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Abstract

We consider non-linear Schrodinger equations with small complex coefficient of size
0 in front of the Laplacian. The space-variable belongs to the unit n-cube (n < 3) and
Dirichlet boundary conditions are assumed on the cube’s boundary. The equations are
studied in the turbulent regime which means that § < 1 and supremum-norms of the
solutions we consider are at least of order one. We prove that space-scales of the solutions
are bounded from below and from above by some finite positive degrees of § and show
that this result implies non-trivial restrictions on spectra of the solutions, related to the
Kolmogorov—Obukhov five-thirds law (these restrictions are less specific than the 5/3-law,
but they apply to a much wider class of solutions). Our approach is rather general and is
applicable to many other nonlinear PDEs in the turbulent regime. Unfortunately, it does
not apply to the Navier—Stokes equations.

Introduction

Classical theory of turbulence studies properties of velocity field of incompressible
fluid with high Reynolds numbers. The motion of the fluid can be free or forced. In the
first case the velocity slowly decays with time and its characteristics should be studied
while it remains of the same order of magnitude (see [Koll , F|). In the second case it
is usually assumed that the forcing is a space-time dependent random field, stationary in
time and smooth in space [Kol2, F]. Of the main interest for the theory of turbulence
are averaged spectral characteristics of the velocity field, where in the second case one
averages in ensemble and in the first case — in time (possibly, also in random initial data).
Assuming that the flow is space-periodic with period 2 (this assumption is not very popular
among physicists, but it simplifies the mathematics, so we accept it), we write the velocity
field u(t,x) as Fourier series, u(t,z) = >,y Gs(t)e™®. We denote by E, = (|is|?) the
squared norm of a Fourier coefficient, averaged in time and (or) in ensemble (so E; is the
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energy corresponding to a wave vector s € Z™), and denote

1
& =155 Y E (1)
r—C<|s|<r+C

(without specifying how big is the constant C' > 1). Roughly, &, is the energy corre-
sponding to a wave number r (i.e., to all wave vectors s from the sphere {|s| = r}), so
Ejs| ~ Es|s|""'. The function &, represents the energy spectrum of the flow u(t,z), cf.
[LL] and [F], p.53.

One of the most famous predictions of the Kolmogorov theory of turbulence [Koll,
Kol2] is the Kolmogorov—Obukhov five-thirds law (see [LL, §33] and [F]) which claims that
&, behaves as const-r~5/3 for the wave numbers r from the inertial range ro < r < r; and
decays faster than any negative degree of r for r > r; (the law does not say much about
the energy range 0 < r < ry and we do not discuss it in this work), see Fig. 1.

Figure 1

The threshold r; is of order R3/4, where R is the Reynolds number of the flow. Its inverse
A =77t ~ R3/% is called Kolmogorov’s inner scale of the turbulent flow.

The Kolmogorov-Obukhov law is a heuristic result. Our goal in this work is to prove
some theorems which — in a sense — imply that dependence of &, on r is of the same
nature as it is shown in Fig. 1.

Classically the fluid flow (which hosts the turbulence) is described by the Navier—
Stokes (NS) equations. Unfortunately, these equations are very difficult for mathematical
analysis. In this work we replace them by nonlinear Schrédinger (NLS) equations (cf.
section 8.1 where we discuss other PDEs). These equations, first, model NS equations
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and, second, describe turbulence which occur in some less classical physical situations [Z,
LO, MMT]. * We study both non-forced and forced NLS equations:

—its = —0vAu+ |ulPu, peN, (2)

—it, = —0vAu+ |ul>u + (¥ (¢, z) . (3)

In the equations ¢ is a small real parameter, 0 < § < 1, and v is a unit complex number
with non-negative real and imaginary parts. Usually we shall supplement the equations
by odd 2-periodic boundary conditions:

u(t,z) =ul(t,z1,...,x;+2,...,2y,)

(4)

=—u(t,x1,...,—Tj,...,Tpn), J=1,...,m,

where n < 3. Clearly, any function which satisfies (4) vanishes at the boundary of the
cube K™ of half-periods, K™ = {0 < z; < 1}.

We study the equations in the turbulent regime: the parameter § > 0 is very small
and supremum-norms of the solutions we consider are at least of order one. To satisfy the
second restriction we study solutions of the non-forced equation (2) with smooth initial
data of order one,

uw(0,z) = u(z) ~ 1, (5)

while |u| remain of the same order, and study equation (3) with an order one forcing ¢
(stationary in ¢, smooth and odd periodic in ).

Solutions which we consider are complex functions v = us(t,z) (or random fields
u = u§(t,x)), smooth in = and depending on the small parameter §. Critical for their
analysis is a notion of the space-scale of a function fs(x) or fs(t,x), which we introduce
in section1 and study in sections 2,3. For a smooth in z function fs(x) we define its
space-scale £, (f) as €, (f) = 07 where v = ~(f) is supremum over all real numbers 7 such
that

\fslom = |II|1&<LX sup |02 fs(z)| > 677™ . (6)
The inequality is assumed to hold for all m bigger than some mq (which depends on 4 and
f) and for all 6 < 65,,. The space-scale £, possesses many natural properties (see section 1)
and seems to be a new notion, cf. [CDT] and [BGO] for definitions of other space-scales
related to the problem of turbulence.

If a function f is time-dependent i.e., f = fs(t,z) where t € L = [11,T] (11 > —o0
and Ty < +00 may depend on ¢), then the time should be incorporated into a definition.

* For turbulence in NLS equations relations similar to the 5/3-law are known as Kol-
mogorov’s asymptotics [Z, MMT]. We do not present them here since, first, they are not
yet as received as the 5/3-law is and, second, usually they are attributed to the so-called
weak turbulence which we do not touch in this paper.
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We define the space-scale (% (f5(t,z)) as ¢% = §7=, where v, (f) is supremum over all real
numbers ¥ such that the estimate

1 —29m
S @

holds for all sufficiently big m, all sufficiently long segments L' C [T}, T3] and for 6 < d5m,.

If f = f¢(t,z) is a random field, then we define its averaged space-scale (L-E(f) as
(LE = 5L , where ¥ is supremum over all real numbers 7 such that

1
||

/ E |f3(t, ) % dt > 6727 (8)
LI

for m, L' and 6 as above.

We call a function fs(z) short-scale if 0 < v(f) < oo. Short-scale time-dependent
functions and random fields are defined similarly.

The space-scales £, £~ and ¢L°¥ are norm-independent: in section 1 we show that they
will not change if in (6) — (8) we replace the C™-norm by, say, the norm of the Sobolev
space H™(K™;C). What is important is the number of derivatives, not the norm we use
to measure them.

In sections 2, 3 we study spectral properties of short-scale functions fs(z) and f5(¢, x)
(in Appendix 2 — of random fields f§’(t,z)). Roughly, we show that any short-scale function
f5(x) =3 fss€™5° is mostly supported by the Fourier modes fs,e™*% with |s| < £,(f)~!
but not by the modes with |s| < £,(f) ! and that most part of the Sobolev H™-norm of
this function with a sufficiently big m is carried by the modes with |s| ~ £, (f)™?.

After these preliminaries we pass in section 4 to problem (2), (5) and study its solution
us(t,z) for 0 < ¢t < §~° with any b > 1/3. Here our main result is

Theorem A. If oscillation of the function |u®(z)| on the cube K™ = {0 < z; < 1} is
at least one and u(t, z) is a solution of (2), (5), then

sup [us(t, )| gm () = O™ V8 € (0,1),
0<t<s—1/3

for any m > 2 and any k < 1/3.

(Cf. Appendix 3, where we treat this result in terms of a dynamical system defined
by equation (2) in a function space of odd periodic functions.)

We stress that in Theorem A no boundary conditions for us on K™ are assumed. In
particular, us may be the restriction to [0,00) x K™ of any function which solves equation
(2) in the half-space [0, 00) x R™, see section 8.2.

Next we show that if us is an odd periodic solution (i.e. it solves the problem (2),
(4), (5)), then for m > 4 wus(t,z) satisfies estimate (7) where L' = [0,07°], b > 1/3, and
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v — 1/3 when m — oo. This implies an upper bound to the space-scale of any solution us
of (2), (4), (5): €% (us) <&/,

Theorem A and the upper bound for the space-scales of solutions are non-linear results.
Indeed, if in equation (2) p = 0, then for any solution ugs(¢, z) for the linear problem (2),
(4), (5) with smooth u°(z) we have |ugs(t,-)|,, < Cmd! and €5 (ugs) > 6° = 1.

To get a lower bound for the space-scale ¢£(us), an upper estimate for solutions is
needed. In order to obtain a good bound we assume that the coeflicient in front of the
Laplacian in (2) is pure imaginary, so the equation takes the form

0= 6Au + i|u|*Pu . (9)

We prove that solutions of (9) satisfy the maximum principle and that for any solution wus
of (9), (4), (5) we have |lus(t,-)||, < Cmd~™/2 (m >1). Accordingly, £%(us) > 6/ and

[
oY% < WL (ug) = or < 61/3 (10)

if L =1[0,0""], > 1/3. We stress that the estimates (10) do not depend on the dimension
n < 3 and the degree 2p + 1 of the nonlinearity.

The estimates (10) can be easily rescaled to the case when u(t,z) is an odd 2M-
periodic solution of (9) such that oscu(0,z) ~ U, where M and U are degrees of 4, see
(4.15) and section 8.2.

We do not know how sharp the estimates (10) are; in particular, we do not know
if the exponent 7z (us) equals to a universal u’-independent constant from the segment
[1/3,1/2]. The first estimate in (10) is natural: it well agrees with scaling of equation (9)
(since §Au ~ |u|*Pu ~ 1, then two differentiations increase a solution u by the factor =1
and m of them — by the factor 6~/ 2), as well as with WKB-type results for this equation
(see [JLM]). We have no intuitive arguments which would suggest that the second estimate
in (10) is sharp.

Next in section 4 we use (10) to study the spectrum of a solution us, using general
theorems from sections 2, 3. We write us as Fourier series ) Us5(t)e™*® and consider the
quantities Fg,

6—1)
E, = 5b/ s (8)| dt
0

b > 1/3. We prove that E; decays faster than any negative degree of |s| for |s| > §~/2 and

behaves like § to a finite degree being averaged along the layer {§=1/3 < |s| < §=1/2}, or
the layer {§77¢T¢ < |s] < 677L7°}. Due to these results, a graph of the energy spectrum
&, defined as in (1) roughly has the form shown on Fig. 2.
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Figure 2

Comparing Fig. 2 with Fig. 1 we see that Kolmogorov’s scale \; equals £Z(us), if the former
is defined (the latter is well defined for any function us(¢,x)). The solution us is of order
one and its space-period equals two. So a “Reynolds number” for this solution is ~ 6~}
and \; ~ R™3/% ~ §3/% in contradiction with estimates (10). First explanation for this
contradiction is obvious: estimates (10) were obtained not for solutions of NS equations
but for solutions of NLS. Second explanation is due to A.N. Kolmogorov himself: in [Kol 2]
he pointed out that for his theory to hold, the fluid must be forced by a random forcing.
We model the randomly forced turbulence by solutions of equation (3), which we discuss
in section 7. To simplify presentation we consider solutions of (3), (4) with zero initial
conditions:

u(0,2) =0. (11)

For a random field u§ which solves (3), (4), (11) we get in section 7.2 (using our previous
work [K2|) an estimate from below:

Theorem B. For any m > 6, t5 > 0 and L > 6!, a solution u¥ of (3), (4), (11)

1/2
satisfies the estimate (% ti)o+L E ||lu§ (¢, )||§{m dt) >, 5~ T35,

Hence, the space-scale £2E(u) = §7Z of the solution u is < §3/17. Again, this is a non-
linear phenomenon since for solutions of the linear equation with the term |u|2 u replaced
by u, the space scale is > §° = 1.

In section 7.3 we estimate the solution u§ from above. To do this we assume that
v = i in equation (3). Under this assumption we prove that for all ¢ > 0 and m > 1 we
have E|[[ug(t,-)||3m < Crnd =32, Thus, (£ > §3/2 and

5/ < LB (ug) < 917 (12)

for a solution u$ of the problem (3), (4), (11) with » = 4. Again, we stress universal nature
of the estimates: they do not depend on the dimension n < 3 and on the specific choice of
the order-one random field (“(¢,z) (smooth in x, stationary in t).

TLS T

Writing a solution u§ as ) u$.(t)e , we define the energy EL of a wave vector s

by averaging |1lj;s|2 in ensemble and in time along a finite segment L:

1 w 9
M:ELM%Wﬁ.

Assuming that 67! < |L| < oo, we extract from (12) the following information on the
energies EL:

i) for any 7' > 3/2 and any M we have >, -5 EL < M7 if § < O
ii) for any € > 0 there exist finite c(¢) and C(g) such that the average of EL in s
along the layer 2 = {5_%+€ <|s| < 5_%_5} is > 6¢ and < 6, for all § < 4,;
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iii) most part of the averaged squared Sobolev norm 1 [, E ||u||3n dt = > (s)*™E, is
carried by wave vectors s from the layer 2.

Thus, the graph of the energy spectrum £ has a form, similar to the one on Fig.2
(with the segment [§71/3,§=1/2] replaced by the bigger one [§73/17, §—3/2]). As we see, it
resembles the Kolmogorov—Obukhov shape, shown on Fig. 1.

The Kolmogorov theory studies stationary turbulence. So to get results really related
to the Kolmogorov-Obukhov law, our theorems have to be applied to time-stationary
solutions of (3). To do it, in section 7.5 we assume that the shifted solution u$ (¢t + 7, )
converges in distribution as 7 — oo to a stationary in time random field Uy (¢, z), which is
an odd periodic in z solution of (3). (We refer the reader to [FM], where similar convergence
is proven for the 2D NS-equations, forced by a random field which is not smooth in x.) This
solution inherits the estimates we got for . In particular, its space-scale (L-E also satisfies
(12). Due to the stationarity, the energy F of a wave vector s defines as E; = E ‘Ug"s (t)‘2
(for any t). It satisfies the relations i) — iii). Besides, for all § from a sequence converging
to zero, the inverse space-scale 1/¢L-E(U) separates a region of the “very fast” decay of
the energies E; (and of the energy spectrum &,) from a region of the “moderate” decay:

iv) for any 7/ > 7% and any M > 1, Z\SIZJ—“" E, < 6MY for § {6; \( 0} (the
sequence depends on 4’ and M);

v) for any € > 0, there exist finite numbers c(¢) and C(g) = nyF — 2+ 0(1) such that

the average Fy of E, along the layer 2 = {5*754rs <|s] < 5*75*5} satisfies the estimates
§¢ < Eg < 69 for § € {§; \, 0} (the sequence depends on ¢).

Thus, if the stationary (in ¢) turbulent solution U satisfies the Kolmogorov—Obukhov
law (maybe with an exponent different from 5/3), then corresponding Kolmogorov’s inner
scale Ay = r7' must be equal to the space-scale £2F(U). In particular, it must satisfy
estimates (12).

The number Ns of degrees of freedom of the turbulent flow is N5 ~ r7* (see [F], p.107,
cf. [K2], p.815), thus we get that 63" > N5 > §5"/17 for the random NLS equation and
§~™ > Ns > 672"/3 in the deterministic case (the extra factor 2 appears in the exponent
since a solution w is a pair of real functions; this factor was forgotten in [K2]). This explains
why it is so difficult to find turbulent solutions numerically since in the turbulent regime
§ is very small, e.g. for developed hydrodynamic turbulence usually § < 10~° or even
§ <1077, Cf. [JT, BGO] for techniques to estimate from above the number of degrees of
freedom for equations with non-random forcing.

Finally we note that the approach to study the short-scale (or “irregular”, or
“chaotic”) behaviour of solutions for nonlinear PDEs in the turbulent regime which we
develop in this work has nothing to do with the hyperbolic behaviour of a corresponding
dynamical system in a function space. Indeed, our results apply to odd periodic solutions
of equation (2) with » = p = n = 1. But this equation is integrable and all Lyapunov
exponents of its solutions wu(t,-) (treated as curves in a space of odd periodic functions)
vanish.



Notations. By C,C; etc. we denote different positive constants, independent of §.
By |-|cm — the norm in the classical space C™ of z-dependent functions (see (6)), by
|| gm = |I‘ll,, — the norms in the Sobolev spaces H™(K";C) and H™(T";C). We often
write functions u(t,z) as curves u(t) in a function space, so |u(t)|om = |u(t,")|om, etc.
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1. Smooth space-scales
1.1. Time-independent functions.

Let O be a bounded domain in R® with a smooth boundary 00, or an n-dimensional
cube, or the torus T® = R™/2Z", or the whole R". Let fs(z) € RN be a vector-function,
smooth in z € O and depending on a parameter § € (0,1). For this function we define
its smooth space-scale £, (f). We call the space-scale ¢, smooth since its definition uses
arbitrarily large derivatives of a function, which is assumed to be smooth. The definition
given below is asymptotical in § — 0 since £, (f) will not change if we redefine f for 6 > &,
with any positive d;. Due to this, if initially f(z) was defined only for 0 < § < §; < 1, we
extend it by zero to d; < 6 < 1 and treat as a function of § € (0, 1).

Definition 1. For a function fs(x) as above we set £,(f) = §7, where v = sup I' and
the set I' = I'(f) C R is formed by all 4 such that

\f5lon = 6~ forall k>ky and all & <4, (1.1)

where kg and 6 > 0 depend on f and 4. The number v = 7(f) is called the exponent (of
the space-scale).

As usual, supremum over the empty set equals —0co and 6 >° = oo, 7> = 0.

The exponent vy can be equivalently defined in the lim in f-terms:

/ 1/m
v =7v(fs) =lim inf lim inf M

m— o0 §—0 In 5_1 (1'2)

(The inner limit in (1.2) is called a lower order at zero of the function é — || fs|| }n/m)

The set I'(f) in Definition 1 can be empty (example: f = exp—d ') and can coincide
with R (example: f = expd~!). It means that a priori £,(f) is any degree of §, from
0° =0 to 0~ °° = oo. The definition becomes informative if —oo < v < co. We are the
most interested in the functions fs such that 1 > £, (f) > 0 (equivalently, 0 < v < co) and
call them short-scale functions.



If | f5|co > €%, with any a > 0, then also | f5|,« > C'é®. Now each negative ¥ belongs
to the set I" and v(f) > 0. An upper bound for v(f) follows from the following:

Proposition 1. For any function fs(x), v(f) < 7 if and only if there exists ¢ > 0
such that the relation ,
| fslom <=0V —EIM (1.3)

holds for arbitrarily big M and for § € {dcar(j) \( 0} (here and below the latter means
“for each element of the sequence {d:ar(1),dcpr(2),. ..}, where dcpr(7) (0 as j — 00 7).

Proof. If v/ < ~(u), then for any ¢ > 0 the number 4 = 4" — ¢ belongs to I' and
relation (1.1) with 4 = 4" — ¢ contradicts (1.3) with M > ky. On the contrary, if (1.3) fails
for each positive ¢, then (1.1) holds with each ¥ =" —¢, so v/ < y(u). Thus (1.3) exactly
means that 7' > 7. O

In particular, choosing 7' = v + ¢’ with any ¢’ > 0 and using (1.3) we get that the
relation /
| fslon < 6 OFEIM (1.4)

holds for some arbitrarily big M and for arbitrarily small § > 0.

Definition 1 was designed to study short-scale functions fs(x). For “long-scale” ones
it is unsatisfactory. For example, a function fs(x) = F(dx) “obviously” has a space-scale
of order 571, but £,(fs) = 6° = 1. To cover the long-scale case, the C*-norms in the
Definition 1 have to be replaced by the quasinorms [-]ox, where

[u]cr = max sup |0ou| .
lal=k 2zcO

We stuck to the definition in the form given above since it possesses many natural properties
(and the important property 1) in Proposition2 below would fail if in Definition1 one
replaces the norms by the quasinorms).

Proposition 2. 1) (Norm-independence). A value of the exponent 7 (and of the
scale ;) will not change if in (1.1) C*-norms are replaced by any norms |[|-||, such that

K ull, g < Julge < K Jlullyyy Yo € C®(0)

for any k > k/, with some fixed [ > 0 (in particular, the norms of Sobolev spaces W (O)
with any 1 < p < oo can be used). Proposition1 also remains true with the C*-norms
replaced by the norms ||-||,,.

2) (Invariance with respect to change of z). If O — @, z — y, is a smooth 4-
independent diffeomorphism such that the diffeomorphism and its inverse both have finite

C*-norms for every k, then £, (f5(y)) = ¢, <f5 () := fs (y(w))) for any smooth in y function
fs(y)-

3) (Invariance with respect to change of f). If |fs(x)] < C for all § and x and
F € C=(RN,RM), then £, (F(f)) > £,(f). In particular, if F is a diffeomorphism of RV,

then €, (F(f)) = £.(f).



4) (Invariance with respect to scaling of f). For any a, £, (f) = £:(d*f).

(V). It

5) (Invariance with respect to differentiation). For any f = fs(z), £ (f) < s
f is a short-scale function and |f| < C§~ with some a > 0, then ¢, (f) = £,(Vf).

Proof. 1) For any € > 0 we have:
||f6||k ZKk l|f5|C’k ! >K (5 (v—e)(k=1) >K 5 (v— 2€)k:

for k > max{ko,!(y/e —1)}. It means that a new space-scale defined with the new norm
is no longer than ¢, since v — 3¢ belongs to the corresponding set I'. Similar ¢, is no longer
than the new scale, so they are equal.

2) Since |f5(z)|on < Cur|fs(y)|om, then using Proposition1 we see that a bound
v(f(y)) < implies the bound v(f(x)) < (to the function u(z) the proposition should
be applied with ¢ replaced by ¢/2). The opposite also holds, so the assertion follows.

3) Proposition1 yields the assertion since y(f) < 7' implies that v(F(f)) <.

Proof of 4) is obvious.

5) If ¥ € I(Vf), then |f|ce+1 > [V f|or > 6%, This is bigger than §~(7—2)(k+1) for
any positive e, if k is sufficiently big. Hence, v(f) > supI' = y(V f).

If f is a short-scale function, then (f) = sup{¥ € I'(f) | ¥ > 0}. Let us take any
positive ¥ € I'. Then |f|cx > 6-7%. Since |f|co < §~* by assumption, then |V f|ce-1 >
5~k if k is sufficiently big and 7 € I'(Vf). O

Another nice property of Definition 1 is that in the few cases when “everybody” knows
the size of the space scale of a function f, the scale ¢, agrees with this knowledge:

Proposition 3. If F' is a smooth function on R™ which is not a polynomial and a
function fs5 on a domain O C R™, 0 € O, is defined as fs(z) = F(zd ¢) with a > 0, then
L:(fs) < 0% If F and all its derivatives are bounded, than £, (fs) = 6°.

Proposition 4. If a function gs(z) is analytic in x € O and can be analytically
extended to the complex domain {(z + iy)|lz € O,y € C",|y| < §*}, a > 0, where it is
bounded by a d-independent constant, then £, (g) > 6°.

To prove Proposition 3 we note that [f5]cx = 6% [F|5_ao]ck, where the second
factor is positive (at least, for small §), and is bounded under the assumptions of the
second assertion. To prove Proposition4 we note that [gg]ck(o) < const 6% by the
Cauchy estimate. So any v € I' must be smaller than a and v < a.

1.2. Time-dependent functions

Let a smooth in x € O function fs(t,xz) depends on an additional “time-variable”
t € [T1,T5] , where T and T such that —oo < T7 < T» < oo may depend on § (if T = oo
then the segment should be replaced by [T7, 00); similar with T} = —o0). Now the time-
dependence of f5 has to be incorporated into the definition of a smooth space-scale. The
easiest way to do it is to consider the shortest space-scale £:*, where

B (falt) =87 = swp (fa(t, )

T <t<
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But it turns out that another space-scale £Z(fs), defined in terms of averaging rather than
in supremum-terms, is more useful. To simplify the definition we impose some restrictions
on length of the time-segment: we assume that either

a) Ty = 00, or
b) Ty — Ty = C6~° with some C' > 0 and b > 0.

Definition 2. For a function fs(¢, ) as above we set £ (f5) = 67£, where vz = sup 'y
and the set 'y is formed by all 4 such that

1 e
<E/L|f5(t,-)|2ck at) " =5 V> ks, 6 < b, (1.5)

where

L=[T,Ty] if T, —T) = C6° and

1.6
L C [T}, T»] is any segment of length oo > |L| > § b if Th = o0 ; (16)

if Ty = 0o, then b > 0 in (1.6) may depend on f.

Properties 1) — 4) stated in Proposition 2 for the scale £, remain true for the scale ¢Z.
In particular, we shall profit from the first property and shall replace in (1.5) the C*-norm
by the norm || - || of the Sobolev space H*(O;R"):

1 2 1/2 —~k /
(7 [ 1stelde) ™ = 6758 k= 0.5 < i (15)

Proposition 5. If |L| = C67% and L, is a subsegment of L such that |L;| = C167%,
then £ (f) < £ (f)-

Proof is obvious since for any non-negative function its average along L is bigger
than the average along L; times |Lq|/|L|. O

The relation
CE(F) = P (f) if A" >0 and |fs(t,x)| < C6™* forall t,z,6 (1.7)
(a is any real number), is less obvious but it will easily result from the following:

Lemma 1. If |fs(t,x)| < Co~* for all ¢,z and *"P > 0, then *"P equals sup Iy,
where the set I'g is formed by all ¥ such that sup,|fs(t, )| > 7% for k > ks and
0 < (Sk,;,.

Proof. We should check that v5"P equals v := sup{¥ € T'y}. For any £ > 0 there
exists 7. such that v(f5(7e,")) > 7" —e. Then |f5(7e,)|ge > 6~ "72)k for all k > k.
and small §. Hence, v5"P — 2¢ € Ty for each € and ' > ~5UP.

11



To prove the inverse inequality we may assume that 4 > 0 since v5"P > 0 by as-
sumption. Then for any positive € < 4’ and arbitrarily big k there exists t' = ¢. , such

that |f5(t',-)|or > 6~ ("= for § < 8, . Now by the interpolation inequality (see (A3) in
Appendix 1), for m > k we have:

58, < CLEs @) B | 5@ |E™ < cysetmRIm | gy

and |fs (t’)|]:n/m > C’l_lé_ak/mé_(’yl_s)k‘H‘. Assuming that k is sufficiently big we find that
\fs(t)],, = 6~ ('=29)m for any m > k. Thus, v(f5(t')) > ' — 2¢ and 7P > 7' since € is
arbitrarily small. O

Lemma 1 implies (1.7). Indeed, if ¥ € 'z then by (1.5) |fs(t)|, > 6~ (=2 for any
¢ > 0 and some t = tx. € L. Hence, 4 € 'y and y°"P > ~, as states (1.7).

As above, we say that a function fs5(¢,x) is short-scale if 0 < v < 0.

Example. Let us consider a linear Schrédinger equation under odd periodic boundary
conditions:

= 0Au+iu+ f(t,x), z € R" |

(1.8)
u(t,z) =ut,z1,...,2;+2,...,2,) = —u(t,z1,...,—Zj,...,Ty) V],
where f(t,x) is a smooth function, odd periodic in z, and such that
&), <Cm Vit Vm. (1.9)

The operator A = JA + i is diagonal in the sin-basis {£;(z) = sin ws121 ...sin Ts,2,|s €
N"} of the space of odd periodic functions and A&, = A\, with A\, = —dm?|s]? + i.
Writing the forcing f as f =Y fs(¢)&s and supplying (1.8) with (for example) zero initial
conditions u(0,z) = 0, we find a solution u = us(t, ) in the form us(t,z) = > us(t)Es (),
where us(t) = fg (=T f (7)dr. By (1.9), |fs(7)] < Cn|s|™" for all s and 7. Hence,
lus(t)| < C |s| ™Y /(28 |s]?) and

C 2 - - m _
HW(tv')an < <7T—2]\(;) Z|S| IN—4+2 <6 2

if we choose N > m — 2+ n/2. Thus, 71 (us) < 0 and £% (us) > 1. O
2. Spectral properties of short-scale functions

In this chapter we consider short-scale functions fs(z) and fs(t,z) with z € T =
R™ /2Z™ or x € R™. We state all results for z-periodic functions since their reformulations
for the case z € R™ are obvious.

Using Proposition 2, in definitions of the scales £, and /£ we replace C*-norms by
N LIS T 2 2k |15 |2
Sobolev norms ||-||,., where for u(z) = > ;. Use we set ||[u(z)||, = D czn(8)°" |ts]

12



with (s) = max{1,|s|}. Following a popular spectral decomposition approach to study
function spaces of Sobolev—Besov type (cf. [Tr]|), we define the quantities U,

Ur: Z |'as|2 ) 7’207

2r<|s|<2rtt

and the norms |-}, where
(Ifull},) Z‘lrkU

Since in the definition of U, the summation is taken over multi-indexes s such that 4™% <
(s)%F < 4k47k then the norm ||-||; is equivalent to [|-||:

el < Tlully < 2% [Jully, - (2.1)

Let us(x) be a smooth in = function such that 0 < = y(u) < co. Using (1.4) and item
1) of Proposition 2 we get that
Y aMy, < 5meM (2.2)
r=0
for any 72 > «; the inequality holds for arbitrarily big M and for § € {d,,a(j) \, 0}.
From other hand, by the definition of ¢, (and Proposition 2), for any v; < v we have:

Y AU, = 5T Y m > my, 6 < Sy - (2.3)
r=0

In addition to (2.2), (2.3), we assume that Ly-norm of the function us is not too big:
lullg < C5* V¥4, (2.4)
with some a > 0. For any p; < p2 < oo we define the layer 2(py, p2) C Z" as follows:

Q((pl,pg) = {8 € Zn|5_p1 < |8| < 5—p2} .

Our first theorem states that for large m, H™-norms of the function u are mostly
carried by Fourier modes, corresponding to the wave numbers close to £ !

Theorem 1. Let a function u satisfies (2.4). Then:
1) if 0 <y = 7(u) < o0, then for any € > 0 and v > 0 the inequality

> lass|* (s)*™ = (1= v) |lull,, (2.5)

se
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with A = (y — €, + €) holds for all m > m(e) and for § € {6cmu(j) \( 0}.

2) If (2.2) with some v2 < co and (2.3) with some v; > 0 hold for 6 < §p; and § < 6,
respectively (so 713 <y < 73), then for any € > 0, v > 0 the inequality (2.5) is valid with
A=2A(y1 —e,72 +¢), for all m > m. and § < ey -

We note that in the second assertion of the theorem, assumption (2.2) becomes empty
if 72 = oo. In this case the layer 2A(y; —&,72 +¢) degenerates to a complement to the ball
{Is| <o7mFe},

Our next result states that a function u is almost localised to the wave numbers

|s| < £, but not to the wave numbers |s| < ¢ !. Sobolev norms are not used now:

Theorem 2. Under the assumptions of item 1) of Theorem 1,

1) i) for any ' > v and any M > 1,

> Jass)? < Oy o™ (2.6)
s|>6—"
for 6 € {6y n(j) \ 0};

ii) for any € > 0 the averaging of a squared Fourier coefficient |a5s|2 along the layer
A=Ay —e,v+¢), defined as (|ags| Vg := |A| D ose liss|” , is such that

6° < (Jass| ) < 6€ (2.7)

for some finite constants ¢ = ¢(¢), C = C(e) and for 6 € {5.(j) \, 0}.

2) Under the assumptions of item 2) of Theorem 1, the relation (2.6) holds for any
v > v and § < §(M); the relation (2.7) with 2 = 2A(y; — &,72 + €) holds for any € > 0
and § < d(e).

Amplification. If v > 0, then for ¢ — 0 and § € {6.(j) “\, 0} estimates (2.7) of

Theorem 2 can be specified as follows: 2 < (igs|*)g < €2~ 70 | where & = &(e) is a
finite number.

Now let f5(t,x), x € T", T} <t < T be a time-dependent function and 0 < v1(f) <
00. Then for 3 < v1, we have:

1
LI T I Y S 2.5)

where L C [T, T»] is any segment as in (1.6) (see (1.5")). If To — T} = C&~°, then for
Y2 > 7y we have:

1
o [ sl e < 57 (2.9)
L] JL
for arbitrarily big M and 6 € {6, (j) ¢ 0}; now L = [T3,T5].

14



If T5 = oo, then (2.9) might hold for some segments L C [T7, 75| only. So for Tp = oo
we shall usually assume that (2.9) holds with some 75 > 7y, for each segment L such that
oo > |L| > 670

For any finite segment L C [T}, T3] and for a function f5 = 3 f5,(£)e’™® we denote:

‘f&s

A R P R TAOTH
== 5s ; 5 == 5 :
L |Ll SEIL ;

Then ||f5||i,L = Zsezn(8>2k|fas|% — the relation between ||f5||i7L and {‘fgs

2
} is the same

L

as between ||u(;||i and {|dis,]°}.

For a smooth in = function fs(t,z) with 0 < . (f) < oo direct analogies of Theorems
1,2 hold. Let us assume that
I£sll5. < Co= Vo (2.10)

for some a > 0, where the segment L is as in (1.6).

Theorem 1’. Let (2.10) holds. Then

IfT, — Ty = Cé5%and 0 < v:= v.(f5) < oo, then for any ¢ > 0 and v > 0 the
inequality > g ‘f&s‘i (s)2™ > (1 —v) ||f5||72n,L with % = A(y — &,7 + €) holds for all
m > me and § € {6 (4) \( 0}.

2) Let us assume that (2.8) and (2.9) hold with some 7; > 0 and 72 < oo for all
d < 6 and 0 < dyy, for any segment L as in (1.6) (in particular, 1 < v5(fs) < 72). Then
for any € > 0 and v > 0 the inequality in item 1) with 2 = A(y; — &,v2 + ¢) is valid for all
m > me and 6 < dzpp,.

Theorem 2’. Let (2.10) holds. Then

1) under the assumptions of the first item of Theorem 1/,

i) for any v’ > v, and any M > 1, ZIS\Z&”' |f53|2L <5 MY if§ e {0n+ () \( 0};
.2
f&s L
A(yr, — €,7L + €) estimates from below and from above by §¢ and §€ respectively, with
some finite numbers ¢ = ¢(¢), C = C(e).

ii) for any € > 0 and for 6 € {6.(j) \ 0}, averaging of

along the layer 2 =

2) Under the assumptions of the second item of Theorem 1’, assertion i) with 7' > o
and assertion ii) with & = (v, — €,72 + ¢) both hold for all sufficiently small J (the
segment L should be as in (1.6)).

For v, > 0 an obvious version of amplification to Theorem 2 can be used to specify
the statement 1ii).

3. Proof of Theorems 1, 2

15



Proof of Theorem 1. 1) Now relations (2.2), (2.3) hold with v = v+ ¢/2 and
71 = v — ¢/2. Calculations we present below are valid for any v > v > 1.

By (2.2),
U, <4 ™Ms=20=M v >0 (3.1)

for arbitrarily big M and for § € {0, () \( 0}. Assuming that M > m + 1, we estimate
a tail of the sum in (2.3) as follows:

Z 4y, < 5272 M Z 4r(m—M) < 25 212M 4R(m—M) )
r=R r=R

Let us denote p = 75 + £/2. Choosing for R the smallest integer such that 4% > §=2°/4,
we get for the tail the following bound:

oo

Z 4'r“m[]1~ < 41+M—m52M(p—72)—2pm )
r=R

For any given p > 0 the r.h.s. is smaller than p times the r.h.s. of (2.3) if M > m(p —
11)/(p—"2) =2m(p—"1)/e and if 6 € {0cpr; \( 0} is sufficiently small (in terms of m, M
and p).

Since .U, = Jlullg < C6~* by (2.4), then Y, 4r <y Urd™ < N™C5~®. Choosing
N = §72* where A\ = v; — /2, we bound the r.h.s by C§~2™*~2, This is less than p times
the r.h.s. of (2.3) if m > a/e and ¢ is sufficiently small.

We have seen that

> U 4™ > (1 —2p)5~ 2 (3.2)
§—2A<4r<d—2r /4

if m > m,, asin (2.3), m > a/e and § € {J.,(j) \( 0} is sufficiently small. Summation in
the Lh.s. of (3.2) is taken over r such that §=* < 2" < §7°/2. It corresponds to summation
over multi-indexes s from a union of the layers {2" < |s| < 2"*!}. This union is contained
in the domain {6 < [s| < § P} =2A(\, p) (this set equals A as in (2.5) due to our choice
of 71 and 73). Arguing similar, we find that

g Y s (2™ <l n — Y U4

s@U(y1—€/2,72+¢/2) d72A4r<s2r /4 (3.3)
2 2
< 2pllull’,, < 20 ful?, -

The first statement of the theorem follows from (3.3) if we choose pu = 272" v (the
estimate (3.2) will be used later).

2) Now the inequality (3.1) with 72 > 1 as in the assumption of this item holds for
all sufficiently small §. Accordingly, the estimate (3.3) is valid for all § < dgp- O
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Proof of Theorem 2. 1) i) The sum to be estimated is bounded by 22T2%5_7/ U,.
By (3.1) (with M re-denoted as N) the latter is bounded by

527N Z 4~N < 92N 527N §29'N _ 92N §2N(v'=72) |

2r>15-7'

Choosing any 72 € (v,7') and N > M~'/(2(y' — 2)) we get the result.
ii) Let us note that the Lh.s. of (3.2) is bounded from above by the sum

g N U ATy i

§2A<ar<d—2r /4 se?

where A = 2A(y1 —€/2,72 + ¢/2). Thus, choosing in (3.2) u = 1/4 we find that

Z |@53|2 > gm-1l52mlp=m)
se

It remains to estimate from above the cardinality |2(|. For § small, || differs by a factor
1+ o(1) from

5—72—5/2
n n—1 —nyx—ne/2 —ny1+ne/2
/6”1+€/2< PR C/5W1+s/2 prtdp = Cy(§ M e =g mAnel2)
Thus, |Q[| < C5—m2—ne/2 4nd
<|17,S|2>Ql > C'§2m(p=71)+ny2tne/2 (3.4)

This inequality proves the first estimate in (2.7) for § € {d.(j) \(0}.
The second estimate in (2.7) is trivial. Indeed, since ) o liss|” < ||u||g < C6 % by
(2.4) and since 2| > C16~ 727"/ for § sufficiently small, then

([tiss]?)g < CT6™2HNE/270 g 5 < 5 (3.5)

The first case of the theorem is proven.

2) In this case all the calculations presented above hold for A = A(y; —e/2,v2 +¢/2)
(item ii)) and 7" > o (item i)), for all sufficiently small 6. This proves the result if we
re-denote €/2 by e. O

Proof of Amplification. For v; = v —¢/2 and 75 = v + ¢/2 > 0 the proof of
Theorem 2 (namely, estimates (3.4), (3.5)) provides us with the following bounds for the
averaging of |fis,|”:

CIEmMTHnE I < (jii5, g < CUIETTRNETE = O/ vane/ )
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so the assertion follows. O

Proofs of Theorems 1’, 2’ are quite similar and we omit them.

4. Nonlinear Schrodinger equation

In this section we start to study space-scales of solutions u = us(t,z) for the NLS
equation
—it, = —0vAu+ |ulPu, (4.1)

where p is a natural number and
€ (0,1); v=vge+ivim, €C, |v|=1, vRe >0, vy, > 0.

The space-variable x belongs to R™, n = 1, 2, 3; for some of our results to hold we should
assume that the solution u satisfies the odd periodic boundary conditions:

u(t,z) = ult,zr,...,x;+2,...,0,) = —u(t,z1,...,—xj,...,2,) Vj=1. (4.2)
The equation (4.1) will be studied under smooth initial conditions u®(z) = u)(z):

u(0,z) = ud(z) € C(R™). (4.3)

The function u°

to meet them.

is assumed to satisfy the boundary conditions (4.2) if the solution u has

For v, > 0 the equation (4.1) is dissipative and the problem (4.1) — (4.3) has a
unique smooth solution (see e.g. [LO]). In the important special case ¥ = i the equation
takes the form

i =0Au+ilu)fu (4.4)

(and can be treated as a system of two nonlinear parabolic equations with a diagonal linear
part). For v = 1 there is no dissipation and the equation takes the hamiltonian form:

W= —idAu+i|ul* u. (4.5)

In this case the Lo-norm of a solution of (4.5), (4.2) preserves:
|U(1t)|2L2 E/ lu(t, z)|* dz = const if vym = 0.
Kn

Otherwise vy, > 0 and the Ly-norm decays,

[ult)],, < ™" Ju

2 — O‘LQ ’ (46)

since multiplying the equation (4.1) by @, integrating over K™ and taking the imaginary
part we get:

u(t)|7, < —0vpm [Vu(t)[7, < —nm?dvp, [u(t)[7, -

Sl

1
2
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(The second inequality follows from an explicit form for the eigenvalues of the operator
—A under the odd periodic boundary conditions, cf. the example in section1).

4.1.Upper estimates for space-scales of solutions

Our first goal is to show that despite the decaying of the Lo-norm by a time > 6!
(see (4.6)), a solution of (4.1), (4.3) with u®(z) ~ 1 develops a short space scale by the
time 6 1/3:

Theorem 3. Let u’ = u}(z) be a smooth function such that

sup [u2(@)| < €, osclul()] = swp Jud@)| = [ud)| =1, (@)
rxeK™ r,yc K"

and v = us(t, x), (t,x) € [0,00) x K™, be a smooth solution of (4.1), (4.3). Then for any
k < 1/3 and m > 2 there exists a u’-independent positive constant &,,, and Ty = Ty(u®, §),
0<Ty <T = 5*1/3, such that

[us(To, )| om (gny = 67" (4.8)

and oscgn|us(Ty,-)| > 1/2 , provided that § < d,,.. No boundary conditions for u on
OK™ are assumed.

Remark 1. The same result remains true for T = §~/3/C with any C > 1, if
Oms > 0 is modified accordingly. O

Remark 2. Let the function u%(x) vanishes somewhere in K™ (e.g., it is an odd
periodic function). Then supgn ‘uo(a:)| = 0SCkn ‘uo(a:)‘ Let us denote this number by
U. The assumption (4.7) reads as C > U > 1. Now the first inequality (U is bounded
by a d-independent constant C') is superficial. Indeed, let U > 1. After we rescale the
time ¢ and the solution u as t = U~2?P7, u = Uw, the equation (4.1) takes the form
—iv. = —6U~2PuAv + |v|*" v . Besides, sup |v(0)| = osc |v(0)| = 1. Applying Theorem 3 to
the equation for v we get that u(t,x) satisfies inequalities (4.8) in the stronger form:

sup |us (E)] rm gy = yrpmetlgmme (4.9)
0<t<§—1/3U—4p/3

O

By estimate (4.8), £if (U5) < 6'/3. Theorem 3 also implies an upper bound for the
scale L (ug). To get it some preliminary work has to be done.

Since [u|gm(gny < Cm [l 12 = Cm U] gramsa(gny (we recall that n < 3), then for any
m > 4 we have:
m — 2

sup  lus(t)],, > Crnd " "Fm Ry, = K (4.8")
0<t<5-1/3/2 m
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(we use Remark 1). Let us choose k = k,,, /* 1/3, then also &, / 1/3. By (4.8), segment
[0,T"], T" = §~1/3 /2, contains a point t, such that

fult)ll = Enn = Cond™ ™.

1 T T’
lu(®)l,, dt > [fu(t)ll, — /
TI - t* \/t; t*

(the integral in the r.h.s. is well defined since the function |lu(t)||,, is absolutely continuous
and Lipschitz), then

Since

d
— t dt
|

d
d ||u<t>||m\)dt > B,

i | ol + @ -]

ty

Similar estimate holds for the integral from 0 to t. and we get that

I d

— Dllyy + T |2 [0(t) | )t > B 4.10

= A (TR O L (4.10)
For any real number u we denote u; = max (0,u) and u_ = —min (0,u) (so ux >0

and u = uy —u_). We need the following corollary from (4.10):
Lemma 2. If in addition to the assumptions of Theorem 3 we have
[ugllm < Cras
then
e 1304 — MR,
7 (@l + 872G ) )de > O

with T' = 6 1/3, for all § < 5m(Hu0Hm).

Proof. For short we denote f(t) = |lu(t)]|,,. We may assume that f(t') < E,,/3 for
some point ¢’ € [T7,2T'] — otherwise the estimate with C,, = C,,/3 is obvious. Since

||ug||m < CJ,, then also f(0) < E,,,/3. Hence, |f(t') — f(0)| = fot/ f’(t)dt‘ < %Em, or

<ZE,, .

2
3

/Otl (f'(t)  dt - /Ot, (f'(¢)) _dt

Since t' > T”, then by (4.10)

t 1 , 1 ,
258 [ (74 567 4 58 )Yt 2 B
0
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Combining the last two estimates we get that

g 2 1
251/3/ (f+5—1/3(fl)+)dt2Em_§Em:gEm,
0

and the lemma is proven with C,,, = %C’m. [

To make the next step we assume that u is a smooth solution of (4.1) — (4.3), where
u®(x) satisfies (4.7) and |luglm < C;,. Let us denote by HJ the subspace of odd periodic
functions from H;} (R";C) (these functions satisfy (4.2)). We supply the space H.}, with

loc
the homogeneous Hilbert norm ||-||, , where

Jully, = e (w0hm =2 [ ((~A)"u)oda

(the factor 27" stands to normalise the measure dz on T™). Multiplying (4.1) by u(t) in
HZ, we get:
1d

2 2 2 2
= lull, = =6vm [l + Tl ) < [0 | ul,, -

Hence, (d/dt) ||ul],, < H|u|2puH and (d/dt||ul],,)+ < H|u|2puH . Using Lemma 2 we find
that " "

1 (7 )
T/o (Il + 672 [l | )at > o= (4.11)
if ¢ is sufficiently small. Since
2 2 2p— bt pnte
[l | < Gl 0l < € C ull ulls”™ ™ Il

(for the first inequality which holds with any £ > 0 see e.g. Appendix 1 in [K1], the second
is an interpolation, see Appendix 1.A) and since Ly-norm of the solution u decays (see
(4.6)), then we have:

2 2—%"_1 1+M 1+L‘|‘1
el < oo a2 il 5 < ool

Thus,
L 1+0(m™1) -
1 | 4677 Rl ) 2 €455 =
0

with O(m™!) = (pn + 1)/m. Abbreviating fOT...dt to [...dt, we see that either
[llull,, dt > 1F,, or [671/3 ||u||:n+o(m_1) dt > 5 F,,. In the second case we use the Holder

1 1+0(m~1)
inequality with p = 2/(1+0(m 1)) to get that [ |lul X Vat < ([|jul?, dt) = -1
and

2 1 1/3 d —2m '?'m71 —2mx!
|ull, dt > (QFm(S ) =C,,0 om0 =: (O, § m
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where «/, ,/1/3. The case [ |lul|,, dt > 1F,, implies a better estimate and we get:

Theorem 4. Let us(t,xz) be a smooth solution of the problem (4.1) — (4.3), where
|ud|l < CL, and oscgn|ul| > 1. Then the following estimates hold for m > 4 with some
K, /5 and Cyy, > 0:

5-1/3
0 [l e > O i < 0
0

Due to this result, E&O’éil/s] (us) < 6%/3. Using Proposition 5 we find that ¢ (us) < 61/3

for any L =[0,67°], b > 3.
4.2. Equations with pure dissipative linear part
The results of Theorem 4 are not too far from optimal, at least when vr. = 0 and the

equation (4.1) takes the form (4.4):

Theorem 5. For any smooth function u°(x) the problem (4.2) — (4.4) has a unique
smooth solution wus(t, ). This solution satisfies the following estimates:

lus(t, )| po < min(|u®] o, Kie % |40 ), K1 =22 K =nx’n/4, (4.12)
C C C

and *
us(t,)]],, < Cpd~ ™/ 2e=0tKAtmp) (4.13)

for any m > 0 and 6 > 0.
The theorem is proven is section 6.

The last two theorems and (1.7) show that if us(¢,z), t € L = [0,57%], is a solution
for the problem (4.2) — (4.4) and |u®|co = 1, then

5172 < K;nf(u(;) < (L (us) < 53  provided that b > (4.14)

Wl

(we recall that |u®|co = osc |u®| for any odd periodic function u?).

Now let us assume that a function wu(t,x) is a solution for (4.4) which is odd 2M-
periodic (rather than 2-periodic as before) and sup [u’(z)] = U. Let both M and U be
of the form C¢%¢. The substitution z = My,t = U 2P7,u = Uv implies for the odd 2-
periodic function v(7,y) equation (4.4) with § replaced by § = 6M ~2U 2P, Applying to
v estimates (4.14), we find that the solution u(t,z) with t € L = [0,07°], where 67 >
§—1/3M2/3U~4p/3  is such that

1/3
)

§Y2UP < 0E(u) < (SMU?) (4.15)

* see the footnote on p.28
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provided that ¢’ < 1. (The first estimate in (4.15) means that ¢L > §/2-4P  where
U = C16%. Similar with the second.)

If we choose t > N§~1¢n§~! with sufficiently big N, then the third factor in the r.h.s.
of (4.13) becomes smaller than 6“5(1+™P) where L grows to infinity with N. Since p > 1,
then for any ¢ > 0, [Jus(t)][,, < Crnd™ if t > N(c)6~"¢nd~1. It means that in contrast to
(4.14), L (us) > 6 ¢ if L = [Ty, Tz] with Ty, > Ty > 6 YUn L.

Now Theorems 1/, 2’ are applicable to study spectral properties of solutions for problem
(4.2) — (4.4). In particular, the following results hold true:

Corollary 2. Let us(t,z) = Y li55(t)e?™ ", where t € L = [0,57%] with b > 1/3, be
a smooth solution of the problem (4.2) — (4.4) with |u0‘co = 1. Then:

1) for any 7' > 1/2 and any M, >_ > 5 |1258|2L < MY 5 < O

2) for any € > 0,

C<RUAB—e1/24) T DT sl <66
seA(1/3—¢€,1/2+¢)

with some finite c(¢), C(e) and for each § < d;
3) yr(us) € [1/3,1/2] and

¢ -1 ~ n+o
()% < |tk — e, 0% +2)| > sl < @)
s€A(L —e L +e)

with some finite ¢é(¢) and for each § € {0.(j) \, 0}.

5. Proof of Theorem 3
5.1. The polar coordinate representation

We write a solution v = ug(t,z) of equation (4.1) as u = re*? , r > 0. The phase
©(t,z) is defined modulo 277Z; we fix any its choice, continuous in ¢ and x outside the
zero-set Y = r~1(0).

Proofs of Theorems 3 and 5 use equations for the real functions r and ¢:

Lemma 3. If u = re*? satisfies (4.1), then for (t,z) ¢ ¥ we have:

r=90Imv¥ = (SV]m\IfRe + (SVRe\Iljm s (51)
4] o 4]

Qb = T’2p — —RevV¥ = 7“2p + —I/[m\I’[m — _VRe\IlRe 5 (52)
r r r

where U = Vg, + 1Py, with Vg, = Ar —r |Vg0|2 and ¥y, =rAp+2Vr- V.
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Proof. Since
Au = e(Ar —r |Vo|*) + i (rAgp + 2Vr - V) = U,
then we can rewrite (4.1) as
7' + ipre'f = i = —idvWe'¥ 4 ir?PTlel?,
Comparing coefficients in front of e?? and ie*® in the Lh.s. and the r.h.s. we get that

7 =¢6Imv¥ and ¢r = r?Pt! — §Rev V. O

In particular, if u solves (4.5), then v = ¢ and the equations for r and ¢ take the
forms:

i =6Ar — 61|Vl | (5.3)

)
¢:r2p+5Ag0+2;Vr-Vg0. (5.4)

5.2. Proof of the theorem

Till the end of the proof we fix any m > 2. We may assume that [uO]Cm(Kn) <L gTmE
— otherwise we have nothing to prove. Then by (4.7) and the interpolation inequality
(A4) (see Appendix 1.B),
Vul(z)| < C65™" Vxe K™

By (4.7), sup [u®| > 1+min [u°|. Let 2’ € K™ be any point such that [u°(z")| > 1+min |u|.
Using again (4.7) we find a cube K C K™ such that z’ € K and

C > |u0(x)‘ >

1
Ve e K, oIs(c|u0‘:§. (5.5)

(NN

Since oscg [u®| = 1/2 and V]u®| < C6~*, then

K

v/n > diam K > 5—0 . (5.6)

First we shall show that

sup [u(t)]omx) >0 ™" V6 < dpe, (5.7)
0<t<T

where T = §~1/3. To prove (5.7) we assume the opposite, i.e., that for some § < &, we
have

[u(t)em@ey < B™ Vi€ [0,T], (5.8)

where R = 6", and derive from (5.8) a contradiction. Below we abbreviate [-|cm (k) to
[]m; we note that [Jo = |- |co.
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We write u and u® as u = re’? and u® = 1%’ . Let T7; < T be the biggest number
such that

r(t,z) —r’(z)| < VO<t<Ty, z€K. (5.9)

By (5.5) and (5.9),

Cr>r(t,x) =|ult,z)| > - VO<t<T,zcK. (5.10)

Interpolating the first inequality with (5.8) (see Appendix 1.B3) and using (5.6) we get
that
[w(®)]k < Ci((diam K)~ [u(®)o + @]y " u(®)]i/™) < CR*

for t <Tj and 0 < k < m. Since |u(t,x)| > 1/4 (see (5.10)), then also
r®) <CR* VYt<Ty, 0<k<m, (5.11)

and
[Vot)s_1 <CRF Vt<Ti, 1<k<m. (5.12)

Lemma 4. If P(t,z) = r*0%r...0% ..., where a is an integer and the dots stand
for finite products of similar derivatives with |a;| = ¢; (0 < ¢; < m) and |5;]| = r;
(1 <rj <m), then for 0 <t < Ty we have |P(t)|, < CRH, where = {; + > ;.

Proof. We should show that
r*9% r... 05 p...| < CRH (5.13)

for 0 <t <Tj and z € K. Since, first, the total number of derivatives in the L.h.s. of (5.13)
equals p and any single derivative contributes the factor C'R to an upper estimate for the

sup-norm (see (5.11), (5.12)), and, second, both  and r~! are bounded by a constant (see
(5.10)), then (5.13) follows. O

In the domain [0,73] x K the functions r and ¢ satisfy equations (5.1), (5.2). Using
the last lemma we estimate the r.h.s.’s of these equations as follows:

[6Imv¥(t)]y < COR? (5.14)
E 2
—Reu\Il(t)] < OSR? . (5.15)
r 0
By (5.1) and (5.14),
r(t,x) —r’(z)| < CTL6R? < C525—r) (5.16)

Since k < 1/3, then the r.h.s. is smaller than 1/5 if 6 < §,,, with sufficiently small d,,. It
shows that
T ="T. (5.17)
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Hence, estimates (5.8) — (5.16) hold for 0 <¢ < T.

By (5.5) there exist points z1,z2 € K such that (r°)?P(zy) — (r°)?P(25) > 2C, > 0.
Hence, r?P(t, 1) — 7?P(t,x2) > C, for 0 < t < T (see (5.16) and (5.10)). Using equation
(5.2) and the last estimate we get that

‘(@(Tal’l) — (T, 332)) - (900(351) - @0(332))\ > T(C'* —2 sup

t<T,ccK |T

éRe wp‘) . (5.18)

By (5.15), Cy — 2sup |2Rev¥| > C\ — 2C6R? > C, /2 if § is small. From other hand, by
(5.6) and (5.12) the Lh.s. in (5.18) is bounded by 2,/nCR and we arrive at the inequality

2v/nCR = 2/nCé* >TC, /2 =6"13C, /2.

Since k < 1/3, then we got a contradiction, provided that § is sufficiently small. This
contradiction proves (5.7).

By (5.9) and (5.17) we get that oscx|u(Tp,-)| > 1/2. So also osckn|u(Tp, )| > 1/2
and the theorem is proven. O

Remark. Let us(t, ) be an odd periodic solution of (4.1) such that |u®|co(gn) = 1.

Then osc [u’| = 1 and Theorem 3 is applicable. Let Ty < §~*/3 be the first moment when
(4.8) holds. We claim that

S |U5(t)|CO(Kn) S — VO0<t< TO- (519)

N | =

Indeed, the first inequality is proven already. To prove the second we assume that it is
violated and find a point (tg, zg),to < To, such that |us(to, zo)| = 3/2 and |us(t)|co < 3/2
for t < tg. Next we find any point t; € [0,¢o] where |us(t1,z0)| = 1 and consider equation
(4.1) for t > t; with wus(t1,-) as a new initial condition. Since 3/2 > oscl|us(ty)| =
lus(t1)|co > 1, then we can apply to this initial-value problem our proof of Theorem 3.
Doing this we choose ' = x(, construct a new cube K > 2’ and find Tj) < t; + 6~1/3 such
that |u(7p)|cm k) = R™. By (5.9), |u(t,zo)| < 5/4 for 0 < t < Tj. Since we must have
T4 > To, then |us(to, xo)| < 5/4. This contradiction proves the second estimate in (5.19).
U

6. Proof of Theorem 5
To prove (4.12) we write u = re*?. The function r > 0 is continuous in the cylinder
II = [0,00) x K™; outside the zero-set ¥ = r~1(0) it is smooth and satisfies equation (5.3):
i =0Ar — 61 |Vol?, (t,z) eIl\X.

The function

n
—étnn? ™ 1
E(t,m) =|u’|oe /4j1:[1\/§(505§(95j—§)

26



is positive in IT and solves there the equation £ = §A¢. Besides, £ > |[u%|¢o in {O} x K™.
Now let us consider the function h = ¢ — r. In II\X we have: i = 6Ah + 67 |Vy|>. Since
h is nonnegative on the boundary

O(IN\X) = ([0,00) x OK™) UOT U ({0} x K™)

(0% is the boundary of ¥ in II) and since ér |V<p|2 > 0, then by the maximum principle
h > 0 in II\X. (We apply the principle to a parabolic equation in arbitrary domain. In
the form we need it can be found e.g. in [La].). It means that everywhere in IT we have:

r(t,z) < €t x) <22 |ul| o dtn? /4

Replacing in these arguments £(¢,x) by the constant function equal |u®|co we get that
lu(t, z)| < |u®|co everywhere in II. So (4.12) is proven.

Now we prove (4.13). For m = 0 the estimate follows from (4.12) (or from (4.6)). To
prove it for m > 1 we apply to (4.4) any operator 9%/0z* with |a| = m, multiply the
equation by 0%u/0z®, integrate over T" against the measure 27 "dz and take imaginary
part of the result. Summing up the obtained relations with all |o| = m we get:

d . .2 2 _
7 el < =l +277 >0 >0 !/wn~wwMﬂdx, (6.1)
|a|=m a1+to2pr1=a

where u; = 0% u/0x% for j < 2p+ 1 and ugpro = 0%u/0z*. Next we estimate any term
I in the sum in the r.h.s. of (6.1), I = [ |uq|- -+ |ugpt2| dz. By the Holder estimate,

I< |U/1|Lr1 T |7~52p-l-2|[,r2pJr2 ) (62)
where r; = w for j <2p+1 and ropt2 = 2(;?7:21) . Let us apply to each factor in the
J

r.h.s. of (6.2) the Gagliardo—Nirenberg inequality [Ni]:
[uily,, = C(Julp ™ lhellgrsy + ulp) < Cululz * Julliiys (6.3)

(the second inequality holds since |u|, < C'|lull, < Cllull,,,,). The exponent a; is such
that

m; —n/r; m;

P> ! > — 6.4
aj_(m+1)—n/2’ CLj_m—kl (6:4)
with m; = || (so my + -+ + mopy1 = Mmaopra = m). We take a; = mm—il (this choice

satisfies (6.4)) and get from (6.2), (6.3) that

2m
2p+2—A | 1A

I<CRl " ullga A:a1+---+a2p+2:m7+1. (6.5)

Now (4.12), (6.1) and (6.5) imply the following differential inequality:

8 A
Sl < =8Il g+ Crae ™ ECPE2=) 7
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Hence, * the norm |Jul|, decreases with ¢ if § ||u||fnJrl > O e 0tKQCp+2-4) ||u||i+1, ie., if
lall g = €671/ em P
mtl 2
If |||, increases, than the last inequality must hold with the opposite sign and
e T A e o
(6.6)

_ Cméfm/ZefétK(l—{—pm) )

Since (6.6) holds for t = 0 (if J is sufficiently small), then ||u||,, never can surpass the r.h.s.
of (6.6) and (4.13) follows. O

7. Randomly forced NLS equations

In this section we discuss the NLS equation (4.1) forced by a random force and estimate
space-scales of its solutions. Now a solution is a random field and the randomness has to
be incorporated into a definition of the space-scale. We do this in the easiest way and just
replace in (1.5’) the squared function norm by its expectation. We denote thus defined
averaged space-scale as (LF = 5. See Appendix 2 for the exact definition and for main
properties of the scale ¢L°F.

7.1. Preliminaries

We consider perturbations of equation (4.1) with p = 1 and v = i (the first assumption
is made to simplify the presentation while the second is needed for Theorem 7 below, but
not for Theorem 6):

W —0Au—ilul®u= ). (7.1)
Everywhere in this section solutions u are assumed to be odd periodic in z.

The force ¢ in (7.1) is a random field with an underlying probability space (2, F, P),
where the measure P is assumed to be complete. This random field is assumed to admit a
realization such that for a.a. w the function ¢* is measurable in (¢, z), smooth odd periodic
in z, bounded locally uniformly in ¢ and uniformly in x. Besides, for any x the random
process (“(-,x) is stationary with integrable correlation and all moments of the random
variable [(“(¢,-)|om are finite for any m. More specifically this means that ( satisfies
assumptions (H1), (H2) from [K2| together with the following one:

* Correction (made in November 2001). The arguments below are wrong. They
become correct if we replace e 9K (2r+2=4) by one. So, |[u(t,-)||m < Cmd~™/2 for all t.
Interpolating (4.12) and the last inequality with m replace by M > 1, we find that

sty )|lm < CF 5™/ 200K (4.13)
for any fixed K/ < K.
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(H3) (finite moments). For any m and M,

E(|¢*()]gm) < Comonr - (7.2)

Examples 1, 3 and 4, given in section 6 of [K2], satisfy the assumptions (H1) — (H3)

(as well as Example 2, if there the coefficients zs are of the form z; = 0(|s|_M) for any
M). For the reader’s convenience we repeat here Example1 from [K2]:

Example. Let (“(t,z) = (“(t)w(x), where (“(t) is a stationary Gaussian process
(real or complex) with an integrable correlation and a spectral density which is positive
at zero. The complex function w(x) is smooth odd periodic and its gradient, restricted to
OK™, does not vanish identically.

Validity of the assumptions (H1), (H2) for the process ¢“ is checked in [K2]; (H3) is
now obvious. U

We supplement the equation by zero initial conditions:
u(0,2) =0. (7.3)

(Our results remain true if (7.3) is replaced by some mild restrictions on the random
function u“(0,z). For example, by the following: |u“(0,-)|;0 < C a.s. (= almost surely

with respect to the measure P) and E |u®(0, )|ifm < Cppd 3™ for m > 1).

We define an (odd periodic) strong random solution u = u§ (¢t,z) (¢t > 0,z € R") of
(7.1), (7.3) as an F-measurable random field such that for all w outside a zero-measure set
Q, € F the function u§(-,) is a strong odd periodic solution of (7.1), (7.3). Namely,

i) u¥ is Lipschitz in (¢,z) (locally uniformly in ¢, uniformly in =) and C*-smooth in z;
ii) it satisfies (7.1), (7.3) (the derivative @(¢, ) is defined Lebesgue — almost everywhere
by the Rademacher theorem).

If ¢“(-,-) was a continuous function, then we would define a strong solution in the
usual way, i.e., as a C''-smooth in time, C?-smooth in space function which satisfies the
equation and the initial conditions. But the class of discontinuous in time forces ( is too
important and convenient to be neglected, so we stuck to the definition i), ii).

By our assumptions, the function (“(-,-) is bounded locally in ¢ and is smooth in x
for w € Qp with a zero-measure subset 2. For any fixed w ¢ ),

1) the equation (7.1) (considered as a deterministic equation with the smooth in z
r.h.s. ¢ = (%) has a unique solution u(¢,z) which meets (7.3). We denote it as u = U(().

For any fixed T' > 0 we set Q = [0,T] x K™.

2) The restriction u|g, in the norm of the space Hs := Lo ([0,T], C?(K™)), continu-
ously depends on (|¢ in the norm of the space H, with some ¢ > 2 (one can take ¢ = 4,
but this is irrelevant for us now),

3) u|q does not depend on (|i7,00)xxn and (|(—oco,0]x K"
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— These are commonplace results which follow, for example, from [LO], or can be
obtained by means of deterministic versions of the estimates we use below to prove Theo-
rem?.

Now we define a random field u* as u* = U(¢¥) if w &€ Qo and v = 0 if w € Q.
Since the map U is continuous, then v is F-measurable, so it is a strong random solution
of (7.1), (7.3) with Q, = Q. By 1), the solution is a.s. uniquely defined.

Remark. By 3) the strong random solution u* is progressively measurable. That is,
any random variable u“(t,z) is measurable with respect to the o-algebra Fjy4 which is
generated by the random variables (¥ (7,y) with 0 <7 <t and y € K™. O

Our goal in next subsections is to study strong random solutions uy, which from now
on we call just “solutions”.

7.2. Lower estimates

In [K2] (see there Theorem 6 and estimate (5.8)) we prove the following result:

Theorem 6. For any ¢y > 0, L > §~' and m > 6 a solution u = u$(¢,z) for the
problem (7.1), (7.3) with 0 < J < 1 satisfies the following estimate with a probability

>1/2:

1 [totLl 5 5
E/ <||u||m+61 |l u] )dt > ol B | (7.4)
to m

To get from (7.4) a lower bound for ||u||72n, we need an upper bound for |u(t)|o:
Lemma 5. The following estimate holds for all ¢ > 0 with any m € N:

E|uf(t, )y <Cpnd™™ if 0<d6<1. (7.5)

Proof. As in the proof of estimate (4.12) in Theorem 5, we write the solution u¢
in the polar form: uj = r®ei?” . The function r = r* > 0 is as smooth as u outside the
zero-set ¥ = X% = u~1(0) C II = [0,00) x K™ (we note that ¥ contains {0} x K™). In
IT\X it satisfies the equation

P =0Ar — or |Ve|” + Re(¢¥e ™),
cf. Lemma 3. We consider the function p(z) = [[7_; cos T (z; — 1) (it is > 27"/2 in K™),
denote by n“(t) the random process n“(t) = (¥ (t§|CO and consider the following equation

in II: .
£ =0AE+ 2" (t) ()

Since Ay = —nm?u/4, then the function

t
Elt,z) =2"u(a) [ (r)e o s
0
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(defined for a.a. w) is a positive in II solution for this equation. Because the assumption
(H3),
E[£(t)[o <Cmd ™ VYm>1.

Indeed, to prove this estimate, say, for m = 2 we write £(t, z)? as

t t
2”/,6(17)2 / / nw(,rl)nw(7_2)e—6n772 ((tl—rl)—l—(tg—m))/4d7_1d7_2 )
0 0

Using (H3) we get that En“(r1)n”(r2) < Co 2. Hence, expectation of the C%-norm of the
integral is bounded by C§ 2, as stated.

Now let us consider the domain @ = Q“ = II\X“ and the function h = £ — r. Since
¢ > 0 in IT and r vanishes on 0Q), then there h > 0. In Q) it satisfies the parabolic equation:

h=6Ah+ (6r IVo|” + n(t)2"% 1 — Re Ce ™) .
Since » > 0 and Re(e™% < 7, then the term in the brackets is non-negative and by the
maximum principle [La] A > 0 in @ for a.a w.

Thus, a.s. r < & everywhere in II and (7.5) follows from the estimate for the moments
of |£(t)]co- O

Using (7.5) we can estimate expectation of the cubic in u term in the Lh.s. of (7.4).

2
Indeed, } |u|2 uH is bounded by the sum of all terms J of the form

m

0% u
2 2 2
7= [l fuaf sl de s = S s =y

where m; + mg +mgs = m. By the Holder estimate, J < H?:l |uy|i where 7; = 2m/m;.
"y
By the Gagliardo—Nirenberg inequality (see (6.3) with m + 1 replaced by m), for a.a. w

aj

we have: |u;|, < C’|u|lc_0aj |ul[,7, where a; > (m; —n/r;)/(m —n/2) and a; > m;/m.
vy

Choosing a; = m;/m we get that

J < C |u|2(3*01*a2*a3) ||’U'||3,5a1+a2+a3)

4 2
co = Clufgo [|ull, -

Accordingly,
2 2
|lulu| < lul,. (7.6)

to+L

 ccdt to [---dt, we have from (7.6) and Lemma 5 (using the

Abbreviating %
Holder estimate) that

JE|wrd] < [Blutolal,,

1/2
< </E|u|400 dt) </E||u||3n dt)"? < c52 </E||u||fn dt)
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Besides, [ E |[ul,, dt < ([ E|[u|?, dt) 2, By Theorem 6, expectation of the Lh.s. of (7.4)
is bigger than one-half of the r.h.s.. Thus,

1
015_3(/E||u||fn dt)"* > E (l.h.s. of (7.4)) > 50—15—5—7m+% ,
and —
1 [* /2 1
<Z/ E ||u||fn dt) > 10;15_1%m+3'5 for m>6, L>06"".
to

It means that the averaged space-scale of the solution u obeys the estimate E[O °); E( ) <

5317 ., fyg o) > 3 5

7.3. Upper estimates

For solutions of the problem (7.1), (7.3) we have an a priori bound, similar to the
estimate we got for solutions of (4.4):

Theorem 7. For t > 0 and any m > 1, an odd perlodlc solution for the problem
(7.1), (7.3) with 0 < ¢ < 1 satisfies the estimate E ||u§ (¢, )|| < Cppd—3m=2,

Proof. Arguing as in section 6, we apply to (7.1) a differentiation 0%/0z%, |a| =
m, and take the L?-scalar product with 0%u/8z®. Since a.s. [0%C/0z*0%u/0x* dx =
(=1)™ [ 0?*(/dz**udz , then summing up all these relations we get that

sl <=l +2m 3 Y [l ualde + Cluleo Ko

|a|=m c1taztaz=a

where u; = 0%u/0x* for j <3 and uqy = 0%u/0x“. As in section 6, we get the differential
inequality:

d A
pr lull, < =26 Jlull7, 1 + Clulee” Nl + Clulgo [Clgem (7.7)
where A = 2m/ (m —|— 1). Let us denote E ||u(t)||i,b = fm(t). Applying the Jung inequality

to the term C |u| ||u|| averaging the estimate (7.7) and using (7.5) we get:

m—+1?

d

T fm(t) < ~20fui1 + G5B ju| S 95 f, ) + CE Jul o < C .

Thus, f,,(t) is a bounded Lipschitz function.

(To justify our calculations, smooth in z bounded approximations to the solutions
u = u§ should be used. This can be done, for example, like that: By assumption (H1)
(see [K2]), for any T' < oo and y > 0 there exists a set 2, € F such that P(Q\Q,) < v
and [(¥(t)|gm < Cmy for w € Q, and 0 <t < T. We redefine (¥ to be zero outside €2,
and denote by u, = uﬁ;& a corresponding solution. For w € €2, and 0 < ¢ < T the new
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solution u. equals u. The norms |u,(t)|, are bounded uniformly in 0 <¢ < T and w € Q.
Thus, for u, and f,,, all our calculations are justified and imply the estimates we discuss,
with some ~-independent constants. Since u, = u in €2, then the limiting functions f,,(t)
inherit the estimates.)

After we know that the functions f,, are Lipschitz, we average (7.7) using the Holder
estimate and (7.5):

d 472_7’”1 m—+1
T fm < =20 fmnr +E Ju()|go ™ [Jul®)] 4 CnBlulco

< =20 fpi1 + Cond ™ WIT fITT 4 Cd "

We see that f,,(t) decreases if 0f,,4 1 > C6 1 and §f, 1 > C6~ Esy E That is, if
U > C63(m+1) =2 Hence, if f,, increases, then the last inequality must be reversed
m+1 ) ) q Yy

and
f <f1/(m+1)fm/(m+1) < s~ 3m— 2

Since initially f,,,(0) = 0, then f,,,(f) never can surpass the r.h.s. of the last inequality and
the theorem’s assertion follows. O

Theorem 7 implies that £19-0): E( ) > 6%/2. Thus,
0o 3
> 7 (u) > . (7.8)

— the solution v is short-scale.

We emphasise that the estimates (7.8) do not depend on the space-dimension n and
on the specific choice of the random field ¢ which satisfies (H1)—-(H3).

Remark. Estimates similar to (7.8) hold for solutions for the NLS equation forced by
a small force 6°¢ with 2 > ¢ > 0 and ¢ as in (7.2). Now an analogy of Theorem 6 follows
from [K2, Theorem 4]. O

7.4. Spectral properties of solutions

Theorems 6, 7 jointly with the theorems from Appendix 2 imply that the solution uy
is carried by “high but not too high” modes. To state the result, for any finite segment
L C [0,00) we denote:

w 2 ]‘ w 2
01 = o7 [ Bl sl =g [ Elsora.

Applying to u item 3) of Theorem A2.2 we get:

Corollary 3. 1) For any v > % and any M > 0 we have:

> lagly <M, (7.9)

|s|>6—"
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for any segment L such that |L| > §~! and for all § < s
2) For any € > 0 there exist finite numbers ¢ and C such that

1

¢ < =D Jagl] < 0%, A=A(6T T 67 (7.10)
|§2l| seA
for any |L| > 6~ and all § < 6. O

Applying to v Theorem A.2 we get that most part of the averaged squared Sobolev
norm ||u||fnL =Y (s)m |1ls|i is supported by the modes 45 with wave vectors s from the
layer 2 as in Corollary 3 (if m > m, and |L| > §~1).

Remark. Applying Theorems 6, 7 to estimate spectral properties of solutions, we
can argue slightly differently. Namely, we can fix any finite segment L C [0, 00), |L| > 61,
and consider (LE(y) = §7C . The exponent vE satisfies the same estimates (7.8). Now,
applying item 3) of Theorem A2.2 we get again the assertions of Corollary 3, but applying
item 2) we get that (7.9) with any 7' > +E and (7.10) with 2l replaced by 2A(vZ —¢e,vF +¢)
hold for ¢ from corresponding subsequences. O

7.5 On stationary solutions

Let as assume that a solution u§ of (7.1), (7.3) converges with time to a stationary
in ¢, odd periodic in z solution of (7.1). Namely, we assume that the shifted random field
uf (t + 7,2) when 7 — oo converges in distribution to a stationary in ¢, odd periodic in
x random field Uy’ (¢, ) which solves (7.1) and that u§ (¢ + 7,-) converges to Us(t,-) in
distribution in any Sobolev space of odd periodic functions of x. (It is not our goal in
this work to prove this convergence; cf. [FM], Theorem 3.1.) The solution U describes
stationary turbulence in equation (7.1).

Passing to limit in (7.6) we see that the same relation holds for the stationary field U.
Hence, E ||U(t)||ilm > C! §76m/1THT for any t. Passing to the limit in Theorem 7 we get
that E ||U(t)||i,m < C,673m™2. These lower and upper bounds show that the exponent
~vE of the space-scale of the stationary solution U also satisfies estimates (7.8).

2

For Fourier coefficients U ¥.(t) of the process U, time-ensemble averages ‘Ug‘; equal to
L

. 2
expectations E ‘U o (t)‘ (which are time-independent). These quantities represent energies

of the corresponding wave vectors for the random field U; we denote them E;. The energy
spectrum {E,} satisfies the estimates given in Corollary 3. Besides, since E ||U(t)||(2) <
C5 2, then we can apply to U item 1) of Theorem A2.2 and the amplification to get better
estimates, valid for all § from a subsequence, converging to zero:

i) for any 7' > yg and any M > 1, 37, o5 Es < 6 MY for 6 e {6582(3) \( 0};

ii) for any € > 0, there exist finite numbers ¢(¢) and C(¢) = n+ 2/n + o(1) such that
8¢ < UMY cq Bs < 0C, where A = A(YE — e, +¢), for § € {3.(j) \, 0}. Cf. the
Remark at the end of section 7.4.
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8.Generalisations
8.1. Other equations

It seems that now mathematicians working on the problem of turbulence agree that
the decaying turbulence is a property of solutions of quasilinear PDEs of the form

(non-linear homogeneous hamiltonian PDE) + (small linear damping) = 0; (8.1)

solutions of (8.1) have to be studied while they remain much bigger than the damping.
The stationary (or non-decaying) turbulence is a property of solutions of equations of the
form

(non-linear homogeneous hamiltonian PDE)+(small linear damping) = (8.2)

= (order-one forcing),

where the forcing is a random field, smooth in space and stationary in time. (The sta-
tionarity assumption can be replaced by a weaker restriction.) Notorious, both for their
importance and difficulty, examples of (8.1), (8.2) are given by the NS equations, free and
forced respectively.

The approach to estimate space-scales of solutions of the NLS equations and to obtain
for them a weak analogy of the Kolmogorov-Obukhov law which we develop in [K2] and
in this work is rather general. It applies to (8.1), (8.2) if we know that

i) some functional norms of nonzero solutions of the non-linear hamiltonian PDE grow
with time at least linearly (e.g., they blow up in finite time).

Practically (due to the non-linear homogeneity), i) follows from

ii) the non-linear hamiltonian PDE is “integrable” in the sense that its solutions are
given by explicit (or half-explicit) formulas, and the equation has continuous spectrum.

Example 1. The assumption i) (and ii)) follows if the hamiltonian equation takes
the form u(t,z) = V(u(t,z)), where u varies in a symplectic linear space (R, w,) and
V is an integrable nonlinear homogeneous hamiltonian vector field in R**. The NLS
equations correspond to the hamiltonian equations % = i|u|?”u in the symplectic space
(C, (i/2) dz AdZ). Nonlinear wave equations ii = §Au —u**! correspond to the integrable
equations @ = v, = —u?**1 and can be treated similar. O

Example 2. The free and forced Burgers equations

0
U— OUpy + a—uz =0, u is odd 2-periodic in z € R! | (8.3)
x
0
U— OUgy + a—uz = (¥(t,z), wuis odd 2-periodic in z € R, (8.4)
x

correspond to the Hopf equation

)
U+ 8—u2 =0, wuis odd 2-periodic in z € R!. (8.5)
X
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This equation is hamiltonian and can be integrated by the method of characteristics, so
it satisfies ii). After a finite time any nonzero solution of (8.5) develops a shock and its
C'-norm blows up, so i) also holds. Turbulence in (8.4) (see [EKMS]) and especially in
(8.3) with random initial conditions (see references in [F], p.142) was intensively studied
since these equations can be integrated by means of the Hopf-Cole transformation. Our
approach is applicable to generalisations of these equations (the dimension n = 1 and/or
the degree two of the nonlinearity can be increased, the Laplacian can be replaced by any
elliptic operator). O

Although our techniques suit the randomly forced Burgers equation (8.4) as well as
the NLS equation (3), in some important respects the “turbulent limits” § — 0 for these
two equations are rather different. Indeed, when § — 0, solutions of (8.4) converge to
viscous solutions of the forced Hopf equation:

. 8 2 w
u+%u = (“(t,x).

The limiting viscous dynamics is well defined and has a unique invariant measure, sup-
ported by the space of functions of bounded variation. Properties of this measure describe
some limiting (as 6 — 0) properties of solutions for (8.4), see [EKMS]. In the NLS case,
the limiting equation is

—it = u|?u+ C¥ (¢t ) .

For any z, its solutions u* (¢, x) grow with ¢ in the diffusive way (i.e., as v/t). So the random
process t — u“(t,-) escapes to infinity and has no invariant measure. The random fields
uf (t,z) do not converge to a limiting stationary solution, but their distribution averaged
in time satisfies the universal ((-independent) estimates which we study in this work.

We can not apply our techniques to the NS equations since for NS the underlying
non-linear hamiltonian PDE is the Euler equation

U+ (u-V)u+Vp=0, divu=0.
It is unknown if solutions for this equation satisfy i) or ii).

8.2. Local in space results

Let u(t, z) be any solution for the equation (2) in the half-space [0,00) x R* (n < 3),
such that u(0,z) = u%(z). Let Ky be a cube Kpy = {w? <z; < w? + M} and

sup |[u’(z)| < C, osc|u’(z)| =U,
ceEKm Kn

where M = Cy;0°™ and U = Cy6%Y. Let us restrict the solution u to the parallelepiped
Qu = [0,CTw] x K, where Ty = §~ (1440 =261)/3 " Scaling u and (t,z) € Qpr as we
did it to prove (4.15) and applying Theorem 3 we find that

E;nf(u |QM) < 5(1+bM—2pr)/3’
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provided that 2by; + 2pby < 1.

Let us assume that u® is a smooth d-independent function. Then oscg, [u’| ~ 1 for
any l-cube K, (provided that u® |k, is not a constant) and £ (u |g,) < /3. If M = &
with 1/(2p — 1) > b > 0 and Kj; C Kj, then oscg,, [u’| ~ 6° (if some non-degeneracy

X _ 14(4p—2)b inf 1—(2p—1)b . .
assumptions hold). Now Th; = ¢ 3 > Ty and ;™ (u |g,,) <6 s which is
bigger than £i"(u |g,). — We can not recover the short space-scale < §'/3 when study

the solution locally.
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Appendix 1. Interpolation inequalities

A. Sobolev spaces. Let O = T" or R® and H™(O;RM), m € R, be Sobolev spaces
with the norms |[|-||,, as in section 2. Then

1—-k k
lully, < flllg™™ [lul|E/™ for 0 <k <m.

The estimate follows from the Holder one. Indeed, choosing p = m/(m — k), ¢ = m/k and
denoting by us Fourier coefficients of the function u, we get:

lalf =3 Jus P Jus P77 ()25 < (3 Jusl®) 7 (3 sl (5)2m) V7

B. C*-spaces

B1. O =T" or R*. We denote [u]x = max|q|— sup, |0gu(z)| and abbreviate |u|cm
to |u|m,. The classical inequality of Hadamard-Landau—Kolmogorov states that

m—k k—¢

uli < Comlul" " [uln™", €<k <m, (A1)

where for n = 1 optimal values of the constants Cy,, were obtained by A.N.Kolmogorov
in [Kol3]. (We note that the inequality with n > 2 follows from the one with n = 1 by
induction in k: for k = £ it is obvious; to prove (A1) for k replaced by k + 1 we should
estimate [0%u]o with || = k + 1. To do it we write 0%u as (8/0z;)0%u with |B| = k and
apply the one-dimensional inequality to estimate [(0/0x;)05u]o in terms of [0Pu]o < [u]x
and [0%u];ym_x < [u]m. Finally we use the base of induction to estimate [u]y in terms of
[u]e and [u].,)-

By (Al) and the Jung inequality (stating that ab < a?P/p+b?/q if 1/p+1/g =1 and

a,b > 0), we get that
[u]p < C,'cm([u]o + [u]m) , 0<k<m. (A2)
r>

Thus, the norm [u]o + [u]n, is equivalent to the usual C™-norm |u|,,. Since (a + b)
(a? 4+ bP)/2 for a,b > 0 and 0 < p < 1, then

m—k k—£ m—k k—t
Jul 7 Jul =t > O ([ulo + [ule) ™= ([ulo + [u]m) ™"
C o m=t mt = = < ¢ 1
> Z([“]o + [l ) ([ulg ™" + [ulm ) > Z([u]o + Chom k)
and
m—_k k—t
uly, < Ch [uly™ ™" ful =t <k <m. (A3)

B2. O = K" ={0<z; <1}, or O is a smooth bounded domain in R".

Any function v € C*(O) admits a lift to a function U € C¥(R™) such that |U|, <
Cy |ul,. Applying (A3) to the lift we get that this estimate remains valid for v € C™(0O).
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Since |ul,, = max(|u|,, ;,[ulm), then using (A3) and induction we find that the norm
[-]Jo + [-]m is equivalent to the C™-norm. Using again (A3) we get that

m—k

[ulte < Clt ([l + [ulg™ [ui) , 0<k<m. (44)

In difference with the case O = R™ (cf. (Al)), the term [u]y in the r.h.s. of (A4) can not
be dropped. A counterexample for k = 1 is given by a linear function u(x).

B3. O =K} ={0<z; <p},0<p<1 Denotingy=z/pec K", we get that
p*lu(@)]ke = [u(y). Thus,

m—k

(@)l < Crm(p~ " [u(@)]o + [u(@)]o ™ [u(x)]

33l

)

where Ck.,, is a p-independent constant.

Appendix 2. Short-scale random fields

Here we consider random fields f§’(¢, z) corresponding to a probability space (2, F, P),
and present a randomised version of definitions and theorems from sections 1, 2. We assume
that ¢ € [T, 1] where as before, either

a) T» = oo (in this case we replace [T1, T3] by [11,73)), or
b) T, — T = Cé_b, b>0.
The space-domain O is now either a bounded n-domain, or O = T* = R"/2Z". The

random field f§’(t,x) is assumed to admit a realization such that the function (¢,z) —
[§(t,z) is measurable for all § and a.a. w; as a function of z it is smooth for a.a. t.

Now we define the averaged space-scale (L (f):
Definition. For a random field f¢'(¢,z) as above we set £2F(f) = 57, where 7B =
sup'F and the set I'F is formed by all 4 such that
1 .
m/E”fS”(t,'HidthM VE 2>k, 0 <0ks - (45)
L

The segment L C [T7,T3] is as in (1.6).

If the process f§ is stationary in time, then E || f§ (¢, )||i is a time-independent quan-
tity and (A5) means that

Sy ()= 0" VE>ks, 6< 0y

Accordingly, in this case 4/ > ~F if for sufficiently small £ one has E|| fg’(t,-)“?w <
§72(=M for arbitrarily large M and § € {0.a7(j) \, 0}.

Obvious reformulations of the statements of proposition 2 hold true for the averaged
space-scale (L-F(f), if O = T". To state the results we write the random field f¢ in the
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Fourier representation, f5'(t,z) = > cyn fg’s (t)e™**® . For any finite segment L C [Ty, T3],
we consider time-ensemble averaged squares of Sobolev norms and of Fourier coefficients:

2 1 /
= | E
L |L]Jg

(If f is stationary in time, then the time-averaging can be dropped i.e., || f§’ ||fn =E ||f§’||72n
for any ¢, etc). The following reformulations of Theorems 1’, 2" remain true with the same
proofs:

~ ~ 2
2. fa| ar.

1
1 = / E|l72(0)|12, dt.

Theorem A 2.1. Let co > vF(f) > 0. Then for any v > 0 and € > 0,

1) if the process f“ is stationary in time and E || f§ (t)||g < C6~* for some a > 0, then

> E

seA(vE—e P +e)

~

fa| @2 = -,

for m > m. and § € {6.m(j) \( 0}.

2) If To — Ty = C5% and || f¥ ] < C67%, then

2
o 17,7

Z <8>2m

seA(YF—eE+e)

~ 12
18], = A=) 15 s (46)

for L = [T1,Ts], m > m¢ and § € {0emn(7) N\ 0}.

3) If for some 71, 72 and for all m > mg,8 < &, we have 6 2M™ < ||f(§"||fnL <
§7212m for any segment L C [T1,T5] as in (1.6), then (A6) with the layer 2 replaced by
A(y1 — €,72 + €) holds for the segments L as above, for m > m. and ¢ < 0.

Theorem A 2.2. Let oo > ¥ > 0. Then

1) under the assumptions of item 1) of Theorem A 2.1,

.2 ,

i) for any v/ > F and any M > 1 we have: Dis|>6-" E‘fg’s(t)‘ < MY if§ €

{0y (5) “( 0};

i) for any € > 0 and A = A(vF — ¢,7F + £) we have

< IUATYE

seA

< 6°,

A0

‘ 2

if 6 € {0:(j5) N\ 0} with some finite ¢ = ¢(¢) and C = C(e).
2) Under the assumptions of item 2) of Theorem A 2.1, assertions i), ii) hold true with

~ 2 ~ 12
E fg;(t)‘ replaced by ‘ i)

T1,T%]

40



3) Under the assumptions of item 3), assertion i) hold true with ¥ replaced by 72,
for all 0 < 0.3 the assertion ii) hold true with % = 2A(y1 —,72 +¢€), for all § < 6..

The assertions ii) of the last theorem can be specified as in the Amplification to
Theorem 2.

Appendix 3. Theorem 3 and a dynamical system,
defined by the NLS equation

In this appendix we abbreviate ||cmgn) to [[,,. Let us consider the NLS equation
(4.1) under the odd periodic boundary conditions (4.2):

— it = —0vAu+|ulPu, §>0,
(A7)

u(t,z) is odd and 2-periodic in x .

If u(t,z) is a smooth solution of (A7) such that u(0,z) = u%(x), ‘uo‘o = 1, then for any
k < 1/3 by Theorem 3 there exists Ty < 6~1/3 such that

|U(T0)|m > f(m(s_mn ) f(m = (5mn)mn (AS)

(for 6 < & this follows from (4.8), for § > 0., this is obvious with 75 = 0 since
|u(0)],, > ‘uo‘o = 1) . Using the Remark at the end of section 5 we get that

(A9)

Let u(t,z) be any solution of (A7). Denoting |u(0)|, = U we substitute to (A7)
uw=Uv, t = U~2Pr and get for v(r, z) the equation —iv/. = 6U 2PvAv + |[v|*’ v. Applying
(A8) to v(r,x) we find T, < U 2P(SU )~ 1/3 = §-1/3U~*%/3 such that |u(Tp)|,, >
K, U(6U~2P)=™" Since lu(To)|, < 23U by (A9), then for u = u(Ty) we have:

[uly < Komd” [ul,, 2P (A10)

where K, = %f(,ln/@pmHJFI) and p = mk/(2pmek + 1).
Let us denote by A = A,,, C C* the set

A ={u e C®|u is odd periodic and satisfies (A10)} .

Following [K1] we call A the essential part of the phase-space of equation (A7) (with respect
to the C™-norm). Since |u|, < |ul,,, then A contains a neighbourhood of the origin:

A {ux) | Jul, < KZ76%) . (A11)
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Our arguments show that A is a recursion subset for a dynamical system which (A7)
defines in the space of smooth odd periodic functions: Let u(t) = wu(t,-) be a smooth
solution of (A7), ty be any real number and Uy = |u(ty)|,.

Theorem A3 (cf. [K1]). There exists Tp < to + 5_1/3U0_4p/3 such that u(Tp) € A
and Uy < |u(Tp)|, < 3Up.

If v = i, then the equation takes the form (4.4) and by (4.13), |u(t)|,, — 0 for any its
solution. Using (A11) and (4.13) we get that u(t) € Aif ¢ > ¢, = to + C(Jul, )6 ¥nd~t.
The theorem shows that the solution will visit the set A much earlier, before its norm
decays.

If v = 1, then the equation (A7) takes the hamiltonian form (4.5) and N := |u(t)|, is
a time-independent constant. Since |u(t)|, > N, then by the theorem the solution will visit
A during any time-interval longer than §—1/3N—%P/3, We do not know if a solution of the
hamiltonian equation (A7) |,—1 can get stuck in A for all ¢ bigger than some ¢;. — This
would be the case if [|u(t)||,, — oo when ¢t — 0o, but we do not know if this convergence
is possible (or typical) for solutions of a hamiltonian NLS equation, see [Bour].
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