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Abstract

We consider the d-dimensional (d > 1) nonlinear Schrédinger equation
(NLS) under the periodic boundary conditions:

—it = Au+V(x) xu+eolul*u; u=u(t,z), zeT (0.1)

P. ) .
where V(z) =  V(a)e'®? is an analytic function with V real. ' For
€ = 0 the equation is linear and has the time—quasiperiodic solutions wu,

u(t,z) = ap(a)e’ I 0 < ag(a)] < 1,
acA
where A is any finite subset of Z¢, n := |A| > 1. We shall treat w, =

la|> + V(a), a € A as free parameters in some domain Q C R™ and we
shall prove the following KAM-result:

If || is sufficiently small, then there is a large subset Q' in Q such that
for all w € Q' the solution u persists as a time—quasiperiodic solution of
(0.1) which has all Lyapounov exponents equal to zero and whose linearized
equation is reducible to constant coefficients.

0 Introduction.

If we write ‘
U(Z‘) — Zaeld \/§’Ua€l<a’m>,

then, in the symplectic space

{(ta,vq) : a € 23} = cz* x ¢z’
i qezd Qg A dvg,

the equation (0.1) becomes a Hamiltonian system with Hamiltonian

1 - 1
Hy = 3 Z (|a|* + V(a))uqvy + 150 Z Uqy Uay Uby Vb, -
acZd a1+as—by—bo=0

IThis equation is a popular model for the ‘real’ NLS equation, where instead of the con-
volution term V % u we have the potential term Vu. Considering this model we remove some
technical difficulties, which are not related to the main ones.



For a € A we introduce the action angle variables (qq,pa), defined through
the relations

ta = V/2pa — Tio(@P)e’™, va = \/2pa — [io{@)P)e .

In order to write it in real form we introduce ¢ = (£,n) through

1 1
Uq = ﬁ (fa""ina)a Vg = ﬁ (ga _ina)~

The integrable part of the Hamiltonian now becomes
N 1 N
H(p,¢) =Y (lal* + V(a))pa + 3 Yo (af + V(@) + na),
acA a€EL=ZIN\A

while the perturbation egh will be a function of

{(¢a,pa) :a € A} and {(, :a € L}.

wa = |a|> + V(a), a € A are the basic frequencies and A\, = |a|> + V(a), a €
L = Z*\ A are the normal frequencies. The w’s will be our free parameters
belonging to a set 2 € R™.

We shall assume that V is real and

V(a)| < Cre= @l vaerL,

and that
Q C {lw| < C5}
We also assume
Ao + M| >Cy Va,be L, Vw,
IAa = Xo| > Cy Va,be L, |a] #|b].

We define the complex domain

ISq| <r
OV (rp) =4 Ipl<u?
<y = /Caee [Callaf2m e2vlel < .

Theorem 0.1. Under the above assumptions, for ey sufficiently small there
exist a Borel subset Q' C €,

Leb (2\ Q') < const .eg™"* |
and for each w € Q', a real analytic symplectomorphisms

S 1 O3 (r/2,1/2) — O3 (r, ),



such that |, — id| < const .5 and
1
(H+eh)oX, = -p+ 3 (¢, A'C) +H,

where the quadratic form % (¢, A'C) has the form

{u, Qu),

with Q Hermitian and block-diagonal with finite-dimensional blocks, and where
' € O(p*,p¢, ¢*).

The constant const only depends on the dimensions d and n and on Cy,...,Cy.
The exponents exp; and exps only depends on the dimensions d and n.

Every torus X, (T™ x {0} x {0}) is invariant for the Hamiltonian equations
and is filled in with the time-quasiperiodic solutions t — X, (¢ + weot), ¢ € T™.
The linearised map DY, (¢ + woot) reduces the linearized equation on the torus
in the (-direction to the constant coefficient system

d .
= JAC

Due to the form of A’ all Lyapunov exponents of the solutions vanish.
Theorem 0.1 follows from a bit more general result, proved in Section 2.
Some references. For finite dimensional Hamiltonian systems the first proof

of stable (i.e. vanishing of all Lyapunov exponents) was obtained by Eliasson

[Eli85, Eli88]. This has been improved in many works and the situation in finite

dimension is pretty well understood. Not so, however, in infinite dimension.

If d = 1, the space-variable x belongs to a finite segment and the equation is
supplemented by the Dirichlet or Neumann boundary conditions, this result was
obtained by Kuksin in [Kuk88] (also see [Kuk93, P6s96]). The case of 1d periodic
boundary conditions was treated later by Bourgain in [Bou96], using another
multi—scale scheme, suggested by Frohlich—Spencer in their work on the Ander-
son localisation [FS83], and later exploited by Craig—Wayne in [CW93] to con-
struct time—periodic solutions of nonlinear PDEs. Due to these and other pub-
lications, the perturbation theory for quasiperiodic solutions of 1d Hamiltonian
PDE is now sufficiently well developed, e.g. see books [Kuk93, Cra00, Kuk00].
Study of the corresponding problems for space—multidimensional equations is
now at its early stage. Developing further the scheme, suggested by Frohlich—
Spencer, Bourgain managed to prove Theorem 0.1 for the 2d case [Bou98|.
Finally, he has recently announced (e.g. in [Bou04]) that the new techniques,
invented by him with collaborators in their works on spectral theory of (linear)
Schrodinger operators with quasiperiodic coefficients, allow to establish exis-
tence of quasi-periodic solutions for any d. (A detailed proof has not been given
yet.) It should be mentionned the multi-scale-scheme developped by these au-
thors does not (at least not immediately) give neither vanishing of the Lyapunov
exponents nor reducibility of the linearized equation.



Main ideas. Very briefly, our main idea is to put under strict control the
linear parts of the transformations, forming the KAM-procedure, defined by
the homological equation.The solution, with estimates, of this equation requires
control of the “small divisors” which imposes conditions on w € €. These
conditions are relatively easy to fulfill when £ is a finite set in Z? or when
L C Z' because then the equation imposes on finitely many conditions on w on
every scale. In the case when £ is an infinite subset of Z%, d > 2, the equation
imposes infinitely many conditions on w on every scale.

To verify that these conditions can be fulfilled in the n-parameter family
w € ), we make use a special property of infinite—dimensional matrices — the
Toplitz-Lipschitz property. This property has two nice features. These matrices
is an algebra: one can multiply them and solve linear differential equations
[EKO5b]. They permit a “compactification of the dimensions: if the Hessian
(with respect to () of the Hamiltonian is Téplitz-Lipschitz then the infinitely
many small divisor conditions needed to solve the homological equation reduce
to finitely many conditions [EK05a].

In this paper we prove that, if the Hessian (with respect to ¢) of the Hamil-
tonian is Toplitz-Lipschitz, then this is also true of the linear part of our KAM-
transformations and of the Hessian of the transformed Hamiltonian. This will
permit us to formulate an inductive statement which, as usual in KAM, gives
Theorem 0.1.

Acknowledgement. This work started a few years ago during the Conference
on Dynamical Systems in Oberwolfach as an attempt to try to understand if
a KAM-scheme could be applied to multidimensional Hamiltonian PDE’s and
in particular to (0.1). This has gone at different place and we are grateful for
support form ETH, IAS, THP, Chinese University of Hong-Kong and from the
Fields Institute in Toronto, where these ideas were presented for the first time
in May 2004 at the workshop on Hamiltonian dynamical systems. SK’s research
was supported by EPSRC, grant S68712/01.

1 Domains, functions and Hamiltonian equa-
tions.

1.1 Constants

Let us take a real number m, > d/2 and integers n, d > 1. They are fixed in
our work, and the dependence on then of the objects which we consider will not
be indicated. The domains and functions we will construct also depend on the
following real parameters:

A>6, v (0,1, pe(0,1), ce(0,1).

These parameters will change from one KAM-step to another, and we shall
control how our objects depend on them. By C,C; etc and ¢, ¢y etc we denote
different positive constants, independent of A,~, u and € (but they may depend
on my,n and d).



1.2 Linear spaces.

Let
L=7%\A A= afinite set.

We fix any constant m, > max{2,n/2} and denote by Y, v € [—1,1], the
following weighted lo-spaces:

YV, ={¢=(eRseLl)] <]y < oo}

Here

IS = [Gal?e® 1%l a)*™ . {a) = |a| v 1.

acl

In the spaces Y, acts the linear operator J,

J: {Cs} = {O—QCs}a (11)

where o9 = < (1) Bl

structure J d{ Ad¢. ? To any C*-smooth function, defined on a domain O C Y,
this structure corresponds the Hamiltonian equation

(= JVF(Q),

where Vf € Y_, is the gradient with respect to the scalar product in Y (i.e.,
(VF(C), m) = df(C)n) for all n € Ys).

). It provides the spaces Y.,y > 0, with the symplectic

1.3 Infinite matrices — quadratic forms

Details of the definition and results below see in [EK05b].
Consider a matrix A : £ x £ — M(2 x 2) with values in the space of real
2 x 2-matrices. We assume it is
symmetric, i.e.
As,s' = Ag s Vs,s'.

To such an A we associate in a unique way a real quadratic form

90 = D (Car Aape)-

a,beL

Let us abbreviate M (2 x 2) = X, and consider the following four real ma-
trices:

S I (A RO () RS R

2Jd¢ A dC(E,m) = (&, m) for any £,n € Ys.




We denote by X, the linear subspace of X, generated by o, 02, denote by X,
the subspace, generated by o1, o2, and denote by p (by ¢) the projection of X
to X, along X, (respectively, the projection to X, along X,,). Finally, we define

M ={A e M, |||A]l} < oo},

where / |
A = sup{|pAs o 75TV |qA, o751}
s, s’

Remark 1.1. This supremum norm is denoted | |7 in [EK05a].

We have for v > v

1Aylly < CO =)~ AN vl (1.3)

where we denoted
di = d+ my.

The spaces M, j contain the identity matrix. The union LJ0<,Y§1M,Y+ is a stratified
algebra, and

IABI[3 + [IBA[IF < CO' =)~ AlZIIBIIE (1.4)
ify<+ <1
We also note that since the multiplication by o9 preserves the spaces X, and
Xg, then JMF = M and the mapping
Mf — M7, A JA (1.5)

is an isometry for each ~.
A matrix A is called Téplitz at oo if for all a # 0, by, by € Z¢ the two limits

oot T
A be = 0 A(tatn,)+(tatbs)

exist (here and in similar situations below, ¢ goes to oo along the set {¢t > 0 |

ta+b1 S ,C, ta+b2 S »C})
Note that for A € M:(Ir we have

(PA)T 0, =05 (@A), =0,
For a To6plitz at oo matrix A and for A > 0 we define
Ai(% b1, bo; A) = Sup{t‘A(m+b1)i(m+b2) - Aﬁf,bzl} <00,
where the supremum is taken over all £ > 0 such that

[ta +bj[ = A(L + |af + [bj[)]al, j =1, 2.



Next for A € Mj we set

<A>»—;A - maX( 0 IS)uI; » e'Y|bl*b2‘(pj4)+(a7 bla bg; A),
a70,01,b2€

sup 6’Y|blib2‘(qA)7(a7 bl; b27 A)) )
a#0,b1,bo€Z%

AN, & = AN + (A)T 4.
A matrix is called Téoplitz—Lipschitz if this norm is
finite for some 7, A.
Remark 1.2. This Lipschitz norm is denoted (-)** in [EK05a], and is denoted
as ||| - |||jA in [EKO05D).
Ezample 1.3. If ¢1,¢? € Y, then [[¢* @ ¢?|
0 <~ <1andany A>6. See [EKO5b].

The space of all Toplitz—Lipschitz matrices is an algebra, and the following
inequality holds:

a < ClCIL NGz, for amy

HABIy.a + I1BA[ly, 4 < CO = 2) " A% All]yr, o[ Bl

Y (1.6)
if v/ >~ and A > A’ + 6. See [EKO05b], Theorem 2.7’.

Denote
soa={Ae ML |Alll,,a < oo}

Since the map A — JA obviously preserves the semi-norms (A), A, then by
(1.5)

the map M7, — M7, Aw JA, is an isometry. (1.7)
1.4 Domains and functions on them

For r > 0 and a Banach space B (real or complex) we denote
O.(B)={z € B |lz|lp <r}

and
T, ={q € C"/27Z" | [Imgq| < r}.
Now, for r € (0, 1], v € (0, 1], x € (0, 1) and A > 6 we set
OV (r, ) =T} x O,2(C") x O, (Y5),
O™ (r,pu) =07(r, ) NT" x R™ x Y,
We denote points in O7(r,u) as h = (g, p, ¢) and abbreviate O°(r, u) =

O(r, ). A function, defined on a domain O?(r, i), is called real if it takes real
values on O"E(r, ).



Toplitz—Lipschitz functions. Let 2 C R™ be an open domain and h :
O(r, n) x  — C be a C'-function, analytic in the first variable. We define

|h‘(h7)|9 = sup ‘ai}h(h7w)|7

weN,j=0,1
oh ¥ ,
a-\Us = 8Z;v h ) )
a0 = _sw 109eh(b )l
0%h VA 4
: = I V2h .
a0, = _sw VG,

Here Vch = (% € C?a € L) and Vgh is the matrix, formed by the 2 x 2-blocks
9%h
9Ca 0’

a,b e L. Now, for any 0 < v < 1 we denote
v, A
[h’] Qr,u = C’

where C' < oo is the infimum of all C* > 0 such that for all 4/ < ~ and all
bh e OV (r, 1) we have

ah ’Y, —1,v
il <
5c 0], <nte
9*h VA
Tcg(ba )‘Q <uC
(as usual, inf ) = c0). We denote by
T, )

v,A

Q,r,

spaces 77 (Q,r, u) are called Téplitz—Lipschitz functions.
Note that the sets 77A (U, r, 1) grows with A and decays with ~.

the space, formed by functions h as above such that [h] < 00 Elements of

Jets of Toplitz—Lipschitz functions. For any function h € 77 (), 7, 1) we
define its jet hT = hT (h;w) as the Taylor polynomial of h at p =0, ¢ = 0:

1
h' =hg + hy - p+ (he, C) + 5 thee€, )

= 10,050) + Vph(g, 050) - p + (Veh(a,05), ) + 5 (VEch(a,050)C,¢).
(1.8)

Choosing h = (¢, 0,0) in the definition of the norm [h} gﬁ# we immediately get
that

(ha(gi)la < [R5, Iho(ai)le < n 2[RI,

_ A A _ A
Ihe(qi )G < Al Thee(@s g™ < 2[R s

for any ¢ € T}".

(1.9)



Lemma 1.4. For h € T"™U,r, 1) and any 0 <~ <5, 0 < p’ < 31 we have

7A

/,A —dy
(W], < Cly =) " [h]gy,

Qrp —

and
A JTANN
T17 5
[h —h ]Q,r,p/ < 2<‘u> [h] Q,r.p”
Proof. The first assertion follows from (1.9) due to (1.3). To prove the second,
we have to estimate |h — h']q, |[Ve(h — AT)[, and |VZ(h — WYL for b =
(q,p, ¢) € OV (r, i), v/ < ~. Let us denote m = ' /p. Then for |z| < 1 we
have (q, (2/m)?p, (z/m)¢) € OY (r, ). Therefore the function
z z
{lz] <1} 2z th(q, (E)zp, EC) =ho+hiz+--- €M\

is holomorphic and is bounded in norm by ex~2. So, by the Cauchy estimate,
1Ajllly, 4 < ep™2. Since VZhg = hym + hym? + ..., then

/

[1VEhs|l|y,a <ep2(m+m?+...) < 25u*2%

(since p/ < 1p). Same arguments apply to estimate the norm of awvg(h —hT),
as well as |h — hT|q and [V¢(h — BT)|3,. m
A Téplitz—Lipschitz function h is called a jet-function if AT = h.

Poisson brackets of jet-functions. For given jet-functions f and g let us
consider

h() :=={f(H), 9(0)} = Vi f - Vg = Vof - Vg + (JVcf, Veg).  (1.10)

Lemma 1.5. If f,g € TVMU,r, p), then for any 0 < v <, 0 <7’ < r and
AN > A+ 6 we have

[h]g,ﬁu <Cly =) (=) A7) mg’:u [g]gl:u (1.11)

Proof. Let us denote the three terms in the r.h.s. of (1.10) by hy, he and hs. It
is a straightforward consequence of the Cauchy inequality and (1.3) that

[+ halgy < Cly =) =) A0 ol

Now consider the term hs. Since V¢ f = fc + fec¢ and similar with Vg,
then

hs = (Jfe: 9¢) = (G feed9¢) +{9ec T fer €) + (9¢e I fee i €) -
It is clear that |hs(b,-)|q is bounded by

Co=Cly =) N2 [f130 (a0



for any h € O(r, ). Since

Vehs = —fecdgc + g9ced fo + gecd fee€ — feeJ9¢cC s

then for any h € OV (r, 1), ¥ < v/, the norm u|Vhs|} is bounded by C.. Finally,

since V2hs = geed fec — fecTgee, then p?|VEhs(b, )|22A/ < C,, due to (1.7) and
(1.6). This implies the lemma’s assertion. O

1.5 Hamiltonian equations in domains O"(r, ).

Any C'-smooth function f on a domain O7(r, 1) defines there the Hamiltonian
equations, corresponding to the symplectic form dp A dg+ Jd¢ AdC 3 -

_ 0 E 0
b =JVFih) =Vih), T=[-E 0 0], (1.12)
0 0 J

where Vf = (V,f,V,f,Vef). We denote by S*, ¢t € R, the corresponding
flow-maps. These maps C'-smoothly depend on the parameter w.
Now let us assume that f = f7 is a jet-function

F = fulas @)+ fylas @) p+ (elas @), Q) + 5 (feclas )G, Q)
such that

[fa(b; Mo < &' [Fobi o < u2 1 fe(b; )G < p el fee (s )G < um2e
(1.13)
for all h € O7(r, ), with some A > 6. Then the Hamiltonian equations take
the form

Q= fyla), (1.14)
p = _vqf(Q7 b, g)v (115)
¢ = J(fe(a) + fec(a)) (1.16)
(here and below we often suppress the argument w). Let us fix any
1
v €(0,7), v € (0,r) u' €0, 5/1], (1.17)

denote ra = 1(r—7'), pa = 3(u— '), va = 5(y—+'), and for j = 0,1,2,3 set

/
0] =O7(r' + jra, ¢ +jpua), 0<5 <4 (1.18)

We supplement the equations with initial conditions

5(0) = ho = (g0, po, Co) € O .

3d¢ A dC is the form which sends any pair of vectors (£,7) to the number (J¢, 7).

10



Assume that the solution h(t) exists for 0 < ¢ < 1 and satisfies
bh(t) € O] for 0<t<1. (1.19)

Then
lq(t) —qo| <e'w™?, 0<t <1, (1.20)

due to (1.13). The estimates (1.13) imply that |f(h;-)|q < Cyx% for h €
O (r,p). Therefore |V, f(h;-)|a < Cyx%rite’ for b € O] by the Cauchy in-
equality. So

Ip(t) —po| < Ce'rtyrd, 0<t<1. (1.21)

Now, let {®;} be the flow of the linear equation ¢ = Jfee(q(t))¢. Then

C(t) = Dheo + / LT (g(r)) dr. (122)

Assume that &’ satisfies
g < Ol pPrpay b, (1.23)

Then
1952 —id [[ly12ys < Ce'n™ and [ —id [[|yr4ys,a < Ce'n2y3 7 A
for 0 < #1,t2 <1 due to (1.13) and Theorems 3.3, 3.4 in [EKO05b]. So tha‘gl.M)
1) = Golls < C=/ut5 %, 0<t<1, (1.25)
by (1.3).

Consider the n x n—matrix V,f,(¢(t)). Due to (1.13), its norm is bounded
by Crx'p2e’. Therefore if (1.23) holds, then the low-maps {£}?} of equation

p = —Vqufp(a(t))p satisfy
|2 —id || < Ciritp 2", 0<t,t2 < 1.

By (1.15), the vector p(t) can be written as
t
p(6) =i — | Tia(s)ds, (1.26)
0
where

m(s) = Vafala(s)) + (Vafc(a(s)): C(s)) + %qucc(q(S))C(S), ¢(s)) -

Lemma 1.6. Let the numbers v, v, and ~', ', 1/ satisfy (1.17), (1.23), and
let 4 € [0,7']. Define the domains O;-Y as above. Then for any 0 <t <1

i) the flow-map S* defines an analytic diffeomorphism S? : O? — O; and
defines a symplectomorphism St : O7% — 0%,

11



ii) The map IS is affine in ¢ and I1:S%hg = ((t) can be written in the
form (1.22). The map I1,S* is affine in p and I1,S"ho = p(t) can be written in
the form (1.26).

iii) The map S* analytically extends to a map

Ty xC"x Yy — Ty x C" x Yy
such that for any h = (q,p,¢) € T}, x C x Y3 we have

@ <ep?,

— — —d1 — — 2
p) < Clr—r) 18I<1+AL “Ipol +" 72 (17 +2(1Goll5) )

I11,5" (b

) —
11, 5" (h) —

TS (h) = ¢lls < Ce'(y =) ™" Golls + 17’
(1.27)
Moreover, w-derivatives of these maps satisfy same estimates: |0,11,5*(h; w)| <
e'u=2, ete.

Proof. The maps S send O (1, u’) to O (r, p) since the estimates (1.20), (1.21),
(1.25) and (1.23) imply (1.19).The fact that these maps are analytical symplec-
tomorphisms is classical. The assertion ii) follows from (1.22) and (1.26).

The first assertion in iii) is a consequence of ii) since the map 13 — T4, g0 —
q(t) is analytic and independent of py and (y. The first estimate in (1.27) follows
from (1.20), and second one — from (1.22) and (1.24). Due to the estimates for
II:S* and (1.23),

IK@Ol5 < C'u 73 [olly + 17" + [1Solls < 2[Colly + 7" =: B.

Therefore |7(s)| < Cr;le’(1+fy’7dlB2/f2) . Now the estimate for IT,,S* follows
from (1.26) and (1.23).
The estimates for the w—derivatives follow from similar arguments. O

Next we study how the flow—maps S as in Lemma 1.6 transform Toplitz—
Lipschitz functions. Let us take any function g such that [g]gzﬁ =1 and for
0 <t <1 denote g:(h;w) = g(S"(h;w);w).

Lemma 1.7. Under the assumptions of Lemma 1.6 we have

9o 007 < OAS.

Proof. i) By Lemma 1.6, any function g; is analytic in h € O(r/, ') and is
real for real . Clearly, it is < 1. It is easy to estimate J,g; and see that
|g¢(h; )l < 2 for h € O(, i').

ii) To estimate V,g; we note that

9

9g¢ i 9g(h(t) Opk(t) Y 9g(b(t)) 96 (1)

=5, + Ei )
Opr  0Cq b 9Ca

12



where S%(h) = b(t) = (p(t),q(t),C(t)). By Lemma 1.6, h(t) € O]. Therefore

0
oy (00 < Cp™? (1.28)
(recall that y/ < £u). By (1.22), the matrix ¢(t)/9¢ is
IC(t)\
( 5. )_@g. (1.29)

Let us denote pl,(t) = Op(t)/0¢,, etc. Then, due to (1.26),

)= [ SUTafes LN + (Talecc9), o) .
Due to (1.13), (1.24), (1.3) and (1.23),
(Vafe, (s < Cplery (14 Celp3 ™) < Cp eyt
Similar, using (1.3) and (1.6) we get that
IV afecC(s), ¢l ()5 =l(@)" (Vafec)S(s)l 15
< Cp 2+ Celp 2y < Celp eyt

Therefore
IVep()lly < Ce'ptrat, (1.30)

and we see that
IEHl5 < Ce'u™Pryt <Cpt.

Using (1.29), (1.24), (1.3) and (1.23) we get
IE%l5 < p=t + Cep2 Tty < O

Estimating similar - g—gt we see that

|Vg:(b; )|?z <Cipt.

iii) To estimate V%gt, we write

0%g, 2 88t 9S? 028t
=d*g(S* (b)) (=, =) + dg(S*(h(t =: D}, + D?
8CaaCb g( (h( )))(aCa 8<b) g( (b( ))) a<a6<b b b
(1.31)
As before, we denote 9S'/0¢, = (pl(t), ¢i(t)). Clearly, qq(t) = 0. To
estimate in D! the term (dfcg)(ca,ga) we apply ( 29), (1.24) and (1.6) to get

11(dZ:9)(Cos Il5a+12 < Cp2(L+ AR 272 (e 25 47T A%)?) < CAS 2,

To estimate (d2,9)(pl,,p}), we use (1.30), Example 1.3 and (1.23) to find that

11(d5,9) (P, P ll3,0 < Cp2 (' n 2ty x4 )2 < Cp

13



We got that
I1DY[|5.a412 < CA®p 2.

To estimate D? we note that due to Lemma 1.6, 8%q(t)/0¢?> = 0 and
02¢(t)/0¢* = 0. Denoting p,, = 0°p(t)/0(,0¢, we see from (1.26) that

1"

py(t) = — / S (Vo fecCl(s), C4(5)) ds.

Since the numbers (Vg fecCl(s),((s)), where the indexes a,b € £, form the
(1.1

matrix (@8)t (Vgfee) ®§, then (1.13), (1.24) and iterative application of (1.6)
result in the estimate

D" (0)l15,4512 < Cp2r3te’ (14 (C/p 23 A2 AR 47 1)?) < Ce/p~2rSMAS

(we use (1.23), where m, > 2, see in section 1.3). This estimate and (1.28)give
us that
I1D?[|l5,a+12 < CA®p2.

We have estimated Vggt. Estimating similar (8/8w)V§gt, we have

V2405 )2 < ConBp2.

The lemma is proved. U

2 The main theorem.
Let Qg C R™ be an open domain such that
Q()C{K;1 < \w| SKl}, Leb Qo = Ko

(here and below K7, K, ... are fixed positive constants). Let A\, = |a|* +V,(w),
a € L, be real functions, where V, satisfy

sup |90 V,| < Kze Kelal yq,

w€N,j=0,1
and
[Aa + M| > K5 Va,be L, Vw,
[Aa — M| > K5 Va,be L, |a|l # b, Vw,
and

1
|0wAal < Zmin(l,Kg)).
Let A = A(w) be the diagonal operator

A: (Ya,a € L) — (NYa,a € L)

14



(we recall that each y, is a a two—vector). We define the jet—function H,

1
and the hamiltonian
Ho(b7w) = H + hO )

where hg is a real Toplitz—Lipschitz function, such that

ol 32 Ly < 0 <1

for some 7o € (0,1], ro, 1o € (0,1].
The hamiltonian Hy defines the Hamiltonian equations

bt = JVH(h)". (2.1)

Theorem 2.1. If the assumptions above hold, then for ey sufficiently small
there exist a Borel subset Q., C (o,

Leb (Q \ Q) < Cie¢, ¢>0,
and real analytic symplectomorphisms
Y.t 02(rg /2, 1o/2) — OV 2(ro, po), w € Qe

such that |3, — id| < Cee®. The map ¥, transforms the hamiltonian Hy to

Hy o5 = wae 9+ 3 (Asss Q)+ hoe (G,

where Weo = Woo (W), Aco = Aso(w) and

Jwoo —w| < Ceg?, Ao = Allly2 < Cey?, A € NFgy(Qy), BE =0.

(2.2)
Every torus X,(T™ x {0} x {0}) is invariant for the eq. (2.1) and is filled in
with the time-quasiperiodic solutions 3(t;q,w) = Yy, (¢ + weot), ¢ € T™. The
linearised map Yoo (q + woot )« Teduces eq. (2.1), linearised about a solution 3, to
the autonomous equation

d d d

dt

In particular, all Lyapunov exponents of the solutions 3 vanish.

3 Homological equations
From now on we restrict our presentation to the 2d case. Our proof applies to

the nd equations, n > 3, but in that case solvability of the homological equation
(3.5) below is established in [EK05a] under the assumption that the involved
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linear matrices belong to a subclass of Toplitz—Lipschitz matrices, called in
[EK05b] “double Toplitz-Lipschitz matrices M (MY ,)”. These matrices possess
all the properties, needed for the arguments in Sections 24 (see [EKO05b]), but
the corresponding notations become more combersome. Now we are in a process
of developing them. A proof of Theorem 0.1 for the nd case, n > 3, will be
presented in the next version of this text.

Normal forms. A symmetric matrix A = (Ag) € M, Awp = A}, v > 0,
defines on the lo—space Y the continuous quadratic form ¢(¢, ¢) = ((, A¢) (see in
[EKO05b] Theorem 1.2 with v = m, = 0). In the complex variables (w,,a € L),
where

_ Uq _ L 1, 2 _ L 1 2
wn= (1) = s (i) = s (- i)
we have the matrices Viq7 V%(L VuVyq, and

(¢, Q) = (u, Vigu) + (v, V3qv) + (u, Vi, Vg ) .

The matrices V2q and V2q are symmetric and complex conjugate of each other,
while V, V,q is Hermitian. If A € M;’, then

SuZI)) ‘(Vuvvq)able’y'a_bl + Su]? | (viQ)ab| + |(V12)Q)ab|)e’yla+b| < 0.
a, a,

Moreover, the L.h.s. defines on the space of symmetric matrices in M, a norm,
equivalent to ||| - ||

A quadratical form f = ((, fec(w)() is called a normal form if it is block-
diagonal over some decomposition (into finite subsets) £ of L, i.e.

F=> (V).

Ieg
and
V2f=V2if=0
This property will be denoted
fe N}-g(Q)

We say that a matrix A(w) = (Ag(w)) is a normal form,
A(w) S N]:g(Q),

if it is symmetric, i.e. Ag = A}, for all a,b € L, and the corresponding
quadratic form belongs to N Fg ().

Note that if a matrix A is a normal form, then the corresponding Hamiltonian
operator JA has a discrete pure imaginary spectrum.

Block decomposition. For a non-negative integer A we define an equivalence
relation on £, generated by the pre-equivalence relation

lal? = [b]?

a~b = { la—b < A.

16



Let [a] = [a]a denote the equivalence class (block) of a, and let Eo denote the
set of all blocks. The blocks are finite with a diameter

(d+1)!
< const A"z .

(See [EKO05a].) If the decomposition above is Ea, then we say that
f S N}_A (Q)

Each decomposition Ea is a subdecomposition of the trivial decomposition £,
formed by the spheres {|a| = const}.

Homological equations. Let A = A(w) be the diagonal operator
A (Ya,a € L) — (AgYa,a € L),

where the numbers A, = |a|? + V(a) are the same as in the Introduction (we
recall that each y, is a a two—vector). We define the jet—function H,

1
and consider a hamiltonian
H=H+g(p Gw)+h,

where w € Q C Qg and g = g,(w) - p+ 3{(gcc(w)¢, ¢) is a jet-function such that
3(9¢c(w)¢,¢) € NFA(), and

; ; 1/3
sup  |0%p] + 180 gcc[lla < Crey/® . (3.1)
weN,j=0,1

The function h is assumed to be Toplitz—Lipschitz and

(A

Q7 =e< €0,

where 0 < v <7, 0<r <71, 0<pu < poand A > 6.

Clearly, the hamiltonian Hy in the Introduction has the form above with
e =Cep, h =¢ph and g = 0.

We abbreviate

(d+1)
2

W = wtgpw), A= AWw)tgec(w), A =max(A,AGTDH A > CHATT A

(note that A > A).
Let us calculate the jet hT of h (see (1.8)) and denote

hs =h—h".

Consider the following four equations for four unknown maps f,(¢; w),
folg; w), fe(g; w) and fee(g; w), valued in the same spaces as hq, hyp, hy
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and h¢¢ respectively:

(W’ “Vo)fg=hq—(he) + Eqa (3.2)

(W/ ) vq)fp =hp — <hp> + ﬁpv (3.3)

(&' Vo)fe = JA' fe = he + he, (3.4)

(W' - Vo) fec + (fecJA = A'J fee) = hee = hee — Gee- (3.5)

In these equations izq, ﬁp, l~L<, ﬁg,g and g¢¢ are admissible disparities, and for a
vector—function k on the torus T" we denote (k) = (2m)~™ [ kdg. The set of four
unknown vector—functions and five disparities is called a solution of eq. (3.2)—
(3.5). Recall that the functions hg, etc. are estimated in (1.9).

Lemma 3.1. If the hamiltonian H satisfies the assumptions above, then for
any s € (0,1] there exists an open set Q' C Q,

Leb (Q\ Q) < A s,

such that for any 7 € (0,7) and 5 € (0,7) the equations have a real solution,
satisfying for any g € TZ the estimates

. 3.A

i) | fol@s ear + 12| folas )ler + pl fe (a5 )G + 1Pl fec(a; )|y < Ne,

.. 7 7 7 7 5,A _

ii) |hg(g; er + w2 (a5 e + plhe(a: )y + i hee (g )" < €,
where N = Cys%|r — /|7 A’ and & = Cy(e™? |7*“j e ‘)|7" —1/|%e.
The matriz gec is g—independent and satisfies |g¢¢ gz’,A < eCy. Moreover, ge¢ €
NFa (D).

The constants c1,c2,c3 and Cy,Cs depends on my.,n,d and the constants

K — Ks.

Proof. Note that in view of (3.1) the map w — «’ is a C*-smooth diffeomor-
phism that changes measures of sets no more than twice (if 9 < 1).

The fact that the equations (3.2) and (3.3) admit solutions f, and f, with
disparities iLq and Bp, satisfying the estimates in i) and ii), provided that the
frequency vector w’ lies outside a set of small measure < %A’ “ 3¢, is classical for
the KAM-theory. Similar, the solvability of eq. (3.4) for w’ outside a small set
is well known in the ‘KAM theory for PDE’. 4 The forth equation is far more
difficult. Its solvability is established in [EK05a].

So the four homological equations can be solved for w’ outside a set of
measure < %A’cl 2. That is, for w outside a set of measure < A’ . O

Given the solution of the homological equations, constructed in the lemma
above, we denote by f and h the following jet—functions:

F=fatp fo b (G )+ {6 Fec)

. B _ 1 .

4See [Kuk93], p. 62. The assumption that there the eigenvalues \; satisfy \; ~ Cj?1,
d1 > 1 (see (1.11)) is needed for the forth homological equation (2.33), while for solvability
of the third equation (2.32) it is only needed that di > 0. The eigenvalues A\q, a € L, of the
operator A, after we re-parameterise them as A;, j € N, satisfy A\; ~ Cj%, dy = 2/d.

(3.6)
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and denote L

4 Proof of the theorem

In this section we study the Hamiltonian equation (2.1) and prove Theorem 2.1.

4.1 The KAM-step

Let us re—write the hamiltonian H = H + g + h as in Section 2 in the form
1
H = Hl(pv va) + hT(hvw) + hg(h,&)) ) H/ =u' p+ §<A/(w)<a C> :

Next, take any numbers

1
’yl € (077)7 T/ € (077.)7 ,u'l € (07 Tﬁu)7

and for 4 < v define the domanins O? as in (1.18). For the hamiltonian f,
defined by (3.6), consider the corresponding Hamiltonian equation (1.12) and
denote by S, 0 <t < 1, its low-maps. Let us assume that

eN <CTHP(r— 1) (y — 7)) (4.1)

(with a suitable C' > 1). Then, by Lemma 1.6, S* : O] — O].
Let us denote
ZA/:R;LXR;LXYW, 0<~y<1.

Lemma 4.1. Assume that the assumptions above hold. Then the map S = St
07 x Q' — 07, 0<% <+, is real for real arguments, is a symplectomorphism
as a function of the first variable, and is close to the identity, i.e. satisfies
the estimates (1.27) with ¢’ = Ne. This map transforms the hamiltonian H to
H'(h;w) = H(S(h;w);w), which can be written as

H' =H(p,¢;w) + ¢ (p, Gw) + 1 (h;w) . (4.2)

Here g = g,(w) -p + %(C,g&(w)() satisfies (3.1) with Cy replaced by Cy +
CE’/[le/g, and gie € NFa(SY). The function h' is Téplitz-Lipschitz and

’ ! / 3 —_
W1 o < O™ + CA%e (%) + CAO T INe(e + 2),
where A’ = A + 18.
Proof. We have
{H/, 1= (W/ “Vo)fqgt+p- (WI Vo) fe + (¢ (W/ Vo) fe)
+(C, (W' Vo) feeQ) + (JA (W), fe+2fecC) (4.3)
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Using the relations (3.2)—(3.5) we get that
{(H, f}=h"+h—3g

Therefore, $H'0S*={f, H'} =—(hT +h—g)oS*, and

d ! &

H oS = H’+@H’ 0 S |i=o +/0 (1— t)ﬁw o Stdt
:H’—hT—fz—l—g—/Ol(l—t){f, KT +h—g)oStdt.
Similar,
hfoS = hT+/Ol{f, hT} o St dt.

So,

1
Hos:(H'+g)_iL+h305+/ {f, t=1)(h—g)+thTYo Stat
0

= (H +g) +h1+ns+15.

Removing from g the irrelevant constant (hq), we see that
! - / / 1 —
H +g=H+g +Const, ¢ =g+ (hy) p+5(C0c)-

The function ¢’ satisfies the lemma’s assertion since the required bound on (h,)
folows from (1.9), and the bounds on (¢, gc¢) follow from the estimates on ge¢
in Lemma 3.1.
It remains to estimate the terms h'{, h’s and h’3. Let us denote
- YA

=y i =

A

4 /'l‘j:2]/1‘7 ]:17273

a) Choosing in Lemma 3.1 ¥ = 73, we immediately get that

A A = —d
[hll]g%;rg,,urz - [h]g%,rg,;w < C‘C:PYA 1. (44)

b) By Lemma 1.4, [h?’}g”i\,’gu/ < 16&(1/p)3. Due to (4.1), Lemma 4.1 applies
to the map S : OV (¢, ) — O (r,24/). Therefore

!’

!’ 3
(RYIG A H0% < O ABe (&) .
T H

>
’
ST —

jointly with (4.4) and Lemma 1.4 with v’ := 75 show that

¢) The estimates in Lemma 3.1 imply that [g]g“ < Ce. This estimate

(RGN <CE+e) ™, F=(t-1)(h—g) +thT,
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for 0 <t < 1. Since [f];’f,”im < CNeqx™ by Lemma 3.1, then

[, YRS, < CAZA3 > h i N e(e +2)
due to Lemma 1.5.
Now, applying Lemma 1.7, we get that

I A < ORI AR 2h 1 T IN (e 4 ).

Summing up the estimates a)-c) we get the lemma’s assertion. O

4.2 Choice of parameters

To prove the main theorem we shall construct the transformation X, as the
composition of infinitely-many transformations S as in Lemma 4.1. The first
map S transforms the original system with hamiltonian Hy and with e = g, r =
0, etc. to the system with hamiltonian H; and with e; = &', r; =1/, etc. The
second transforms this one to the system, obtained by applying the lemma with
e=¢€1,r=r1,..., and so on.

In this section we specify the parameters (g;,7;,etc), j =0,1,2,..., study
their asymptotic behaviour as j — oo and check that this choice of parameters
is consistent, i.e. that the assumption (4.1) holds at each step.

It is convenient to re-define pg and replace it by 5(1)/ % Let us denote C, =
2(1724+272+4...), and for j > 1 choose

1.2
ri-1—r; =05 o,

Vi1 = =C i %0,

1/3
Hi = 5]‘/ ’
A, = (lnafl)é Ag=1
J j i *Tj7 0 )
A= C2Aj—1A§'d+1)!/2 +18, Ag=6,
_ Cx _ Ad+1)!
n=e7", A; = Aj )

Here Cy > 0 is the same as in the formular for A in Section 2, and ¢,, > 0 is
specified below.

The numbers above are defined in terms of €;’s which are defined inductively
(with given &) through the relation

_ . _1\d+1
ejr1 <O (5 + 1) ")

+CASL (G + 1)t

+CASej(ej41/25)°

)d+2d1+1 (( )63+1

J+1)>%ra w2 N je(E5 +¢5)

(4.5)
g = Oy (e ¥ UHD0 y mACTGHD ) (4 )2 T

(see Lemma 4.1).
The result below holds if ¢,. = ¢,.(n,d) > 0 is sufficiently small.
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Lemma 4.2. For j=1,2,... we have
g; < &‘65/4)] , (4.6)

provided that o > 0 is sufficiently small (in terms of n,d,ro, o and vo). Be-
sides, the assumption (4.1) holds for each j.

Proof. Tt suffice to check that if
e < eV vk <y, (4.7)

then all the three terms in the r.h.s. of (4.5) are < %55/4.

Let us abbreviate Iney' = Iy and cq = (d + 1)!. Tt is easy to see that (4.7)
implies that
g <e (4.8)

if eg < 1. So the first term in the r.h.s. satisfies the desired estimate.
The formula for A; and (4.7) imply that

J i 352
AjgloClej .

So . Y
Aj S Cl 602‘7 3 lgdj

(here and below in the lemma’s proof C7, Cs etc are different constants, depend-
ing on n,d,rg and 7p). Accordingly, the second term also satisfies the desired
estimate, if ¢ is small.

Due to (4.8) and the estimates for A; and A; above, the third term is
bounded by

C2j°3 1045% _—cacs 2
Ce lg* e £5 -

We see that it is < %e?/g, if g and ¢,, are small.

The estimates (4.1) follows from (4.6) by strightforward arguments. O

4.3 Transition to the limit
For m > 0 let us denote
Om) = 0" (1) ') = 0" (3o + 3 i) 7= 520-
Applying Lemma 4.1 with the parameters € = €,,,_1, 7 = r;;,—1 etc we construct
analytic symplectomorphisms
Sm(w):O(m) - O0'(m—1), weQp, m=1,2,... (4.9)

(note that ~,, >~ for all m). The domains --- C Qs C Q1 C Qp = Q satisfy
Leb (2 \ Qo1 < A;nc_lsfn_l < 6%31, if eg < 1. Therefore ' = NQ,, is a
Borel set such that

Leb (Q\ Q) < 2¢5/2.
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Next let us set
Qu=0'(r/l,p/l), Z5=T; xC"xYS, Z,=T"xR"xY,,

where [ > 2, and denote by | - |, the natural norm in C" x C" x Y. It defines
the distance in Z§ By Lemma 1.6 for each w € € the map S,, extends to

Sm Q2 — 25, |Sy —id|, <ep, (4.10)

(here and below ¢ > 0 are different esponents, depending on n and d).

Now for 0 < r < N let us denote X = Sy41 0---0Sy. Due to (4.9), it
maps O(N) to O'(r). Due to (4.10), this map analytically extends to a map
YN Qs — z5, and when N — oo the maps >’y converge to a limiting mapping

Yo Qs— 25, XL, —id|, <2 Vr>1. (4.11)
By the Cauchy estimate the linearised map satisfies
|20 (0) —id]yy < Cel Vh e Qy, Vr>0. (4.12)

By construction, the map X% transforms the original hamiltonian Hy to
Hy = Hyo X%,
1
Hy =wn-p+ §<ANC’C> + hn(h;w).
Here wy =w + (h)) + ... (B 1), An = A+Gle +...9) € NFay(Qn), and

[NIGAN, < en (4.13)

Clearly, wy — w’ and Ay — A’, where the vector w’ and the operator A satisfy
the assertions of Theorem 0.1.

Let us denote ¥, = Ego, consider the limiting hamiltonian H' = Hyo X,
and write it as

H'(h) =o' po+ S{ACQ) + (D).

The function A’ is analytic in the domain Q3. Since H' = H;o X!, then for any
b = (¢,0,0) we have

Vo H'(h) = (34 (he)«) ' VH (b)), (4.14)

where h; = XL_(h) € O'(1). Due to (4.13), VH;(h;) = (O,wl,O)t+O(Ell/4). Since
the map XL satisfies (4.12), then VH'(h) = (0,w;,0)! +o0(gf*), ¢1 > 0, for each
I. Hence, VH'(h) = (0,we0,0)?, and

Vh'(q,0,0) = 0.

Now consider V¢, V¢, H'(h), h = (g,0,0). To study this matrix let us write it
in the form (1.31), where g = H; and S* is replaced by the map X! . Repeating
the arguments, used at the step iii) of the proof of Lemma 1.7 we get that

V%V@Hl(f)) = (Al)ab + O(Elc) , ¢>0.
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Sending [ to oo we see that V¢, Ve, H'(h) = (A')ap. That is, VZh'(g,0,0) = 0.
Therefore

W e O0(p*p¢, %),

as states the theorem.
To complete the proof it remains to note that since A; € N Fa,(€;) for each
I, then A" € NFe__ ().
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