
“2D Euler equation as a Hamiltonian PDE 1”

1. Hamiltonian PDE.
H - a functional space which consists of smooth functions. For u ∈ H let
Ju : H → H be an operator, anti-symmetric w.r.t. the L2-scalar product,
which will be denoted as 〈·, ·〉. For a functional F : H → R let ∇F : H → H
be its gradient. That is,

dF (u)v = 〈∇F (u), v〉 ∀ v ∈ H.

For functionals F,G define their bracket as

{F,G}(u) = 〈Ju∇F (u),∇G(u)〉.

It is skew-symmetric. Assume that it satisfies the Jacobi identity. Then this
is a Poisson bracket.

For any Hamiltonian h : H → R the corresponding Hamiltonian equation
is

u̇ = Ju∇h(u). (1)

2. Euler equation on T2.

Now let H be the space of smooth divergence-free vector-fields on T2. Then
for a functional h on H we have

∇h(u) = Π δh/δu(x),

where Π is the Leray projection and δh/δu(x) is the variational derivative of
h. In particular, for h0(u) = 1

2
〈u, u〉 we have ∇h0(u) = u.

The Euler equation can be written as

u̇(t) = Π (u · ∇)u = Π(u · ∇)∇h0(u), u(t) ∈ H. (2)

QUESTION: How to write (2) in the form (1)?

3. Hamiltonian form for Euler equation.

First Try. Choose

Ju(v) = Π (u · ∇)v, Ju : H → H.
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This is a skew-symmetric operator and (2) takes the form (1) with h = h0.
But this Ju does not satisfy the Poisson identity. So we failed.

In the r.h.s. of eq. (2) we have two factors u. This time we interpreted
the first one as a factor from the Poisson structure and the second - from the
hamiltonian. We can do this other way around. This is our

Second Try. Choose Ju = Π ◦ J0
u, where(

J0
u(v)

)k
= vl

(
∂uk

∂xl

− ∂ul

∂xk

)
.

That is,

J0
u(v) =

(
0 −ω
ω 0

)
v ,

where ω =rot (u) = ∂u2/∂x1−∂u1/∂x2 is the vorticity. Obviously 〈Ju(v), v〉
= 0 ∀v. So Ju is skew-symmetric.

To check the Jacobi identity let us start with linear functionals. For any
f ∈ H denote hf (u) = 〈f, u〉. Then ∇hf = f . So

{hf , hg}(u) =
∫ (

∂

∂xj

uk

)
f jgk dx−

∫ (
∂

∂xj

uk

)
gjfk dx = −h[f,g](u),

where [f, g] is the commutator of vector-fields (note that [f, g] ∈ H if f, g ∈
H). So for functionals of the form hf the Jacobi identity follows from the one
for commutators of vector-fields. Certainly the Jacobi identity also holds for
arbitrary functionals on H. That is, we have constructed a Poisson structure.

To arbitrary hamiltonian F this Poisson structure corresponds the Hamil-
tonian equation

u̇ = Ju∇F (u) = Π

(
0 −ω
ω 0

)
∇F (u) , u(t) ∈ H, (3)

and the Poisson bracket of two functionals f and g is

{f, g} =

〈
Π

(
0 −ω
ω 0

)
∇f(u),∇g(u)

〉
=

〈(
0 −ω
ω 0

)
∇f(u),∇g(u)

〉
,

(4)
where the scalar product in the r.h.s. is the product in the space L2(T2;R2).

Now we have

J0
u(u) = (u · ∇)u− 1

2
∇|u|2.
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So Ju(u) = Π (u·∇)u and the Hamiltonian equation (3) with F = h0 coincides
with (1). That is, we have found a Hamiltonian representation for the Euler
equation.

4. Functionals of vorticity.
Let X be the space of smooth functions on T2 with zero mean-value, and let
F be a smooth functional on X. Define f(u) = F (rot(u)). This is a smooth
functional on H and

∇f(u) = ∇⊥
x∇F (ω), ω = rotu.

In particular, if F = F h =
∫
h(ω(x)) dx, then

∇f(u) = ∇⊥
x h

′(ω(x)) =

(
0 −1
1 0

)
∇xh

′(ω(x)). (5)

So
J0
u∇f(u) = −ω(x)∇xh

′(ω(x)) = −∇xh̃(ω(x)) ,

where h̃(ω) =
∫
ωh′(ω) dω. Hence,

Ju∇f(u) = ΠJ0
u∇f(u) = 0.

We saw that the functionals of the form fh(u) =
∫
h(rotu(x)) dx belong to

the centre of the Poisson algebra.
So, the functionals fh

i) define trivial Hamiltonian equations (3),
ii) they are integrals of motion for each equation (3) (including the Euler

equation).

5. The Poisson algebra in terms of functionals of vorticity.
Consider two smooth functionals F1, F2 on X and the corresponding func-
tionals f1 = F1 ◦ rot, f2 = F2 ◦ rot on H. Due to (5) and (4)

{f1, f2} =

∫
ω

((
0 −1
1 0

)2

∇x∇F1(ω),

(
0 −1
1 0

)
∇x∇F2(ω)

)
dx ,

where ω = ω(x) = rotu. Integrating by parts we find that

{f1, f2} =

∫ (
(∇⊥ω · ∇)∇F1(ω)

)
∇F2(ω) dx = 〈Jω∇ωF1,∇ωF2〉 ,
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where ∇ωF (ω) is the usual L2-gradient and

Jω = (∇⊥ω · ∇).

That is, the map
rot : H → X

transforms the Poisson bracket {·, ·} for functionals on H to the bracket
{·, ·}ω for functionals on X, where

{F1, F2}ω(ω) = 〈Jω∇ωF1,∇F2〉.

For this bracket the Hamiltonian equation with a hamiltonian F (ω) is

ω̇(t, x) = ∇⊥
x ω(x) · ∇x(∇F

(
ω)(x)

)
. (6)

Examples. 1) If F1 =
∫
h(ω(x)) dx, then ∇F1(ω) = h′(ω(x)). Now

Jω∇F1(ω) = (∇⊥
x ω · ∇x)h

′(ω) = 0.

So {F1, F}ω = 0 for any F , as it should be.
2) If F (ω) = h0(u), where u = (rot)−1ω and h0(u) = 1

2
〈u, u〉, then (6) is

the Euler equation in terms of vorticity:

ω̇ = (u · ∇)ω.
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