊂ Rn is an n-dimensional parameter ((8) is a rough version of
the Its-Matveev formula, see [DNM]). To see that solutions (7) are analogous to (8), we write
in (7) ak as

(9) ak =
√

pk eiqk , pk ≥ 0, qk ∈ S1 = R/2πZ.

Now the solution (7) can be written as 2 Re
∑n

k=1 pk ei(qk+λkt) wk(x) and an analogy is
obvious.

It is also true that all solutions of (1)|ε=0, (3) are almost periodic in time, but corresponding
analogy with the formula (6) is less transparent (see [McT, Ka]).

1This follows from the classical perturbation theory for discrete spectrum, see e.g. [RS]. The normilizing

factor (jπ)−1/2 is convenient here since exactly the functions (jπ)−1/2 cos jx, (jπ)−1/2 sin jx jointly form a
Darboux basis for the symplectic structure corresponding to the KdV equation, which defines the skew-product

of two functions u1, u2 with zero mean value as
R

2π
0

u1(x)(∂/∂x)−1u2(x)dx.
2If we reject the assumption (5), then some finite system of eigenvalues λj could get nontrivial imaginary

parts. Accordingly, some terms in (6) could grow exponentially with time – this is not the phenomenon we are
interested in this work.
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We can take for the phase space Z = Zd of the equation (2), (3) some Sobolev space Hd
0 (S1)

of 2π-periodic functions with zero mean value, d ≥ 2, and decompose it as

Z = E2n ⊕ Y,

where
E2n = span (ϕ±

1 , . . . , ϕ±
n ), Y = span (ϕ±

n+1, ϕ±
n+2, . . . ).

Let us denote by y±
k , k ≥ n + 1, the coefficients of decomposition of a vector y ∈ Y in the basis

{ϕ±
n+1, ϕ

±
n+2, . . .}. Then

(p, q, y), p ∈ Rn
+ , q ∈ Tn, y = (y±

n+1, y
±
n+2, . . . )

with (p, q) as in (9), form a coordinate system in Z = E2n ⊕ Y . Since the equation (2), (3)
is Hamiltonian, then – under the requirement of a proper normalization of the eigenfunctions
w±

k = ϕ+
k ± iϕ−

k – in the coordinates (p, q, y) the equation (2), (3) takes the Hamiltonian form

(10) ṗj = −∂H/∂qj , q̇j = ∂H/2pj, ẏ±
m = ∓∂H/∂y∓

m,

where

(11) H = λ1p1 + · · · + λnpn +
1

2

∞∑

j=n+1

λj |yj |2 + εH(p, q, y), |yj |2 = y+2

j + y−2
j ,

and εH is the Hamiltonian of the perturbation ε ∂
∂x f(x, u). On this half-obvious matter see

in [K] Part 2.7 and Parts 2.3, 2.6 (where similar examples of nonlinear Schrödinger and wave
equations are discussed).

Since the perturbation in (2) is a first-order nonlinear differential operator, then the map

(12) y =
∞∑

j=n+1

y±
m ϕ±

m 7−→
∞∑

j=n+1

∓
(

∂

∂y∓
m

H

)
ϕ±

m

is smooth as a map Yd −→ Yd−1 (the spaces Yr are given norms induced from the Sobolev
spaces Hr

0 (S1)). This map is unbounded as a map in Yd.

It is remarkable that the equation (1), (3) near the 2n-dimensional submanifold T 2n ⊂ Z,

T 2n = ∪{Φn(q; p) (·) | q ∈ Tn , p ∈ P},

can be put to a form similar to (10), (11): in [K2] we proved that if for the p-variables in
(8) we chose the actions of the integrable system defined by (1), (3) on T 2n, then the action-
angle coordinates (p, q) in T 2n can be supplemented by an infinite-dimensional coordinate
y = (y±

n+1, y
±
n+2, . . . ) in a subspace transversal to T 2n in Z (which can be identified with the

space Y as above) in such a way that (p, q, y) form a coordinate system in the vicinity of T 2n

in Z. In these coordinates the equations (1), (3) take the form (10) with

(13) H = h(p) +
1

2

∞∑

j=n+1

λj(p) |yj |2 + ε2H1(p, q, y) + H3(p, q, y),
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where H3 = O(‖y‖3) and the maps (12) with H = H1 and H = H3 both are smooth as maps
Yd −→ Yd−1. The functional h(p) is the Hamiltonian for the KdV equation (1)|ε=0 restricted
to T 2n, so ∇h(p) = ω(p) (cf. (8)).

In (10), (13) we make the substitution

q = q̃, p = ξ + εp̃, y =
√

ε ỹ,

where ξ ∈ P is a parameter of the substitution. In the tilde-variables the equation takes the
form (10) with

(14) H(p̃, q̃, ỹ; ξ) = ω(ξ) · p̃ +
1

2

∞∑

j=n+1

λj(ξ) |ỹj|2 + εH(p̃, q̃, ỹ; ξ, ε).

Due to an elegant result of I. Krichever (see in [BiK1]), the map ξ 7−→ ∇h(ξ) = ω is a local
diffeomorphism (i.e., its determinant never vanishes). So in the Hamiltonian (14) we can pass
from parameter ξ ∈ P to ω ∈ Ω = ∇h(P ).

In the tilde-variables the n-gap solutions (8) of (1)|ε=0 with p = ξ take the form

(15) p̃ = 0, q̃ = q0 + ω t, ỹ = 0.

Similarly with solutions (7) of (10), (11): after the substitution p = ξ + p̃, q = q̃, y = ỹ they
take the same form with ω = (λ1, . . . , λn). Let us denote by Tn

0 the n-torus {(0, q, 0) | q ∈ Tn}
filled by solutions (15).

The main result of this work – Theorem 1 from Chapter 1 – implies that for most ω the
solution (15) persists in equation (10), (14) with sufficiently small ε > 0. Here we give a
simplified version of the result.

Theorem A. Suppose that in (14)

1) λj − Kjd1 = o(jd1), |λj − λj−1 | ≥ C−1jd1−1, |∂λj/∂ω| ≤ C jdH with some d1 >
1, dH < d1 − 1;

2) the map (12) defines a smooth analytic map Yd −→ Yd−dH
, which smoothly depends on

the parameter ω.

Then there exist finite numbers M and j1 such that if for all ω in some subdomain Ω0 ⊂ Ω
one has

(16) |s · ω + ℓ1λn+1(ω) + . . . + ℓj1λn+j1(ω)| ≥ C−1 > 0

for all integer n-vectors s and j1-vectors ℓ such that |s| ≤ M, 1 ≤ |ℓ| ≤ 2, then there exists a
subset Ωε ⊂ Ω0,

mes (Ω0\Ωε) −→ 0 (ε −→ 0),

such that for ω in Ωε the equation (10), (14) has an invariant n-torus Tn
ε ⊂ Z,

dist (Tn
ε , Tn

0 ) ≤ C εκ, κ > 0,
4



which is filled with time-quasiperiodic solutions with zero Lyapunov exponents.

The numbers j1, M depend only on the constants which characterize the perturbation H
and the asymptotics for λj . Thus if the frequencies λj are analytic in ω, then the assumption
(16) can be replaced by

Λs,ℓ(ω) : = s · ω + ℓ1λn+1(ω) + . . . + ℓj1λn+j1(ω) 6≡ 0

∀ |s| ≤ M, 1 ≤ |ℓ| ≤ 2,(16′)

since (16′) implies (16) for all ω outside a small neighborhood of the union of zero-sets of the
analytic functions Λs,ℓ as in (16′).

Example 1. Let us take equation (2) where the potential V (x) as in (5) analytically (e.g.,
linearly) depends on an n-dimensional parameter ξ from a ball Br and f is sufficiently smooth
in (u, x),3 analytic in u. For generic families of potentials V (x, ξ) the map Br ∋ ξ 7−→ ω =
(λ1, . . . , λn) is an analytic diffeomorphism and the functions Λs,ℓ(ω(ξ)) are not identically zero
(cf. [K]). So generically equation (2), (3) with V = V (x, ξ) and sufficiently small ε is such that
for most ξ it has time-quasiperiodic solutions which form solenoids in invariant tori of (2), (3)
close to those of the linear equation (2)|ε=0.

Let ω0 in (8) be the limiting value of the frequency vector ω corresponding to the zero
solution of (1).

Example 2. Let us take the perturbed KdV equation (1), where f is sufficiently smooth in
(u, x) and analytic in u. Direct evaluations of Λs,ℓ(ω0) and ∇ωΛs,ℓ(ω0), carried out in [BoK1],
show that (16′) hold for all s and ℓ such that 1 ≤ |ℓ| ≤ 2. Therefore most (in the measure
sense) solutions (8) persist in equation (1), (3) with sufficiently small ε.

Due to a well-known result of V. Marčenko, the union of all finite-gap manifolds T 2n is dense
in each space Z = Zd. Each manifold T 2n “mostly persists” in the perturbed equation (1), (3)
when ε −→ 0. So if QPε is the union of all time-quasiperiodic trajectories of (1), (3) with zero
Lyapunov exponents (treated as curves in the phase-space Z), then for any fixed z ∈ Z,

dist(z, QPε) −→ 0 as ε −→ 0.

Thus, stable time-quasiperiodic solutions of (1), (3) jointly form in Z a web, asymptotically
dense in Z as ε −→ 0.

Remark. It is not very natural that an ε2-perturbation of equation (1) implies a deformation of
the invariant torus Tn

0 of order εκ with some possibly small κ > 0. In fact, the deformation is of
order ερ for any ρ < 2. To see this, one should apply directly to Hamiltonian (13) Amplification
3 to Theorem 1 from Chapter 1 below (cf. in [K], Part 2.2 and item 3.2.C of the Introduction).

Example 3. Theorem A is also applicable to study perturbations of higher equations from the
KdV hierarchy [DMN, McT]. Take, for example, the second equation:

(17) u̇ =
∂

∂x

δI2

δu(x)
=

∂

∂x
(uxxxx − 5 uuxuxx − 5

2
u2 uxxx + 10u3).

3H2-smoothness in x is sufficient
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The same functions Φn as in (8) define finite-gap solutions of (17), (3) if we replace ω(p) by a
suitable frequency vector ω2(p). Moreover, the same coordinate system (p, q, y) in the vicinity
of T 2n reduce (17) to the equation (10) with

H = H2 := h2(p) +
1

2

∞∑

j=n+1

λ2
j(p) |yj|2 + H2

3 (p, q, y), H2
3 = O(‖y‖3).

Take any analytic in u, ux and sufficiently smooth in x function g(x, u, ux). Then the equation

(18) u̇ =
∂

∂x

(
δI2

δux
+ ε (g′u(x, u, xx) − ∂

∂x
g′ux

(x, u, ux))

)

is a Hamiltonian perturbation of (17) by means of a third order nonlinear operator. In the
same way as in Example 2, Theorem A (with d1 = 5, dH = 3) implies that most of finite-gap
solutions of (17) persist in (18) with ε sufficiently small.

The assertion of Example 2 is a result of the paper [K2], where the nonresonance relations
(16′) were taken for granted and it was claimed that the proof of Theorem A given in [K1] for
the case dH ≤ 0 (and d1 ≥ 1) also is applicable to prove the result for dH > 0. In this paper we
finally pay our delayed debt and present the proof. We use the scheme of the works [K,K1] and
profit from the simplifying assumption d1 > 1 (instead of d1 ≥ 1 in [K]). The only (but rather
nontrivial) complication compare to the case dH ≤ 0 arises when we solve the homological
equations. Somewhat simplifying the problem, we can state it like that: for j = 1, 2, . . . we
should solve the equations

(19j) −i(ω · ∇)x(q) + λj x(q) + βj(q)x(q) = z(q), q ∈ Tn ,

where ω · ∇ =
∑

ωj ∂/∂qj , βj(q) ∼ ε jdH , ω is a Diophantine n-vector and z(q) is a given
analytic function. We can find an analytic function Hj(q) such that (ω · ∇)Hj = βj and still
Hj(q) ∼ ε jdH . The substitution x = exp(−iH)y reduces (19j) to the equation

−i(ω · ∇)y + λjy = eiHj z =: z(q).
If dH ≤ 0, then exp iHj is a factor of order one and we can solve the last equation by decompos-
ing z(q) and y(q) to Fourier series, see the Appendix below. But if dH is positive, then the norm
of z(q) in a complex neighborhood of the torus grows exponentially with j. This exponential
factor appears in Fourier coefficients of the solution y(q) and – in a naive way – also in an
estimate for the solution x(q). But for our proof to work we need a uniform in j estimate for
x(q). We obtain this estimate in Chapter 4. The trick we use there is to approximate the vector
ω by vectors ω̃ℓ, ℓ = 1, 2, . . . , of the form ω̃ℓ = rℓ/νℓ where rℓ ∈ Zn and νℓ is an appropriate
real number. For ω replaced by ω̃ℓ we find representation for an approximate solution xℓ of
the equation as a rapidly oscillating (when j grows) one-dimensional integral Fourier with a
complex phase function. We show how to shift the contour of integrating to make the phase
function real, which implies an estimate for the approximating solutions. This estimate turns
out to be uniform in ℓ and implies a desirable j-independent estimate for the exact solution of
(19j).

After the difficulty with the homological equations is overcome, the proof goes like in [K,K1]
and even simpler since, first, the complicated boundary case d1 = 1 is now excluded from
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considerations and, second, for this work we found a simpler proof for the last step of our
scheme (“transition to limit”, Chapter 2.8).4

As we mentioned earlier, our proof follows the “KAM for PDEs” scheme, designed in [K1] and
developed in [K]. Independently similar schemes were proposed by C. E. Wayne [W] to study
quasiperiodic solutions of some nonlinear wave equations and by L. H. Eliasson [E] to study
finite-dimensional hamiltonian systems;5 also see [P] for some developments of this approach.
Lately another KAM-scheme to prove persistence of time-periodic and time-quasiperiodic solu-
tions of linear equations (10), (11) under nonlinear perturbations which contain no derivatives
was proposed by Craig-Wayne [CW] and developed by J. Bourgain [Bou].

The scheme of [K1, K] was initially used to study nonlinear perturbations of linear equations,
but it turned out to be a flexible tool to study time-quasiperiodic solutions of nonlinear PDEs:
In [K2, BiK2] it was applied to study perturbations of integrable PDEs and in [BoK2, KP] –
to study small solutions of nonlinear PDEs. The theorem we prove in this paper essentially
extends the domain of applicability of our KAM for PDEs scheme.

Acknowledgement. I sincerely thank the Institute for Advanced Study (Princeton) for their
hospitality where this work was done. Discussions with Jean Bourgain during preparation of
this paper were very useful to me.

1. The problem and the result

Let Y be a real Hilbert space with the scalar products 〈·, ·〉 and the (Hilbert) basis {ϕ±
j | j ≥

1} and let Ys, s ∈ R, be the Hilbert space with the basis {j−sϕ±
j | j = 1, 2, . . .}. So Ys is formed

by vectors y =
∑

y±
j ϕ±

j with finite norm ‖y‖s, where

‖y‖2
s =

∑
j2s

(
y±2

j + y−2

j

)
.

In particular, Y = Y0.

Example. If Y is the space of square-summable functions on the segment [0, 2π] with zero
mean value and

ϕ+
j = π−1/2 cos jx, ϕ−

j = π−1/2 sin jx, j = 1, 2, . . . ,

then Ys is the Sobolev space of 2π-periodic functions with zero mean value. For a natural s the

norm in Ys is given by the formula ‖y(x)‖2
s =

∫ 2π

0
|∂sy/∂xs|2dx.

We define the spaces
Ys = Rn × Tn × Ys

and consider a neighborhood Q of the torus

Tn
0 = {0} × Tn × {0}

in Yd of the form
Q = O(δ,Rn) × Tn × O(δ, Yd), δ > 0,

4Due to this simplification, we managed to drop the additional restriction imposed on the equation (10), (14)
in [K2] – there we assumed a priori that the equation is correct locally in time.

5still, the schemes of [K1], [E] and [W] are sufficiently different; we use exactly the scheme from [K1].
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where d ≥ 0 will be fixed later and for a Banach space B we denote by O(δ, B) the δ-ball in B
centered at the origin.

We denote by J the skew-symmetric operator in Y such that

Jϕ±
j = ∓ϕ∓

j , j ≥ 1,

and supply the spaces Ys with the symplectic structure given by the 2-form

ω2 = dp ∧ dq + 〈Jdy, dy〉 (p ∈ Rn , q ∈ Tn , y ∈ Y ).

Accordingly for two functionals H1, H2 on Ys we define their Poisson bracket {H1, H2} as the
functional

(1.1) {H1, H2} = −∇qH1 · ∇pH2 + ∇pH1 · ∇qH2 + 〈J∇yH1,∇yH2〉,

where ∇y is the gradient in y with respect to the scalar product 〈·, ·〉. For a functional H we
define the Hamiltonian equations with the Hamiltonian H as

(1.2) ṗ = −∇qH, q̇ = ∇pH, ẏ = J∇yH,

and abbreviate these equations as

(1.2′) ḣ = VH(h), h = (p, q, y).

If H is a smooth function on Q ⊂ Yd, then the map

Q −→ Rn × Rn × Y−d, h = (p, q, y) 7−→ VH(h) = (−∇qH, ∇pH, J∇yH)

is also smooth. We study strong solutions of (1.2) given by C1-smooth curves t 7−→ h(t) ∈ Q
such that (1.2′) holds in Rn × Rn × Y−d. See more on equations (1.2) in [K].

We are concerned with Hamiltonians of the form

Hε = p · ω +
1

2
〈A(ω)y, y〉+ εH (h; ω, ε),

where ω ∈ Ω b Rn is a vector-parameter, A(ω) is an unbounded selfadjoint operator in Y such
that

A(ω)ϕ±
j = λj (ω) ϕ±

j , j ≥ 1,

and ε is a perturbation parameter, 0 ≤ ε < 1. All estimates for H will be valid uniformly in ε
and dependence of H in ε will be neglected.

For ε = 0 the Hamiltonian vector field VH0
defines the Hamiltonian equations

(1.3) ṗ = 0, q̇ = ω, ẏ = JAy.

The torus Tn
0 is invariant for (1.3) and is filled with quasiperiodic trajectories t 7−→ (0, q0+ωt, 0).

Our goal is to prove that for most values of the parameter ω ∈ Ω the torus Tn
0 persists in the

equation with Hamiltonian Hε if ε is sufficiently small, provided that the perturbation εH and
the spectrum {λj} meet some additional restrictions which we shall now discuss.
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1.1 The restrictions.

Let us denote by Y c
s the complexification of the Hilbert space Ys and by Yc

s the complexifi-
cation of Ys,

Yc
s = C n × (C n/ 2πZn) × Y c

s .

We also denote by U(δ) a complex neighbourhood of the torus Tn ,

U(δ) = {ξ ∈ C n/ 2πZn
∣∣ |Im ξ| < δ}

and by Qc – a neighbourhood of the torus Tn
0 in Yc

s :

Qc = O(δ, C n) × U(δ) × O(δ, Y c
d ).

We systematically use Lipschitz maps between metric spaces and denote by Lip their Lip-
schitz constants. For a map f : M → B where M is a metric space and B is Banach, we
write

‖f‖M,Lip
B = max (Lip f, sup

m∈M
‖f(m)‖B).

If B1, B2 are Banach, O1 ⊂ B1 and f maps O1 × M to B2, we write

‖f‖O1,M
B2

= sup
b1∈O1

‖f(b1, ·)‖M,Lip
B2

.

Similar for a map f : O1 −→ B2 we denote by ‖f‖O1

B2
the supremum of its ‖ · ‖B2

-norm.

Below we give the assumptions imposed on the spectrum {λj} and on H. By K0, K1, . . . we
denote different positive constants.

1) The functions λj(ω) are Lipschitz and

(1.4)





K−1
1 jd1 − K0 ≤ λj(ω) ≤ K1j

d1 ∀ω, ∀j,

|λj(ω) − λk(ω)| ≥ K−1
1 |jd1 − kd1 | ∀ω, ∀k, j,

Lipλj ≤ K1 jdH ∀j,

where d1 > 1 and dH < d1 − 1;

2) d ≥ d1/2 and the function H(h; ω), h = (p, q, y), can be extended to a complex-analytic
in h ∈ Qc ⊂ Yc

d function such that

(1.5) |H|Qc,Ω + ‖∇yH‖Qc,Ω
d−dH

≤ 1.

Under the restrictions (1.4), (1.5) we study Hamiltonian system with the Hamiltonian Hε:

(1.6)





ṗ = −ε∇q H(h; ω),

q̇ = ω + ε∇p H(h; ω),

ẏ = J(A(ω)y + ε∇y H(h; ω)).

As above we abbreviate these equations as

(1.6′) ḣ = VHε
(h), h = (p, q, y).
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1.2 The result.

Let us fix any ρ < 1/3.

Theorem 1. Suppose the assumptions (1.4), (1.5) hold. Then there exist integer j1, M1,
depending on

(1.7) n, d1, dH , K0, K1, K2,

such that if

(1.8) |s · ω + ℓ1λ1(ω) + . . . + ℓj1λj1(ω)| ≥ K3 > 0

for all ω ∈ Ω, all integer n-vectors s and j1-vectors ℓ such that

|s| ≤ M1, 1 ≤ |ℓ1| + . . . + |ℓj1 | ≤ 2,

then the n-torus Tn
0 persists in (1.6) in the following sense:

For arbitrary γ > 0 and for sufficiently small ε < ε̄ = ε̄(γ) there exists a Borel subset Ωε ⊂ Ω
and analytic embeddings

Σω : Tn −→ Yd, ω ∈ Ωε,

with the following properties:

a) mes(Ω\Ωε) ≤ γ,

b) the torus Σω(Tn) is ερ-close to Tn
0 , is invariant for the flow of (1.6) and is filled with

quasiperiodic solutions of the form h0(t) = Σω(q + ω′t), where |ω′ − ω| < Cε1/3.

Amplification 1. The map Σ : Tn × Ωε −→ Yd, (q, ω) 7−→ Σω(q) is Lipschitz-close to the
map Σ0 : (q, ω) 7−→ (0, q, 0) ∈ Yd, i.e. distd(Σ

0, Σ) ≤ Cερ and Lip(Σ0 − Σ) ≤ Cερ. Besides,
the map ω 7−→ ω′ is Lipschitz and Lip(ω 7−→ ω′ − ω) ≤ Cε1/3.

Amplification 2. Statements of Theorem 1 and Amplification 2 remain true with ρ replaced
by one. Also |ω − ω′| + Lip(ω′ − ω) ≤ Cε.

Amplification 3. Assertions of the theorem and of all the amplifications remain true for
Hamiltonians Hε of the form

Hε = p · ω +
1

2
〈A(ω)y, y〉+ εH(h; ω, ε) + H3(h; ω, ε),

where A and H are as above and H3 is an analytic in h ∈ Qc function such that

|H3|Ω,Lip ≤ K1(|p|2 + |p| ‖y‖d + ‖y‖3
d), ‖∇yH3‖Ω,Lip

d−dH
≤ K1(|p| + ‖y‖2

d),

for anyh h in Qc.

The theorem and Amplification 1 are proven in the next Part 2. We skip the proofs of
Amplifications 2 and 3 since they are identical with the proofs given in [K] for the case dH ≤ 0.
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1.3 Linearized equations.

Let us consider the linearization of the equation (1.6′) about any solution h(t):
η̇ − VHε

(h(t))∗η = 0,

where
η(t) ∈ Th(t)Yd ≃ Zd = Rn

p × Rn
q × Yd.

We say that the linearized equation is well-posed if for each its solution η(t) we have:

(1.9) ‖η(t + τ)‖θ ≤ C1e
C2|τ |‖η(t)‖θ for any 0 ≤ θ ≤ d,

where the constants C1, C2 do not depend on η(·) (we remark that using usual variation of
constant one gets estimates similar to (1.9) for solutions of the equation with a non-zero right
hand side, bounded in Zθ).

We are concerned with linearizations of equation (1.6′) about solutions h0(t) constructed in
Theorem 1,

(1.10) η̇ = VHε
(h0(t))∗η.

Example 1. If dH ≤ 0 and h0(t) is bounded in Zd, then (1.10) is a bounded in Zθ, θ ≤ d,
perturbation of the linear problem which defines a group of linear isometries of Zθ. So (1.9)
clearly holds.

Example 2. Take for (1.6) the perturbed Korteweg–de Vries equation (1) (being written
in the coordinates as in (13) it has the form (1.6) with a (more general) perturbation as in
Amplification 3). The linearized equation takes the form

(1.11) v̇ = −vxxx + 12
∂

∂x
u0v + ε2 ∂

∂x
(f ′(u0)v).

Let u0 be any time-quasiperiodic solution of (1) in Hd
0 (S1), smooth in t. Then using the

equation we can express third space-derivatives of u0 via its first time-space derivatives. So
u0(t, ·) is bounded in Hd+2

0 (S1). Multiplying (1.11) by (−∆)dv(t, x) and integrating over S1

we get that
d

dt
‖v(t, ·)‖2

d ≤ C‖v(t, ·)‖2
d ,

which implies (1.9).

Example 3. For perturbed higher equations from the KdV hierarchy (e.g., for (18)) everything
is the same.

Theorem 2. Suppose that the assumptions of Theorem 1 hold and f(t) is a constructed in
Theorem 1 time-quasiperiodic solution of (1.6) such that the linearized equation (1.10) is well-
posed. Then each solution η(t) of (1.10) meets the estimate

‖η(t)‖d ≤ (C1 + C2t)‖η(0)‖d.

In particular, all Lyapunov exponents of h0(t) vanish.

Amplification 4. The theorem’s assertion remains true for more general perturbations as in
Amplification 3.

The theorem is proven in Chapter 5; for the situation described in the amplification the
proof remains the same.
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2. Proof of the theorem

2.1 Notations.

We use some additional notations. We introduce increasing sequence {ej}, where e0 = 0 and
for m ≥ 1 we set

em = (1−2 + . . . + m−2)/K∗, K∗ = 2(1−2 + m−2 + . . . )

(thus em < 1/2 for all m), and introduce two decreasing sequences {εm} and {δm}:

εm = ε(1+ρ)m

, δm = δ0 (1 − e(m)).

We denote Um = U(δm) and consider complex neighborhoods Om of the torus Tn
0 of the form

Om = O(ε2/3
m , C n) × Um × O(ε1/3

m , Y c
d ).

Besides we define the intermediate numbers δj
m = 6−j

6 δm + j
6 δm+1, 0 ≤ j ≤ 5, and the

intermediate domains

Oj
m = O((2−jεm)2/3, C n) × U(δj

m) × O((2−jεm),1/3 Y c
d ).

If ε̄ ≪ 1 (i.e., is sufficiently small) then

Om ⊃ O1
m ⊃ . . . ⊃ O5

m ⊃ Om+1 ⊃ . . . ⊃ Tn
0 .

By C, C1 etc. we denote different positive constants independent from ε and m; by C(m),
C1(m) etc. – different functions of m of the form C(m) = C1m

C2 ; by Ce(m), Ce
1(m) etc.

– functions of the form expC(m), exp C1(m). By C∗, C∗(m), Ce
∗(m) etc. we denote fixed

constants and functions.

Observe that for any Ce(m) and any σ < 0 the estimate Ce(m) < εσ
m holds for all m provided

that ε̄ ≪ 1. We profit from the assumption that ε < ε̄ with sufficiently small ε̄ > 0 and use
inequalities like

Ce(m)ερ
m < 1

without extra remark.

The theorem will be proven by the KAM-procedure. That is, for m = 0, 1, . . . we shall define
subsets Ωm ⊂ Ω, analytic functions Hm on the domains Om as above, such that H0 = Hε, and
a sequence of symplectic transformations

Sm : Om+1 ∩ Yd −→ Om ∩ Yd

such that S0 transforms the initial system VHε
= VH0

to VH1
, S1 transforms VH1

to VH2
etc.

We shall show that the system VHm
on Om ∩ Yd is integrable modulo a term O(ερ

m) — so the
transformation S0 ◦ . . . ◦ Sm−1 “almost integrates” the initial equations (1.6). Finally, we shall
see that the limiting transformation S0 ◦ S1 ◦ . . . is well-defined and integrates the equations.

We start with an inductive construction the transformation Sm and the Hamiltonian Hm+1,
given a hamiltonian Hm, and finish with investigating the limiting transformation S0 ◦S1 ◦ . . . .

12



2.2 The Hamilton Hm.

On domain Om we consider Hamiltonian Hm(h; ω), h = (p, q, y),

(2.1) Hm = H0m(p, y; ω) + εmHm(h; ω),

where

(2.2) H0m = p · Λm(ω) +
1

2
〈Am(q; ω)y, y〉,

and ω ∈ Ωm, Ωm is a Borel subset of Ω such that

(2.3) mes(Ω \Ωm) ≤ γe(m).

The map ω 7−→ Λm is Lipschitz and

(2.4) |Λm(ω) − ω|Ωm,Lip ≤ Cερe(m).

The operator Am is assumed to be diagonal in the basis ϕ±
j :

Amϕ±
j = (λ

(m)
j (ω) + β

(m)
j (q; ω)) ϕ±

j ,

where

(2.5) |λ(m)
j − λj |Ωm,Lip ≤ jdH Cερe(m)

and

(2.6)

∫
β

(m)
j dq = 0, |β(m)

j |Um,Ωm ≤ jdH Cερe(m).

In particular, by the Cauchy estimate |∇qβ
(m)
j |Um,Ωm ≤ jd2C(m)ερ and

(2.5′) ‖∇qAm‖U1
m,Ωm

d,d−d2
≤ C(m)ερ.

The functional Hm is analytic in Om and

(2.7) |Hm|Om,Ωm ≤ C∗(m) ≡ Km
4 ,

(2.8) ‖∇yHm‖Om,Ωm

dc
≤ ε−1/3

m C∗(m), dc := d − dH .

Clearly the initial Hamiltonian Hε has the form H0. (One should chose Λ0(ω) = ω, Am =
A, Ωm = Ω, etc.).

Hamiltonian equations with the Hamiltonian Hm have the form

(2.9) ṗ = −1

2
〈∇qAm(q; ω)y, y〉 − εm∇qHm,

13



(2.10) q̇ = Λm(ω) + εm∇pHm,

(2.11) ẏ = JAm(q; ω)y + εmJ∇yHm.

Our goal is to construct an analytic map Sm : Om+1 −→ Om which defines a symplec-
tic transformation Sm : Om+1 ∩ Yd −→ Om ∩ Yd and transforms the Hamiltonian Hm to
Hm+1 = Hm ◦ Sm which has the form (2.1) with m replaced by m + 1. The transformation
Sm is constructed in six steps which are essentially identical to the ones described in [K]. The
only difference comes during “averaging” when we extract from the perturbation and add to
the integrable part H0m the whole diagonal of Hess εmHm — not only its averaging in q.6 Be-
cause of this, the operators Am in (2.2) depend on q (their analogies in [K] are q-independent).
Accordingly, homological equations written in terms of these operators become more compli-
cated. Their resolution is based on a new theorem on first-order linear differential equations
with variable coefficients which we prove in Chapter 4.

2.3 Step 1. Splitting the perturbation.

We rewrite Hm as

(2.12) Hm = hq(q; ω) + p · h1p(q; ω) + 〈y, hy(q; ω)〉 + 〈hyy(q; ω)y, y〉+ H3m(h; ω),

where H3m = O(|p|2 + ‖y‖3
d + |p| ‖y‖d). Next we change Hm (and so hq) by an ω-dependent

constant to achieve

(2π)−n

∫
hqdq = 0.

We denote

(2.13) h0p = (2π)−n

∫
h1pdq, hp = h1p − h0p,

and

(2.14) Λm+1 = Λm + εmh0(ω).

Now we rewrite Hm as

Hm = H ′
0 m+1(p, y; ω) + εm(H2m + H3m) (h; ω),

where

H ′
0 m+1 = p · Λm+1 +

1

2
〈Amy, y〉

and the function H2m equals to

H2m = hq + p · hp + 〈y, hy〉 + 〈hyyy, y〉.

6We are forced to do so since if dH > 0 (and the perturbing vector field is unbounded), then to kill the
diagonal part of Hess εmHm the transformation Sm must be unbounded.
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Lemma 2.1. The terms of the decomposition (2.12) may be estimated as follows:

a)

|hq|Um,Ωm ≤ 2C∗(m),

|h1p|Um,Ωm ≤ 2C∗(m)ε−2/3
m ,

‖hy‖Um,Ωm

dc
≤ C∗(m)ε−1/3

m ,

‖hyy‖Um,Ωm

d,dc
≤ C∗(m)ε−2/3

m .

Besides, the operator hyy is symmetric in Y and is real for real q.

b) In the domain Om+1 ⊂ Om the term εmH3m is twice smaller than the admissible dis-
parity of the next step:

εm|H3m|Om+1,Ωm ≤ 1

2
C∗(m + 1)εm+1,

εm‖∇yH3m‖Om+1,Ωm

dc
≤ 1

2
C∗(m + 1)ε

2/3
m+1,

provided that ε̄ ≪ 1 and K4 in (2.7) is sufficiently large.

c) The functions H2m, H3m are analytic in h ∈ Om and are real for real arguments.

The proof is straightforward. See [K, p.59] or [K1].

2.4 Step 2. Formal construction of the transformation Sm and derivation the
homological equations.

We construct Sm as the time-one shift along trajectories of an auxiliary Hamiltonian vector
field

(2.15) q̇ = εm∇pF, ṗ = −εm∇qF, ẏ = εmJ∇yF,

where the function F has the same structure as H2m:

F = f q(q; ω) + p · fp(q; ω) + 〈y, fy(q; ω)〉 + 〈fyy(q; ω)y, y〉.

The flow {St} of equations (2.15) is formed by canonical transformations (with respect to
the symplectic structure ω2 defined in Chapter 1, see more in [K]) and we set

Sm := St|t=1.

Then formally

Hm(Sm(h; ω); ω) = Hm(h; ω) + εm{F,Hm} + O (ε2
m),

where {·, ·} is the Poisson bracket defined in (1.1) (see [K]). Taking into account assertion b) of
Lemma 2.1, we get that in Om+1

Hm ◦ Sm(h) = H ′
0 m+1 + εm(H2m + ∇pF · ∇qH

′
0 m+1 −∇qF · ∇pH

′
0 m+1+

+〈J∇yF,∇yH
′
0 m+1〉) + O (εm+1).
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We observe that

∇pH
′
0 m+1 = Λm+1, ∇qH

′
0 m+1 =

1

2
〈∇qAm y, y〉, ∇yH ′

0 m+1 = Am y

and abbreviate

Λm+1 = ω′, ω′ · ∇q =
∂

∂ω′
, Am = A.

Now we rewrite Hm ◦ Sm as

Hm ◦ Sm = H ′
0 m+1 + εm

[
1

2
〈(fp · ∇qA)y, y〉 − ∂f q/∂ω′ − p · ∂fp/∂ω′−

〈y, ∂fy/∂ω′〉 − 〈y, (∂fyy/∂ω′)y〉 + 〈Ay, Jfy〉+

+ 2〈Ay, Jfyyy〉 + hq + p · hp + 〈y, hy〉 + 〈y, hyyy〉
]

+ O (εm+1).(2.16)

(The term in the square brackets equals H2m + {F, H0m+1}).
We wish to find F in such a way that the contents of the square brackets in the r.h.s. of

(2.16) vanish up to an admissible disparity we define below. For this end f q, fp, fy and fyy

should satisfy the homological equations:

(2.17) ∂fq/∂ω′ = hq(q; ω), ∂fp/∂ω′ = hp(q; ω),

(2.18) ∂fy/∂ω′ − AJfy = hy,

∂fyy/∂ω′ + fyyJA − AJfyy = hyy +
1

2
fp · ∇qA =: h1yy

(the disparity is introduced later). We define the functions bj,

(2.19) bj(q; ω) =
1

2
〈h1yyϕ+

j , ϕ+
j 〉 +

1

2
, 〈h1yyϕ−

j , ϕ−
j 〉

and the operators B and h0yy, where

B(q; ω) = diag {b1, b1, b2, b2 . . .}
(i.e., Bϕ±

j = bjϕ
±
j ), and

h0yy(q; ω) = h1yy − B.

Both operators h0yy and h1yy depend on the solution fp of the second equation in (2.17). Using
the estimate for fp we get below in Lemma 2.2 jointly with (2.5′) and Lemma 2.1, we find that

‖h1yy‖U1
m,Ωm\Ω1

d,dc
≤ C(m)ε−2/3

m .

Hence,

|bj |U
1
m,Ωm\Ω1 ≤ jd2c(m)ε−2/3

m ∀j,

and the operator h0yy meets similar estimate:

‖h0yy‖U1
m,Ωm\Ω1

d,dc
≤ C′(m)ε−2/3

m .

We observe that JA = AJ and rewrite the last equation with h1yy replaced by h0yy (i.e.,
introducing a disparity) as

(2.20) ∂fyy/∂ω′ + [fyy, JA] = h0yy.

If fq, . . . , fyy solve the equations (2.17) – (2.20) then the contents of the square brackets in
(2.16) equals 〈By, y〉 and

(2.21) {F, H ′
0m+1} = −H2m + 〈By, y〉.
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2.5 Step 3. Solving the homological equations.

The following lemma which deals with equations (2.17) is classical for the KAM-theory (see
e.g. [K, pp. 67–68]):

Lemma 2.2. Define Ω1 as

Ω1 = {ω ∈ Ωm | |ω′ · s| ≤ C−1(m + 1)−2|s|−n for some s ∈ Zn\{0}}.

Then mesΩ1 ≤ γ(m + 1)−2/3K∗ if C is chosen sufficiently large and for ω ∈ Ω̃ = Ωm\Ω1

equations (2.17), (2.18) have analytic solutions real for real arguments and such that

|fq|U1
m,eΩ ≤ C(m), |fp|U1

m,eΩ ≤ ε−2/3
m C(m).

Equations (2.18), (2.20) are more complicated than (2.17). We start with the most difficult
equation (2.20).

The numbers λ
(m+1)
j (ω) were defined for j ∈ N . Now we define them for all j ∈ Z\{0} by

setting

λ
(m+1)
−j (ω) = −λ

(m+1)
j (ω) ∀j ∈ N .

Lemma 2.3. There exists a Borel subset Ω2 ⊂ Ωm such that

mesΩ2 ≤ γ(m + 1)−2/(3K∗)

and

|ω′ · s + λ
(m+1)
j − λ

(m+1)
k

∣∣∣∣ ≥
|jd1 − kd1 |

C∗∗(m) 〈s〉c1

for all ω ∈ Ω̃ \Ω2, all j, k ∈ Z\{0} and all s ∈ Zn, with some C∗∗(m) and c1. Here for j ∈ Z
we write jd1 = sgn j |j|d1 .

The proof follows [K] and is given in Chapter 3 below.

For j ∈ N we set

wj = (ϕ+
j + iϕ−

j )/
√

2, w−j = (ϕ+
j − iϕ−

j )/
√

2.

The vectors

(2.22) {|j|−swj | j ∈ Z\{0}}
form a Hilbert basis of Y c

s . The operator JA is diagonal in this basis:

JA(q; ω)wj = i λ1
j (q; ω)wj,

where λ1
−j = −λ1

j and for j ∈ N
λ1

j (q; ω) = λ
(m+1)
j (ω) + β

(m+1)
j (q; ω).
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Let us denote by {fkj(q; ω)} and {hkj(q; ω)} the matrix elements of the operators fyy and
h0yy with respect to the complex basis {wj}. Then the equation (2.20) can be rewritten as

(2.23)
∂

∂ω′
fkj(q; ω) + (λ1

j − λ1
k) (q; ω) fkj = hkj(q; ω).

Due to the definition of the operator h0yy its diagonal part vanishes:

hkk(q; ω) ≡ 0 ∀k.

Besides if we supply the spaces Y c
d , Y c

dc
with the Hilbert bases as in (2.22), then the matrix of

the operator h0yy : Y c
d → Y c

dc
will be {|k|dchkj |j|−d}. In particular, since ‖h0yy‖U1

m,Ωm\Ω1

d,dc
≤

C(m)ε
−2/3
m , then

|hkj |U
1
m ≤ C(m) ε−2/3

m |j|d|k|−dc .

Observe that

λ1
j − λ1

k = (λ
(m+1)
j − λ

(m+1)
k ) (ω) + (β

(m+1)
j − β

(m+1)
k ) (q; ω)

is the sum of a constant which is ≥ max(|j|, |k|)d1−1/ C (due to (1.4)) and a q-dependent
function of order

ε max(|j|, |k|)dH .

Since dH can be positive, then (2.23) is a perturbation of a constant-coefficient equation by a
variable-coefficient term which can be arbitrary large. Still since d2 < d1 − 1, then the “very
large” constant-coefficient part of (2.23) suppresses the “large” variable coefficient one: We
show in Chapter 4 that for ω from Ωm \ (Ω1 ∪ Ω2) the equation (2.23) has a unique analytic
solution fkj and

|fkj |U
2
m ≤ Ce(m) |hkj |U

1
m/ |jd1 − kd1 |,

where for j ∈ Z we set jd1 = sgn j |y|d1 .

The operator fyy : Yd −→ Yd has the matrix F = {Fkj} = {|k|dfkj |j|−d} (both the spaces
are provided with Hilbert bases (2.22)). So for each q ∈ U2

m

|Fkj(q)| ≤ C2(m)ε−2/3
m |k|dH / |jd1 − kd1 |.

Since Fkk ≡ 0 and d1 > dH + 1, then

∑

k

|Fkj| ≤ ε−2/3
m Ce

1(m)




−1∫

−∞

+

j∫

1

+

∞∫

j+1


 |x|dH dx

|jd1 − xd1 | ≤

≤ ε−2/3
m Ce

2(m) |j|dH+1−d1 log |j| ≤ Ce(m) ε−2/3
m .

Similar estimate holds for ℓ1-norms of rows of the matrix F . Therefore the norm of the
operator fyy(q) : Yd −→ Yd with q in U2

m is bounded by Ce(m)ε
−2/3
m . (For this classical result

see [HLP, Chap. 8]). The same estimate holds for the norm of the operator fyy : Ydc
−→ Ydc

.
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So the norm of fyy(q), q ∈ U2
m is estimated. To estimate the Lipschitz constant, we consider

an increment fyy
∆ of the operator fyy, fyy

∆ = fyy(q; ω1)− fyy(q; ω2). For this operator we have
the equation

∂fyy
∆ / ∂ω′ + [fyy

∆ , JA] = h0yy
∆ −∇qf

yy(q; ω2) · (ω1 − ω2) − [f(q; ω2), JA∆] =: Hyy
∆ ,

where h0yy
∆ and A∆ stand for increments of h0yy and A. We immediately see that for q ∈ U3

m

‖Hyy
∆ (q; ω)‖d,dc

≤ Ce
1(m)ε−2/3

m |ω1 − ω2|.

So the given above arguments estimate Lipschitz constant in ω for fyy when q ∈ U4
m. We can

use intermediate domains like U
3/2
m to get the same estimate for q in U2

m:

Lemma 2.4. If ω ∈ Ω̃ = Ωm \ (Ω1 ∪ Ω2), then equation (2.20) has an analytic solution fyy

which is a symmetric in Y c operator, real for real q and such that

(2.24) ‖fyy‖U2
m,eΩ

d,d ≤ Ce(m) ε−2/3
m .

Quite similar (but simpler) arguments show solvability of equation (2.18):

Lemma 2.5. There exists a Borel subset Ω3 ⊂ Ωm, mesΩ3 ≤ γ(m+1)−2/3K∗, such that for
ω ∈ Ωm \ (Ω1 ∪ Ω3), the equation (2.18) has an analytic solution fy(q; ω), real for real q, and
such that

‖fy‖U2
m,Ωm\(Ω1∪Ω3)

d ≤ Ce(m) ε−2/3
m .

Now we define the set Ωm+1 as

(2.25) Ωm+1 = Ωm \ (Ω1 ∪ Ω2 ∪ Ω3).

Due to the estimates for measures of the sets Ω1, Ω2 and Ω3 we got in Lemmas 2.2, 2.3 and
2.6,

mes (Ω\Ωm+1) ≤ mes (Ω\Ωm) + γ(m + 1)−2/K∗ ≤ γ e(m + 1).

So Ωm+1 meets estimate (2.3) with m replaced by m + 1.

2.6 Step 4. Study of the transformation Sm.

We recall that Sm = St|t=1, where {St} is the flow of the system (2.15) which we now write
as ḣ = εmVF (h), h = h(t) = (q, p, y)(t),

where VF (h) = (−∇qF, ∇pF, J∇yF ).

Lemma 2.6. If ε̄ ≪ 1, then for ω in Ωm+1 the map Sm is analytic and sends O3
m to O2

m in
such a way that for h ∈ O3

m and for −d ≤ θ ≤ d we have

(2.26) ‖Sm − h‖Om,Ωm+1

d ≤ ερ
m,

(2.27) ‖Sm∗(h) − id‖θ,θ ≤ ερ
m
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where Sm∗ : Zc
θ = C n × C n × Y c

θ −→ Zc
θ .

Proof: The estimates of Lemmas 2.2, 2.4, 2.5 and the Cauchy estimate show that for h in
O3

m components of the vector field εmVF meet the estimates

|εm∇pF | ≤ Ce(m)ε1/3
m , |εm∇qF | ≤ Ce(m)εm, ‖εm∇yF‖d ≤ Ce(m)ε2/3

m ,

so Sm sends O3
m to O2

m and satisfies (2.26).

To prove (2.27), we denote η(t) = St(h)∗η. Then η(t) is the solution of the Cauchy problem

η̇(t) = εm VF (h(t))∗η(t), η(0) = η,

and

η(t) = η + εm

t∫

0

VF (h(τ))∗η(τ)dτ.

Since the map fyy is symmetric in Y , then by the interpolation theorem (see [RS] and Appen-
dix A in [K]) the estimate (2.24) holds for all |θ| ≤ d. Hence,

‖η(t) − η‖θ ≤ t Ce(m)ε1/3
m ‖η‖θ

and (2.27) follows. �
2.7 Step 5. The transformed Hamiltonian.

Now we study the transformed Hamiltonian Hm ◦ Sm. Since the functional Hm is smooth
on the space Yd and the flow-maps St are C1-smooth in t, then

d

dt
H ′

0 m+1 ◦ St = εm {F, H ′
0 m+1} ◦ St = −εm(H2m − 〈By, y〉) ◦ St,

where the second equality follows from (2.21). The first equality is well known for finite-
dimensional Hamiltonian systems; for its infinite-dimensional version we use see [K, Part 1].
Now we can calculate the second derivative:

d2

dt2
H ′

0 m+1 ◦ St = −ε2
m {F, H2m − 〈By, y〉} ◦ St.

Thus,

H ′
0,m+1 ◦ Sm = H ′

0 m+1 ◦ St|t=1 =

= H ′
0 m+1 +

d

dt
H ′

0 m+1|t=0 +

1∫

0

(1 − t)
d2

dt2
H ′

0 m+1 ◦ Stdt =

= H ′
0 m+1 + εm〈By, y〉 − εmH2m − ε2

m

1∫

0

(1 − t) {F, H2m − 〈By, y〉} ◦ Stdt.
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Similar

εm(H2m + H3m) ◦ Sm = εm(H2m + H3m) + ε2
m

1∫

0

{F, H2m + H3m} ◦ Stdt.

Therefore, the transformed Hamiltonian can be written as

(2.28)

Hm ◦ Sm = H0 m+1 + εmH3m+

+ ε2
m

1∫

0

(t − 1){F, H2m − 〈By, y〉} ◦ Stdt + ε2
m

1∫

0

{F, H2m + H3m} ◦ Stdt,

where
H0 m+1 = H ′

0 m+1 + 〈By, y〉
has the form (2.2) with m := m + 1 and with

Am+1 = Am + 2εmB.

Since diagonal elements bj(q; ω) of the operator B are bounded by jd2C(m)ε
−2/3
m as well

their Lipschitz constants in ω, then diagonal elements λ
(m+1)
j + β

(m+1)
j of the operator Am+1

satisfy the a priori estimates (2.5), (2.6) with m replaced by m + 1.
For j = 1, 2, 3, 4 we denote by ∆jH the j-th term in the r.h.s. of (2.28). To prove that the

Hamiltonian Hm+1 := Hm ◦ Sm has the form (2.1) we should check that

(2.29) ∆2H + ∆3H + ∆4H = εm+1Hm+1,

where Hm+1 is a function satisfying estimates (2.7), (2.8) in the domain Om+1.

The term ∆2H is twice smaller than the r.h.s. of (2.29) by Lemma 2.1. The estimates for
∆3H, ∆4H follow from the following statement:

Lemma 2.7. If H is a functional such that

(2.30) |H|O1
m,Ωm+1 ≤ Ce(m) ε2

m, ‖∇y H‖O1
m,Ωm+1

dc
≤ Ce(m) ε5/3

m ,

then for 0 ≤ t ≤ 1

(2.31) |{F, H} ◦ St|O5
m,Ωm+1 ≤ Ce

1(m) ε4/3
m , ‖∇y({F, H} ◦ St)‖O5

m,Ωm+1

dc
≤ Ce

1(m) εm.

The lemma is proven in [K, pp. 81–82]. Here we just remark that the first estimate in (2.31)
is essentially obvious since {F, H} = −∇qF ·∇pH +∇pF ·∇qH +〈J∇yF,∇yH〉, since estimates
for ∇H = (∇pH,∇qH,∇yH) follow from (2.30) (and the Cauchy estimate) and estimates for
∇F result from estimates for its components obtained in Lemmas 2.2, 2.4, 2.5. By the first
estimate and the Cauchy one, we get the second estimate with the dc-norm replaced by the
(−d)-norm. So to prove the second estimate we just have to control smoothness of the gradient.
See in [K] how to do it.

Due to the lemma for h in Om+1 we have |∆3H + ∆4H| ≤ 2C2
1 (m) ε

4/3
m ≤ εm+1 if ε̄ ≪ 1,

and similar with gradients of the functionals.

Therefore Hm+1 := Hm ◦ Sm also has the form (2.1).
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2.8 Step 6. Transition to limit.

Here we show that the set
(S0 ◦ S1 ◦ . . . ) (Tn

0 ) ⊂ Yd

is a smooth torus, invariant for the equations (1.6).

Let us denote Ωε = ∩Ωm. Then Ωε is a Borel subset of Ω and by (2.3)

mes(Ω\Ωε) ≤ γ/2.

For ω ∈ Ωε and 0 ≤ r ≤ N we denote by Σr
N the map

Σr
N (· ; ω) : Sr ◦ . . . ◦ SN−1 : ON × ΩN −→ Or

(as usual, Σr
r is the projection to Or). We claim that for all r, m ≥ 0

(2.32) ‖Σr
r+m − ΠY‖Or+m,Ωε

d ≤ 3 ερ
r ,

where ΠY(h; ω) = h. Indeed, let us denote the l.h.s. in (2.32) by Dr
r+m. We rewrite the identity

Σr
r+m(h; ω) = Sr(Σ

r+1
r+m(h; ω); ω) in the form

Σr
r+m − ΠY = (Sr − ΠY) ◦ (Σr+1

r+m × ΠΩ) + (Σr+1
r+m − ΠY),

where ΠΩ(h, ω) = ω. By Lemma 2.6 we get

Dr
r+m ≤ ερ

r

(
Dr+1

r+m + 2
)

+ Dr+1
r+m.

As Dr+m
r+m = 0, then (2.32) follows by induction.

Observe that because estimate (2.27), for finite r ≤ N and any h ∈ ON the tangent map
Σr

N (h)∗ is close to the identity:

(2.33) ‖Σr
N(h)∗ − id‖θ,θ ≤ 2 ερ

r .

Let us denote by O the set

O = {0} × U(δ/2) × {0} ⊂ Yc
d.

This set is a complex neighborhood of the torus Tn
0 = {0}×Tn ×{0} in {0}×(C n/2πZn)×{0},

which is contained in each Om since δm > δ/2.

As a consequence of (2.32) we get that for each m ≥ 0 and each ω ∈ Ωε the maps Σm
m+N

restricted to O converge to an analytic map

Σm
∞(· ; ω) : O −→ Om ⊂ Yc

d

and Σm
p ◦ Σp

∞ = Σm
∞ for all p ≤ m. Because (2.32), (2.33) we have the estimates:

(2.34) ‖Σr
∞ − ΠY‖O,Ωε

d ≤ 3 ερ
r ∀r,

(2.35) ‖Σr
∞(h)∗ − id‖θ,θ ≤ 2 ερ

r ∀r, ∀θ ∈ [−d, d].
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Due to the recurrent formula (2.14) for the vectors Λm and an estimate of Lemma 2.1, the
maps Λm converge to a Lipschitz map Λ∞ such that

Λ∞ : Ωε −→ Rn , |Λ∞ − ω|Ωε,Lip ≤ C ε1/3,

and

(2.36) |Λ∞ − Λm| ≤ ερ
m.

Now we consider a curve h∞(t) = (0, q0 + tΛ∞, 0) ⊂ Tn
0

and the curves hm(t) = Σm
∞h∞(t) ⊂ Om. We wish to show that h0(t) is a (strong) solution of

the equation (1.6). To do so, we use (2.34) (2.36) and the Cauchy inequality to get that

(2.37) ḣm = (0, Λm(ω), 0) + O (ερ
m).

Using again the estimate (2.34) and the form of equations (2.9)–(2.11), which we abbreviate as

(2.38) ḣ = VHm
(h), h ∈ Om,

we see that

(2.39) ‖VHm
(hm(t)) − (0, Λm, 0)‖d−d1

= O(ερ
m).

Since Σ0
mhm(t) = h0(t) and Σ0

m ∗ḣm = ḣ0 , Σ0
m ∗VHm

(hm) = VH0
(h0), then (2.37), (2.39)

and (2.33) jointly imply thatḣ0 − VH0
h0 = O (ερ

m) in Rn × Rn × Yd−d1
.

Since m is arbitrary, we get that the l.h.s. is zero and h0(t) is a solution of the system (1.6)
(which coincides with (2.9)–(2.11) when m = 0).

Now assertions of Theorem 1 and Amplification 1 follow if we choose Σω(q) = Σ∞(q, 0, 0; ω)
and ω′ = Λ∞(ω).

3. Proof of Lemma 2.3 (estimation of the small divisors)

We denote Λjk(ω) = λ
(m+1)
j (ω) − λ

(m+1)
k (ω) and rewrite the assertion of the lemma as

(3.1) |ω′ · s + Λjk(ω)| ≥ κ :=
|jd1 − kd1 |

C∗∗(m)〈s〉c1

for all ω in Ω̃\Ω2 and all j, k ∈ Z\{0}. Here the constants C∗∗, c1 and the Borel subset Ω2 such
that mesΩ2 ≤ γ(m + 1)−2/(3K∗) have to be found.

If |s| ≤ M1 and j ≤ j1 then (2.4), (2.5) and the assumption (1.8) of Theorem 1 jointly imply
(3.1), so henceforth we may suppose that

(3.2) |s| ≥ M1 or j ≥ j1,
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where M1 and j1 depending on the numbers listed in (1.7) will be choosen later.

Let us denote for a moment D(j, k, s) = ω′ · s + Λjk(s). Then

D(j, k, s) = D(−k,−j, s) = −D(−j,−k,−s)

and we may also suppose that

(3.3) j > 0, j ≥ |k|, j 6= k

(for j = k the estimate (3.1) is trivial).

Observe that

(3.4) |Λjk| ≥ C−1
0 |jd1 − kd1 |

and

(3.5) |jd1 − kd1 | ≥ C−1
1 jd1−1.

Indeed, for large j the estimate (3.4) follows from (1.4) and (2.5), for j small it results from
the assumption (1.8) with s = 0 (j1 should be sufficiently large).

By (3.4) the estimate (3.1) holds trivially if j ≥ j1 and |s| ≤ C−1 | jd1 − kd1 |, where C is
choosen accordingly. So we can suppose below that

(3.6) |s| ≥ C−1 | jd1 − kd1 |.

In particular, s 6= 0.

Let us denote by L the set of all triples (k, j, s) as in (3.2), (3.3), (3.6). For (k, j, s) ∈ L we
define

Ω(k, j, s) ⊂ Ω̃

as the set of all ω ∈ Ω̃ violating (3.1) for the choosen triple (k, j, s). Let us take for Ω2 the
union

Ω2 =
⋃

{Ω(k, j, s) | (k, j, s) ∈ L}.

Clearly, (3.1) holds for ω outside Ω2. So it remains to estimate the measure of Ω2. Here the
key is the following result:

Lemma 3.1. For each triple (k, j, s) ∈ L we have

mesΩ(k, j, s) ≤ Cκ,

provided that j1, M1 are sufficiently large.

Proof: Let us consider the map

Ω̃ ∋ ω 7−→ ω′ = Λm+1(ω) ∈ Rn+1 .

This map is Lipschitz-close the identity, so it is a Lipschitz homeomorphism which changes the
diameters of sets and their Lebesgue measure no more than twice (see [K, Appendix C]). So to
estimate mesΩ(k, j, s) is equivalent to estimate the measure of the set Ω′,

Ω′ = Λm+1(Ω(k, j, s)).
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To make this estimate we express λk, λj , Λkj as function of ω′ and write Ω′ as

Ω′ = {ω′ ∈ Λm+1(Ω̃)
∣∣ |ω′ · s − Λkj | ≤ κ}.

Since |ω′| ≤ C for each ω′, then by the Fubini theorem to estimate mesΩ′ it is sufficient to
estimate the one-dimensional measure of the intersection of Ω′ with every line in Rn parallel to
some fixed direction. In particular, parallel to S = s/|s|. Take any η ∈ Rn . The intersection of
Ω′ with the line Lη = {η + tS | t ∈ R} is given by t from the set

(3.7) {t
∣∣ |Γ(t)| ≤ κ},

where

Γ(t) := (ω′ · s + Λkj(ω
′))

∣∣
ω′=η+tS

.

Observe that (∂/∂t)ω′ · s = |s|, where ω′ = η + tS. So if we denote LipΛkj = Lip(ω′ 7−→ Λjk),
then for t1 > t2 we have

Γ(t1) − Γ(t2) ≥ |s|(t1 − t2) − (t1 − t2)LipΛkj ≥ (t1 − t2) (|s| − C jdH ) ≥
≥ C−1(t1 − t2) (jd1 − kd1 − c1 jdH ) ≥ C−1

2 (t1 − t2) (jd1−1 − C3 jdH )

(we use (3.5) and (3.6)). So if j ≥ j1 and j1 is sufficiently large, then

Γ(t1) − Γ(t2) ≥ t1 − t2.

If j1 < j1, then by (3.2) |s| ≥ M1 and again

Γ(t1) − Γ(t2) ≥ (t1 − t2) (M1 − CjdH

1 ) ≥ t1 − t2

if we choose M1 ≥ CjdH

1 + 1.

Thus, the measure of the set (3.6) is less than 2κ and the assertion of the lemma follows. �
Now an estimate for the measure of Ω2 is straightforward:

mesΩ2 ≤
∑

L

mesΩ(k, j, s) ≤ C2

C∗∗(m)

∑

s

〈s〉−c1

∑

j,k
(j,k,s)∈L

(jd1 − kd1).

By (3.5), j ≤ C|s|d0 where d0 = 1/(d1 − 1). So the inner sum in the r.h.s. may be estimated as
follows: ∑

j,k
(j,k,s)∈L

(jd1 − kd1) ≤ C
∑

j,k
(j,k,s)∈L

|s| ≤ C1〈s〉2d0+1.

Therefore, mes Ω2 ≤ γ(m + 1)−2/(3K∗) if c1 > 2 d0 + n + 1 and C∗∗(m) is sufficiently large.

Lemma 2.3 is proven.
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4. small-denominator equations with large variable coefficients

The crux of our resolution the homological equations (2.18), (2.20) in Chapter 2.5 was
reduction the equations to infinite systems of non-coupled differential equations on the torusTn with large variable coefficients. (Equation (2.23) in Chapter 2). Each equation can be
written as

(4.1) −i
∂x

∂ω
+ Ex + Bh(q)x = b(q), q ∈ Tn ,

where the function h has zero mean value and is of order one, B could be large, but is much
smaller than the constant E:

E ≥ C and Eθ ≥ C1B with some 0 < θ < 1.

The frequency vector ω is Diophantine (since, in Chapter 2.5, ω is outside the set Ω1 as in
Lemma 2.2 and ω in equation (4.1) is the ω′ from Chapter 2.5),

(4.2) |ω · s| ≥ C−1(m + 1)−2|s|−n ∀s ∈ Zn\0

and is incommensurable with E (since in Chapter 2.5 ω is outside the set Ω2 as in Lemma 2.3),

(4.3) |ω · s + E| ≥ E

C(m)〈s〉c1
∀s ∈ Zn.

The functions h, b are analytic:

|h|Um , |b|U1
m ≤ 1.

We should prove that equation (4.1) has a unique analytic solution x(q) and

(4.4) |x|U2
m ≤ Ce(m)/E.

4.1 Uniqueness of the solution.

Since the frequency ω is Diophantine and h is analytic and has zero mean value, then we
can find analytic H(q) such that

∂H/∂ω = h, |H|U1
m ≤ C(m)

(see Appendix). If we substitute in (4.1) x = e−iBHy, then for y(q) we get the equation

−i
∂y

∂ω
+ Ey = eiBHb =: p(q).

If ps, s ∈ Zn, are Fourier coefficients of p(q), then Fourier coefficients of the solution y(q)
are

ys =
ps

s · ω + E

and by (4.3)
|ys| ≤ C(m) E−1〈s〉c1 |ps|.
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Therefore
analytic solution x(q) of (4.1) is unique

and
|ys| ≤ C(m) E−1〈s〉c1 e−δ1

m|s| eBC(m)

since |p| ≤ exp(BC(m)) in U1
m. So for the solution x we have the trivial estimate

|x|U2
m ≤ eBC(m)/E,

which implies (4.4) if B ≤ C1(m).

So from now on we can suppose that

(4.5) E ≥ C∗(m),

where E-independent C∗(m) will be choosen later.
To prove estimate (4.4) under the assumption (4.5) we shall approximate the diophantine

vector ω by vectors ω̃ = ω̃ℓ with rationally dependent coefficients, which are C/ℓ-close to ω
(ℓ=2,3, . . . ). We shall find integral representation for an approximate solution of equation
(4.1) with ω replaces by ω̃ and prove that the approximate solution satisfies (4.4). Next we
send ℓ to infinity to get estimate (4.4) for the exact solution of (4.1).

4.2 Approximations for the frequency vector.

For an integer ℓ ≥ 2 we consider the vector ℓω ∈ Rn and define Nℓ ∈ Zn as the closest to ℓω
element of Zn. Then

(4.6) |ω − ℓ−1Nℓ| ≤
√

n

2ℓ
=: ρ.

Lemma 4.1. There exists real r, satisfying |r−1| < 1/ℓ, such that ℓE /∈ rZ and for the vector
ω̃, defined as

ω̃ = ω̃ℓ,r := r
Nℓ

ℓ
,

and for all s ∈ Zn one has

(4.7) |s · ω̃ + E| ≥ E

〈s〉c2C2(m)
, c2 = c1 + n + 1,

with some ℓ, ω-independent C2(m).

Proof: By (4.3), (4.6),

|ω̃ · s + E| ≥ E〈s〉−c1/C(m) − C |s|ρ ≥ 1

2
E 〈s〉−c1/C(m)

if ρ ≤ E 〈s〉−c1−1/C1(m) or equivalently, if

|s| ≤
(

E ℓ

C′(m)

) 1
c1+1

=: N0.
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So below we should consider only |s| > N0.

Take any s0 ∈ Zn which violates (4.7) for some choice of r ∈ ∆ := [1 − ℓ−1, 1 + ℓ−1]. Then
|s0 · ω̃| ≥ E/2 and therefore the set

As0
=

{
r ∈ ∆

∣∣ |s0 · ω̃ℓ,r + E| ≤ E

〈s〉c2C2(m)

}

is a segment of the length ≤ 4〈s〉−c2/C2(m). So

mes
⋃

|s|≥N0

As ≤ C

C2(m)
N−c2+n

0 =
C

C2(m)

C′(m)

E ℓ
,

which is less than ℓ−1 if C2(m) is choosen sufficiently large.

Therefore, there exists a point r0 ∈ ∆ which lies outside all the sets As, |s| ≥ N0. The
corresponding vector ω̃ = ω̃ℓ,r0

meets all the estimates (4.7). We can choose r to be non equal
to the numbers ℓE/j, j = ±1,±2, . . . and the lemma is proven. �

We denote ℓ̃ = ℓ/r. Then ω̃ = Nℓ/ℓ̃. We also note that, by (4.6), |ω − ω̃| ≤ C/ℓ. Therefore

(4.8) |s · ω̃| ≥ (2C(m) |s|n)−1 if 0 < |s| ≤ Cℓ1/(n+1) =: L

Denote by hs Fourier coefficients of h(q) (recall that h0 = 0) and define the resonant and
the regular parts of h as

hres(q) =
∑

s
s·eω=0

hs ei s·q, hreg(q) =
∑

s
s·eω 6=0

hs ei s·q.

So h = hres + hreg.

Lemma 4.2. The functions hres, hreg are analytic in U1
m and

|hres|U1
m ≤ C(m) ℓ−

1
n+1 , |hreg|U1

m ≤ C(m).

Proof: The estimate for hreg is obvious (see the Appendix). In order to estimate hres we
observe that if s · ω̃ = 0, then by (4.8) |s| ≥ L and for q in U1

m we have

|hres| ≤
∑

|s|≥L

e−|s|m−2 ≤ C(m)L−1

(see the Appendix). Thus, also the estimate for hres is proven. �
Lemma 4.3. There exists an analytic in U1

m function H̃ such that ∂H̃/∂ω̃ = hreg and

|H̃|U1
m ≤ C(m).

Proof: Let us define H̃ as Fourier series with the coefficients H̃s, where

H̃s =

{
0, s · ω̃ = 0

hs/ s · ω̃ otherwise.

Then, by (4.8), for q in U1
m we have

|H̃(q)| ≤ 2
∑

|s|≤L

|s|nC(m) e−|s|m−2

+ 2ℓ
∑

|s|>L

e−|s|m−2

since |s · ω̃| ≥ 1/ℓ̃ ≥ 1/(2ℓ) if s · ω̃ 6= 0. Now the assertion follows. For: the estimate for the
first sum by some C1(m) is obvious and the estimate for the second one follows from (A4) with
k = n + 1 (see the Appendix). �
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4.3 Approximating equations.

Let us approximate (4.1) by the equation where ω is replaced by ω̃ℓ and h(q) – by its regular
part hreg:

(4.9) −i
∂x

∂ω̃
+ Ex + Bhregx = b(q).

The substitution x = e−iB eHy with H̃ as as in Lemma 4.3 reduces (4.9) to

(4.10) −i
∂y

∂ω̃
+ Ey = eiB eHb =: β(q).

There exists an integral representation for the solution y of (4.10). To get the formula we
consider the equation

(4.11) −iµ
∂z

∂t
+ Ez = f(t), t ∈ S1 = R/2πZ.

If E /∈ µZ, then the unique reriodic solution of (4.11) can be written as

z(t) =
KE/µ

µ

2π∫

0

e−i(E/µ)τ f(t − τ) dτ,

where Kr = i
1−e−i2π r . Indeed, for f = eikt we have z = eikt/(E + kµ), which is a periodic

solution of (4.11). Arbitrary periodic f can be decomposed to Fourier series and the assertion
follows.

Next, we take any R ∈ Tn and consider the solenoid through R,

(4.12) t 7−→ R + t ℓ̃ ω̃ ∈ Tn = Rn/2πZn.

Since ℓ̃ ω̃ = Nℓ is an integer vector, then the solenoid is a 2π-periodic loop in Tn . On the other
hand, since for a function on Tn and for its restriction to the solenoid one has ∂/∂t = ℓ̃ ∂/∂ω̃.
Then equation (4.10) restricted to the loop (4.12) takes the form (4.11) with

µ = ℓ̃−1, f(t) = β(R + ℓ̃ω̃t).

The assumption E /∈ µZ is sutisfied since ℓE /∈ rZ by Lemma 4.1. Therefore

y(R) = KEℓ̃ ℓ̃

2π∫

0

e−iEℓ̃τβ(R − ℓ̃ω̃τ) dτ.

Finally, we denote ν = ω̃/|ω̃|2, z = ℓ̃τ (so Eℓ̃τ = Eν · ω̃z) and obtain the integral represen-
tation for (the unique) solution x of (4.9):

(4.13) x(q) = KEℓ̃

2πℓ̃∫

0

e−iE(ν·Q+(B/E) ( eH(q)− eH(q−Q)) b(q − Q)
∣∣
Q=eωz

dz

– now we treat Q as a point in Rn and H, b as analytic 2π-periodic functions.

So we have represented x(q) as a rapidly oscillating integral Fourier with a complex (for
complex q) phase function.
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4.4 Study of the oscillating integral (4.13).

We denote γ = B/E, S(q, Q) = H̃(q) − H̃(q − Q) and observe that

i) γ ≤ CEθ−1 ≤ C∗(m)θ−1 (θ < 1)
(see (4.5));

ii) S(q, 0) ≡ 0;

iii) for q in U2
m the function S is analytic in Q and

|∇QS(q, ·)|U(m−2/C) + |S(q, ·)|U(m−2/C) ≤ C(m)

(by Lemma 4.3 and the Cauchy estimate).

Let us consider the substitution

Q = R + f(R)ω̃ ≡ Φ(R),

where R ∈ Tn and f is a complex function. Then

ν · Q + γS(q, Q)
∣∣
Q=Φ(R)

= ν · R + f(R) + γS(q, R + f(R)ω̃).

Consider the equation for f(R):

f(R) + γS(q, R + f(R)ω̃) = 0.

If C∗(m) in (4.5) is sufficiently large, then by i), iii) and the implicit function theorem the
equation has the only solution f(R) = f(q, R) which is complex-analytic in R ∈ U(m−2/C)
and satisfies the estimate

|f |U(m−2/C) ≤ 1/C∗∗(m),

where C∗∗ goes to infinity with C∗. Besides due to ii) f(0, q) ≡ 0.

Now we treat (4.13) as an integral of a holomorphic function along the segment ∆ = ω̃[0, 2πℓ̃]
in the complex plane C 1 = C ω̃ , namely

x(q) = KEℓ̃

∫

∆

e−iE(bω·R+γS(q,R)) b(q − R)dR/|ω̃|.

In this integral we can replace the contour ∆ = {R} by Φ(∆) = {Q} ⊂ C 1 since both the
contours lie in the domain of analiticity and their ends conside. As f(R) + γS(q, Φ(R)) = 0,
then

(4.14)

x(q) = KEℓ̃

∫

Φ(∆)

e−iE(bω·Q+γS(q,Q)) b(q − Q)
dQ

|ω̃| =

= KEℓ̃

∫

∆

e−iEν·R b(q − Q(R))(1 + |ω̃| f ′(R))
dR

|ω̃| = KEℓ̃

∫

∆

e−iEν·Rg(R)
dR

|ω̃| ,

where we use the same notation f for the function f restricted to C 1 and denote

g(R) = b(q − Q(R)) (1 + |ω̃| f ′(R)), R ∈ C 1 .
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This function is analytic in U(m−2/2C) and is bounded by some constant C1 if C∗(m) is
sufficiently large.

In order to estimate the r.h.s. of (4.14) we expand g in Fourier series,

(4.15) g =
∑

gs eis·R, |gs| ≤ C1 e−|s|/(2Cm2),

(see (A11)). Now we have

x(q) = KEℓ̃

∑

s

gs

2πℓ̃∫

0

e−i(E+eω·s)dt = KEℓ̃

∑ igs

E − ω̃ · s
(
e−iE2πℓ̃ − 1

)
,

since ω̃ · ℓ̃ is an integer. Therefore x(q) =
∑

gs/ (E + ω̃ · s) and by (4.7), (4.15) and (A2) we
have

(4.16) |x(q)| ≤ C1(m)
∑

s

e−|s|/(2Cm2)〈s〉−c2 ≤ C(m)/ E for q ∈ U2
m.

We stress that this estimate is l-independent.

4.5 Transition to limit.

Changing the notation, we denote by xℓ(q) the solution of (4.9) we have constructed, and
rewrite (4.9) as

−iω̃ℓ · ∇xℓ + E xℓ + Bh(q)xℓ = b(q) + zℓ(q),

where zℓ = B hresxℓ. Then by (4.16) and Lemma 4.2, |zℓ|U
2
m ≤ C(m)B/

(
E ℓ1/(n+1)

)
with some

ℓ-independent C(m). By (4.16) the sequence {xℓ} contains a subsequence such that {xℓ} and
{∇xℓ} converge uniformly in U3

m, namely

xℓ −→ x, ∇xℓ −→ ∇x.

As zℓ −→ 0 and ω̃ℓ −→ ω, then x(q) is a solution of (4.1) in U3
m which meets (4.16) for q ∈ U3

m.

Clearly, we can use intermediate domains like U
1/2
m to prove that x solves (4.1) and meets (4.16)

for q in U2
m.

Thus, the proof of the estimate (4.4) is completed. �
5. Proof of Theorem 2

In this chapter we study the linearized equation (1.10). To do it we also consider linearization
of the transformed equation (2.38) about the transformed solution hm = Σm

∞(h∞(t)):

(5.1) η̇m = VHm
(hm(t))∗ηm.

This equation coinsides with (1.10) if m = 0. The linear transformation

Lm(t) := Σ0
m(hm(t))∗
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sends solutions of (5.1) to solutions of (1.10). By (2.35) the limiting linear maps L∞(t) exist
and define isomorphisms of the spaces Zθ = Rn ×Rn ×Yθ, |θ| ≤ d. Moreover, each linear map
Lm(t) is symplectic since the maps Σ0

m are. The limiting maps L∞(t) are symplectic as well.
For 0 ≤ m ≤ ∞ we have the estimates

(5.3) ‖Lm(t)‖θ,θ + ‖L−1
m (t)‖θ,θ ≤ 3, |θ| ≤ d,

(see (2.33), (2.35)). Since the linearized equation (1.10) is well-posed by assumptions of the
theorem, then due to (5.3) equations (5.1) also are well posed: for any m, the flow-maps
Sτ+t

(m)τ (hm(τ))∗ of (5.1) are such that

(5.2) ‖Sτ+t
(m)τ (hm(τ))∗‖θ,θ ≤ CeC2t for any t and any |θ| ≤ d.

Because (5.3), to estimate solutions η0(t) of (5.1) with m = 0 is equivalent to estimate their
transformations η∞(t) = (L∞(t))−1η0(t). We can not directly go to limit in (5.1) to write for
η∞(t) the limiting equation, instead we shall obtain estimates for η∞ by examining p-, q- and
y-components of the curves ηm with large m.

For any 0 ≤ r ≤ m ≤ ∞ we define the linear transformations Lr
m,

Lr
m(t) = Σr

m(hm(t))∗, ∞ ≥ m ≥ r.

Since Lr
m = (Lr)

−1 ◦ Lm, then by (2.35) we have

(5.4) ‖Lr
m − id‖θ,θ ≤ Cερ

r .

Next we write (5.1) as a system of equations for ηm = (ηp, ηq, ηy), omitting dependence of
solutions on m (and on the parameter ω which is now irrelevant):

(5.1′)





η̇p = −εm∇q,p Hmηp − εm∇q,q Hmηq − εm∇q,y Hmηy ,

η̇q = εm∇p,p Hmηp + εm∇p,q Hmηq + εm∇p,y Hmηy,

η̇y = JAm(qm(t))ηy + εmJ∇y,p Hmηp + εmJ∇y,q Hmηq + εmJ∇y,y Hmηy.

We need the following refinement of estimates (2.7), (2.8):

Lemma 5.1. The Hamiltonian Hm(h) in Om meets the following estimates:

(5.5) εm

∥∥∥∥
∂

∂pj
∇yHm(h)∥∥∥∥

dc

≤ C e(m), j = 1, . . . , n,

(the numbers e(m) were defined in Chapter 2.1, C is an m-independent constant), and

εm

∣∣∣∣
∂

∂pj

∂

∂pk
Hm(h)∣∣∣∣ ≤ Ce(m), j, k = 1, . . . , n.

Proof: For m = 0 the estimate (5.5) follows from (1.5) and the Cauchy estimate since the
domain of analyticity Qc is ε-independent. Suppose that the estimate is proven for m = m
and show that it also holds for m = m + 1. Since (∂/∂pj)∇yH2m = 0 (see Chapter 2.3) and
Hm + H2m + H3m, then εmH3m also meets (5.5). In Chapter 2.7 we constructed εm+1Hm+1 in

32



the form εm+1Hm+1 = εmH3m +∆3H +∆4H (see (2.29)). By Lemma 2.7 (the second estimate
in (2.31)) and the Cauchy estimate, for h in Om+1 and j = 1, . . . , n, l = 3, 4 we have

‖ ∂

∂pj
∇y∆lH(h)‖dc

≤ Ce(m)ε1/3
m ≤ 1

2K∗(m + 1)2
.

So (5.5) for m = m + 1 follows.
Proof of the second estimate is analogous. �
By (2.7), (2.8) and the last lemma system (5.1′) can be abbreviated as

(5.6)





η̇p = Op,η(ερ
m)η,

η̇q = Oq,p(C
e(m))ηp + Oq,y(1)ηy + Oq,η(ερ

m)η

η̇y = JAm(qm(t))ηy + Oy,p(1)ηp + Oy,η(ερ
m)η,

where Op,η(ερ
m) stands for a time-dependent linear operator Zd → Rn , η → p, of the norm

O(ερ
m) and similar with Oq,p(C

e(m)), . . . , Oq,η(ε
ρ
m). The linear operators Oy,p(1), Oy,η(ε

ρ
m) are

bounded operator valued in Ydc
.

For j = 1, 2, . . . let us denote by ξj ∈ Z the unit vector of the form

(5.7) ξj0 = (0, 0, yj0), yj0 = yjwj + ȳjw−j , ‖yj0‖d = 1

(the complex basis wj was defined in Chapter 2.5) and denote

ξ
(m)
j0 := Lm

∞(0) ξj0 = ξj0 + O(ερ
m)

(the second equality follows from (5.4)). Let ξ
(m)
j (t) be the solution of (5.1) such that

ξ
(m)
j (0) = ξ

(m)
j0 .

For m = 0, 1, . . . the linear map Lm sends ξ
(m)
j (t) to ξ

(0)
j (t).

Since a diagonal element β
(m)
j + λ

(m)
j of the operator Am(q; ω) equals

〈diagonal element λj(ω) of the operator A(ω)〉 + 2ε1b
(1)
j (q; ω) + . . . 2εmb

(m)
j (q; ω),

where b
(l)
j stands for the contribution from the l-th step. Since the function b

(l)
j (·; ω) is analytic

in U1
l and bounded there by jd2C(l)ε

−2/3
l , then for ω in Ωε we have the convergences

β
(m)
j (q; ω) −→ β∞

j (q; ω), λ
(m)
j (ω) −→ λ∞

j (ω) as m → ∞.

The limiting maps are such that

(5.8) |β∞
j |O,Ωε + |λ∞

j − λj |Ωε,Lip ≤ Cερ
0 jdH .

We denote by A∞ the limiting operator A∞(q; ω) = diag{λ∞
j +β∞

j | j ≥ 1} and consider the
corresponding limiting equation in the space Yd:

(5.9) y = JA∞(q0 + ω′t; ω)y, ω′ = Λ∞(ω).
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We recall that mes(Ω\∩Ωm) ≤ γ/2. So we can replace Ωε = ∩Ωm by its subset, which we also
denote Ωε, such that the new one still satisfies assertion a) of Theorem 1 (i.e. mesΩ\Ωε ≤ γ)
and

(5.10) |ω′ · s| ≥ C−1|s|−n ∀s ∈ Zn\{0}, ∀ω ∈ Ωε

with some C = C(γ), see the Appendix.

Consider the solution y(t) = yj(t) of (5.9) with the initial data

(5.11) y(0) = yj0 as in (5.7).

The solution has the form yj(t) = yj(t)wj +y−jw−j , where yj and y−j are complex-conjugated
complex functions and for yj we have the equation

ẏj = i(λ∞
j + βj(q0 + ω′t))yj.

Since βj is analytic with zero mean value and ω′ is Diophantine (see (5.8), (5.10)), then there
exists an analytic function zj(q), real for real q, such that

∂zj
∂ω′

(q) = βj(q)

(see the Appendix). The substitution

yj(t) = eizj(q0+ω′t)zj(t)

implies for zj the equation żj = i λ∞
j zj . So |zj(t)| = const and |yj(t)| =const since z(q) is

real. – Solution yj(t) of (5.9), (5.11) is a fast (if j ≫ 1) rotation in the plane Rϕ+
j + Rϕ−

j with

a time-dependent velocity and ‖yj(t)‖d ≡ 1.

Now let us consider the curve η
(m)
j (t) in Z,

η
(m)
j = (0,

∫ t

0

Oq,y(1)yj(τ)dτ, yj(τ)),

where Oq,y(1) is the linear operator from the second equation in (5.6). Clearly, its Zd-norm

is bounded by C(t + 1). Therefore η
(m)
j satisfies (5.6) with a disparity ∆

(m)
j (t) ∈ Z such that

‖∆(m)
j (t)‖dc

≤ C(t + 1)ερ
m. Since η

(m)
j (0) = (0, 0, yj(0)) = ξj0 and the flow-maps St

(m)τ of

equation (5.1) satisfies (5.2), then we get the estimate for divergence of η
(m)
j from the exact

solution ξ
(m)
j :

(5.12) ‖ξ(m)
j (t) − η

(m)
j (t)‖dc

≤ Cερ
meC1t

with some C, C1. The operator Lr
m sends ξ

(m)
j to ξ

(r)
j and satisfies (4.3). Therefore by (5.12),

η
(m)
j converges (as m grows) to

ξ
(∞)
j = (L∞)−1ξ

(0)
j
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uniformly for bounded t’s. Denoting by Πp, Πq, Πy the natural linear projectors which send Z
to Rn

p ,Rn
q and Y respectively, we get from this convergence that

(5.13) Πpξ
(∞)
j ≡ 0, ‖Πyξ

(∞)
j (t)‖d ≡ 1.

Now let us denote by Sτ1,τ2 the linear operator in Zd which sends η(τ1) to η(τ2), where η(τ)

is a solution of (1.10). Let S̃τ1,τ2 be the conjugated operator:

S̃τ1,τ2 = L∞(τ2)
−1 ◦ Sτ1,τ2 ◦ L∞(τ1)

(it sends η∞(τ1) to η∞(τ2)). We write Zd as Rn
p × Rn

q × Yd and accordingly write S̃τ1,τ2 in the
matrix form,

S̃τ1,τ2 =




spp spq spy

sqp sqq sqy

syp syq syy


 .

As ξ
(0)
j = L∞(0)ξj, then S̃0,t(ξj) = ξ

(∞)
j (t) and we get from (5.13) that

spy = 0, ‖syy‖d,d ≡ 1.

For each q ∈ Tn , the map Σω sends the curve q+ω′t ∈ Tn to a solution of the initial equation
(1.6). So Σω conjugates translation of Tn along ω′ with the flow of (1.6) and its linearization
Σω∗ = L∞

∣∣
{0}×Rn

q ×{0}
conjugates linearization of the translation with the corresponding oper-

ator S̃. It means that

(5.14) spq = 0, sqq = id, syq = 0.

Each map S̃τ1,τ2 is symplectic as a composition of symplectic maps. Hence,

α2[S̃
τ1,τ2(δp1, 0, 0), (0, δq2, 0)] = 〈δp1, δq2〉Rn ∀ δp1, δq2 ∈ Rn .

Because (5.14) this implies that 〈sppδp1, δq2〉Rn. Hence,

(5.15) spp = id.

By the estimate (1.9),

(5.16) ‖S̃τ1,τ2‖d,d ≤ C‖Sτ1,τ2‖d,d ≤ CeC1|τ1−τ2|.

Now we can estimate the norm of the operator S̃0,T with large T . To do it let us write Zd as

Zd = Rn
p × E, E = Rn

q × Yd = {µ = (q, y)}.

Accordingly we enlarge blocs of S̃τ1,τ2 and write this operator as

S̃τ1,τ2 =

( spp spµsµp sµµ

)
.
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By (5.14), (5.15), (5.16) we have:

(5.17) spµ = 0, spp = id, ‖sµµ‖ = 1, ‖sµp‖ ≤ C′eC1|τ1−τ2|.

For any (p0, µ0) ∈ Zd and T ∈ N we can write S̃0,T (p0, µ0) as

S̃0,T (p0, µ0) = S̃T−1,T ◦ · · · ◦ S̃0,1(p0, µ0).

Denoting (pj, µj) = S̃j−1,j ◦ · · · ◦ S̃0,1(p0, µ0) and using (5.17) we see that

|pj | = |pj−1|, ‖µj‖d ≤ ‖µj−1‖d + C2|pj−1| where C2 = C′eC1 .

Therefore we get the component-wise inequality:

(
|pT |

‖µT ‖d

)
≤

(
1 0
C2 1

)T (
|p0|

‖µ0‖d

)
=

(
|p0|

‖µ0‖ + (C2 + T )|p0|

)
.

We have seen that any solution η(t) of (1.10) meets the estimate

‖η(t)‖d ≤ 3‖η∞(t)‖d ≤ (C1 + tC2)‖η(0)‖d

and Theorem 2 is proven.

Remark. If d2 ≤ 0 then the functions bj in (2.19) can be replaced by their mean-values in q
since the variable part of the diagonal of the opeartor h1yy can be killed by the transformation
Sm (see [K]). So the functions β∞

j (see (5.8)) are zero and the thansformation L∞ reduces
(1.10) to the equation in Rn × Rn × Yd with a matrix




0 0 0
mqp 0 mqy

myp 0 JA∞


 ,

where A∞ is a diagonal constant-coefficient matrix. The Jordan part mqp and “half” of the
matrices mqy, myp can be nontrivial.7 In [K] we claimed (without giving datailed arguments)
that the blocks mqp, mqy, myp vanish, which is not true. Still, the main assertion in [K] con-
cerning the linearized equation – that its Lyapunov exponents vanish – is correct as shows the
detailed proof given above.

Appendix. Some inequalities for Fourier series

Let B be a complex Banach space and f : U(δ) −→ B be a complex-analytic map. We can
write f as Fourier series,

f(q) =
∑

s∈Zn

fs eis·q, fs =

∫Tn

f(q) e−iq·sdq/(2π)n ∈ B.

7Example: Take in (1.6) n = 1 and H(p, q, y) = p2. Then Σω(q) = (0, q, 0) and mqp = ε/2.
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If ‖f‖ ≤ 1 in U(δ), then we can replace the integrating over Tn by integrating over the setTn − i(δ − ε) s
|s|

⊂ U(δ) to get that ‖fs‖ ≤ exp(−|s| (δ − ε)) for each positive ε. Thus,

(A1) ‖fs‖ ≤ e−|s| δ.

Conversely, if for some d ≥ 0 we have ‖fs‖ ≤ 〈s〉d e−|s| δ for all s, and if 0 < γ < δ, then

(A2) ‖f‖U(δ−γ) ≤
∑

s∈Zn

〈s〉d e−γ |s| ≤ C

∫Rn

|x|d e−γ |x|dx = Cdγ
1−n−d.

In particular, if f0 = 0 and
ω · ∇g(q) = f(q)

where ω is an n-vector such that

|ω · s| ≥ C̃ |s|−n ∀s ∈ Zn\{0},

then gs = fs/(is · ω). So if ‖f‖U(δ) ≤ 1, then by (A1), (A2)

‖g‖U(δ−γ) ≤ (Cn/C̃)γ−2n.

If for any analytic function f(q) such that ‖f‖U(δ) ≤ 1, we cut off its low-frequency part and
for any R > 0 define fR as

fR(q) =
∑

|s|≥R

fs eis·q,

then for any 0 < γ < δ we have:

‖fR‖U(δ−γ) ≤
∑

|s|≥R

e−|s| γ ≤ C

∞∫

R

e−tγtn−1dt =

= C
n∑

m=1

γ−m (n − 1)!

(n − m)!
e−γ R Rn−m.(A3)

Take any k ∈ N . Then by (A3)

(A4) ‖fR‖U(δ−γ) ≤ Cn,k R−kγ−n−k.
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