A KAM-THEOREM FOR EQUATIONS OF
THE KORTEWEG - DE VRIES TYPE

SERGEI B. KUKSIN

ABSTRACT. We study quasilinear Hamiltonian partial differential equations with one-dimensional
space variable in a segment of real line. We assume that the equation has a family of n-frequency
time-quasiperiodic solutions, depending on an n-dimensional amplitude vector, and prove that
most of these solutions persist under Hamiltonian perturbations of the equation by a nonlinear
term which contains less derivatives than the linear part of the unperturbed equation. The result
is similar to one proved in [K] for perturbations which contain no derivatives.

Introduction

In this paper we are concerned with quasilinear Hamiltonian partial differential equations
with nonlinearities depending on derivatives. We study the equations which are close to a linear

equation or to an integrable one. As good examples, let us consider the perturbed Korteweg-de
Vries (KdV) equation

(1) u(t,x) = % (—tUge + 6u? +%f(u,2)), =cS'=R/2r7Z,

and a perturbation of the linear equation, similar to KdV:

(2) u(t,x) = % (—tpe + V(z)u+e f(u,z)), v € S

Both (1) and (2) become infinite-dimensional Hamiltonian systems if we consider them as
dynamical systems in a space of periodic functions {u(z)} with zero mean value:

(3) /O%udxz().

This restriction is correct for both equations since for their solutions the mean values in x are
time-independent quantities.

Consider the differential operator

) () — o (i + V()
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in the space of square-integrable functions with zero mean value. For V = 0 the operator has
complete system of eigenfunctions expikz with the eigenvalues ik3/4, k = +£1,42,... . If the
potential V(z) is not too large, i.e. if

(5) Vier < Vo,

with an appropriate positive constant Vj, then the operator (4) also has single pure imaginary
spectrum +i);(V) corresponding to complex eigenfunctions w;(z), j = £1,£2.... These
eigenfunctions have the form

wj(x) = ¢ (x) +isgnj o (),

where goji(a:) are some real functions (so w_;(z) = w;(x)). Besides, the functions w;(z) and

w_j(x) are asymptotically close to the exponents (jr)~'/2expijz and (jr)~'/2exp — ijz.!

Accordingly, solutions of (2)|.—o, (3) can be written as
(6) Zak eVt (x) + ce.,  ag € C.
k=1

In particular, all solutions are almost periodic in time.? The solutions

(7) Z ay e wy(z) 4 c.c.
k=1
with n = 1,2, ... are time-quasiperiodic and jointly are dense in the function space.

It is well-understood now that solutions of the integrable equation (1)|c—o, (3) look similarly:
for each n > 1 the equation has so-called n-gap solutions which can be written as

(8) un(t, 7) = @, (q + w(p)t; p) ().

Here the analytic function ®,(¢;p) (x) is 2m-periodic in the n-dimensional variable ¢ (i.e.,
g €T =R"/27xZ"), and p € P C R" is an n-dimensional parameter ((8) is a rough version of
the Its-Matveev formula, see [DNM]). To see that solutions (7) are analogous to (8), we write
in (7) ay, as

9) ar = /P €%, pp >0, qx € S = R/277.

Now the solution (7) can be written as 2Re Y. p_; px €@+ )y (2) and an analogy is
obvious.

It is also true that all solutions of (1)|c—¢, (3) are almost periodic in time, but corresponding
analogy with the formula (6) is less transparent (see [McT, Kal).

IThis follows from the classical perturbation theory for discrete spectrum, see e.g. [RS]. The normilizing
factor (jw)~1/2 is convenient here since exactly the functions (jm)~1/2cos jz, (jm)~!/2sin jz jointly form a
Darboux basis for the symplectic structure corresponding to the KdV equation, which defines the skew-product
of two functions w1, u2 with zero mean value as fOQW u1(z)(0/0x) " Lua () dx.

2If we reject the assumption (5), then some finite system of eigenvalues Aj could get nontrivial imaginary
parts. Accordingly, some terms in (6) could grow exponentially with time — this is not the phenomenon we are
interested in this work.
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We can take for the phase space Z = Z4 of the equation (2), (3) some Sobolev space Hg(S')
of 2m-periodic functions with zero mean value, d > 2, and decompose it as

Z=FE"aY,

where

EQn = Span (gpit’ s 7907:5)7 Y = span (907:5—1—17 907:54—27 .- )

Let us denote by ?Jki , k> n+1, the coefficients of decomposition of a vector y € Y in the basis
+ +
{¢ri1:Pmia;-- -} Then

(p.q,y), PERY, ¢ €T, y= (Y1, Viro,---)

with (p,q) as in (9), form a coordinate system in Z = E?" @Y. Since the equation (2), (3)

is Hamiltonian, then — under the requirement of a proper normalization of the eigenfunctions

wif = ¢ + ip; — in the coordinates (p,q,y) the equation (2), (3) takes the Hamiltonian form

(10) p; = —0H/dq;, 4; =OM/2p;, Um = FOH/OyF,

where

R >
(1) H=Xpi++dpnts D, NlylP+eHPaw), il =y +y7
j=n-+1

and €H is the Hamiltonian of the perturbation ¢ a% f(xz,u). On this half-obvious matter see
in [K] Part 2.7 and Parts 2.3, 2.6 (where similar examples of nonlinear Schrédinger and wave
equations are discussed).

Since the perturbation in (2) is a first-order nonlinear differential operator, then the map

[o.@} [ee) a
(12) y= Y yrep— Y F (ay—:FH) O

]:n—|—1 ]:n—i—l

is smooth as a map Y; — Y;_1 (the spaces Y, are given norms induced from the Sobolev
spaces H(S')). This map is unbounded as a map in Yj.

It is remarkable that the equation (1), (3) near the 2n-dimensional submanifold 72" C Z,
T =U{®n(q;p) ()¢ €T", p € P},

can be put to a form similar to (10), (11): in [K2] we proved that if for the p-variables in
(8) we chose the actions of the integrable system defined by (1), (3) on 72", then the action-
angle coordinates (p,q) in 72" can be supplemented by an infinite-dimensional coordinate
y = (y;—LH,y;—LH, ...) in a subspace transversal to 72" in Z (which can be identified with the
space Y as above) in such a way that (p,q,y) form a coordinate system in the vicinity of 72"
in Z. In these coordinates the equations (1), (3) take the form (10) with

1 o0
(13) H=hp)+5 >, N ly* +eHilp.0,9) + Hs(p.q.9),
j=n+1
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where Hs = O(||y||®) and the maps (12) with H = H; and H = H3 both are smooth as maps
Yy — Y4—1. The functional h(p) is the Hamiltonian for the KdV equation (1)|.—¢ restricted
to 72", so Vh(p) = w(p) (cf. (8)).

In (10), (13) we make the substitution
¢=q p=E&+ep, y=ei,

where £ € P is a parameter of the substitution. In the tilde-variables the equation takes the
form (10) with

j=n+1

Due to an elegant result of I. Krichever (see in [BiK1]), the map & — Vh({) = w is a local
diffeomorphism (i.e., its determinant never vanishes). So in the Hamiltonian (14) we can pass
from parameter £ € P to w € Q = VA(P).

In the tilde-variables the n-gap solutions (8) of (1)|.—¢ with p = ¢ take the form
(15) p=0, g=q +wt, y=0.

Similarly with solutions (7) of (10), (11): after the substitution p = £ + p, ¢ = ¢, y = ¢ they
take the same form with w = (A1,...,\,). Let us denote by T{* the n-torus {(0,¢,0)|q € T"}
filled by solutions (15).

The main result of this work — Theorem 1 from Chapter 1 — implies that for most w the
solution (15) persists in equation (10), (14) with sufficiently small ¢ > 0. Here we give a
simplified version of the result.

Theorem A. Suppose that in (14)

1) Ay — Kj% = o(j%), [Nj — \j—1| > C7HR=1 9N /0w] < C jo¥% with some di >
1, dg < dy —1;

2) the map (12) defines a smooth analytic map Yy — Y4_a,,, which smoothly depends on
the parameter w.

Then there exist finite numbers M and j; such that if for all w in some subdomain 2y C §2
one has

(16) |5+ w+ A1 (W) + o G Aty (W) > CTH >0

for all integer n-vectors s and ji-vectors € such that |s| < M, 1 < |{| < 2, then there exists a
subset Q. C Q,

mes (Qo\2:) — 0 (¢ — 0),

such that for w in Q. the equation (10), (14) has an invariant n-torus T C Z,

dist (T2, T5) < Ce®, k>0,
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which s filled with time-quasiperiodic solutions with zero Lyapunov exponents.

The numbers j;, M depend only on the constants which characterize the perturbation H
and the asymptotics for A;. Thus if the frequencies A\; are analytic in w, then the assumption
(16) can be replaced by

As’g(w) =8-w+ gl)\n+1(W) + ...+ Kjl)‘n‘i‘jl ((.U) §é 0
(16) VIs|< M, 1<)<2,

since (16) implies (16) for all w outside a small neighborhood of the union of zero-sets of the
analytic functions A, as in (16").

Example 1. Let us take equation (2) where the potential V' (z) as in (5) analytically (e.g.,
linearly) depends on an n-dimensional parameter ¢ from a ball B,. and f is sufficiently smooth
in (u, ), analytic in u. For generic families of potentials V(x,¢) the map B, 3 £ — w =
(A1,...,A,) is an analytic diffeomorphism and the functions A ¢(w(§)) are not identically zero
(cf. [K]). So generically equation (2), (3) with V' = V(z,¢) and sufficiently small ¢ is such that
for most ¢ it has time-quasiperiodic solutions which form solenoids in invariant tori of (2), (3)
close to those of the linear equation (2)|.—o.

Let wp in (8) be the limiting value of the frequency vector w corresponding to the zero
solution of (1).

Example 2. Let us take the perturbed KdV equation (1), where f is sufficiently smooth in
(u,x) and analytic in w. Direct evaluations of A; s(wp) and V,A; s(wp), carried out in [BoK1],
show that (16’) hold for all s and ¢ such that 1 < |¢| < 2. Therefore most (in the measure
sense) solutions (8) persist in equation (1), (3) with sufficiently small .

Due to a well-known result of V. Mar¢enko, the union of all finite-gap manifolds 72" is dense
in each space Z = Z4. Each manifold 72" “mostly persists” in the perturbed equation (1), (3)
when € — 0. So if QP- is the union of all time-quasiperiodic trajectories of (1), (3) with zero
Lyapunov exponents (treated as curves in the phase-space Z), then for any fixed 3 € Z,

dist(3,QP.) — 0 as ¢ — 0.

Thus, stable time-quasiperiodic solutions of (1), (3) jointly form in Z a web, asymptotically
dense in Z as ¢ — 0.

Remark. It is not very natural that an e2-perturbation of equation (1) implies a deformation of
the invariant torus 7" of order £ with some possibly small £ > 0. In fact, the deformation is of
order e for any p < 2. To see this, one should apply directly to Hamiltonian (13) Amplification
3 to Theorem 1 from Chapter 1 below (cf. in [K], Part 2.2 and item 3.2.C of the Introduction).

Example 3. Theorem A is also applicable to study perturbations of higher equations from the
KdV hierarchy [DMN, McT]. Take, for example, the second equation:

0 4 0 5
2 _ 7 (Upgzr — DUULUL, — 5 U2 Uy + 1Ou3).

(17) = oxr du(z) Ox

3 H2-smoothness in z is sufficient



The same functions ®,, as in (8) define finite-gap solutions of (17), (3) if we replace w(p) by a
suitable frequency vector ws(p). Moreover, the same coordinate system (p, q,y) in the vicinity
of T2 reduce (17) to the equation (10) with

1 o
H=Hy=h(p)+5 > N0 yl>+Hi@.ay), H=0(yl*)

j=n+1

Take any analytic in u, u, and sufficiently smooth in = function g(z,u, u,). Then the equation

= 2 5& / _ ﬂ /
(18) U= o <6ux + e (g, (z,u, x,) B Juie (x,u,uw)))

is a Hamiltonian perturbation of (17) by means of a third order nonlinear operator. In the
same way as in Example 2, Theorem A (with d; = 5, dy = 3) implies that most of finite-gap
solutions of (17) persist in (18) with e sufficiently small.

The assertion of Example 2 is a result of the paper [K2], where the nonresonance relations
(16") were taken for granted and it was claimed that the proof of Theorem A given in [K1] for
the case dy < 0 (and dy > 1) also is applicable to prove the result for dg > 0. In this paper we
finally pay our delayed debt and present the proof. We use the scheme of the works [K,K1] and
profit from the simplifying assumption d; > 1 (instead of dy > 1 in [K]). The only (but rather
nontrivial) complication compare to the case dg < 0 arises when we solve the homological
equations. Somewhat simplifying the problem, we can state it like that: for j = 1,2,... we
should solve the equations

(19;) —i(w - V)a(q) + Aj 2(q) + Bi(@)x(q) = 2(q), qeT",

where w -V = Y w;0/dq; , Bi(q) ~ 7%, w is a Diophantine n-vector and z(gq) is a given
analytic function. We can find an analytic function H;(q) such that (w- V)H; = (; and still
H;(q) ~ ej% . The substitution x = exp(—iH )y reduces (19;) to the equation

—i(w- V)y+ \jy =iz = 5(q).

If dg <0, then expiH; is a factor of order one and we can solve the last equation by decompos-
ing 3(¢) and y(q) to Fourier series, see the Appendix below. But if dy is positive, then the norm
of 3(¢) in a complex neighborhood of the torus grows exponentially with j. This exponential
factor appears in Fourier coefficients of the solution y(¢) and — in a naive way — also in an
estimate for the solution x(g). But for our proof to work we need a uniform in j estimate for
x(q). We obtain this estimate in Chapter 4. The trick we use there is to approximate the vector
w by vectors wy, £ = 1,2,..., of the form wy = ry/vy where r, € Z™ and v, is an appropriate
real number. For w replaced by w, we find representation for an approximate solution x, of
the equation as a rapidly oscillating (when j grows) one-dimensional integral Fourier with a
complex phase function. We show how to shift the contour of integrating to make the phase
function real, which implies an estimate for the approximating solutions. This estimate turns
out to be uniform in ¢ and implies a desirable j-independent estimate for the exact solution of

(19;)-

After the difficulty with the homological equations is overcome, the proof goes like in [K,K1]
and even simpler since, first, the complicated boundary case d; = 1 is now excluded from
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considerations and, second, for this work we found a simpler proof for the last step of our
scheme (“transition to limit”, Chapter 2.8).4

As we mentioned earlier, our proof follows the “KAM for PDEs” scheme, designed in [K1] and
developed in [K]. Independently similar schemes were proposed by C. E. Wayne [W] to study
quasiperiodic solutions of some nonlinear wave equations and by L. H. Eliasson [E] to study
finite-dimensional hamiltonian systems;® also see [P] for some developments of this approach.
Lately another KAM-scheme to prove persistence of time-periodic and time-quasiperiodic solu-
tions of linear equations (10), (11) under nonlinear perturbations which contain no derivatives
was proposed by Craig-Wayne [CW] and developed by J. Bourgain [Bou].

The scheme of [K1, K] was initially used to study nonlinear perturbations of linear equations,
but it turned out to be a flexible tool to study time-quasiperiodic solutions of nonlinear PDEs:
In [K2, BiK2] it was applied to study perturbations of integrable PDEs and in [BoK2, KP] —
to study small solutions of nonlinear PDEs. The theorem we prove in this paper essentially
extends the domain of applicability of our KAM for PDEs scheme.

Acknowledgement. I sincerely thank the Institute for Advanced Study (Princeton) for their
hospitality where this work was done. Discussions with Jean Bourgain during preparation of
this paper were very useful to me.

1. THE PROBLEM AND THE RESULT

Let Y be a real Hilbert space with the scalar products (-, -) and the (Hilbert) basis {(,OJjE |7 >
1} and let Y, s € R be the Hilbert space with the basis {j~ Sgoi | j=1,2,...}. So Y is formed
by vectors y = > yJ goj with finite norm ||y||s, where

In particular, Y =Y.

Example. If Y is the space of square-summable functions on the segment [0, 27| with zero
mean value and

+ —1/2

pj = cos jx, goj_:7r_l/2sinjx, 1=12...,

then Y is the Sobolev space of 27-periodic functions with zero mean value. For a natural s the
norm in Yj is given by the formula |ly(z)||% = fo |0%y /0% | dx.

We define the spaces
YV, =R" xT" x Y,

and consider a neighborhood () of the torus
T3 ={0} x T" x {0}

in V4 of the form
Q=0(5R") xT" x O(6,Yy), 6>0,

4Due to this simplification, we managed to drop the additional restriction imposed on the equation (10), (14)
in [K2] — there we assumed a priori that the equation is correct locally in time.
5still, the schemes of [K1], [E] and [W] are sufficiently different; we use exactly the scheme from [K1].
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where d > 0 will be fixed later and for a Banach space B we denote by O(6, B) the d-ball in B
centered at the origin.

We denote by J the skew-symmetric operator in Y such that
+ _ F o
and supply the spaces )s with the symplectic structure given by the 2-form
we =dpAdg+ (Jdy,dy) (peR", qeT", yeY).

Accordingly for two functionals Hy, Hy on ) we define their Poisson bracket {H;, Ho} as the
functional

(1.1) {Hy, Hy} = =V Hy -V Hy + V Hy -V Hy + (JV,Hy, V, Hy),

where V,, is the gradient in y with respect to the scalar product (-,-). For a functional H we
define the Hamiltonian equations with the Hamiltonian H as

(1.2) p=-V/H, ¢=V,H, y=JV,/H,
and abbreviate these equations as

(1.2) b=Vu(), b=(paqy).

If H is a smooth function on Q) C Y4, then the map
Q — R" x R" x Y—d7 h = (p7Q7y) — V’H(h) = (_qu7 va7 ']vyH)
is also smooth. We study strong solutions of (1.2) given by C'-smooth curves t — h(t) € Q

such that (1.2’) holds in R™ x R™ x Y_,;. See more on equations (1.2) in [K].

We are concerned with Hamiltonians of the form

He=prw+ 3 (AW, o) +eH (b w,9),

where w € 2 € R" is a vector-parameter, A(w) is an unbounded selfadjoint operator in Y such
that
Aw)ey =N W) ¢, J>1,

and ¢ is a perturbation parameter, 0 < e < 1. All estimates for H will be valid uniformly in e
and dependence of H in € will be neglected.

For € = 0 the Hamiltonian vector field V3, defines the Hamiltonian equations
(1.3) p=0, §=w, y=JAy.

The torus T is invariant for (1.3) and is filled with quasiperiodic trajectories t — (0, go+wt, 0).
Our goal is to prove that for most values of the parameter w € 2 the torus T persists in the
equation with Hamiltonian H, if ¢ is sufficiently small, provided that the perturbation e H and
the spectrum {\;} meet some additional restrictions which we shall now discuss.
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1.1 The restrictions.

Let us denote by Y the complexification of the Hilbert space Y and by V¢ the complexifi-

cation of ),
Yi=C" x (C"/2rZ") x Y.

We also denote by U(d) a complex neighbourhood of the torus T",
U(6) ={¢ € C"/2rZ" | Im&| < &}
and by Q¢ — a neighbourhood of the torus 7" in V¢:

Q° = 0(5,C") x U(5) x O(3,Y%).

We systematically use Lipschitz maps between metric spaces and denote by Lip their Lip-
schitz constants. For a map f : M — B where M is a metric space and B is Banach, we

write

If ]I = max (Lip , sup. 1 (m)[)-

If By, By are Banach, O C By and f maps O1 X M to By, we write

O1,M M, Li
15" = sup [If(b1,-)|lp, "
b1€01

Similar for a map f : O; — By we denote by ||f||g; the supremum of its || - || g,-norm.

Below we give the assumptions imposed on the spectrum {\;} and on H. By Ky, K1, ...

denote different positive constants.
1) The functions \j(w) are Lipschitz and

Kiljh — Ko < \j(w) < Kij® Yo, V),
(1.4) N (W) = Ap(W)] > Ky [% — k%) Yw, Yk, j,
Lip\; < Ky j% vy,

where d; > 1 and dy < dy — 1;

we

2) d > dyi/2 and the function H(h;w), b = (p, q,y), can be extended to a complex-analytic

in h € Q¢ C Vg function such that

c 679
(1.5) [H|O 4 ||V, H G < 1.

Under the restrictions (1.4), (1.5) we study Hamiltonian system with the Hamiltonian H.:

p = _qu H(h,CU),
(1.6) ¢=w+eVy Hbw),
y=J(AW)y+eVy H(b;w)).

As above we abbreviate these equations as

(1.6") h="Va.(h), b=»qy).



1.2 The result.
Let us fix any p < 1/3.

Theorem 1. Suppose the assumptions (1.4), (1.5) hold. Then there exist integer jy, M,
depending on

(1.7) n, di, dg, Ko, K1, K,
such that if
(1.8) s - w+ b (w)+...+ ;N (w)| > Ks >0
for all w € Q, all integer n-vectors s and ji-vectors ¢ such that
|s|] <My, 1< || +...+45] <2,

then the n-torus T§ persists in (1.6) in the following sense:

For arbitrary v > 0 and for sufficiently small e < & = &(~y) there exists a Borel subset Q. C Q
and analytic embeddings

Ew:’]l‘”—>yd, WEQg,
with the following properties:

a) mes(\Qc) <7,

b) the torus ¥,(T™) is e-close to T, is invariant for the flow of (1.6) and is filled with
quasiperiodic solutions of the form ho(t) = S (q + w't), where |’ — w| < Ce'/3.

Amplification 1. The map X : T" x Q. — Vg, (¢,w) — X,(q) is Lipschitz-close to the
map X0 : (q,w) — (0,q,0) € Yy, ie. distg(X?,¥) < Ce? and Lip(Z° — ¥) < Ce”. Besides,
the map w — w’ is Lipschitz and Lip(w — o’ — w) < Cel/3.

Amplification 2. Statements of Theorem 1 and Amplification 2 remain true with p replaced
by one. Also |w — w’'| + Lip(w" —w) < Ce.

Amplification 3. Assertions of the theorem and of all the amplifications remain true for
Hamiltonians H. of the form

Hemprwt 5 (AW, y) +H(b; w,0) + B (05 0,6),

where A and H are as above and H? is an analytic in h € Q° function such that
- Q,Li
[P < K1l + (ol lylla + 11Dy IV P g2y < Kol + vl

for anyh b in Q°.

The theorem and Amplification 1 are proven in the next Part 2. We skip the proofs of
Amplifications 2 and 3 since they are identical with the proofs given in [K] for the case dg < 0.
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1.3 Linearized equations.

Let us consider the linearization of the equation (1.6") about any solution h(¢):

11— V. (h(t))«n =0,
where
T}(t) c Th(t)yd ~ g = RZ X RZ X Yy.
We say that the linearized equation is well-posed if for each its solution 7(t) we have:

(1.9) It +7)lle < Cre®|in(t)lls for any 0<6<d,

where the constants C7,Cy do not depend on 7n(-) (we remark that using usual variation of
constant one gets estimates similar to (1.9) for solutions of the equation with a non-zero right
hand side, bounded in Zp).

We are concerned with linearizations of equation (1.6") about solutions ho() constructed in
Theorem 1,

(1.10) 1= V. (bo())«n.

Example 1. If dy < 0 and ho(¢) is bounded in Z;, then (1.10) is a bounded in Zy, 6 < d,
perturbation of the linear problem which defines a group of linear isometries of Zy. So (1.9)
clearly holds.

Example 2. Take for (1.6) the perturbed Korteweg—de Vries equation (1) (being written
in the coordinates as in (13) it has the form (1.6) with a (more general) perturbation as in
Amplification 3). The linearized equation takes the form

: 0 0
(1.11) V= —Vpgy + 12%1101) + 52%(]”’("&0)1)).

Let uy be any time-quasiperiodic solution of (1) in Hg(S!), smooth in ¢. Then using the
equation we can express third space-derivatives of ug via its first time-space derivatives. So
uo(t,-) is bounded in HZT2(S'). Multiplying (1.11) by (=A)%u(t,z) and integrating over S*
we get that

d
o )la < Cllott )l
which implies (1.9).

Example 3. For perturbed higher equations from the KdV hierarchy (e.g., for (18)) everything
is the same.

Theorem 2. Suppose that the assumptions of Theorem 1 hold and f(t) is a constructed in
Theorem 1 time-quasiperiodic solution of (1.6) such that the linearized equation (1.10) is well-
posed. Then each solution n(t) of (1.10) meets the estimate

In()lla < (C1 + Cat)||In(0)a-

In particular, all Lyapunov exponents of ho(t) vanish.

Amplification 4. The theorem’s assertion remains true for more general perturbations as in
Amplification 3.

The theorem is proven in Chapter 5; for the situation described in the amplification the
proof remains the same.
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2. PROOF OF THE THEOREM

2.1 Notations.

We use some additional notations. We introduce increasing sequence {e; }, where ¢y = 0 and
for m > 1 we set

em=12+.. . +m /K, K,=20172+m?*4...)
(thus e, < 1/2 for all m), and introduce two decreasing sequences {&,,} and {d,,}:
e =TT 5 =60 (1 —e(m)).
We denote U,,, = U(d,,) and consider complex neighborhoods O,, of the torus T} of the form

O = O(2/3,C") x Uy, x O(eX/3,Y5).

Besides we define the intermediate numbers 5¥n = % Om + %6m+1, 0 < j <5, and the
intermediate domains

0F = 0((277e,)?/3,C") x U(62,) x O((277e,), Y3 Y5).
If ¢ < 1 (i.e., is sufficiently small) then

0,20, 2>...003 50,41 D...D1T7.

By C, 4 etc. we denote different positive constants independent from e and m; by C(m),
C1(m) ete. — different functions of m of the form C(m) = Cym®2; by C¢(m), C{(m) etc.
— functions of the form exp C(m), exp C1(m). By C,,Ci(m), C¢(m) etc. we denote fixed
constants and functions.

Observe that for any C¢(m) and any o < 0 the estimate C¢(m) < &2, holds for all m provided
that € < 1. We profit from the assumption that ¢ < & with sufficiently small £ > 0 and use
inequalities like

C(m)el <1

without extra remark.

The theorem will be proven by the KAM-procedure. That is, for m = 0,1, ... we shall define
subsets (1, C €2, analytic functions H,,, on the domains O,, as above, such that Hy = H., and
a sequence of symplectic transformations

Sm:Om—i—l r_]:yol—>()7nm:yol

such that Sy transforms the initial system V3. = Vi, to Vi, S7 transforms Vi, to Vi, ete.
We shall show that the system V3, on O,, N Yy is integrable modulo a term O(ef,) — so the

transformation Spo...0 5,1 “almost integrates” the initial equations (1.6). Finally, we shall
see that the limiting transformation Sy o S7 o... is well-defined and integrates the equations.

We start with an inductive construction the transformation S, and the Hamiltonian H,,1,
given a hamiltonian H,,, and finish with investigating the limiting transformation SgoSjo... .

12



2.2 The Hamilton H,,.
On domain O,, we consider Hamiltonian H,,(h;w), b = (p, ¢, y),

(21) Hm = HOm(pay;w)+€mHm(h;w)a
where

1
(2.2 Hom =p- A(@) + 5 (An(6:)3.3),

and w € Q,,, Q,, is a Borel subset of {2 such that

(2.3) mes(2\ Qy,) < ve(m).
The map w —— A,, is Lipschitz and

(2.4) | A (w) — w|FLiP < CePe(m).

The operator A,, is assumed to be diagonal in the basis gof:

AmeE = A (W) + 8™ (g 0)) o,

where

(2.5) A [ L < i Cepe(m)

and

(2.6) / B™Mdg =0, g |Undn < jdn CePe(m).

In particular, by the Cauchy estimate |Vqﬂ§m)|U"L’Q"L < j%C(m)ef and
Ul 7Q7VL
(2.5) IVeAmlla g a, <Clm)e’.

The functional H,, is analytic in O,,, and

(2.7) |H,, |0 < C,(m) = KT,

(2.8) IV Hp|| S0 < e300 (m),  de:=d — dp.

Clearly the initial Hamiltonian H. has the form Hy. (One should chose Ag(w) = w, A, =
A, Q, =, etc.).

Hamiltonian equations with the Hamiltonian H,,, have the form

o1
(2.9) p=—5 Vedu(@:w)y,y) —emVoHmn,
13



(2.10) G = A (@) + £ VpHpn,

(2.11) y=JAn(gw)y+enJVyH,,.

Our goal is to construct an analytic map S,, : Opt1 — O, which defines a symplec-
tic transformation S,, : Ony1 N Ve — O, N Yy and transforms the Hamiltonian H,, to
Himt+1 = Hup 0 Sy, which has the form (2.1) with m replaced by m + 1. The transformation
Sy is constructed in six steps which are essentially identical to the ones described in [K]. The
only difference comes during “averaging” when we extract from the perturbation and add to
the integrable part Hy,, the whole diagonal of Hesse,, H,, — not only its averaging in ¢.5 Be-
cause of this, the operators A,, in (2.2) depend on ¢ (their analogies in [K] are g-independent).
Accordingly, homological equations written in terms of these operators become more compli-
cated. Their resolution is based on a new theorem on first-order linear differential equations
with variable coefficients which we prove in Chapter 4.

2.3 Step 1. Splitting the perturbation.

We rewrite H,,, as
(2.12) Hy = h(q;w) +p-h'P(g;w) + (y, W (g;w)) + (WY (g;w)y, y) + Ham(b;w),

where Hs,, = O(|p|> + |lylI2 + |p| |lylla). Next we change H,, (and so h?) by an w-dependent
constant to achieve

(2) " / hidq = 0.

We denote
(2.13) hoP = (27)™™ / hPdg, P = h1P — 0P,
and
(2.14) Apmi1 = A +enh® (w).

Now we rewrite H,,, as

Hm = H(/)m—l—l(p: y;w) + 6m(I—I2m + HBm) (ha w)?

where

1
H(/)m—l—l =p-Ami1 + p) <Amya y>

and the function Hs,, equals to

Hop = hT +p- P + (y, h¥) + (h"y, y).

6We are forced to do so since if diy > 0 (and the perturbing vector field is unbounded), then to kill the
diagonal part of Hess ey, Hy, the transformation S, must be unbounded.

14



Lemma 2.1. The terms of the decomposition (2.12) may be estimated as follows:
a)
g |7 < 20, (m),
[BIP|Umm < 20, (m)e 2
|G < Culmey !,

[h¥¥)| 5 < Cu(m)e, 23,

Besides, the operator h¥Y is symmetric in'Y and is real for real q.

b) In the domain Op,1 C Oy, the term ey, Hsy, is twice smaller than the admissible dis-
parity of the next step:

1
Y e 5 Celm+1)emr,
Omi1 Qm _ 1
eml[VyHamllgm " < 5 Culm +1)e 3,

provided that € < 1 and Ky in (2.7) is sufficiently large.

c) The functions Hap,, Hsy, are analytic in b € O, and are real for real arguments.

The proof is straightforward. See [K, p.59] or [K1].

2.4 Step 2. Formal construction of the transformation S,, and derivation the
homological equations.

We construct S, as the time-one shift along trajectories of an auxiliary Hamiltonian vector
field

(2.15) Gg=enVpF, p=—e,V F, §=¢e,JV,F,
where the function F' has the same structure as Ho,,:

F=flqw)+p- fPlgw)+ {y, f(gw) + (P (¢w)y, v).

The flow {S*} of equations (2.15) is formed by canonical transformations (with respect to
the symplectic structure wy defined in Chapter 1, see more in [K]) and we set

Sm = Stltzl.

Then formally
Hon (S (0;w);w) = Hon(h; ) + em{F, Hin} + O (e7,),

where {-, -} is the Poisson bracket defined in (1.1) (see [K]). Taking into account assertion b) of
Lemma 2.1, we get that in O,,11

Hom o Sm(b) = H(/)m—l—l + em(Ham + Vp k- VQH(,)m—l—l =V, F- Vphr(,)rm-l+

+<vaFv VyH6m+1>) + O (Em1)-
15



We observe that

1
VPH(,)m—i—l = Am—i—l: qu(l)m—i—l = 5 <Vqu y7y>7 vy}I(/Nn—l—l = Amy
and abbreviate 5
Api1 =0, -V, = 5 A, = A.

Now we rewrite H,,, o .S,, as
Mo o S = Hpos +2on | 3 (7 Vg, 0) — 0F /0! —p- 07 [0~
(y, 0f7/0w') = (y, (0" /0w’ )y) + (Ay, J f¥)+
(2.16) + 2(Ay, JfY%%y) + h? +p- hP + (y, hY) + (y, h"y) | + O (em+1)-

(The term in the square brackets equals Hay, + {F, Hym41})-

We wish to find F' in such a way that the contents of the square brackets in the r.h.s. of
(2.16) vanish up to an admissible disparity we define below. For this end f9, fP, f¥ and f¥%¥
should satisfy the homological equations:

(2.17) Of1/0u' = hi(g;w),  DfP/Ow = hP(g;w),
(2.18) afYow’ — AJfY = hY,
afyy/aw/ _|_ fnyA _ AJ’fyy — hyy _|_ % fp . qu = hlyy

(the disparity is introduced later). We define the functions b,,

1 1 _
(219) e ) = 5 (B, )+ 5 L (BT, o))
and the operators B and hYY, where
B(¢; w) = diag {b1,b1,b2,b2... }
(i.e., Bgo;‘—L = bjgojE), and
ho% (q; w) = 'Y — B.
Both operators h%Y and h'¥Y depend on the solution f? of the second equation in (2.17). Using
the estimate for fP we get below in Lemma 2.2 jointly with (2.5") and Lemma 2.1, we find that
Ul Q.,\Q! _
[ g < Clm)e .
Hence,

by T 2\ < 2o (m)e 23y,

m

and the operator h%%¥ meets similar estimate:

Hhoyy g%,i“Q,m\Ql S Cl(m)€—2/3‘

m

We observe that JA = AJ and rewrite the last equation with h'¥¥ replaced by h%Y (i.e.,
introducing a disparity) as

(2.20) OfvY/ow’ + [f¥¥, JA] = hWY.

If f9,..., f¥¥ solve the equations (2.17) — (2.20) then the contents of the square brackets in
(2.16) equals (By,y) and

(2.21) {F,Hyppy1} = —Ham + (By, y).

16



2.5 Step 3. Solving the homological equations.

The following lemma which deals with equations (2.17) is classical for the KAM-theory (see
e.g. [K, pp. 67-68)]):

Lemma 2.2. Define Q' as
A ={weQ, || s|<C m+1)"2|s|™™ for some s € Z™\{0}}.

Then mesQ' < v(m + 1)72 /3K, if C is chosen sufficiently large and for w € Q= 0, \ Q!
equations (2.17), (2.18) have analytic solutions real for real arguments and such that

f9Um < C(m), |7 < e, 2/3C(m).

Equations (2.18), (2.20) are more complicated than (2.17). We start with the most difficult
equation (2.20).

The numbers )\gmﬂ)(w) were defined for j € N. Now we define them for all j € Z\{0} by
setting

AT () = A () v e N
Lemma 2.3. There exists a Borel subset Q2 C Q,,, such that
mesQ? < ~v(m + 1)_2/(3K*)
and

(m+1) _ y\(m+1) j9 — k4|

/ e —
|u) s + )\J k = C’**(m) <S>Cl

for all w € Q\Q2, all j, k € Z\{0} and all s € Z", with some C,.(m) and ¢,. Here for j € 7.
we write j4 = sgnj|j|™.

The proof follows [K] and is given in Chapter 3 below.

For j € N we set
wy = (o) +i;)/V2, woj = (of —ie;)/V2
The vectors
(2.22) {1717"w; |7 € Z\{0}}
form a Hilbert basis of Y. The operator JA is diagonal in this basis:
JA(q;w)w; =i )\Jl-(q;w)wj,

where )\1_]- = —)\Jl- and for j € N

A(gw) = A (W) + 80 (g w).
17



Let us denote by {fx;(¢;w)} and {hy;(q;w)} the matrix elements of the operators f¥¥ and
h9¥ with respect to the complex basis {w;}. Then the equation (2.20) can be rewritten as

0

(2.23) W Fri(@w) + (A = M) () frj = hij(gsw).

Due to the definition of the operator h%Y its diagonal part vanishes:
hik(qg;w) =0 Vk.

Besides if we supply the spaces Y7, Y7 with the Hilbert bases as in (2.22), then the matrix of

1 1
the operator A% : Y — Y7 will be {|k|%hy;|j|~%}. In particular, since ”hoyy”gzﬁm\ﬁ <
C’(m)s;f/S, then

e |V < O(m) €, 2/2] 5| | =,
Observe that
m—+1 m—+1 m—+1 m—+1
A= AL = D Ay () 4 (8D — g (grw)

is the sum of a constant which is > max(|j|, |k|)¥~!/C (due to (1.4)) and a g-dependent
function of order
e max((jl, k).

Since dy can be positive, then (2.23) is a perturbation of a constant-coefficient equation by a
variable-coefficient term which can be arbitrary large. Still since do < d; — 1, then the “very
large” constant-coefficient part of (2.23) suppresses the “large” variable coefficient one: We
show in Chapter 4 that for w from Q,, \ (2! U Q?) the equation (2.23) has a unique analytic
solution fi; and

2 1 .
[fig 7 < C(m) Vs P /5% = kT,
where for j € Z we set j4 =sgnj |y|%.
The operator f¥¥ :Y; — Y, has the matrix F = {Fy;} = {|k|%fx; |7]7¢} (both the spaces
are provided with Hilbert bases (2.22)). So for each ¢ € U2,
[Fij(@)] < C2(m)e 2P lk| /51 — kM.
Since Fir =0 and dy > dg + 1, then

—1 7 o)
dug
_ e x|“®dx
> Byl <&.27°Ct(m) /+/+/ |]|d|_7xd|§
k oo 1 j+1
< e, 2305 (m) |j|4 1M log |j| < C%(m) e, 2/3.

Similar estimate holds for ¢!-norms of rows of the matrix F. Therefore the norm of the
operator f¥¥(q) : Yy — Yy with ¢ in U2, is bounded by C*® (m)es;lz/ ®. (For this classical result
see [HLP, Chap. 8]). The same estimate holds for the norm of the operator f¥¥ :Y,; — Yj_.
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So the norm of f¥Y(q), q € U2 is estimated. To estimate the Lipschitz constant, we consider
an increment fX” of the operator f¥¥, fX¥ = f¥¥(q;w1) — f¥¥(q; w2). For this operator we have
the equation

OFR' 0w’ + RV, A = WY = Vo f (g w2) - (w1 — wa) = [f(q;w2), JAa] = HY,
where hOAyy and Aa stand for increments of h%%Y and A. We immediately see that for ¢ € U3,
IHL (@)l 0. < CF(m)ey>? |wr = wa.

So the given above arguments estimate Lipschitz constant in w for f¥¥ when q € UZ. We can
use intermediate domains like U/ ? to get the same estimate for ¢ in U2 :

Lemma 2.4. Ifwe Q=Q,,\(Q U2, then equation (2.20) has an analytic solution f¥¥
which is a symmetric in Y€ operator, real for real ¢ and such that

(2.24) 1P < oo m) 2

Quite similar (but simpler) arguments show solvability of equation (2.18):

Lemma 2.5. There exists a Borel subset Q3 C Q,,, mesQ3 < y(m+1)72/3K,, such that for
w €y \ (QLUQ3), the equation (2.18) has an analytic solution fY(q;w), real for real q, and
such that R
U2 .0\ (2 UQ e _
1™ b <ot (m) e,

Now we define the set 2,41 as
(2.25) Qi1 = \ (LU UQ3).

Due to the estimates for measures of the sets Q2,22 and Q3 we got in Lemmas 2.2, 2.3 and
2.6,
mes (Q\ Q1) < mes (Q\Q,) +v(m+1)72/K, < ye(m+ 1).

So Q,,,+1 meets estimate (2.3) with m replaced by m + 1.

2.6 Step 4. Study of the transformation S,,.

We recall that S,,, = S*|;=1, where {S*} is the flow of the system (2.15) which we now write
as

b=enVr(h), b="0t)=(apy)),
where Vp(h) = (=V F, V,F, JV,F).

Lemma 2.6. Ifé < 1, then for w in Qi1 the map Sy, is analytic and sends O3 to O?, in
such a way that for b € O3 and for —d < 0 < d we have

(2.26) 1S — Bl g+ < et

(2.27) [Sms(b) —idl[g,6 < €,
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where Sy 1 Z5 =C" x C" x Yy — Zj.

Proof: The estimates of Lemmas 2.2, 2.4, 2.5 and the Cauchy estimate show that for fh in
O3 components of the vector field €,V meet the estimates

lem VpF| < Ce(m)es},{g’, lem Vo F| < C(Mm)em, |lemVyF|la < C’e(m)62/3

m

so S, sends O3, to 02 and satisfies (2.26).

To prove (2.27), we denote n(t) = S*(h).n. Then n(t) is the solution of the Cauchy problem

n(t) = em Vr(b(t))n(t), n(0) =n,
and

nt)=n+em / Ve (h(7))sn(T)dT.

Since the map fYY is symmetric in Y, then by the interpolation theorem (see [RS] and Appen-
dix A in [K]) the estimate (2.24) holds for all |#| < d. Hence,

In(¢) = nll < tC(m)=y* Imllo
and (2.27) follows. O

2.7 Step 5. The transformed Hamiltonian.

Now we study the transformed Hamiltonian H,, o S,,. Since the functional H,, is smooth
on the space ); and the flow-maps S? are C''-smooth in ¢, then

d
dt H6m+1 oSt =g, {F, H6m+1} 08" = —em (Ham — (By,y))o s,

where the second equality follows from (2.21). The first equality is well known for finite-
dimensional Hamiltonian systems; for its infinite-dimensional version we use see [K, Part 1].
Now we can calculate the second derivative:

d2

75 Homir 08 =~} {F, Hap — (By,y)} o 5.

Thus,

/ / t
H 10 Sm = Hopmqr 05 1=1 =

1
d d?
:H(/)m—l-l—'—% H(l)m+1|t_0+/(1—t) ﬁ H(l)m+1ostdt:
0

1
_H} )+ em(By,y) — emHam — / (1= ) {F, Hapm — (By, )} o S"dt.
0
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Similar
em(Hom + H3m) © Spy = €m(Hapm + Hapm) + efn / {F, Hy,, + H3,,} o S'dt.

Therefore, the transformed Hamiltonian can be written as

Hpm 0 Sm = Hyma1 + emHsm~+
1

/ t—l {F Hgm <By y)}OStdt—f—&f /{F H2m+H3m}OSdt
0

(2.28)

where
H0m+l = H(,)m—i—l + <By7y>
has the form (2.2) with m :=m + 1 and with

Am+1 = Am + 2€mB

Since diagonal elements b;(q;w) of the operator B are bounded by deC(m)&}Z/ 3

(m+1) (m+1)
A gl

as well

their Lipschitz constants in w, then diagonal elements
satisfy the a priori estimates (2.5), (2.6) with m replaced by m + 1.

For j =1,2,3,4 we denote by A;H the j-th term in the r.h.s. of (2.28). To prove that the
Hamiltonian H,,4+1 := Hyy, © Sy, has the form (2.1) we should check that

of the operator A,,11

(229) AQH -+ AgH -+ A4H = 5m—|—1Hm—|—17

where H,,11 is a function satisfying estimates (2.7), (2.8) in the domain O, 1.

The term Ay H is twice smaller than the r.h.s. of (2.29) by Lemma 2.1. The estimates for
AsH, A4H follow from the following statement:

Lemma 2.7. If H is a functional such that

1
Omlmt < O%(m) ey, |V, Hlgm ™ < C(m)<))?

m? m?

(2.30) \H

then for 0 <t <1

(231)  [{F.H}o SO0 < Cim)eif?, |V, ({F, H} o S g7 < Cim) e

The lemma is proven in [K, pp. 81-82]. Here we just remark that the first estimate in (2.31)
is essentially obvious since {F, H} = =V F-V,H+V,F -V H+(JV,F,V,H), since estimates
for VH = (V,H,V,H,V H) follow from (2.30) (and the Cauchy estimate) and estimates for
VF result from estimates for its components obtained in Lemmas 2.2, 2.4, 2.5. By the first
estimate and the Cauchy one, we get the second estimate with the d.-norm replaced by the

(—d)-norm. So to prove the second estimate we just have to control smoothness of the gradient.
See in [K] how to do it.

Due to the lemma for b in O,,;1 we have |AsH + AyH| < 2C%(m) enl® < Em41 if € < 1,
and similar with gradients of the functionals.

Therefore H,, 41 := Hum © Sy, also has the form (2.1).
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2.8 Step 6. Transition to limit.

Here we show that the set

(SpoS1o...) (I¢) C V4
is a smooth torus, invariant for the equations (1.6).

Let us denote Q. = NQ,,. Then (). is a Borel subset of Q2 and by (2.3)
mes(Q\ Q) < v/2.
For w € ). and 0 <7 < N we denote by Y% the map
Yy(Gsw):iSro...0Sy_1:On X Qn — O,
(as usual, X7 is the projection to O,). We claim that for all ,m > 0

(2.32) 1574 — Ty || < Bl

r+m

where IIy(h;w) = b. Indeed, let us denote the Lh.s. in (2.32) by D;_ .. We rewrite the identity
Yrim(biw) = S, (2011 (h;w);w) in the form

r4+m

r
Er—i—m

—1IIy = (S, —y) o (1), x o) + (=01, — y),

r+m r+m

where IIg(h,w) = w. By Lemma 2.6 we get

r
Dr—i—m

<e? (Diif,, +2)+ D,

r+m r+m:-

As DIT" =0, then (2.32) follows by induction.

r+m

Observe that because estimate (2.27), for finite » < N and any h € Oy the tangent map
Y% (h). is close to the identity:

(2.33) XN (0)« —id[lgp <2 7.

Let us denote by O the set
O ={0} xU(6/2) x {0} C V3.

This set is a complex neighborhood of the torus Tjj = {0} x T" x {0} in {0} x (C"/27Z"™) x {0},
which is contained in each O,, since d,, > 6/2.

As a consequence of (2.32) we get that for each m > 0 and each w € Q. the maps X7
restricted to O converge to an analytic map

X(sw): O — Oy, C Y5
and X7 o ¥ = X7 for all p < m. Because (2.32), (2.33) we have the estimates:

(2.34) =, —Tyllg " <3ef  vr,

(2.35) IS (b)) —idlop <222 Vr, V€ [—d.d].
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Due to the recurrent formula (2.14) for the vectors A,, and an estimate of Lemma 2.1, the
maps A, converge to a Lipschitz map A, such that

Ao : Qe — R, Ay — w|HP < O /3,
and

(2.36) Aoe — Ap| < 0.

Now we consider a curve

boo (t) = (0, g0 + tAs, 0) C Tg'

and the curves b,,(t) = X2 hoo(t) C O,,. We wish to show that ho(t) is a (strong) solution of
the equation (1.6). To do so, we use (2.34) (2.36) and the Cauchy inequality to get that

(2.37) b = (0, A (W), 0) + O ()
Using again the estimate (2.34) and the form of equations (2.9)—(2.11), which we abbreviate as

(2.38) b=V, (h), beOmn,

we see that

(2.39) Vi, (0 (£)) = (0, Agn, 0)[|a—a, = O(er,)-

Since X0 b,,(t) = bo(t) and X2, .hm = bo, 29 Vi, (bm) = Vi, (ho), then (2.37), (2.39)
and (2.33) jointly imply that

bo — Vi,ho = O (e2,) in R® x R™ X Yy_g,.
Since m is arbitrary, we get that the Lh.s. is zero and ho(t) is a solution of the system (1.6)

(which coincides with (2.9)—(2.11) when m = 0).

Now assertions of Theorem 1 and Amplification 1 follow if we choose ¥, (q) = X (g, 0, 0;w)
and W' = Ao (w).

3. PROOF OF LEMMA 2.3 (ESTIMATION OF THE SMALL DIVISORS)

We denote Aji(w) = A§m+1)(w) — )\Ecmﬂ)(w) and rewrite the assertion of the lemma as

% — k|

(3. st Al 2= g e

for all w in Q\Q2 and all j, k € Z\{0}. Here the constants C,.,¢; and the Borel subset 02 such
that mes Q% < v(m +1)72/(3K,) have to be found.

If |s| < My and j < j; then (2.4), (2.5) and the assumption (1.8) of Theorem 1 jointly imply
(3.1), so henceforth we may suppose that

(3.2) |s| = My or j = ju,
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where M; and j; depending on the numbers listed in (1.7) will be choosen later.

Let us denote for a moment D(j, k,s) =w’ - s+ Aji(s). Then
D(j,k,s) = D(=k,=j,s) = =D(—j, =k, —s)
and we may also suppose that
(3-3) 3>0, j=lkl, j#k

(for j = k the estimate (3.1) is trivial).
Observe that

(3.4) |Ajel = Cyt 5™ — k™|
and
(3.5) R i Y

Indeed, for large j the estimate (3.4) follows from (1.4) and (2.5), for j small it results from
the assumption (1.8) with s = 0 (j; should be sufficiently large).

By (3.4) the estimate (3.1) holds trivially if j > j; and |s] < O~ |j% — k%, where C is
choosen accordingly. So we can suppose below that

(3.6) |s| > 715N — k.

In particular, s # 0.

Let us denote by L the set of all triples (k, j, s) as in (3.2), (3.3), (3.6). For (k, j,s) € L we
define _
Qk,j,s) CQ

as the set of all w € € violating (3.1) for the choosen triple (k,j,s). Let us take for Q2 the
union
0 = | J{QUk, ,9) | (k. j,s) € L}

Clearly, (3.1) holds for w outside Q2. So it remains to estimate the measure of Q2. Here the
key is the following result:

Lemma 3.1. For each triple (k, j,s) € L we have
mes Q(k, j,s) < Ck,
provided that j1, My are sufficiently large.
Proof: Let us consider the map
Q3 wr— w =Apyi(w) € R

This map is Lipschitz-close the identity, so it is a Lipschitz homeomorphism which changes the
diameters of sets and their Lebesgue measure no more than twice (see [K, Appendix CJ]). So to
estimate mes Q(k, 7, s) is equivalent to estimate the measure of the set ',

Q= A1 (UK, 7, 9)).
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To make this estimate we express A\, \j, Ag; as function of w’ and write ' as
V= {w €A1 (Q) ||+ s — Agj| < K}

Since |w'| < C for each ', then by the Fubini theorem to estimate mes (' it is sufficient to
estimate the one-dimensional measure of the intersection of £’ with every line in R™ parallel to
some fixed direction. In particular, parallel to S = s/|s|. Take any n € R™. The intersection of
Y with the line L, = {n +tS |t € R} is given by ¢ from the set

(3.7) {t|I*®)] < x},

where
L(t) = (w' s+ Ag; ()

w!'=n+tS"

Observe that (0/0t)w’ - s = |s|, where w’ = n +¢S. So if we denote LipAj; = Lip(w’ — Ajj),
then for t; > t, we have

D(t1) —D(t2) > |s|(t1 — t2) — (tr — t2)Lip Agy > (02 — t2) (|s| — C'j¥) >
> C7 Nt — o) (J" — kT =1 j) 2 Oyt —t2) (51T - Gy jM)

(we use (3.5) and (3.6)). So if j > j; and j; is sufficiently large, then
[(t1) — D(ta) > t1 — to.
If j1 < j1, then by (3.2) |s| > M; and again
T(t1) — D(ta) > (t1 — to) (M1 — Cj{7) >t — L

if we choose M; > C’jf”
Thus, the measure of the set (3.6) is less than 2k and the assertion of the lemma follows. (]

Now an estimate for the measure of ? is straightforward:

mes 2 < ZmesQ(k,j, s) < e C(Qm) Z(s)‘cl Z (4 — k).
L o s i,k
Ghayes

By (3.5), j < C|s|% where dg = 1/(d; —1). So the inner sum in the r.h.s. may be estimated as

follows:
> Gt -k <c Z |s] < Cy(s)>dot,
ik
(j,k{S)eﬁ (, k s)EE

Therefore, mes Q2 < y(m +1)72/(3K,) if ¢; > 2dg +n + 1 and C..(m) is sufficiently large.
Lemma 2.3 is proven.
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4. SMALL-DENOMINATOR EQUATIONS WITH LARGE VARIABLE COEFFICIENTS

The crux of our resolution the homological equations (2.18), (2.20) in Chapter 2.5 was
reduction the equations to infinite systems of non-coupled differential equations on the torus
T™ with large variable coefficients. (Equation (2.23) in Chapter 2). Each equation can be
written as

(4.1) —i g—z + Ex + Bh(q)x =b(q), qe€T",

where the function h has zero mean value and is of order one, B could be large, but is much
smaller than the constant E:

E>C and E’ > Cy{B with some 0<6 < 1.

The frequency vector w is Diophantine (since, in Chapter 2.5, w is outside the set Q! as in
Lemma 2.2 and w in equation (4.1) is the w’ from Chapter 2.5),

(4.2) lw-s| >CHm+1)"2s|™" VsecZ"\0

and is incommensurable with E (since in Chapter 2.5 w is outside the set Q2 as in Lemma 2.3),

E
4.3 w-s+FE>——+— VseZ".
( ) | | C’(m)(s)cl

The functions h, b are analytic:
1
|7 [B] T < 1.

We should prove that equation (4.1) has a unique analytic solution x(q) and

(4.4) 2|V < C¢(m)/E.

4.1 Uniqueness of the solution.

Since the frequency w is Diophantine and A is analytic and has zero mean value, then we
can find analytic H(q) such that

OH/0w =h, |H|" < C(m)

(see Appendix). If we substitute in (4.1) z = e~*PHy, then for y(q) we get the equation

. 8y i BH
—i 2L 4 By = etBHp = p(q).
i oo TEy=e p(q)

If ps, s € Z™, are Fourier coefficients of p(q), then Fourier coefficients of the solution y(q)

are
Ps

Ys = s-w+ FE
and by (4.3)
lys| < C(m) E=(s) |ps|-
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Therefore
analytic solution x(q) of (4.1) is unique

and |
lys| < C(m) E~H(s)et e~ omlsl BCm)

since |p| < exp(BC(m)) in U},. So for the solution x we have the trivial estimate
|£C|U’2" < GBC(m)/E,

which implies (4.4) if B < Cy(m).

So from now on we can suppose that
(4.5) E > C.(m),

where E-independent C,(m) will be choosen later.

To prove estimate (4.4) under the assumption (4.5) we shall approximate the diophantine
vector w by vectors @ = @, with rationally dependent coefficients, which are C'/¢-close to w
(0=2,3, ... ). We shall find integral representation for an approximate solution of equation
(4.1) with w replaces by @ and prove that the approximate solution satisfies (4.4). Next we
send ¢ to infinity to get estimate (4.4) for the exact solution of (4.1).

4.2 Approximations for the frequency vector.

For an integer ¢ > 2 we consider the vector fw € R™ and define N, € Z™ as the closest to fw
element of Z™. Then

n
(4.6) lw—£71N,| < 2—\/; =: p.

Lemma 4.1. There exists real v, satisfying |r—1| < 1/¢, such that LE ¢ rZ and for the vector
w, defined as

-~ Ny
W=Wpr =T 7,
and for all s € Z™ one has
- E
4.7 . El> —F—r, = 1,
( ) |8 w + |— <S>6202(m) C2 Cl+n+

with some £, w-independent Ca(m).
Proof: By (4.3), (4.6),
~ 1
@~ s+ E| 2 B(s)"/C(m) = Clslp = 5 E(s)""/C(m)

if p < E(s)=171/C1(m) or equivalently, if

Er &
< =: Np.
1= ()" =2
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So below we should consider only |s| > Njp.

Take any so € Z™ which violates (4.7) for some choice of r € A :=[1 —¢71, 14 ¢71]. Then
|so - w| > E/2 and therefore the set

E
Ay =<reA||so W+ B < —Frpr—
= {realio-d < Grgs
is a segment of the length < 4(s)™°2/Csy(m). So
C C’(m)

C
As < N—Cz-l-n —

which is less than ¢=1 if Cy(m) is choosen sufficiently large.

Therefore, there exists a point g € A which lies outside all the sets A, |s| > Ny. The
corresponding vector w = wy , meets all the estimates (4.7). We can choose r to be non equal

to the numbers (E/j, j = £1,£2,... and the lemma is proven. OJ
We denote £ = £/r. Then & = N;/f. We also note that, by (4.6), |w — &| < C/¢. Therefore
(4.8) ls-@| > (2C(m) |s|") 7t if 0 < |s| < CeY/ D = [

Denote by hs Fourier coefficients of h(q) (recall that hg = 0) and define the resonant and
the regular parts of h as

hres(q) _ Z hs ei s.q, hreg(q) — Z hs eisi].
sﬂf:() sﬂf;é()
So h=h" + h"%9.
Lemma 4.2. The functions h™*, h™9 are analytic in U}, and

s |Um < C(m) 071, |79 Um < C(m).

Proof: The estimate for h™9 is obvious (see the Appendix). In order to estimate h™®° we
observe that if s - @ = 0, then by (4.8) |s| > L and for ¢ in U}, we have

|hres| < Z e—|5|m_2 < C(m)L—l
|s|>L
(see the Appendix). Thus, also the estimate for A" is proven. O

Lemma 4.3. There exists an analytic in U} function H such that 81{1/8& = h" and
|H|Un < C(m).

Proof: Let us define H as Fourier series with the coefficients fIs, where
~ 0, s-w=0
H, = N )
hs/s-w otherwise.
Then, by (4.8), for ¢ in U}, we have
A@) <2 Y Jsl"Clm) e 1m 7 20 3 emblm
|s|<L |s|>L

since |s-@| > 1/0 > 1/(2¢) if s-& # 0. Now the assertion follows. For: the estimate for the
first sum by some C(m) is obvious and the estimate for the second one follows from (A4) with
=n+ 1 (see the Appendix). O
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4.3 Approximating equations.

Let us approximate (4.1) by the equation where w is replaced by wy and h(q) — by its regular
part h"¢9:

8

(4.9) i o + Ex + Bh™z = b(q).

The substitution x = e_iBﬁy with H as as in Lemma 4.3 reduces (4.9) to
0 B

(4.10) i Y L By =eBAy = p(q).
ow

There exists an integral representation for the solution y of (4.10). To get the formula we
consider the equation

(4.11) —ip o ® L Ez=f(t), teS'=R/2rL.
If E ¢ uZ, then the unique reriodic solution of (4.11) can be written as
K 2
o(t) = L / e UET {4~ 7 dr,
w
0

where K, = T’zw Indeed, for f = e* we have z = e**/(E + ku), which is a periodic
solution of (4.11). Arbitrary periodic f can be decomposed to Fourier series and the assertion
follows.

Next, we take any R € T" and consider the solenoid through R,
(4.12) t— R+t{% eT" =R" /21 2"

Since {& = Ny is an integer vector, then the solenoid is a 27-periodic loop in T". On the other
hand, since for a function on T™ and for its restriction to the solenoid one has 0/0t = £0/0w.
Then equation (4.10) restricted to the loop (4.12) takes the form (4.11) with

p=1" f(t) = BR + ).
The assumption E ¢ pZ is sutisfied since /E ¢ rZ by Lemma 4.1. Therefore
2

y(R) = KEZZ / e_iEZTﬁ(R — 0o7) dr.
0

Finally, we denote v = &/|@|?, z = f1 (so Eft = Ev - 5z) and obtain the integral represen-
tation for (the unique) solution x of (4.9):

2ml

(4.13) 2(q) = K 7 e iE(W-Q+(B/E) (H(q)~H(q— ) b(q _dz

Dlg-z-
0

— now we treat () as a point in R” and H, b as analytic 27-periodic functions.

So we have represented x(q) as a rapidly oscillating integral Fourier with a complex (for
complex ¢) phase function.
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4.4 Study of the oscillating integral (4.13).
We denote v = B/E, S(q,Q) = fI(q) — fI(q — @) and observe that

i) y<CE~1<C,(m)’ ! (<1
(see (4.5));
ii) S(q,0) = 0;

iii) for ¢ in U2, the function S is analytic in Q and
VaS(a, )" /9 4 1S(g, )|V < C(m)
(by Lemma 4.3 and the Cauchy estimate).

Let us consider the substitution
Q=R+ f(R)w=2(R),
where R € T" and f is a complex function. Then
v Q+75(0,Q)| g = R+ f(R)+78(¢, R+ f(R)D).
Consider the equation for f(R):
f(R) +7S(q, R+ f(R)w) = 0.

If Ci(m) in (4.5) is sufficiently large, then by i), iii) and the implicit function theorem the
equation has the only solution f(R) = f(q, R) which is complex-analytic in R € U(m~2/C)
and satisfies the estimate

PO < 1/Cun(m),

where C\, goes to infinity with C,. Besides due to ii) f(0,¢q) = 0.

Now we treat (4.13) as an integral of a holomorphic function along the segment A = &[0, 27/]
in the complex plane C! = C@, namely

2(q) = Ky | e FERIS@R) b — RYAR/|G).
A
In this integral we can replace the contour A = {R} by ®(A) = {Q} C C! since both the

contours lie in the domain of analiticity and their ends conside. As f(R) + vS(q, ®(R)) = 0,
then

z(q) = Kpy / e E(@-Q+75(¢,Q)) b(q — Q)Tl_g _
w
(4.14) 2(4)
—iEv-R 1 g dR iEwR dR
= Kpp | e P bla — QU+ B S (R) [z = Kz [ g() 1,
A

where we use the same notation f for the function f restricted to C' and denote

g(R) =b(q - Q(R)) (1 + @] f(R)), ReC.
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This function is analytic in U(m~2/2C) and is bounded by some constant C; if C.(m) is
sufficiently large.

In order to estimate the r.h.s. of (4.14) we expand g in Fourier series,

(4.15) 0= g, 6, g, < Cy e bl/EOm),
(see (A11)). Now we have

2ml

—i(E4&-s 195 —iE2nd
—KEZZQS/G N DI e G
$ 0

since & - £ is an integer. Therefore x(q) = 3 g5/ (E+& - s) and by (4.7), (4.15) and (A2) we
have

(4.16) 1z(q)| < C1(m Ze—\ sl/@Cm?) (gy=e2 < C(m)/ E for qe€ UZ.

We stress that this estimate is [-independent.

4.5 Transition to limit.

Changing the notation, we denote by x,(q) the solution of (4.9) we have constructed, and
rewrite (4.9) as

—iwy - Vg + Exg+ Bh(q)ze = b(q) + 2(q),

where z; = Bh"**z,. Then by (4.16) and Lemma 4.2, \zAU?n < C(m)B/(E (/™ +1)) with some
¢-independent C(m). By (4.16) the sequence {z,} contains a subsequence such that {z,} and
{Vx,} converge uniformly in U2 , namely

Ty — T, Vay — V.

As zp — 0 and &y — w, then x(q) is a solution of (4.1) in U3, which meets (4.16) for ¢ € U3,.

Clearly, we can use intermediate domains like U? to prove that x solves (4.1) and meets (4.16)
for ¢ in UZ,.

Thus, the proof of the estimate (4.4) is completed. O
5. PROOF OF THEOREM 2

In this chapter we study the linearized equation (1.10). To do it we also consider linearization
of the transformed equation (2.38) about the transformed solution b,, = X7 (ho(?)):

(5.1) T = Vit (D (8)) 471
This equation coinsides with (1.10) if m = 0. The linear transformation

Lin(t) := 55, (b (1))
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sends solutions of (5.1) to solutions of (1.10). By (2.35) the limiting linear maps L (¢) exist

and define isomorphisms of the spaces Zy = R" x R" x Yy, |0| < d. Moreover, each linear map

L,,(t) is symplectic since the maps X9, are. The limiting maps Lo (t) are symplectic as well.
For 0 < m < oo we have the estimates

(5:3) ILm(®)llo.e + 1L )l <3, 10 <d,

(see (2.33), (2.35)). Since the linearized equation (1.10) is well-posed by assumptions of the
theorem, then due to (5.3) equations (5.1) also are well posed: for any m, the flow-maps
ST (B, (7))« of (5.1) are such that

(m)T

(5.2) 1STHE (B (7))xllg.0 < Ce€2t for any t and any |0] < d.

(m)T

Because (5.3), to estimate solutions 7y(t) of (5.1) with m = 0 is equivalent to estimate their
transformations 7., () = (Loo(t)) "t10(t). We can not directly go to limit in (5.1) to write for
Moo (t) the limiting equation, instead we shall obtain estimates for 7, by examining p-, ¢- and
y-components of the curves 7, with large m.

For any 0 <7 < m < oo we define the linear transformations L,
L, (t) = X0, (0 (1)), 00 =m >
Since LT, = (L,)"1 o L,,, then by (2.35) we have

(5.4) L5, —id|[e,e < Cef.

Next we write (5.1) as a system of equations for 7, = (1,74, 7y), omitting dependence of
solutions on m (and on the parameter w which is now irrelevant):

Mp = —€mVap Hnllp — emVa,q Hmlg — EmVqy Hmny,
(5.1) Ng = EmVpp Hmnlp + €mVpg Hnng + €mVpy Hmny,
Ny = JAp(@m())ny +€mIVyp Hpnp + emIVy g Hpng + emJVy g Hpyny.

We need the following refinement of estimates (2.7), (2.8):

Lemma 5.1. The Hamiltonian H,,(h) in O,, meets the following estimates:

0

%vyHm(h)

(5.5) emH <Ce(m), j=1,...,n,

de

(the numbers e(m) were defined in Chapter 2.1, C' is an m-independent constant), and

o 0
Em|=—=—Hn <C°Mm), jk=1,...,n.
o g )] < %O,
Proof: For m = 0 the estimate (5.5) follows from (1.5) and the Cauchy estimate since the
domain of analyticity Q¢ is e-independent. Suppose that the estimate is proven for m = m
and show that it also holds for m = m + 1. Since (0/0p;)VyHa, = 0 (see Chapter 2.3) and
H,, + Hs,, + Hsyp, then €, Hs,p, also meets (5.5). In Chapter 2.7 we constructed €1 Hpp 41 in
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the form e, 11 Hpmt1 = €mHsm +AsH + Ay H (see (2.29)). By Lemma 2.7 (the second estimate
n (2.31)) and the Cauchy estimate, for h in O,, 41 and j =1,...,n, [ = 3,4 we have

0 1
—V,ANH <C*(m)eP< ——
Iy VoAHO) e, < O (m)elf* < s,

So (5.5) for m = m + 1 follows.
Proof of the second estimate is analogous. [

By (2.7), (2.8) and the last lemma system (5.1") can be abbreviated as

= Op, (en)m,
(5.6) 77q g.p(C(m))np + Ogy(L)ny + Og (e, )n
= JA (@m ()1y + Oy p(1)np + Oy (el )m,

where O, (g?,) stands for a time-dependent linear operator Z; — R™, n — p, of the norm
O(ef,) and similar with O, ,(C¢(m)), ..., Oq.4(cf,). The linear operators Oyp(1),0yn(e?)) are
bounded operator valued in Yj_.

For j = 1,2,... let us denote by §; € Z the unit vector of the form
(5.7) &0 =1(0,0,450), Yjo =y w;j +yiw_j, |yjolla =1
(the complex basis w; was defined in Chapter 2.5) and denote

&0 = L2(0) &0 = &jo + O(eh)

(the second equality follows from (5.4)). Let §§m) (t) be the solution of (5.1) such that

&m(0) =€
For m =0,1,... the linear map £,, sends §§m) (t) to 53(.0)(15).

(m)

Since a diagonal element ﬁ§m) + A, of the operator Am(q;w) equals

(diagonal element \;(w) of the operator A(w)) + 2€1b§.1)(q; w) +. 25mb(m)( W),

where b(l) stands for the contribution from the [-th step. Since the function b(l)( ;w) is analytic

in U and bounded there by j®C(l)e; 2/3 , then for w in 2. we have the convergences
B (@w) — B (Gw), A" (W) — AP (W) asm — oo,
The limiting maps are such that

(5.8) |35

e 4 |)\;’° _ |QE7Llp < Cel j A
We denote by Ao the limiting operator A (q;w) = diag{A3° + 37° j > 1} and consider the
corresponding limiting equation in the space Yy:

(5.9) y=JAx(q +w'tw)y, w =Ag(w).
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We recall that mes(2\N€2,,) < /2. So we can replace Q. = NS, by its subset, which we also
denote €., such that the new one still satisfies assertion a) of Theorem 1 (i.e. mesQ\Q. < )
and

(5.10) W' -s| > C7s|™" Vs € Z"\{0}, VYw € Q.

with some C' = C(7), see the Appendix.
Consider the solution y(t) = y;(t) of (5.9) with the initial data

(5.11) y(0) =yjo asin (5.7).

The solution has the form y;(t) = v’ (t)w; +y/w_;, where y/ and y =/ are complex-conjugated

complex functions and for 3’ we have the equation
7 =i + Bi(q0 + w't))y’.

Since f; is analytic with zero mean value and w’ is Diophantine (see (5.8), (5.10)), then there
exists an analytic function 3;(q), real for real ¢, such that

83]'
ow’

(q) = B;(q)
(see the Appendix). The substitution
Yl (t) = i3 (20+w't) j (t)

implies for 27 the equation 2/ = iX*27. So [2/(t)| = const and [y/(t)| =const since 3(q) is
real. — Solution y;(t) of (5.9), (5.11) is a fast (if j > 1) rotation in the plane Rgo}" + Ry, with
a time-dependent velocity and ||y;(t)[|q = 1.

Now let us consider the curve n}m) (t) in Z,

(m) t (T)dT, v (T
n, == (0’/0 Og,y(Dy;(T)dT, y;(7)),

where Oy (1) is the linear operator from the second equation in (5.6). Clearly, its Zz-norm
is bounded by C(t 4 1). Therefore n}m) satisfies (5.6) with a disparity Ag.m)(t) € Z such that
HA;m)(t)Hdc < C(t+ 1)e?,. Since ngm)(O) = (0,0,y,(0)) = &o and the flow-maps Sf,  of
equation (5.1) satisfies (5.2), then we get the estimate for divergence of n}m) from the exact

solution & J(m):
(5.12) 1€5™ () = n$™ ()], < Cet et

with some C, C;. The operator L], sends §§m) to £J(-T) and satisfies (4.3). Therefore by (5.12),
n}m) converges (as m grows) to

5500) — (Em)_1£§0)
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uniformly for bounded ¢’s. Denoting by II,,11,,II, the natural linear projectors which send Z
to R}, R} and Y respectively, we get from this convergence that

(5.13) e =0, e #)]la=1.

Now let us denote by S™7 the linear operator in Z; which sends n(71) to n(m2), where n(7)
is a solution of (1.10). Let S™ ™2 be the conjugated operator:

ST = L (1) 08T 0 Loo(T1)

(it sends 700 (T1) t0 7o (T2)). We write Zg as R x R) x Yy and accordingly write ST17™2 in the
matrix form,

STz —

As 53(0) = L (0)&;, then SOt(g;) = §J(.°°)(t) and we get from (5.13) that

Spy =0, |[syylla,a = 1.

For each ¢ € T™, the map Y, sends the curve ¢g+w’t € T" to a solution of the initial equation
(1.6). So X, conjugates translation of T" along w’ with the flow of (1.6) and its linearization
Yk = Eoo’ (0} xR7x {0} conjugates linearization of the translation with the corresponding oper-

q

ator S. It means that

(5.14) Spg =0, Sqq=1d, syq=0.

Each map S™™ is symplectic as a composition of symplectic maps. Hence,
Q2 [5’7177'2 (6p17 0, 0)7 (07 5(]2, 0)] = <6p17 6(]2>R" v 5191: 6(]2 € R".
Because (5.14) this implies that (s,,dp1,dg2)rn. Hence,

(5.15) Spp = id.
By the estimate (1.9),
(5.16) 15T |g.q < C|S™ || ga < CeSH Ml
Now we can estimate the norm of the operator S®7 with large 7. To do it let us write Z4 as
Zg=Ry xE, E=R}xY;={u=1(q,y)}

Accordingly we enlarge blocs of S™™ and write this operator as

g2 <5pp 5pu> _
Sup  Spp

35



By (5.14), (5.15), (5.16) we have:

(5.17) Spu =0, 8y, =id, |5, =1, |5, < C'Crlmi—T2l

For any (po, tt0) € Zq and T' € N we can write S’O’T(po,,uo) as

SO,T(pO,IUJO) _ SvT—l,T 6---0 S«O,l(po’uo)‘
Denoting (pj;, pj) = Si—lio...o go’l(po,,uo) and using (5.17) we see that
il = [pj—1ls  lrilla < llj-1lla+ Calpj—1| where Cp = C'er.

Therefore we get the component-wise inequality:

(Hg);l‘d) : (é ?)T (Hli?llw) - (HuoH +(Iggl+ T)Ipol)'

We have seen that any solution 7(t) of (1.10) meets the estimate

Im()lla < 3lnee )lla < (C1 +1C2)[In(0)]la

and Theorem 2 is proven.

Remark. If do < 0 then the functions b; in (2.19) can be replaced by their mean-values in ¢
since the variable part of the diagonal of the opeartor h'¥Y can be killed by the transformation
Sm (see [K]). So the functions 37° (see (5.8)) are zero and the thansformation Lo reduces
(1.10) to the equation in R™ x R" x Y; with a matrix

0 0 0
Mmgp 0 mgy |,
myp, 0 JAx

where A, is a diagonal constant-coeflicient matrix. The Jordan part my, and “half” of the
matrices Mgy, My, can be nontrivial.” In [K] we claimed (without giving datailed arguments)
that the blocks mgp, Mgy, My, vanish, which is not true. Still, the main assertion in [K] con-
cerning the linearized equation — that its Lyapunov exponents vanish — is correct as shows the
detailed proof given above.

APPENDIX. SOME INEQUALITIES FOR FOURIER SERIES

Let B be a complex Banach space and f : U(§) — B be a complex-analytic map. We can
write f as Fourier series,

)= fee*i, fo= /f(q) e"3dgq/(2m)" € B.

SEL™ Tn

"Example: Take in (1.6) n =1 and H(p,q,y) = p%. Then %, (q) = (0, ¢, 0) and mgqp = £/2.
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If |f]| < 1in U(J), then we can replace the integrating over T" by integrating over the set
T —i(d —¢) o C U(6) to get that || fs|| < exp(—|s| (6 —¢€)) for each positive . Thus,

(AD) Ifsll < e l=1°.

Conversely, if for some d > 0 we have || f,|| < (s)% e7!*I9 for all s, and if 0 < v < 4, then

SEL™

(A2) 1AV <> syt el < C /|;,;|d e el dy — Oyt
R

In particular, if fy = 0 and
w-Vg(q) = f(q)

where w is an n-vector such that
lw-s|>C|s|™" Vsez"\{0},
then gs = f./(is-w). So if || f]|Y®) < 1, then by (A1), (A2)

9|V~ < (Cn/C)y 2"

If for any analytic function f(q) such that ||£]|Y(®) < 1, we cut off its low-frequency part and
for any R > 0 define f% as

fR(Q) - Z s eis~q’

[s|>R

then for any 0 < v < § we have:

”fRHU(é—’v) < Z e sl < ¢ / e~ trgn—1lgp =

Is|>R R
~ g (=1

A — m \"  ~/)° 0% n—m.
(A3) C mz_l ~ (=] e R
Take any k£ € N. Then by (A3)
(A4) IFRIPO™ < G R™Fy 77
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