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Abstract

We consider the d-dimensional (d ≥ 1) nonlinear Schrödinger equation
(NLS) under the periodic boundary conditions:

−iu̇ = ∆u + V (x) ∗ u + ε0|u|2u; u = u(t, x), x ∈ Td, (0.1)

where V (x) =
P

V̂ (a)eia·x is an analytic function with V̂ real. 1 For
ε = 0 the equation is linear and has the time–quasiperiodic solutions u,

u(t, x) =
X
a∈A

û0(a)ei(|a|2+V̂ (a))teia·x, 0 < |û0(a)| ≤ 1,

where A is any finite subset of Zd, n := |A| ≥ 1. We shall treat ωa =
|a|2 + V̂ (a), a ∈ A as free parameters in some domain Ω ⊂ Rn and we
shall prove the following KAM–result:

If |ε| is sufficiently small, then there is a large subset Ω′ in Ω such that
for all ω ∈ Ω′ the solution u persists as a time–quasiperiodic solution of
(0.1) which has all Lyapounov exponents equal to zero and whose linearized
equation is reducible to constant coefficients.

0 Introduction.

If we write {
u(x) =

∑
a∈Zd

√
2uaei<a,x>

u(x) =
∑

a∈Zd

√
2vaei<a,x>,

then, in the symplectic space
{
{(ua, va) : a ∈ Zd} = CZd × CZd

i
∑

a∈Zd dua ∧ dva,

the equation (0.1) becomes a Hamiltonian system with Hamiltonian

H0 =
1
2

∑

a∈Zd

(|a|2 + V̂ (a))uava +
1
4
ε0

∑

a1+a2−b1−b2=0

ua1ua2vb1vb2 .

1This equation is a popular model for the ‘real’ NLS equation, where instead of the con-
volution term V ∗ u we have the potential term V u. Considering this model we remove some
technical difficulties, which are not related to the main ones.
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For a ∈ A we introduce the action angle variables (qa, pa), defined through
the relations

ua =
√

2(pa − |û0(a)|2)eiqa , va =
√

2(pa − |û0(a)|2)e−iqa .

In order to write it in real form we introduce ζ = (ξ, η) through

ua =
1√
2

(
ξa + iηa

)
, va =

1√
2

(
ξa − iηa

)
.

The integrable part of the Hamiltonian now becomes

H(p, ζ) =
∑

a∈A
(|a|2 + V̂ (a))pa +

1
2

∑

a∈L=Zd\A
(|a|2 + V̂ (a))(ξa + ηa),

while the perturbation ε0h will be a function of

{(qa, pa) : a ∈ A} and {ζa : a ∈ L}.

ωa = |a|2 + V̂ (a), a ∈ A are the basic frequencies and λa = |a|2 + V̂ (a), a ∈
L = Zd \ A are the normal frequencies. The ω’s will be our free parameters
belonging to a set Ω ∈ Rn.

We shall assume that V̂ is real and

|V̂ (a)| ≤ C1e
−C2|a| ∀ a ∈ L ,

and that
Ω ⊂ {|ω| ≤ C3}

We also assume

|λa + λb| ≥ C4 ∀ a, b ∈ L, ∀ω ,

|λa − λb| ≥ C4 ∀ a, b ∈ L, |a| 6= |b|.

We define the complex domain

Oγ(r, µ) =





|=q| < r
|p| < µ2

||ζ||γ =
√∑

a∈L |ζa|2|a|2m∗e2γ|a| < µ.

Theorem 0.1. Under the above assumptions, for ε0 sufficiently small there
exist a Borel subset Ω′ ⊂ Ω,

Leb (Ω \ Ω′) ≤ const .εexp1
0 ,

and for each ω ∈ Ω′, a real analytic symplectomorphisms

Σω : Oγ/2(r/2, µ/2) → Oγ/2(r, µ) ,
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such that |Σω − id| ≤ const .εexp2
0 and

(H+ ε0h) ◦ Σω = ω′ · p +
1
2
〈ζ, A′ζ〉+ h′ ,

where the quadratic form 1
2 〈ζ,A′ζ〉 has the form

〈u,Qv〉,
with Q Hermitian and block-diagonal with finite-dimensional blocks, and where

h′ ∈ O(p2, pζ, ζ3).

The constant const only depends on the dimensions d and n and on C1, . . . , C4.
The exponents exp1 and exp2 only depends on the dimensions d and n.

Every torus Σω(Tn × {0} × {0}) is invariant for the Hamiltonian equations
and is filled in with the time-quasiperiodic solutions t → Σω(q +ω∞t) , q ∈ Tn .
The linearised map DΣω(q + ω∞t) reduces the linearized equation on the torus
in the ζ-direction to the constant coefficient system

d

dt
ζ = JA′ζ .

Due to the form of A′ all Lyapunov exponents of the solutions vanish.
Theorem 0.1 follows from a bit more general result, proved in Section 2.
Some references. For finite dimensional Hamiltonian systems the first proof

of stable (i.e. vanishing of all Lyapunov exponents) was obtained by Eliasson
[Eli85, Eli88]. This has been improved in many works and the situation in finite
dimension is pretty well understood. Not so, however, in infinite dimension.

If d = 1, the space-variable x belongs to a finite segment and the equation is
supplemented by the Dirichlet or Neumann boundary conditions, this result was
obtained by Kuksin in [Kuk88] (also see [Kuk93, Pös96]). The case of 1d periodic
boundary conditions was treated later by Bourgain in [Bou96], using another
multi–scale scheme, suggested by Fröhlich–Spencer in their work on the Ander-
son localisation [FS83], and later exploited by Craig–Wayne in [CW93] to con-
struct time–periodic solutions of nonlinear PDEs. Due to these and other pub-
lications, the perturbation theory for quasiperiodic solutions of 1d Hamiltonian
PDE is now sufficiently well developed, e.g. see books [Kuk93, Cra00, Kuk00].
Study of the corresponding problems for space–multidimensional equations is
now at its early stage. Developing further the scheme, suggested by Fröhlich–
Spencer, Bourgain managed to prove Theorem 0.1 for the 2d case [Bou98].
Finally, he has recently announced (e.g. in [Bou04]) that the new techniques,
invented by him with collaborators in their works on spectral theory of (linear)
Schrödinger operators with quasiperiodic coefficients, allow to establish exis-
tence of quasi-periodic solutions for any d. (A detailed proof has not been given
yet.) It should be mentionned the multi–scale-scheme developped by these au-
thors does not (at least not immediately) give neither vanishing of the Lyapunov
exponents nor reducibility of the linearized equation.
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Main ideas. Very briefly, our main idea is to put under strict control the
linear parts of the transformations, forming the KAM–procedure, defined by
the homological equation.The solution, with estimates, of this equation requires
control of the “small divisors” which imposes conditions on ω ∈ Ω. These
conditions are relatively easy to fulfill when L is a finite set in Zd or when
L ⊂ Z1 because then the equation imposes on finitely many conditions on ω on
every scale. In the case when L is an infinite subset of Zd, d ≥ 2, the equation
imposes infinitely many conditions on ω on every scale.

To verify that these conditions can be fulfilled in the n-parameter family
ω ∈ Ω, we make use a special property of infinite–dimensional matrices — the
Töplitz-Lipschitz property. This property has two nice features. These matrices
is an algebra: one can multiply them and solve linear differential equations
[EK05b]. They permit a “compactification of the dimensions: if the Hessian
(with respect to ζ) of the Hamiltonian is Töplitz-Lipschitz then the infinitely
many small divisor conditions needed to solve the homological equation reduce
to finitely many conditions [EK05a].

In this paper we prove that, if the Hessian (with respect to ζ) of the Hamil-
tonian is Töplitz-Lipschitz, then this is also true of the linear part of our KAM–
transformations and of the Hessian of the transformed Hamiltonian. This will
permit us to formulate an inductive statement which, as usual in KAM, gives
Theorem 0.1.

Acknowledgement. This work started a few years ago during the Conference
on Dynamical Systems in Oberwolfach as an attempt to try to understand if
a KAM–scheme could be applied to multidimensional Hamiltonian PDE’s and
in particular to (0.1). This has gone at different place and we are grateful for
support form ETH, IAS, IHP, Chinese University of Hong-Kong and from the
Fields Institute in Toronto, where these ideas were presented for the first time
in May 2004 at the workshop on Hamiltonian dynamical systems. SK’s research
was supported by EPSRC, grant S68712/01.

1 Domains, functions and Hamiltonian equa-
tions.

1.1 Constants

Let us take a real number m∗ > d/2 and integers n, d ≥ 1. They are fixed in
our work, and the dependence on then of the objects which we consider will not
be indicated. The domains and functions we will construct also depend on the
following real parameters:

Λ ≥ 6, γ ∈ (0, 1], µ ∈ (0, 1), ε ∈ (0, 1).

These parameters will change from one KAM-step to another, and we shall
control how our objects depend on them. By C,C1 etc and c, c1 etc we denote
different positive constants, independent of Λ, γ, µ and ε (but they may depend
on m∗, n and d).
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1.2 Linear spaces.

Let
L = Zd \ A A = a finite set.

We fix any constant m∗ > max{2, n/2} and denote by Yγ , γ ∈ [−1, 1], the
following weighted l2-spaces:

Yγ = {ζ = (ζs ∈ R2, s ∈ L) | ‖ζ‖γ < ∞}.

Here
‖ζ‖2γ =

∑

a∈L
|ζa|2e2γ|a|〈a〉2m∗ , 〈a〉 = |a| ∨ 1.

In the spaces Yγ acts the linear operator J ,

J : {ζs} 7→ {σ2ζs}, (1.1)

where σ2 =
(

0 −1
1 0

)
. It provides the spaces Yγ , γ ≥ 0, with the symplectic

structure J dζ∧dζ. 2 To any C1-smooth function, defined on a domain O ⊂ Yγ ,
this structure corresponds the Hamiltonian equation

ζ̇ = J∇f(ζ),

where ∇f ∈ Y−γ is the gradient with respect to the scalar product in Y (i.e.,
〈∇f(ζ), η〉 = df(ζ)η) for all η ∈ Yγ).

1.3 Infinite matrices – quadratic forms

Details of the definition and results below see in [EK05b].
Consider a matrix A : L × L → M(2 × 2) with values in the space of real

2× 2-matrices. We assume it is
symmetric, i.e.

As, s′ = As′,s ∀s, s′.
To such an A we associate in a unique way a real quadratic form

q(ζ, ζ) =
∑

a,b∈L
〈ζa, Aa,bζb〉.

Let us abbreviate M(2 × 2) = X, and consider the following four real ma-
trices:

σ0 =
(

1 0
0 1

)
, σ1 =

(
1 0
0 −1

)
, σ2 =

(
0 −1
1 0

)
, σ3 =

(
0 1
1 0

)
. (1.2)

2J dζ ∧ dζ(ξ, η) = 〈ξ, η〉 for any ξ, η ∈ Yγ .
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We denote by Xp the linear subspace of X, generated by σ0, σ2, denote by Xq

the subspace, generated by σ1, σ2, and denote by p (by q) the projection of X
to Xp along Xq (respectively, the projection to Xq along Xp). Finally, we define

M+
γ = {A ∈ Mγ | ‖|A‖|+γ < ∞},

where
‖|A‖|+γ = sup

s, s′
{|pAs s′ |eγ|s−s′| ∨ |qAs s′ |eγ|s+s′|}.

Remark 1.1. This supremum norm is denoted | |γ in [EK05a].

We have for γ′ ≥ γ

‖Ay‖γ ≤ C(γ′ − γ)−d1‖|A‖|+γ′‖y‖γ , (1.3)

where we denoted
d1 = d + m∗.

The spaces M+
γ contain the identity matrix. The union ∪0<γ≤1M

+
γ is a stratified

algebra, and

‖|AB‖|+γ + ‖|BA‖|+γ ≤ C(γ′ − γ)−d‖|A‖|+γ′‖|B‖||+γ (1.4)

if γ < γ′ ≤ 1.
We also note that since the multiplication by σ2 preserves the spaces Xp and

Xq, then JM+
γ = M+

γ and the mapping

M+
γ → M+

γ , A 7→ JA (1.5)

is an isometry for each γ.
A matrix A is called Töplitz at ∞ if for all a 6= 0, b1, b2 ∈ Zd the two limits

A∞±a,b1,b2
= lim

t→∞
A(ta+b1)±(ta+b2)

exist (here and in similar situations below, t goes to ∞ along the set {t ≥ 0 |
ta + b1 ∈ L, ta + b2 ∈ L}).

Note that for A ∈ M+
γ we have

(pA)∞−a,b1,b2
≡ 0 , (qA)∞+

a,b1,b2
≡ 0 .

For a Töplitz at ∞ matrix A and for Λ ≥ 0 we define

A±(a, b1, b2; Λ) = sup{t|A(ta+b1)±(ta+b2) −A∞±a,b1,b2
|} ≤ ∞ ,

where the supremum is taken over all t > 0 such that

|ta + bj | ≥ Λ(1 + |a|+ |bj |)|a|, j = 1, 2.
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Next for A ∈ M+
γ we set

〈A〉+γ, Λ = max
(

sup
a 6=0,b1,b2∈Zd

eγ|b1−b2|(pA)+(a, b1, b2; Λ) ,

sup
a 6=0,b1,b2∈Zd

eγ|b1−b2|(qA)−(a, b1, b2; Λ)
)
,

‖|A‖|γ, Λ = ‖|A‖|+γ + 〈A〉+γ, Λ.

A matrix is called Töplitz–Lipschitz if this norm is
finite for some γ, Λ.

Remark 1.2. This Lipschitz norm is denoted 〈·〉γ,Λ in [EK05a], and is denoted
as ‖| · ‖|+γ, Λ in [EK05b].

Example 1.3. If ζ1, ζ2 ∈ Yγ , then ‖|ζ1 ⊗ ζ2‖|γ,Λ ≤ C‖ζ1‖γ‖ζ2‖γ for any
0 ≤ γ ≤ 1 and any Λ ≥ 6. See [EK05b].

The space of all Töplitz–Lipschitz matrices is an algebra, and the following
inequality holds:

‖|AB‖|γ, Λ + ‖|BA‖|γ, Λ ≤ C(γ′ − γ)−d−1Λ2‖|A‖|γ′, Λ′‖|B‖|γ, Λ′ (1.6)

if γ′ ≥ γ and Λ ≥ Λ′ + 6. See [EK05b], Theorem 2.7′.

Denote
M c

γ, Λ = {A ∈ M+c
γ | ‖|A‖|γ, Λ < ∞}.

Since the map A 7→ JA obviously preserves the semi-norms 〈A〉γ, Λ, then by
(1.5)

the map M c
γ,Λ → M c

γ,Λ, A 7→ JA , is an isometry. (1.7)

1.4 Domains and functions on them

For r > 0 and a Banach space B (real or complex) we denote

Or(B) = {x ∈ B | ‖x‖B < r}

and
Tn

r = {q ∈ Cn/2πZn | |Im q| < r}.
Now, for r ∈ (0, 1], γ ∈ (0, 1], µ ∈ (0, 1) and Λ ≥ 6 we set

Oγ(r, µ) = Tn
r ×Oµ2(Cn)×Oµ(Y c

γ ) ,

OγR(r, µ) = Oγ(r, µ) ∩ Tn × Rn × Yγ .

We denote points in Oγ(r, µ) as h = (q, p, ζ) and abbreviate O0(r, µ) =
O(r, µ). A function, defined on a domain Oγ(r, µ), is called real if it takes real
values on OγR(r, µ).
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Töplitz–Lipschitz functions. Let Ω ⊂ Rn be an open domain and h :
O(r, µ)× Ω → C be a C1–function, analytic in the first variable. We define

|h(h, ·)|Ω = sup
ω∈Ω,j=0,1

|∂j
ωh(h, ω)| ,

∣∣∣∂h

∂ζ
(h, ·)

∣∣∣
γ

Ω
= sup

ω∈Ω,j=0,1
‖∂j

ω∇ζh(h, ω)‖γ ,

∣∣∣∂
2h

∂ζ2
(h, ·)

∣∣∣
γ,Λ

Ω
= sup

ω∈Ω,j=0,1
‖|∂j

ω∇2
ζh(h, ω)‖|γ,Λ .

Here ∇ζh = ( ∂h
∂ζa

∈ C2 a ∈ L) and ∇2
ζh is the matrix, formed by the 2×2-blocks

∂2h
∂ζa∂ζb

, a, b ∈ L. Now, for any 0 ≤ γ ≤ 1 we denote

[
h
]γ,Λ

Ω,r,µ
= C ,

where C ≤ ∞ is the infimum of all C ′ ≥ 0 such that for all γ′ ≤ γ and all
h ∈ Oγ′(r, µ) we have

|h(h, ·)|Ω ≤ C ′

∣∣∣∂h

∂ζ
(h, ·)

∣∣∣
γ′

Ω
≤ µ−1C ′

∣∣∣∂
2h

∂ζ2
(h, ·)

∣∣∣
γ′,Λ

Ω
≤ µ−2C ′

(as usual, inf ∅ = ∞). We denote by

T γ,Λ(Ω, r, µ)

the space, formed by functions h as above such that
[
h
]γ,Λ

Ω,r,µ
< ∞. Elements of

spaces T γ(Ω, r, µ) are called Töplitz–Lipschitz functions.
Note that the sets T γ,Λ(U, r, µ) grows with Λ and decays with γ.

Jets of Töplitz–Lipschitz functions. For any function h ∈ T γ,Λ(Ω, r, µ) we
define its jet hT = hT (h;ω) as the Taylor polynomial of h at p = 0, ζ = 0:

hT =hq + hp · p + 〈hζ , ζ〉+
1
2
〈hζζζ, ζ〉

:= h(q, 0; ω) +∇ph(q, 0; ω) · p + 〈∇ζh(q, 0; ω), ζ〉+
1
2
〈∇2

ζζh(q, 0; ω)ζ, ζ〉.
(1.8)

Choosing h = (q, 0, 0) in the definition of the norm
[
h
]γ,Λ

Ω,r,µ
we immediately get

that

|hq(q; ·)|Ω ≤
[
h
]γ,Λ

Ω,r,µ
, |hp(q; ·)|Ω ≤ µ−2

[
h
]γ,Λ

Ω,r,µ
,

|hζ(q; ·)|γΩ ≤ µ−1
[
h
]γ,Λ

Ω,r,µ
, |hζζ(q; ·)|γ,Λ

Ω ≤ µ−2
[
h
]γ,Λ

Ω,r,µ
,

(1.9)

for any q ∈ Tn
r .
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Lemma 1.4. For h ∈ T γΛ(U, r, µ) and any 0 < γ′ < γ, 0 < µ′ ≤ 1
2µ we have

[
hT

]γ′,Λ
Ω,r,µ

≤ C(γ − γ′)−d1
[
h
]γ,Λ

Ω,r,µ

and
[
h− hT

]γ,Λ

Ω,r,µ′ ≤ 2
(

µ′

µ

)3[
h
]γ,Λ

Ω,r,µ
.

Proof. The first assertion follows from (1.9) due to (1.3). To prove the second,
we have to estimate |h − hT |Ω, |∇ζ(h − hT )|γ′Ω and |∇2

ζ(h − hT )|γ′,ΛΩ for h =
(q, p, ζ) ∈ Oγ′(r, µ′), γ′ ≤ γ. Let us denote m = µ′/µ. Then for |z| ≤ 1 we
have (q, (z/m)2p, (z/m)ζ) ∈ Oγ′(r, µ). Therefore the function

{|z| < 1} 3 z 7→ ∇2
ζh

(
q, (

z

m
)2p,

z

m
ζ
)

= h0 + h1z + · · · ∈ M c
γ, Λ

is holomorphic and is bounded in norm by εµ−2. So, by the Cauchy estimate,
‖|hj‖|γ′, Λ ≤ εµ−2. Since ∇2

ζh3 = h1m + h2m
2 + . . . , then

‖|∇2
ζh3‖|γ′, Λ ≤ εµ−2(m + m2 + . . . ) ≤ 2 εµ−2 µ′

µ

(since µ′ < 1
2µ). Same arguments apply to estimate the norm of ∂ω∇2

ζ(h−hT ),

as well as |h− hT |Ω and |∇ζ(h− hT )|γ′Ω .

A Töplitz–Lipschitz function h is called a jet-function if hT = h.

Poisson brackets of jet-functions. For given jet-functions f and g let us
consider

h(h) := {f(h), g(h)} = ∇pf · ∇qg −∇qf · ∇pg + 〈J∇ζf, ∇ζg〉. (1.10)

Lemma 1.5. If f, g ∈ T γ,Λ(U, r, µ), then for any 0 < γ′ < γ, 0 < r′ < r and
Λ′ ≥ Λ + 6 we have

[
h
]γ′,Λ′

Ω,r′,µ ≤ C(γ − γ′)−d−1
(
(r − r′)−1 + Λ2µ−2

)[
f
]γ,Λ

Ω,r,µ

[
g
]γ,Λ

Ω,r,µ
. (1.11)

Proof. Let us denote the three terms in the r.h.s. of (1.10) by h1, h2 and h3. It
is a straightforward consequence of the Cauchy inequality and (1.3) that

[
h1 + h2

]γ′,Λ′

Ω,r′,µ ≤ C(γ − γ′)−d−1(r − r′)−1
[
f
]γ,Λ

Ω,r,µ

[
g
]γ,Λ

Ω,r,µ
.

Now consider the term h3. Since ∇ζf = fζ + fζζζ and similar with ∇ζg,
then

h3 = 〈Jfζ , gζ〉 − 〈ζ, fζζJgζ〉+ 〈gζζJfζ , ζ〉+ 〈gζζJfζζζ, ζ〉 .
It is clear that |h3(h, ·)|Ω is bounded by

C∗ = C(γ − γ′)−d−1Λ2µ−2
[
f
]γ,Λ

Ω,r,µ

[
g
]γ,Λ

Ω,r,µ
,
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for any h ∈ O(r, µ). Since

∇ζh3 = −fζζJgζ + gζζJfζ + gζζJfζζζ − fζζJgζζζ ,

then for any h ∈ Oγ̂(r, µ), γ̂ ≤ γ′, the norm µ|∇ζh3|γ̂Ω is bounded by C∗. Finally,
since ∇2h3 = gζζJfζζ − fζζJgζζ , then µ2|∇2

ζh3(h, ·)|γ̂,Λ′

Ω ≤ C∗, due to (1.7) and
(1.6). This implies the lemma’s assertion.

1.5 Hamiltonian equations in domains Oγ(r, µ).

Any C1–smooth function f on a domain Oγ(r, µ) defines there the Hamiltonian
equations, corresponding to the symplectic form dp ∧ dq + J dζ ∧ dζ 3 :

ḣt = J∇f(h)t =: Vf (h), J =




0 E 0
−E 0 0
0 0 J


 , (1.12)

where ∇f = (∇qf,∇pf,∇ζf). We denote by St, t ∈ R, the corresponding
flow-maps. These maps C1-smoothly depend on the parameter ω.

Now let us assume that f = fT is a jet-function

f = fq(q; ω) + fp(q; ω) · p + 〈fζ(q; ω), ζ〉+
1
2
〈fζζ(q; ω)ζ, ζ〉 ,

such that

|fq(h; ·)|Ω ≤ ε′ , |fp(h; ·)|Ω ≤ µ−2ε′ , |fζ(h; ·)|γΩ ≤ µ−1ε′ , |fζζ(h; ·)|γ,Λ
Ω ≤ µ−2ε′ ,

(1.13)
for all h ∈ Oγ(r, µ), with some Λ ≥ 6. Then the Hamiltonian equations take
the form

q̇ = fp(q), (1.14)
ṗ = −∇qf(q, p, ζ), (1.15)

ζ̇ = J
(
fζ(q) + fζζ(q)ζ

)
(1.16)

(here and below we often suppress the argument ω). Let us fix any

γ′ ∈ (0, γ), r′ ∈ (0, r) µ′ ∈ (0,
1
2
µ] , (1.17)

denote r∆ = 1
3 (r− r′), µ∆ = 1

3 (µ−µ′), γ∆ = 1
3 (γ− γ′), and for j = 0, 1, 2, 3 set

Oγ̂
j = Oγ̂(r′ + jr∆, µ′ + jµ∆), 0 ≤ γ̂ ≤ γ′ . (1.18)

We supplement the equations with initial conditions

h(0) = h0 = (q0, p0, ζ0) ∈ Oγ̂
1 .

3 dζ ∧ dζ is the form which sends any pair of vectors (ξ, η) to the number 〈Jξ, η〉.
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Assume that the solution h(t) exists for 0 ≤ t ≤ 1 and satisfies

h(t) ∈ Oγ̂
2 for 0 ≤ t ≤ 1. (1.19)

Then
|q(t)− q0| ≤ ε′µ−2, 0 ≤ t ≤ 1 , (1.20)

due to (1.13). The estimates (1.13) imply that |f(h; ·)|Ω ≤ Cγ−d
∆ ε′ for h ∈

Oγ̂(r, µ). Therefore |∇qf(h; ·)|Ω ≤ Cγ−d
∆ r−1

∆ ε′ for h ∈ Oγ̂
2 by the Cauchy in-

equality. So
|p(t)− p0| ≤ Cε′r−1

∆ γ−d
∆ , 0 ≤ t ≤ 1. (1.21)

Now, let {Φt2
t1} be the flow of the linear equation ζ̇ = Jfζζ(q(t))ζ . Then

ζ(t) = Φt
0ζ0 +

∫ t

0

Φt
τJfζ(q(τ)) dτ . (1.22)

Assume that ε′ satisfies
ε′ ≤ C−1µ2r∆γd1+d

∆ . (1.23)

Then

‖|Φt2
t1 − id ‖|γ′+2γ∆ ≤ Cε′µ−2 and ‖|Φt2

t1 − id ‖|γ′+γ∆,Λ ≤ Cε′µ−2γ−d−1
∆ Λ2

(1.24)
for 0 ≤ t1, t2 ≤ 1 due to (1.13) and Theorems 3.3, 3.4 in [EK05b]. So that

‖ζ(t)− ζ0‖γ̂ ≤ Cε′µ−1γ−d1
∆ , 0 ≤ t ≤ 1 , (1.25)

by (1.3).
Consider the n × n–matrix ∇qfp(q(t)). Due to (1.13), its norm is bounded

by Cr−1
∆ µ−2ε′. Therefore if (1.23) holds, then the flow-maps {Σt2

t1} of equation
ṗ = −∇qfp(q(t))p satisfy

‖Σt2
t1 − id ‖ ≤ C1r

−1
∆ µ−2ε′ , 0 ≤ t1, t2 ≤ 1.

By (1.15), the vector p(t) can be written as

p(t) = Σt
0p0 −

∫ t

0

Σt
sπ(s) ds, (1.26)

where

π(s) = ∇qfq(q(s)) + 〈∇qfζ(q(s)), ζ(s)〉+
1
2
〈∇qfζζ(q(s))ζ(s), ζ(s)〉 .

Lemma 1.6. Let the numbers γ, r, µ and γ′, r′, µ′ satisfy (1.17), (1.23), and
let γ̂ ∈ [0, γ′]. Define the domains Oγ̂

j as above. Then for any 0 ≤ t ≤ 1
i) the flow-map St defines an analytic diffeomorphism St : Oγ̂

1 → Oγ̂
2 and

defines a symplectomorphism St : Oγ̂R
1 → Oγ̂R

2 .
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ii) The map ΠζS
t is affine in ζ and ΠζS

th0 = ζ(t) can be written in the
form (1.22). The map ΠpS

t is affine in p and ΠpS
th0 = p(t) can be written in

the form (1.26).
iii) The map St analytically extends to a map

Tn
r′ × Cn × Y c

γ̂ → Tn
r × Cn × Y c

γ̂

such that for any h = (q, p, ζ) ∈ Tn
r′ × Cn

p × Y c
γ̂ we have

|ΠqS
t(h)− q)| ≤ ε′µ−2 ,

|ΠpS
t(h)− p)| ≤ C(r − r′)−1ε′

(
1 + µ−2|p0|+ γ′−d1µ−2

(
µ−1ε′ + 2‖ζ0‖γ̂

)2
)

,

‖ΠζS
t(h)− ζ‖γ̂ ≤ Cε′(γ − γ′)−d1µ−2‖ζ0‖γ̂ + µ−1ε′ .

(1.27)

Moreover, ω–derivatives of these maps satisfy same estimates: |∂ωΠqS
t(h; ω)| ≤

ε′µ−2, etc.

Proof. The maps St send Oγ̂(r′, µ′) to Oγ̂(r, µ) since the estimates (1.20), (1.21),
(1.25) and (1.23) imply (1.19).The fact that these maps are analytical symplec-
tomorphisms is classical. The assertion ii) follows from (1.22) and (1.26).

The first assertion in iii) is a consequence of ii) since the map Tn
γ̂ → Tn

γ , q0 7→
q(t) is analytic and independent of p0 and ζ0. The first estimate in (1.27) follows
from (1.20), and second one – from (1.22) and (1.24). Due to the estimates for
ΠζS

t and (1.23),

‖ζ(t)‖γ̂ ≤ Cε′µ−2γ−d1
∆ ‖ζ0‖γ̂ + µ−1ε′ + ‖ζ0‖γ̂ ≤ 2‖ζ0‖γ̂ + µ−1ε′ =: B .

Therefore |π(s)| ≤ Cr−1
∆ ε′

(
1+γ′−d1B2µ−2

)
. Now the estimate for ΠpS

t follows
from (1.26) and (1.23).

The estimates for the ω–derivatives follow from similar arguments.

Next we study how the flow–maps St as in Lemma 1.6 transform Töplitz–
Lipschitz functions. Let us take any function g such that [g]γ,Λ

Ω,r,µ = 1, and for
0 ≤ t ≤ 1 denote gt(h; ω) = g(St(h; ω); ω).

Lemma 1.7. Under the assumptions of Lemma 1.6 we have

[gt]
γ′,Λ+12
Ω,r′,µ′ ≤ CΛ8 .

Proof. i) By Lemma 1.6, any function gt is analytic in h ∈ O(r′, µ′) and is
real for real h. Clearly, it is ≤ 1. It is easy to estimate ∂ωgt and see that
|gt(h; ·)|Ω ≤ 2 for h ∈ O(r′, µ′).

ii) To estimate ∇ζgt we note that

∂gt

∂ζa
=

n∑

k=1

∂g(h(t)
∂pk

∂pk(t)
∂ζa

+
∑

b

∂g(h(t))
ζb

∂ζb(t)
∂ζa

=: Ξ1
a + Ξ2

a ,

12



where St(h) = h(t) = (p(t), q(t), ζ(t)). By Lemma 1.6, h(t) ∈ Oγ̂
2 . Therefore

∂g

∂pk
(h(t)) ≤ Cµ−2 (1.28)

(recall that µ′ ≤ 1
2µ). By (1.22), the matrix ∂ζ(t)/∂ζ is

(∂ζb(t)
∂ζa

)
= Φt

0 . (1.29)

Let us denote p′a(t) = ∂p(t)/∂ζa, etc. Then, due to (1.26),

p′a(t) = −
∫ t

0

Σt
s

(〈∇qfζ , ζ
′
a(s)〉+ 〈∇qfζζζ(s), ζ ′a(s)〉) ds .

Due to (1.13), (1.24), (1.3) and (1.23),

‖〈∇qfζ , ζ
′
· (s)〉‖γ̂ ≤ Cµ−1ε′r−1

∆ (1 + Cε′µ−2γ−d1
∆ ) ≤ Cµ−1ε′r−1

∆ .

Similar, using (1.3) and (1.6) we get that

‖〈∇qfζζζ(s), ζ ′· (s)‖γ̂ =‖(Φs
0)

t
(∇qfζζ

)
ζ(s)‖|γ̂

≤ Cµ−2ε′r−1
∆ (1 + Cε′µ−2γ−d1

∆ µ ≤ Cε′µ−1r−1
∆ .

Therefore
‖∇ζp(t)‖γ̂ ≤ Cε′µ−1r−1

∆ , (1.30)

and we see that
‖Ξ1‖γ̂ ≤ Cε′µ−3r−1

∆ ≤ Cµ−1 .

Using (1.29), (1.24), (1.3) and (1.23) we get

‖Ξ2‖γ̂ ≤ µ−1 + Cε′µ−2µ−1γ−d1
∆ ≤ Cµ−1 .

Estimating similar ∂
∂ω

∂gt

∂ζa
we see that

|∇gt(h; ·)|γ̂Ω ≤ C1µ
−1 .

iii) To estimate ∇2
ζgt, we write

∂2gt

∂ζa∂ζb
= d2g

(
St(h(t))

)(∂St

∂ζa
,
∂St

∂ζb

)
+ dg

(
St(h(t))

) ∂2St

∂ζa∂ζb
=: D1

ab + D2
ab .

(1.31)
As before, we denote ∂St/∂ζa =

(
p′a(t), q′a(t), ζ ′a(t)

)
. Clearly, qa(t) ≡ 0. To

estimate in D1 the term (d2
ζζg)(ζ ′a, ζ ′a) we apply (1.29), (1.24) and (1.6) to get

‖|(d2
ζζg)(ζ ′a, ζ ′b)‖|γ̂,Λ+12 ≤ Cµ−2(1 + Λ4γ−2d−2

∆ (ε′µ−2γ−d−1
δ Λ2)2) ≤ CΛ8µ−2.

To estimate (d2
ppg)(p′a, p′b), we use (1.30), Example 1.3 and (1.23) to find that

‖|(d2
ppg)(p′a, p′b)‖|γ̂,Λ ≤ Cµ−2(ε′µ−2r−1

∆ γ−d−d∗
∆ )2 ≤ Cµ−2.
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We got that
‖|D1‖|γ̂,Λ+12 ≤ CΛ8µ−2.

To estimate D2 we note that due to Lemma 1.6, ∂2q(t)/∂ζ2 = 0 and
∂2ζ(t)/∂ζ2 = 0. Denoting p

′′
ab = ∂2p(t)/∂ζa∂ζb, we see from (1.26) that

p
′′
ab(t) = −

∫ t

0

Σt
s〈∇qfζζζ

′
a(s), ζ ′b(s)〉 ds .

Since the numbers 〈∇qfζζζ
′
a(s), ζ ′b(s)〉 , where the indexes a, b ∈ L , form the

matrix
(
Φs

0

)t (∇qfζζ)Φs
0, then (1.13), (1.24) and iterative application of (1.6)

result in the estimate

‖|p′′(t)‖|γ̂,Λ+12 ≤ Cµ−2r−1
∆ ε′

(
1 + (Cε′µ−2γ−d−1

∆ Λ2Λ2γ−d−1
∆ )2

) ≤ Cε′µ−2r−1
∆ Λ8

(we use (1.23), where m∗ > 2, see in section 1.3). This estimate and (1.28)give
us that

‖|D2‖|γ̂,Λ+12 ≤ CΛ8µ−2 .

We have estimated ∇2
ζgt. Estimating similar (∂/∂ω)∇2

ζgt, we have

|∇2
ζgt(h; ·)|γ̂,Λ+12

Ω ≤ C2Λ8µ−2 .

The lemma is proved.

2 The main theorem.

Let Ω0 ⊂ Rn be an open domain such that

Ω0 ⊂ {K−1
1 ≤ |ω| ≤ K1} , LebΩ0 = K2

(here and below K1,K2, . . . are fixed positive constants). Let λa = |a|2 +Va(ω),
a ∈ L, be real functions, where Va satisfy

sup
ω∈Ω0,j=0,1

|∂j
ωVa| ≤ K3e

−K4|a| ∀ a ,

and

|λa + λb| ≥ K5 ∀ a, b ∈ L, ∀ω ,

|λa − λb| ≥ K5 ∀ a, b ∈ L, |a| 6= |b|, ∀ω ,

and
|∂ωλa| ≤ 1

4
min(1,K5) .

Let A = A(ω) be the diagonal operator

A : (ya, a ∈ L) 7→ (λaya, a ∈ L)

14



(we recall that each ya is a a two–vector). We define the jet–function H,

H(p, ζ;ω) = ω · p +
1
2
〈Aζ, ζ〉 ,

and the hamiltonian
H0(h; ω) = H+ h0 ,

where h0 is a real Töplitz–Lipschitz function, such that

[h0]
γ0,Λ0
Ω0,r0,µ0

≤ ε0 < 1

for some γ0 ∈ (0, 1], r0, µ0 ∈ (0, 1].
The hamiltonian H0 defines the Hamiltonian equations

ḣt = J∇H0(h)t . (2.1)

Theorem 2.1. If the assumptions above hold, then for ε0 sufficiently small
there exist a Borel subset Ωε0 ⊂ Ω0,

Leb (Ω0 \ Ωε0) ≤ C1ε
c , c > 0 ,

and real analytic symplectomorphisms

Σω : Oγ/2(r0/2, µ0/2) → Oγ/2(r0, µ0) , ω ∈ Ωε0 ,

such that |Σω − id | ≤ C2ε
c. The map Σω transforms the hamiltonian H0 to

H0 ◦ Σω = ω∞ · p +
1
2
〈A∞ζ, ζ〉+ h∞〈(ζ; ω) ,

where ω∞ = ω∞(ω), A∞ = A∞(ω) and

|ω∞ − ω| ≤ Cε
1/3
0 , ‖|A∞ −A‖|γ/2 ≤ Cε

1/3
0 , A∞ ∈ NFE0(Ωε0) , hT

∞ = 0 .
(2.2)

Every torus Σω(Tn × {0} × {0}) is invariant for the eq. (2.1) and is filled in
with the time-quasiperiodic solutions z(t; q, ω) = Σω(q + ω∞t) , q ∈ Tn . The
linearised map Σ∞(q + ω∞t)∗ reduces eq. (2.1), linearised about a solution z, to
the autonomous equation

d

dt
δq = 0 ,

d

dt
δp = 0 ,

d

dt
δζ = JA∞δζ . (2.3)

In particular, all Lyapunov exponents of the solutions z vanish.

3 Homological equations

From now on we restrict our presentation to the 2d case. Our proof applies to
the nd equations, n ≥ 3, but in that case solvability of the homological equation
(3.5) below is established in [EK05a] under the assumption that the involved
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linear matrices belong to a subclass of Töplitz–Lipschitz matrices, called in
[EK05b] “double Töplitz–Lipschitz matrices M(M c

γ,Λ)”. These matrices possess
all the properties, needed for the arguments in Sections 2–4 (see [EK05b]), but
the corresponding notations become more combersome. Now we are in a process
of developing them. A proof of Theorem 0.1 for the nd case, n ≥ 3, will be
presented in the next version of this text.
Normal forms. A symmetric matrix A = (Aab) ∈ Mγ , Aab ≡ At

ba, γ > 0,
defines on the l2–space Y the continuous quadratic form q(ζ, ζ) = 〈ζ,Aζ〉 (see in
[EK05b] Theorem 1.2 with γ = m∗ = 0). In the complex variables (wa, a ∈ L),
where

wa =
(

ua

va

)
, ua =

1√
2

(
ζ1
a + iζ2

a

)
, va =

1√
2

(
ζ1
a − iζ2

a

)
,

we have the matrices ∇2
uq, ∇2

vq, ∇u∇vq , and

q(ζ, ζ) = 〈u,∇2
uq u〉+ 〈v,∇2

vq v〉+ 〈u,∇u∇vq v〉 .
The matrices ∇2

uq and ∇2
vq are symmetric and complex conjugate of each other,

while ∇u∇vq is Hermitian. If A ∈ M+
γ , then

sup
a,b

|(∇u∇vq)ab|eγ|a−b| + sup
a,b

|(∇2
uq)ab|+ |(∇2

vq)ab|
)
eγ|a+b| < ∞ .

Moreover, the l.h.s. defines on the space of symmetric matrices in Mγ a norm,
equivalent to ‖| · ‖|+γ .

A quadratical form f = 〈ζ, fζζ(ω)ζ〉 is called a normal form if it is block-
diagonal over some decomposition (into finite subsets) E of L, i.e.

f =
∑

I∈E
〈ζI , (∇2f)ζI〉 ,

and
∇2

uf ≡ ∇2
vf ≡ 0

This property will be denoted

f ∈ NFE(Ω).

We say that a matrix A(ω) =
(
Aab(ω)

)
is a normal form,

A(ω) ∈ NFE(Ω),

if it is symmetric, i.e. Aab = At
ba for all a, b ∈ L, and the corresponding

quadratic form belongs to NFE(Ω).
Note that if a matrix A is a normal form, then the corresponding Hamiltonian

operator JA has a discrete pure imaginary spectrum.

Block decomposition. For a non-negative integer ∆ we define an equivalence
relation on L, generated by the pre-equivalence relation

a ∼ b ⇐⇒
{ |a|2 = |b|2
|a− b| ≤ ∆.
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Let [a] = [a]∆ denote the equivalence class (block) of a, and let E∆ denote the
set of all blocks. The blocks are finite with a diameter

≤ const ∆
(d+1)!

2 .

(See [EK05a].) If the decomposition above is E∆, then we say that

f ∈ NF∆(Ω).

Each decomposition E∆ is a subdecomposition of the trivial decomposition E∞,
formed by the spheres {|a| = const}.
Homological equations. Let A = A(ω) be the diagonal operator

A : (ya, a ∈ L) 7→ (λaya, a ∈ L) ,

where the numbers λa = |a|2 + V̂ (a) are the same as in the Introduction (we
recall that each ya is a a two–vector). We define the jet–function H,

H(p, ζ;ω) = ω · p +
1
2
〈Aζ, ζ〉 ,

and consider a hamiltonian

H = H+ g(p, ζ; ω) + h ,

where ω ∈ Ω ⊂ Ω0 and g = gp(ω) · p + 1
2 〈gζζ(ω)ζ, ζ〉 is a jet–function such that

1
2 〈gζζ(ω)ζ, ζ〉 ∈ NF∆(Ω), and

sup
ω∈Ω,j=0,1

|∂j
ωgp|+ ‖|∂j

ωgζζ‖|γ,Λ ≤ C1ε
1/3
0 . (3.1)

The function h is assumed to be Töplitz–Lipschitz and

[h]γ,Λ
Ω,r,µ = ε ≤ ε0 ,

where 0 < γ ≤ γ0, 0 < r ≤ r0, 0 < µ ≤ µ0 and Λ ≥ 6.
Clearly, the hamiltonian H0 in the Introduction has the form above with

ε = Cε0, h = ε0h and g = 0.
We abbreviate

ω′ = ω+gp(ω) , A′ = A(ω)+gζζ(ω) , ∆′ = max(Λ,∆(d+1)!) , Λ̄ ≥ C2∆
(d+1)

2 ∆′

(note that Λ̄ > Λ).
Let us calculate the jet hT of h (see (1.8)) and denote

h3 = h− hT .

Consider the following four equations for four unknown maps fq(q; ω),
fp(q; ω), fζ(q; ω) and fζζ(q; ω), valued in the same spaces as hq, hp, hy
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and hζζ respectively:

(ω′ · ∇q)fq = hq − 〈hq〉+ h̃q, (3.2)

(ω′ · ∇q)fp = hp − 〈hp〉+ h̃p, (3.3)

(ω′ · ∇q)fζ − JA′fζ = hζ + h̃ζ , (3.4)

(ω′ · ∇q)fζζ + (fζζJA′ −A′Jfζζ) = hζζ − h̃ζζ − ḡζζ . (3.5)

In these equations h̃q, h̃p, h̃ζ , h̃ζ,ζ and ḡζζ are admissible disparities, and for a
vector–function k on the torus Tn we denote 〈k〉 = (2π)−n

∫
k dq. The set of four

unknown vector–functions and five disparities is called a solution of eq. (3.2)–
(3.5). Recall that the functions hq, etc. are estimated in (1.9).

Lemma 3.1. If the hamiltonian H satisfies the assumptions above, then for
any κ ∈ (0, 1] there exists an open set Ω′ ⊂ Ω,

Leb (Ω \ Ω′) ≤ ∆′c1κ ,

such that for any r̄ ∈ (0, r) and γ̄ ∈ (0, γ) the equations have a real solution,
satisfying for any q ∈ Tn

r̄ the estimates
i) |fq(q; ·)|Ω′ + µ2|fp(q; ·)|Ω′ + µ|fζ(q; ·)|γΩ′ + µ2|fζζ(q; ·)|γ̄,Λ̄

Ω′ ≤ Nε ,

ii) |h̃q(q; ·)|Ω′ + µ2|h̃p(q; ·)|Ω′ + µ|h̃ζ(q; ·)|γΩ′ + µ2|h̃ζζ(q; ·)|γ̄,Λ̄
Ω′ ≤ ε̄ ,

where N = C1κ−c2 |r − r′|−c3∆′ and ε̄ = C1(e−∆′|γ−γ′| + e−∆′|r−r′|)|r − r′|c3ε.
The matrix ḡζζ is q–independent and satisfies |ḡζζ |γ,Λ̄

Ω′ ≤ εC1 . Moreover, ḡζζ ∈
NF∆′(Ω′).

The constants c1, c2, c3 and C1, C2 depends on m∗, n, d and the constants
K1 −K5.

Proof. Note that in view of (3.1) the map ω 7→ ω′ is a C1–smooth diffeomor-
phism that changes measures of sets no more than twice (if ε0 ¿ 1).

The fact that the equations (3.2) and (3.3) admit solutions fq and fp with
disparities h̃q and h̃p, satisfying the estimates in i) and ii), provided that the
frequency vector ω′ lies outside a set of small measure ≤ 1

6∆′c1κ, is classical for
the KAM–theory. Similar, the solvability of eq. (3.4) for ω′ outside a small set
is well known in the ‘KAM theory for PDE’. 4 The forth equation is far more
difficult. Its solvability is established in [EK05a].

So the four homological equations can be solved for ω′ outside a set of
measure ≤ 1

2∆′c1κ. That is, for ω outside a set of measure ≤ ∆′c1κ.

Given the solution of the homological equations, constructed in the lemma
above, we denote by f and h̃ the following jet–functions:

f = fq + p · fp + 〈ζ, fζ〉+
1
2
〈ζ, fζζζ〉 ,

h̃ = h̃q + p · h̃p + 〈ζ, h̃ζ〉+
1
2
〈ζ, h̃ζζζ〉 ,

(3.6)

4See [Kuk93], p. 62. The assumption that there the eigenvalues λj satisfy λj ∼ Cjd1 ,
d1 ≥ 1 (see (1.11)) is needed for the forth homological equation (2.33), while for solvability
of the third equation (2.32) it is only needed that d1 > 0. The eigenvalues λa, a ∈ L, of the
operator A, after we re-parameterise them as λj , j ∈ N, satisfy λj ∼ Cjd1 , d1 = 2/d.
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and denote
ḡ(p, ζ;ω) = 〈hq〉+ 〈hp〉 · p +

1
2
〈ζ, ḡζζζ〉 .

4 Proof of the theorem

In this section we study the Hamiltonian equation (2.1) and prove Theorem 2.1.

4.1 The KAM–step

Let us re–write the hamiltonian H = H+ g + h as in Section 2 in the form

H = H′(p, ζ; ω) + hT (h; ω) + h3(h; ω) , H′ = ω′ · p +
1
2
〈A′(ω)ζ, ζ〉 .

Next, take any numbers

γ′ ∈ (0, γ), r′ ∈ (0, r), µ′ ∈ (0,
1
16

µ) ,

and for γ̂ ≤ γ define the domanins Oγ̂
j as in (1.18). For the hamiltonian f ,

defined by (3.6), consider the corresponding Hamiltonian equation (1.12) and
denote by St, 0 ≤ t ≤ 1, its flow-maps. Let us assume that

εN ≤ C−1µ′2(r − r′)(γ − γ′)d1 (4.1)

(with a suitable C ≥ 1). Then, by Lemma 1.6, St : Oγ̂
1 → Oγ̂

2 .
Let us denote

Zγ = Rn
p × Rn

q × Yγ , 0 ≤ γ ≤ 1 .

Lemma 4.1. Assume that the assumptions above hold. Then the map S = S1 :
Oγ̂

1 × Ω′ → Oγ̂
2 , 0 ≤ γ̂ ≤ γ′, is real for real arguments, is a symplectomorphism

as a function of the first variable, and is close to the identity, i.e. satisfies
the estimates (1.27) with ε′ = Nε. This map transforms the hamiltonian H to
H ′(h; ω) = H(S(h; ω); ω), which can be written as

H ′ = H(p, ζ; ω) + g′(p, ζ;ω) + h′(h;ω) . (4.2)

Here g′ = g′p(ω) · p + 1
2 〈ζ, g′ζζ(ω)ζ〉 satisfies (3.1) with C1 replaced by C1 +

Cε′µ−2ε
1/3
0 , and g′ζζ ∈ NF∆′(Ω′). The function h′ is Töplitz–Lipschitz and

[h′]γ
′,Λ′

Ω′,r′,µ′ ≤ C ε̄ γ−d1
∆ + C Λ8 ε

(µ′

µ

)3

+ CΛ̄10 γ−d−2d1−1
∆ r−1

∆ N ε(ε + ε̄) ,

where Λ′ = Λ̄ + 18.

Proof. We have

{H′, f} = (ω′ · ∇q)fq + p · (ω′ · ∇q)fq + 〈ζ, (ω′ · ∇q)fζ〉
+ 〈ζ, (ω′ · ∇q)fζζζ〉+ 〈JA′(ω′)ζ, fζ + 2fζζζ〉. (4.3)
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Using the relations (3.2)–(3.5) we get that

{H′, f} = hT + h̃− ḡ

Therefore, d
dtH′ ◦ St = {f, H′} = −(hT + h̃− ḡ) ◦ St, and

H′ ◦ S = H′+ d

dt
H′ ◦ St |t=0 +

∫ 1

0

(1− t)
d2

dt2
H′ ◦ St dt

=H′ − hT − h̃ + ḡ −
∫ 1

0

(1− t){f, hT + h̃− ḡ} ◦ St dt .

Similar,

hT ◦ S = hT +
∫ 1

0

{f, hT } ◦ St dt.

So,

H ◦ S = (H′ + ḡ)− h̃ + h3 ◦ S+
∫ 1

0

{f, (t− 1)(h̃− ḡ) + thT } ◦ St dt

=: (H′ + ḡ) + h′1 + h′2 + h′3 .

Removing from ḡ the irrelevant constant 〈hq〉, we see that

H′ + ḡ = H+ g′ + Const , g′ = g + 〈hp〉 · p +
1
2
〈ζ, ḡζζ〉 .

The function g′ satisfies the lemma’s assertion since the required bound on 〈hp〉
folows from (1.9), and the bounds on 1

2 〈ζ, ḡζζ〉 follow from the estimates on ḡζζ

in Lemma 3.1.
It remains to estimate the terms h′1, h′2 and h′3. Let us denote

γj = γ′ + j
γ∆

4
, rj = r′ + j

r∆

4
, µj = 2j µ , j = 1, 2, 3 .

a) Choosing in Lemma 3.1 γ̄ = γ3, we immediately get that

[h′1]
γ2,Λ̄
Ω′,r2,µ2

= [h̃]γ2,Λ̄
Ω′,r2,µ2

≤ C ε̄ γ−d1
∆ . (4.4)

b) By Lemma 1.4, [h3]γ,Λ
Ω,r,2µ′ ≤ 16ε̄(µ′µ)3. Due to (4.1), Lemma 4.1 applies

to the map S : Oγ′(r′, µ′) → Oγ(r, 2µ′). Therefore

[h′2]
γ′,Λ+12
Ω,r′,µ′ ≤ C Λ8 ε

(µ′

µ

)3

.

c) The estimates in Lemma 3.1 imply that [ḡ]γ,Λ̄
Ω′,r,µ ≤ Cε. This estimate

jointly with (4.4) and Lemma 1.4 with γ′ := γ2 show that

[Ft]
γ2,Λ̄
Ω′,r2,µ2

≤ C (ε̄ + ε) γ−d1
∆ , Ft = (t− 1)(h̃− ḡ) + thT ,
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for 0 ≤ t ≤ 1. Since [f ]γ2,Λ̄
Ω′,r2µ2

≤ CNε γ−d1
∆ by Lemma 3.1, then

[{f, Ft}]γ1,Λ̄+6
Ω′,r1,µ1

≤ CΛ̄2 γ−d−2d1−1
∆ r−1

∆ N ε(ε + ε̄)

due to Lemma 1.5.
Now, applying Lemma 1.7, we get that

[h′3]
γ′,Λ̄+18
Ω′,r′,µ′ ≤ CΛ̄10 γ−d−2d1−1

∆ r−1
∆ N ε(ε + ε̄) .

Summing up the estimates a)-c) we get the lemma’s assertion.

4.2 Choice of parameters

To prove the main theorem we shall construct the transformation Σω as the
composition of infinitely-many transformations S as in Lemma 4.1. The first
map S transforms the original system with hamiltonian H0 and with ε = ε0, r =
r0, etc. to the system with hamiltonian H1 and with ε1 = ε′, r1 = r′, etc. The
second transforms this one to the system, obtained by applying the lemma with
ε = ε1, r = r1, . . . , and so on.

In this section we specify the parameters (εj , rj , etc), j = 0, 1, 2, . . . , study
their asymptotic behaviour as j →∞ and check that this choice of parameters
is consistent, i.e. that the assumption (4.1) holds at each step.

It is convenient to re-define µ0 and replace it by ε
1/3
0 . Let us denote C∗ =

2(1−2 + 2−2 + . . . ), and for j ≥ 1 choose

rj−1 − rj = C−1
∗ j−2r0 ,

γj−1 − γj = C−1
∗ j−2γ0 ,

µj = ε
1/3
j ,

∆j = (ln ε−1
j )

1
rj−1 − rj

, ∆0 = 1 ,

Λj = C2Λj−1∆
(d+1)!/2
j + 18 , Λ0 = 6 ,

κ = εcκ
j , ∆′

j = ∆(d+1)!
j .

Here C2 > 0 is the same as in the formular for Λ̄ in Section 2, and cκ > 0 is
specified below.

The numbers above are defined in terms of εj ’s which are defined inductively
(with given ε0) through the relation

εj+1 ≤Cε̄j

(
(j + 1)2γ−1

0

)d+1 + CΛ8
jεj(εj+1/εj)3

+ CΛ10
j+1

(
(j + 1)2γ−1

0

)d+2d1+1((j + 1)2r∆

)c3+1κ−c2∆′
jεj(ε̄j + εj) ,

(4.5)

ε̄j = C1

(
e−∆′C−1

∗ (j+1)2γ0 + e−∆′C−1
∗ (j+1)2r0

)
(j + 1)2c3r−c3

0 εj

(see Lemma 4.1).
The result below holds if cκ = cκ(n, d) > 0 is sufficiently small.
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Lemma 4.2. For j = 1, 2, . . . we have

εj ≤ ε
(5/4)j

0 , (4.6)

provided that ε0 > 0 is sufficiently small (in terms of n, d, r0, µ0 and γ0). Be-
sides, the assumption (4.1) holds for each j.

Proof. It suffice to check that if

εk ≤ ε
(5/4)k

0 ∀ k ≤ j , (4.7)

then all the three terms in the r.h.s. of (4.5) are ≤ 1
3 ε

5/4
j .

Let us abbreviate ln ε−1
0 = l0 and cd = (d + 1)!. It is easy to see that (4.7)

implies that
ε̄j ≤ ε2

j (4.8)

if ε0 ¿ 1. So the first term in the r.h.s. satisfies the desired estimate.
The formula for ∆j and (4.7) imply that

∆j ≤ lj0 Cj
1 e3j2

.

So
Λj ≤ C1 eC2jC3

lcdj2

0

(here and below in the lemma’s proof C1, C2 etc are different constants, depend-
ing on n, d, r0 and γ0). Accordingly, the second term also satisfies the desired
estimate, if ε0 is small.

Due to (4.8) and the estimates for ∆j and Λj above, the third term is
bounded by

CeC2jC3
lC4j2

0 ε−c2cκ
j ε2

j .

We see that it is ≤ 1
3ε

4/3
j , if ε0 and cκ are small.

The estimates (4.1) follows from (4.6) by strightforward arguments.

4.3 Transition to the limit

For m ≥ 0 let us denote

O(m) = Oγ(rm, µm) , O′(m) = Oγ( 1
3rm+1 + 2

3rm, 1
2µm) , γ =

1
2

γ0 .

Applying Lemma 4.1 with the parameters ε = εm−1, r = rm−1 etc we construct
analytic symplectomorphisms

Sm(·; ω) : O(m) → O′(m− 1), ω ∈ Ωm, m = 1, 2, . . . (4.9)

(note that γm > γ for all m). The domains · · · ⊂ Ω2 ⊂ Ω1 ⊂ Ω0 = Ω satisfy
Leb (Ωm \ Ωm−1 ≤ ∆′

m
c−1

εc
m−1 ≤ e

c/2
m−1, if ε0 ¿ 1. Therefore Ω′ = ∩Ωm is a

Borel set such that
Leb (Ω \ Ω′) ≤ 2ε

c/2
0 .
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Next let us set

Ql = Ol(r/l , µ/l) , Zc
γ = Tn

r0
× Cn × Y c

γ , Zγ = Tn × Rn × Yγ ,

where l ≥ 2, and denote by | · |γ the natural norm in Cn × Cn × Y c
γ . It defines

the distance in Zc
γ . By Lemma 1.6 for each ω ∈ Ω′ the map Sm extends to

Sm : Q2 → Zc
γ , |Sm − id|γ ≤ εc

m (4.10)

(here and below c > 0 are different esponents, depending on n and d).
Now for 0 ≤ r < N let us denote Σr

N = Sr+1 ◦ · · · ◦ SN . Due to (4.9), it
maps O(N) to O′(r). Due to (4.10), this map analytically extends to a map
Σr

N : Q3 → Zc
γ , and when N →∞ the maps Σr

N converge to a limiting mapping

Σr
∞ : Q3 → Zc

γ , |Σr
∞ − id|γ ≤ 2εc

r ∀ r ≥ 1. (4.11)

By the Cauchy estimate the linearised map satisfies

|Σr
∞(h)∗ − id|γ,γ ≤ Cεc

r ∀ h ∈ Q4, ∀ r ≥ 0 . (4.12)

By construction, the map Σ0
N transforms the original hamiltonian H0 to

HN = H0 ◦ Σ0
N ,

HN = ωN · p +
1
2
〈ANζ, ζ〉+ hN (h; ω) .

Here ωN = ω + 〈h0
p〉+ . . . 〈hN−1

p 〉, AN = A + ḡ1
ζζ + . . . ḡN

ζζ ∈ NF∆N
(ΩN ) , and

[hN ]γ,ΛN

Ω′,r,µN
≤ εN . (4.13)

Clearly, ωN → ω′ and AN → A′, where the vector ω′ and the operator A′ satisfy
the assertions of Theorem 0.1.

Let us denote Σω = Σ0
∞, consider the limiting hamiltonian H ′ = H0 ◦ Σω

and write it as
H ′(h) = ω′ · p +

1
2
〈A′ζ, ζ〉+ h′(h) .

The function h′ is analytic in the domain Q3. Since H ′ = Hl ◦Σl
∞, then for any

h = (q, 0, 0) we have

∇hH ′(h) = (Σl
∞(hq)∗)t∇Hl(hl) , (4.14)

where hl = Σl
∞(h) ∈ O′(l). Due to (4.13), ∇Hl(hl) = (0, ωl, 0)t +O(ε1/4

l ). Since
the map Σl

∞ satisfies (4.12), then ∇H ′(h) = (0, ωl, 0)t + o(εc1
l ), c1 > 0, for each

l. Hence, ∇H ′(h) = (0, ω∞, 0)t, and

∇h′(q, 0, 0) ≡ 0.

Now consider ∇ζa∇ζb
H ′(h), h = (q, 0, 0). To study this matrix let us write it

in the form (1.31), where g = Hl and St is replaced by the map Σl
∞. Repeating

the arguments, used at the step iii) of the proof of Lemma 1.7 we get that

∇ζa∇ζb
H ′(h) = (Al)ab + o(εc

l ) , c > 0 .
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Sending l to ∞ we see that ∇ζa∇ζb
H ′(h) = (A′)ab. That is, ∇2

ζh
′(q, 0, 0) ≡ 0.

Therefore
h′ ∈ O(p2, pζ, ζ3) ,

as states the theorem.
To complete the proof it remains to note that since Al ∈ NF∆l

(Ωl) for each
l, then A′ ∈ NFE∞(Ω′).
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[Pös96] J. Pöschel, A KAM-theorem for some nonlinear PDEs, Ann. Scuola
Norm. Sup. Pisa, Cl. Sci., IV Ser. 15 23 (1996), 119–148.

25


	intr.pdf
	SK


