DAMPED-DRIVEN KDV AND EFFECTIVE EQUATIONS FOR
LONG-TIME BEHAVIOUR OF ITS SOLUTIONS

SERGEI B. KUKSIN

Abstract. For the damped-driven KdV equation

U — Vg + Ugze — 6uu, = Vrn(t, ), re St /udxz/ndxzo,

with 0 < v < 1 and smooth in x white in ¢ random force 7, we study the limiting
long-time behaviour of the KdV integrals of motions (I3, Is,...), evaluated along
a solution u”(t,x), as v — 0. We prove that for 0 < 7 := vt < 1 the vector
IY(1) = (I (u” (1, ), I2(u” (7, ")), . . .), converges in distribution to a limiting process
I°(T) = (I{, 139, . ..). The j-th component I3 equals §(v;(7)* 4+ v_;(7)?), where the
vector v(7) = (v1(7),v—-1(7),v2(7),...) is a solution of a system of effective equations
for the damped-driven KdV. These new equations are a quasilinear stochastic heat
equation with a non-local nonlinearity, written in the Fourier coefficients. They are
well posed.

0 Introduction

In this work we continue the study of randomly perturbed and damped KdV equa-
tion, commenced in [KuPi]. Namely, we consider the equation

Ut — Vg + Ugze — 6uu, = Vvn(t,x), (0.1)
where z € S! def R/27Z, fsl udr = 0, and v > 0 is a small positive parameter.
The random stationary force n = n(t, z) is

=X b))

SEZg

Here Zy = Z \ {0}, (s are standard independent Wiener processes defined on a
probability space (2, F,P), and {es, s € Zo} is the usual trigonometric basis

eu(z) = {\/1; cos(sz), s>0,

—ﬁ sin(sz), s$<0.

Keywords and phrases: Korteveg de Vries equation, perturbed KdV, random perturbation,
averaging
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The coefficients v and /v in (0.1) are balanced in such a way that solutions of the
equation stays of order one as t — oo and v — 0, see [KuPi]. The coefficients b, are
non-zero and are even in s, i.e.

by=b_y£0 Vs>1.

When |s| — oo they decay faster than any negative power of |s|: for any m € Z*
there is C),, > 0 such that
|bs| < Chpls|™™ Vs.

This implies that the force n(¢,x) is smooth in x for any t. We study behaviour of
solutions for (0.1) with given smooth initial data

u(0, ) = up(x) € C°(Sh) (0.2)

for
0<t<viT, 0<v<l. (0.3)

Here T is any fixed positive constant.

The KdV equation (0.1),—¢ is integrable. That is to say, the function space
{u(z) : [udx = 0} admits analytic symplectic coordinates v = (vq,va, ...) =
W (u(-)), where v; = (vj,v_;)! € R?, such that the quantities I; = %\vaQ, j>1,
are actions (integrals of motion), while ¢; = Argv;, j > 1, are angles. In the
(I, p)-variables KdV takes the integrable form

I=0, p=w()), (0.4)

where W (I) € R* is the frequency vector, see section 1.2. (The actions I and the
angles ¢ were constructed first (before the Cartesian coordinates v), starting with
the pioneer works by Novikov and Lax in 1970’s. See in [MT], [ZMNP], [Kul], [KP].)
The integrating map V is called the nonlinear Fourier transform. (The reason is that
an analogy of W, a map which integrates the linearised KdV equation @ + uzy, = 0,
is the usual Fourier transform.)

We are mostly concerned with behaviour of actions I(u(t)) € R*> of solutions for
the perturbed KdV equation (0.1) for ¢, satisfying (0.3). To this end, let us write
equations for I(v) and ¢(v), using the slow time 7 = vt € [0,T7:

dI(t) = F(I,)dr + o(I,0)dB(1), dp=v 'W(I)dr+..., (0.5)

where the dots stand for terms of order one, 3 = (31, 32,...)" and o(I,¢) is an
infinite matrix. For finite-dimensional stochastic systems of the form (0.5) under
certain non-degeneracy assumptions, for the I-component of solutions for (0.5) the
averaging principle holds. That is, when v — 0 the I-component of a solution
converges in distribution to a solution of the averaged equation

dI = (F)(I)dr + (o)(1)dB(r). (0.6)

Here (F) is the averaged drift, (F) = [ F(I,¢)dyp, and the dispersion matrix (o) is
a square root of the averaged diffusion [ o (I, p)o'(I,¢)dp. This result was claimed
in [Kh] and was first proved in [FW]; see [Ki] for recent development. In [KuPi] we
established “half” of this result for solutions of e.g. (0.6) which corresponds to (0.1).
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Namely, we have shown that for solutions u, (7, ) of (0.1), (0.2), where t = v=1r

and 0 <7 <T,

(i) the set of laws of actions {DI(u,(7))} is tight in the space of continuous
trajectories I(7) € hY, 0 < 7 < T, where the space hY is given the norm
(| = 22ﬁ1j1+2p|fj| and p is any number > 3; )

(ii) any limiting measure lim,, o DI(uy,(-)) is a law of a weak solution I”(7) of

g. (0.6) with the initial condition

The solutions I°(7) are regular in the sense that all moments of the random
variables supg<, <y |IO(7')]h§, r > 0, are finite.
Similar results are obtained in [KuPi| for limits (as v; — 0) of stationary in time
solutions for e.g. (0.1).

If we knew that (0.6), (0.7) has a unique solution I°(7), then (ii) would imply
that
DI(uy(-)) = DI(-) asv —0, (0.8)

as in the finite-dimensional case. But the uniqueness is far from obvious since (0.6)
is a bad equation in the bad phase-space RS°: the dispersion (o) is not Lipschitz
in I, and the drift (F)(I) is an unbounded operator. In this paper we show that
still the convergence (0.8) holds true:

Theorem A. The problem (0.6), (0.7) has a solution I°(7) such that the convergence
(0.8) holds.

The proof of this result, given in section 4, Theorem 4.5, relies on a new construc-
tion, crucial for this work. Namely, it turns out that the ‘bad’ equation (0.6) may
be lifted to a system of ‘good’ effective equations on the variable v = (vi,va,...),
v; € R?, which transforms to (0.6) under the mapping

v I I; = 3v; %

To derive the effective equations we evoke the mapping ¥ to transform e.g. (0.1),
written in the slow time 7, to a system of stochastic equations on the vector v(7)

dvi(r) = v AW (0)V (u)dr + P(v)dr + > Bii(v)dB(r), k>1.  (0.9)
j>1
Here V(u) = —ugazs + 6uu, is the vector-field of KAV, P, dr + ) By; dB; is the
perturbation ug, + n(7,x), written in the v-variables, and B,’s are standard Wiener
processes in R? (so By;’s are 2 x 2-blocks). We will refer to the system (0.9) as the
v-equations. This system becomes singular as v — 0.
The effective equations for (0.9) as v — 0 is a system of regular stochastic
equations

dvi (1) = (P)p dr + Z (v)dB;(r), k>1. (0.10)

To define the effective drift (P) and the effective dispersion ((B)), for any 6 € T let
us denote by ®y the linear operator in the space of sequences v = (v, v, ...) which
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rotates each two-vector v; by the angle 6;. The rotations ®4 act on vector-fields on
the v-space, and (P) is the result of the action of ®y on P, averaged in 6:

(P)(v) = / @ gP(Pgv)df (0.11)

(df is the Haar measure on T).

Consider the diffusion operator BB*(v) for the v-equations (0.9). It defines a
(1,1)-tensor on the linear space of vectors v. The averaging of this tensor with
respect to the transformations ®y is a tensor, corresponding to the operator

(BB')(v) =/ ®_g- ((BB")(®gv)) - Py db . (0.12)
TOO
This is the averaged diffusion operator. The effective dispersion operator ((B))(v)

is its non-symmetric square root:

((B))(v) - ((B))(v) = (BB")(v). (0.13)
Such a square root is non-unique. The one chosen in this work is given by an explicit
construction and is analytic in v (while the symmetric square root of (BB?)(v) is only
a Hélder—% continuous function of v). The effective equations are weakly invariant
under the action of the group T*: if v(7) is a weak solution, then for each § € T*
the curve ®yuv(7) is a weak solution as well. See sections 1.5 and 2.
Let us provide the space of vectors v with the norms | - |, 7 > 0, where |v]2 =
> |v;[271%%. A solution of e.g. (0.10) is called regular if all moments of all random
variables supy<,<7 |v(7T)[;, 7 > 0, are finite.

Theorem B. System (0.10) has at most one regular strong solution v(7) such that
v(0) = W (uo).

This result is proved in section 4, where we show that system (0.10) is a quasi-
linear stochastic heat equation, written in Fourier coefficients.

The effective system (0.10) is useful to study e.g. (0.1) since this is a lifting of
the averaged equations (0.6). The corresponding result, stated below, is proved in
section 3:

Theorem C. For every weak solution I°(7) of (0.6) as in assertion (ii) there exists
a regular weak solution v(7) of (0.10) such that v(0) = ¥(ug) and D(mr(v(-))) =
D(I°(-)). The other way round, if v(7) is a regular weak solution of (0.11), then
I(1) = w7 (v(7)) is a weak solution of (0.6).

We do not know if a regular weak solution of problem (0.6), (0.7) is unique. But
from Theorem B we know that a regular weak solution of the Cauchy problem for the
effective equations (0.10) is unique, and through Theorem C it implies uniqueness
of a solution for (0.6), (0.7) as in item (ii). This proves Theorem A.

In section 5 we evoke some intermediate results from [KuPi] to show that, after
averaging in 7, distribution of the actions of a solution u” for (0.1) becomes asymp-
totically (as v — 0) independent of distribution of the angles, and the angles become
uniformly distributed on the torus T°°. In particular, for any continuous function
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f > 0 such that [ f =1, we have

T
/0 f(T)Do(u(r))dr — df asv — 0.

This convergence justifies the random phase approximation for solutions of (0.1)
with 0 < v < 1. The approximation is often claimed in modern physics for various
nonlinear PDE, but never was rigorously proved. (Usually physicists claim the
random phase approximation for solutions of deterministic nonlinear PDE. That is
a much more complicated assertion.)

The recipe (0.11) allows us to construct effective equations for other perturba-
tions of KAV, with or without randomness. These are non-local nonlinear equations
with interesting properties. In particular, if the perturbation is given by a Hamil-
tonian nonlinearity v(9/0z)f(u,x), then the effective system is Hamiltonian and
integrable (its Hamiltonian depends only on the actions I).

The effective equations (0.10) are instrumental in the study of other problems,
related to e.g. (0.1). In particular, they may be used to prove the convergence (0.8)
when u, (7) are stationary solutions of (0.1) and I°(7) is a stationary solution for
(0.6). See [Ku3] for a discussion of these and some related results; the proof will be
published elsewhere. Moreover, we are certain that corresponding effective equations
may be used to study other perturbations of KdV, including the damped equation
(0.1)y=o-

The damped-driven KdV (0.1) may be cautiously regarded as a model for the
2d Navier—Stokes equations with small viscosity and small random force, under
periodic boundary conditions (those equations are responsible for the space-periodic
2d turbulence). See the Introduction to [KuPi], and see [Ku2] for some results on
the 2d Navier—Stokes, related to the problem which we address in this work.

Our results are also related to Whitham averaging for perturbed KdV, see the
Appendix.

Agreements. Analyticity of maps B; — By between Banach spaces By and Bs,
which are the real parts of complex spaces Bf and B, is understood in the sense of
Fréchet. All analytic maps which we consider possess the following additional prop-
erty: for any R a map analytically extends to a complex (dp > 0)-neighbourhood
of the ball {|u|p, < R} in Bf. Such maps are Lipschitz on bounded subsets of B;.
When a property of a random variable holds almost sure, we often drop the spec-
ification “a.s.”. All metric spaces are provided with the Borel sigma-algebras. All
sigma-algebras which we consider in this work are assumed to be completed with
respect to the corresponding probabilities.

Notation. x4 stands for the indicator function of a set A (equalling 1 in A and
vanishing outside it). By D¢ we denote the distribution (i.e. the law) of a random
variable . For a measurable set Q C R™ we denote by |Q)| its Lebesgue measure.

Acknowledgments. 1 wish to thank for discussions and advice B. Dubrovin,
F. Flandoli, N.V. Krylov, Y. Le Jan, R. Liptser, S.P. Novikov and B. Tsirelson.
I am especially obliged to A. Piatnitski for explaining me some results, related to
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the constructions in section 1.4, and for critical remarks on a preliminary version of
this work.

1 Preliminaries

Solutions of problem (0.1), (0.2) satisfy a priori estimates which are uniform in ¢
and v (see [KuPi)):

E{exp(ollu®)} < co, E(lu(®)]E) < emp (1.1)
for any m,k > 0 and any o < (2maxb?)~!. Here || - ||, stands for the norm in the
Sobolev space H™ = {u € H™(S') : [udx = 0}, [[ul|?2, = [(8™u/0z™)*dz. To
study further properties of solutions for (0.1) with small v we need the nonlinear
Fourier transform ¥ which integrates the KdV equation.

1.1 Nonlinear Fourier transform for KdV. For s > 0, denote by h® the
Hilbert space formed by the vectors v = (v1,v_1,v2,v_9,...) and provided with the
weighted ly-norm | - |,

oo
|’U|z = 2j1+28(’[)]2‘ + Uz]) .
J=1

We set v; = (7), j € Zt = {j > 1}, and will also write vectors v as v =
—J
(vi,va,...). For any v € h® we define the vector of actions I(v) = (I1,12,...),

I; = %|vj\2. Clearly I € h7, C h7. Here hj is the weighted I'-space,

o0
7= {Ii Ilns =2 1|1 < OO},

7j=1
and hj, is the positive octant h7, = {h € h}:[; >0V j}.
Theorem 1.1.  There exists an analytic diffeomorphism ¥ : H° — h° and an

analytic functional K on h® of the form K (v) = K (I(v)), where the function K (I)
is analytic in a suitable neighbourhood of the octant h9+ in h?, with the following
properties:

1. The mapping ¥ defines, for any meZ™", an analytic diffeomorphism ¥:H™—h™.
This is a symplectomorphism if the space H™ is given a symplectic structure
by means of the two-form Qa, Qo[é(x),n(z)] = — [(9/0z)~¢(x) An(x)dz, and
the space h™, by the two-form we = ) dug, A dv_y.

2. The map d¥(0) takes the form 3 uses — v, v = |s| =1 2u,.

3. A curve u € CY0,T; HY) is a solution of the KdV equation (0.1),—¢ if and
only if v(t) = W(u(t)) satisfies the equation

. 0 —1\ 0K R
V]—<1 0>%(I)v], JELT. (1.2)
4. For m =0,1,2,... there are polynomials P,, and Q,, such that

| C ()], < Pn(lulm), [|ld(@ @), < Qm(lvlm), =012,

for all w and v and all m > 0.
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See [KP] for items 1-3 and [KuPi] for item 4. The coordinates v = ¥(u) are called
the Birkhoff coordinates, and the form (1.2) of KdV, its Birkhoff normal form.

The analysis in section 4 requires the following amplification of Theorem 1.1,
stating that the nonlinear Fourier transform ¥ “is quasilinear”:
PROPOSITION 1.2. For any m > 0 the map ¥V — d¥(0) defines an analytic mapping
from H™ to h™+1!.

A local version of the last statement which deals with the germ of ¥ at the origin,
is established in [KuP]. Proof of the proposition in the general case, based on the
spectral theory of Hill operators, will be given in a separate publication.

1.2 Equation (0.1) in Birkhoff coordinates. Applying the It6 formula to the
nonlinear Fourier transform ¥, we see that for wu(t), satisfying (0.1), the function
v(7) = U(u(r)), where 7 = vt, is a solution of the system

dvi = v ' AW (u)V (u)dr + Pf(v)dr + P (v)dr + ) Bij(v)dB;(r), k=>1. (1.3)
7>1
Here 3; = (577_) € R V(u) = —Ugqz + 6uuy, is the vector field of KAV, Pl(v) =
dV (u)ug, and P?(v)dr is the Ito term,

1
2(v) = 3 Z b? [d* Uk (u) (e, €5) + d°Up(u) (e—j,e_;) | € R
j>1
Finally, the dispersion matrix B is formed by 2 x 2-blocks By, k,j > 1, where
Byj(u) = bj(d¥(u));

Due to the analyticity of the map W, Proposition 1.2 and the fast decay of the
coefficients b;, for any m > 0, the matrix-functions By;(u), k,j > 1, analytically
extend to a complex neighbourhood O™ of H™ in the complex Sobolev space H™®QC,

where

[Brj(w)|| < O (|fullm)s= k32, (1.4)

for any N with a suitable positive continuous function Cy(-).
We will call (1.3) the system of v-equations.
The v-equations imply the following relations for the actions vector I:

1
Al = VEPL(0)dr + VLR )T + 5 3 | Byglibisdr + 3 viBig(0)dB, (1), (15)
j>1 i>1

k > 1. Here ||By;||%¢ is the squared Hilbert-Schmidt norm of the 2 x 2 matrix By;,
i.e. the sum of squares of all its four elements.
Estimates (1.1) and e.g. (1.5) imply that

E sup |I(T)|§}n <Cpmr YVm,k>0. (1.6)
0<r<T

See in [KuPi].
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1.3 Averaged equations. For a vector v = (vq,va,...) denote by ¢(v) =
(¢1, 2, ... ) the vector of angles. That is, ¢; is the argument of the vector v; € R?,
@; = arctan(v_;/v;) (if v; = 0, we set ¢; = 0). The vector ¢(v) belongs to the
infinite-dimensional torus T*. We provide the latter with the Tikhonov topology
(so it becomes a compact metric space) and the Haar measure df = [[(df;/21). We
will identify a vector v with the pair (I, ¢) and write v = (1, ¢).

The torus T acts on each space h™ by the linear rotations ®g, 8 € T, where
Qg : (I,9) — (I, +0). For any continuous function f on h™ we denote by (f) its
angular average,

() = - f(@gv)do

The function (f)(v) is as smooth as f(v) and depends only on I. Furthermore, if
f(v) is analytic on A", then (f)([) is analytic on A’*; for the proof see [KuPi].

Averaging equations (1.5) using formally the rules of stochastic averaging (see
[Kh], [FW]), we get the averaged system

dIy,(1) = (vi,Pe ) (1)dr + (v ) (I)dr
1
+5( D IBusllhs ) (Ddr + >~ Kig(dgi(r), k=1, (1.7)
j>1 j>1
with the initial condition
1(0) = Iy = I(¥(uo)) - (1.8)
Here the dispersion matrix K is a square root of the averaged diffusion matrix .S,
def
Sk (I < > ViBuv, Bml>(I> (1.9)
>1

not necessary symmetric. That is,

ZKM = St (1) (1.10)

(we abuse the language since the Lh.s. is not K2 but KK, i.e. it is |K|?). If in (1.7)
we replace K by another square root of S, we will get a new equation which has the
same set of weak solutions, see [Y].

Note that system (1.7) is very irregular: its drift operator (G}) is unbounded
and the dispersion matrix K (I) is not Lipschitz continuous in I.

1.4 Averaging principle. Let us fix any p > 3 and denote

Hr=C([0,T),h],), H,=C([0,T],h7). (1.11)
In [KuPi] we have proved the following results: given any 7" > 0, for the process
I"(1) = {I(v¥(7)) : 0 < 7 < T} the following theorem holds:

Theorem 1.3. Let u”(t), 0 < v < 1, be a solution of (0.1), (0.2) and v"(1) =
V(u’(1)), 7 = vt, 7 € [0,T]. Then the family of measures D(I"(-)) is tight in
the space of (Borel) measures in Hy. Any limit point of this family, as v — 0, is
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the distribution of a weak solution I°(7) of the averaged equations (1.7), (1.8). It
satisfies the estimates

E sup |I()|), <oco ¥m,N €N, (1.12)
0<7<T I
and
T
E/ X{Ig(7)<5}(T)dT —0 as §d—0, (1.13)
0 <
for each k.

REMARKS. (1) The convergence (1.13) is proved in Lemma 4.3 of [KuPi]. There
is a flaw in the statement of Lemma 4.3: the convergence (1.13) is claimed there
for any fixed 7 (without integrating in d7). This is true only for the case of sta-
tionary solutions, cf. the next remark. The proof of the main results in [KuP1i] uses
exactly (1.13), cf. there estimate (5.7). See the Appendix below, where the proof of
Lemma 4.3 is rewritten for purposes of this work.

(2) A similar result holds when v (t) = u(t), t > 0, is a stationary solution of
(0.1), see [KuP1i].

1.5 Dispersion matrix K. The matrix S(I) is symmetric and positive but
its spectrum contains 0. Consequently, its symmetric square root \@(I ) has low
regularity in I at points of the set

Ohh, ={I €hl, :I; =0 for some j}

(which is dense in A%). [Matrix elements of v/S(I) are Lipschitz functions of the
arguments /I, v/Iz,.... Cf. [IW, Prop.IV.6.2].] Now we construct a ‘regular’
square root K (i.e. a dispersion matrix) which is an analytic function of v, where
I(v) = I. This regularity will be sufficient for our purposes.

We will obtain a dispersion matrix K = {Kj,,}(v), I(v) = I, as the matrix of
a dispersion operator K : Z — [y, where Z is an auxiliary separable Hilbert space
and the operator depends on the parameter v, K = K(v). The matrix K is written
with respect to some orthonormal basis in Z and the standard basis {f;,j > 1}
of lo. Below for a space Z we take a suitable L%-space Z = L?(X,u(dz)). For
any Schwartz kernel M = M(j, z) we denote by Op(M) the corresponding integral
operator from L?(X) to la:

Op(M)g() = Y f; [ MU 2)g(a)n(da).

We will define the dispersion operator K(v) by its Schwartz kernel K(j, z)(v), K(v) =
Op(K(v)). For any choice of the orthonormal basis in Z the Parseval identity holds:

> Kp(v)Kpu(v) = / Kk, 2)(0)K(m, z)(v)p(dz) Yk m. (1.14)
I>1 X

Since a law of a zero-meanvalue Gaussian process is defined by its correlations,
then, due to (1.14), the law of the process > ;= fi 3,51 KimBm(T) € l2 does not
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depend on the choice of the orthonormal basis in Z; it depends only on the correlation
operator K (i.e. on its kernel ) and not on a matrix K. Accordingly, we will
formally denote the differential of this process as

YA Kim dpm(7) Zfl/ K(1,2)dBy(T)u(dz) (1.15)

>1 m>1 >1

where (3, (7), x € X, are standard independent Wiener processes on some probability
space. (We cannot find continuum independent copies of a random variable on a
standard probability space. So indeed this is just a notation.) We will call the
differential in the Lh.s. (its integral) a physical realisation of the formal differential
in the r.h.s. (of the corresponding formal stochastic integral). Naturally, if in a
stochastic equation the diffusion is written as the r.h.s. in (1.15), then only weak
solutions of the equation are well defined. A stochastic equation, where a formal
diffusion is replaced by its physical realisation, is called a physical realisation of the
equation.

Notation (1.15) agrees well with the It6 formula. Indeed, denote the differential
in (1.15) by dn and let f( ) be a C?-smooth function. Then due to (1.14)

_ (32382']0 / IC(k,x)lC(r,a;)u(d:z:))dT (1.16)

Due to (1.14) the matrix K (v) satisfies equation (1.10) if

/X K (k, z)(0)K(m, z)(0)p(dz) =Y K (0) K (v

= (1.17)
= Sem(I) =Y {((ViBu(v)) (vl Bmu(v))) -

>1

The element Sk, (I) of the matrix S(I) in the right-hand side of (1.17) equals

) / ((viBr)(@9v)) (Vi Brt) (@) ) df

>1

-y / ((80,9) Bia(®00)) (S0, V) Bout) (@) d0

>1
= Vka Z / 2 0 - Bkl @91})) (Q,Qm . Bml(@gv))de .
>0

Here and below £ stands for the rotation of the plane R? by the angle 6, or the
matrix of this linear operator (so that £_g, - By and £_y,, - By, are multiplication
of the 2 x 2-matrices).
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Let us choose for X the space X = ZT x T> = {(,0)} and equip it with the
measure u(dx) = dl x df, where dl is the counting measure in Z* and df is the Haar
measure in T. Consider the following Schwartz kernel K:

K(k:1,0)(0) = VAR(k:1.6)(v) . R(k:L0)(w) = (€5 oBu) (Be(0)) . (L13)
Then (1.17) is fulfilled. So
for any choice of the basis in Lo(ZT x T°)
the matrix K (v) of Op(K(v)) satisfies (1.10) with I = I(v).
The differential (1.15) where K = K(k;1,6)(v) (and z = (I,6)), depends on v, but
its law depends only on I(v). Due to (1.4), for any m > 0 there exists a complex
neighbourhood @, of A™ in h™ ® C such that for every k,l > 1 and 6 € T* the

matrix-function R(k, [, 8)(v) analytically in v extends to @, and there satisfies the
estimates

(1.19)

IRk, 1,0)(v)]| < COn([v]lm)k~™317N, VN eN. (1.20)

We formally write the averaged equations (1.7) with the constructed above dis-
persion operator Op(K(v)), I(v) =1, as

AIk(r) = (VPO (D + (PR (D + 5 { S 1Bl Y (D
j>1

+Z/ Vi R(k,1,0)(v)dBo(T)d6 . (1.21)
>1

Let us fix a basis in the space Lo(Z1 x T*), Wiener processes {3, (), m > 1},
and consider the corresponding physical realisation of this equation. Let £ € h? be
a random variable, independent of the processes {3,,(7)}.

DEFINITION 1.4. (I) A pair of processes I(1) € hY,v(r) € h?, 0 < 7 < T, such that
I(v(7)) = 1I(7), v(0) = £ and

E sup |v(7)
0<7<T

N <oo ¥m,N, (1.22)
is called a regular strong solution of (1.21) in the space h} x hP, corresponding to
the basis and the Wiener processes above, if
(i) I and v are adapted to the filtration, generated by & and the processes {3, (7)};
(ii) the integrated in 7 version of the physical realisation of (1.21) holds a.s.
(IT) A pair of processes (I, v) is called a regular weak solution of (1.21) if it is a
regular strong solution for some choice of the basis and the Wiener processes {3, },
defined on a suitable extension of the original probability space (see in [KaS]).

LemMA 1.5. If (I(7),v(1)), 0 < 7 < T, is a regular weak solution of e.g. (1.21),
then I(T) is a weak solution of (1.7), where the matrix {Kp,,(I)} is the symmetric
square root of the matrix { Sk, (I)}.

Proof. Clearly the process I(7) is a solution to the (local) martingale problem,
associated with e.g. (1.7) (see [KaS, Prop. 4.2 & Prob. 4.3]). So I(7) is a weak solution
of (1.7), see [Y] and Corollary 6.5 in [KuP1]. O
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The representation of the averaged equations (1.7) in the form (1.21) is crucial for
this work. It is related to the construction of non-selfadjoint dispersion operators
in the work [DIPP] and is inspired by it. We are thankful to A. Piatnitski for
corresponding discussion.

2 Effective Equations

The goal of this section is to lift the averaged equations (1.7) to equations for the
vector v(7) which transform to (1.7) under the mapping v +— I(v). Using Lemma 1.5
we instead lift equations (1.21). We start the lifting with the last two terms in the
right-hand side of (1.21). They define the It6 differential

1
(X IBls) (Dar + S [ viR(sLO)wdB (. (21)
i>1 1>1 7T
Consider the differential dvy = 3751 [re R(k;1,0)(v)dB o(1)df. Due to (1.16), for
Jr = 3| vi|* we have

1
dJy, = <Z/ | R(k; 1, 9)”?@0) dr + Z/ ViR(k;1,0)(v)dBy (7)d6 .
2 1>1 /T i>1 /T
Notice that the diffusion term in the last formula coincides with that in (2.1). The
drift terms also are the same since ||y Bri||fig = || Bril|%g for any rotation £y .
Now consider the first part of the differential on the right-hand side of (1.7),

(VP (Ddr + (vi.P2)(I)dr . (2.2)
Recall that P' = dV(u)ug, with u = ¥~1(v) and that P?(v) is the Itd term. We

have
2

(Vi PI(I) = / (v PL)(®guv)dh = / . Vi, <£_9kd\Pk(H9u)a(H9u)> do

Toe

= Vthllc(U) , U= ‘I’fl(v) )

Ox?

where R;.(v) = [ro S,gkdﬁ!k(ﬂgu)%(ﬂgu)d& and the operators IIy are defined by
the relation Ilpu = U~!(dgv). Similarly,
(VP2 (1) = /E . (Vi.P2) (@gv)do = v}, . L9, P (Pgv)df =: Vi, R}(v).

Consider the differential dvy, = R},(v)dr + Ri(v)dr. Then d(3|vi|?) = (2.2).
Now consider the system of equations,

dvi(r) = R} (v)dr + Ri(v)dr + ) /Too R(k;1,0)(v)dBg(T)d0, k>1. (2.3)

1>1
The arguments above prove that if v(7) satisfies (1.21), then I(v(7)) satisfies
(1.7). Using Lemma 1.5 we get

ProprosITION 2.1.  If v(7) is a regular weak solution of equations (2.3), then
(I(v(7)),v(7)) is a regular weak solution of (1.7).
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Here a regular weak solution of (2.3) is a weak solution, satisfying (1.22).

Equations (2.3) are called the system of effective equations for (0.1). They are
obtained from the v-equations by removing the KdV vector field and averaging the
result. These equations are weakly invariant under the rotations ®y:

e The drift R'(v) + R%(v) in the effective equations (2.3) is an averaging of the
vector-field P(v) = Pl(v) 4+ P%(v), see (0.11).

e The kernel R(k;l,0)(v) defines a linear operator R(v) := Op(R(v)) from the
space Ly := Ly(Z* x T™) to the space h := h~/2, see section 1.5 (recall that
the space h is given the lo-scalar product). The operator Rv)R(W)!:h —h
has the matrix X (v), formed by 2 x 2-blocks

Xpi(v Z Rk 1,0)(0)R(;1,0)(v)db

Due to (1.18) this is the matrix of the averaged diffusion operator (0.12).
Consider any physical realisation ;({B));(v)dg;(7) of the diffusion in (2.3).
Then also ((B))(v){{B))!(v) = X (v), see (1.14). So the dispersion operator in
(2.3) is a non-symmetric square root of the averaged diffusion operator in the
v-equations. Cf. relation (0.13) and its discussion.

o If v(7)is a regular weak solution of (2.3), then ®pv(7) is a regular weak solution
for each 6.

System (1.21) has locally Lipschitz coefficients and does not have a singularity
at 0 h{o ., but its dispersion operator depends on v. Now we construct an equivalent
system of equations on I which is v-independent, but has weak singularities at 0 h{, L

The dispersion kernel in equations (1.21) is viR(k;l,0)(v). Let us abbreviate it
as K(l,0)(v). Then Ky(1,0)(v) = viBi(v)|y:=ayv. Clearly

Ki(1,0)(®yv) = Ki(,0 + ¢)(v) V€ T™. (2.4)

Denoting, as before, by Op(K(v)) the linear operator Lo(N x T*) — [y with the
kernel K(v) = Ki(l,0)(v), v = (I, ), we have

Op (K(I, 01+ ¢2)) = Op (K(I,¢1)) o U(pa) . (2.5)

Here U(y) is the unitary operator in the space L = Ly(N x T°°), corresponding to
the rotation of T by an angle ¢ € T.

Let us provide Lo(T!, dz/27) with the basis £;(6), j € Z, where & = 1, & =
V2 cosjrifj > 1and & = v/2 sinjzif j < —1. Fori € Nand s = (s, 82,...) € Z,

|s| < 00, define
Bis(1,0) = 61— | [ &, (6))
JEZ
(the infinite product is well defined since a.a. factors equal 1). These functions
define a basis in L. For n > 1 denote by L™ the subspace of L, spanned by the
vectors E; s such that i < n, |s| < n and s; = 0 if [j| > n. It is easy to see
that the operators U(y) leave all the spaces L™ invariant. Let (E,,r € N), be the
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functions Ej s, reparameterised by the natural parameter in such a way that each
space L" is generated by first few functions F,.:

L" = span{El, ey EM(n)} . (2.6)
For any v = (I, ¢) the matrix C(v) with the elements
Kir(v) = (Ki(1,0)(v), E,(1,0)), = /+ Kr(l,0)(v)E-(1,0)(dl x df)
L+ xTee

is the matrix of the operator Op(/C(v)) with respect to the basis {E,}. Due to (2.5)
for v = (1, ¢) the operator Op(K (I, ¢)) equals Op(K(1,0)) o U(p). So its matrix is

Kir(1, ) = Z M (I Uy ()

where the matrix My, (I) corresponds to the kernel Kk (1, 0)(1,0) and U,,,(¢) is the
matrix of the operator U(y) (both matrices are formed by 2 x 2-blocks). Clearly
WK (I, ¢)|las = ||M(I)||gs for each (I,¢). Taking into account the form of the
functions E; 4(1,0) we see that any Up,,(p) is a smooth function of each argument
¢; and is independent of ¢ with k large enough. In particular,

any matrix element U, (p) is a Lipschitz function of ¢ € T*. (2.7)

Note that the Lipschitz constant of U,,, depends on m and r.
Let us denote the drift in the system (1.21) by Fj(I)dr. Then the physical
realisation of (1.21), corresponding to the basis {E,}, is the system

I (1) = Fp(D)d7 + Y My (DUpir (9)dBr, k> 1. (2.8)

Consider the processes Bm(T), m>1,

dBn(r) =Y Unr(p(1))dB (1), Bu(0) = 0. (2.9)

Since U is an unitary operator, then Bm(T), m > 1, are standard independent Wiener
processes. So we may write (2.8) as

I (1) = Fp(D)dr + Y Mymy(I)dBm(7), k>1. (2.10)

Note that each weak solution of (2.10) is a weak solution of (2.8) and vice versa.
Due to (1.19) the matrix M satisfies (1.10). So equations (2.10) have the same weak
solutions as equations (1.7).

Now consider system (2.3) for v(7). Denote by R, (v) the matrix, corresponding
to the kernel R(k;[,0)(v) in the basis {Ey}. Denoting R} + R} = Ry, we write (2.3)
as follows:

dvi = Rp(0)dT + Y Ry (v)dB,(7) (2.11)

= Ry (v)dr + Z Rt (V) Ui () U (0)dBr (T) -

m,l,r
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So
dvi = Rp(v)dr + ) R (0)dfBm(7), k=1, (2.12)

where

Rion(v) = Y Ria(0)Unu() ,
l

so that |R(v)||gs = ||R(v)||lms < oo for each v. As before, equations (2.3) and
(2.12) have the same sets of weak solutions.
We have established

LEMMA 2.2.  Equations (2.12) have the same set of regular weak solutions as
equations (2.11), and equations (2.10) as equations (1.7). The Wiener processes
{B-(1), 7 > 1} and {B,(7), m > 1} are related by formula (2.9), where v(r) =
(I(7), (7)) and the unitary matrix U(p) satisfies (2.7).

We also note that if a process v(7) satisfies only one equation (2.12), then it also
satisfies the corresponding equation (2.11).

3 Lifting of Solutions

3.1 The theorem. In this section we prove an assertion which in some sense is
inverse to that of Proposition 2.1. For any ¥ € T° and any vector I € hY we set

Vo(I) = (Vy1,Vya,...) €RP, Vy =Vy (I,), where
Vao(J) = (V2J cosa, V2T sina)t € R?.

Then ¢;(Vy(I)) = ¥; Vj and for every ¥ the map I — Vy(I) is right-inverse to the
map v — I(v). For N > 1 and any vector I we denote

PN = (Inpis Ingo,--) s VN () = (Vo (), Vonsa(D), ...

Theorem 3.1 (Lifting). Let I°(t) = (IX(1), k > 1,0 < 7 <T), be a weak solution
of system (1.7), constructed in Theorem 1.3. Then, for any vector ¢ € T, there is
a regular weak solution v(T) of system (2.3) such that

(i) the Iaw of I(v(-)) in the space H; (see (1.11)) coincides with that of I°(-);
(ii) v(0) = Vy(lp) a.s.
Proof of the theorem is based on a simple idea, which is obscured by serious
technical complications. We start by sketching the idea and explaining the technical
difficulties. The complete proof is given in the next subsection.

Sketch of the proof. Let us rewrite the averaged system for I(7) in the form
(2.10) and the effective v-equation in the form (2.12). It suffices to show that they
have weak solutions I(7) and v(7), corresponding to the same Wiener processes
B (7), such that the law of I(7) equals to the law of I°7), I(v(7)) = I(7) and (ii)
holds. Abusing notation a bit, we will denote a solution for (2.10), distributed as I°,
by I°. We regard (2.10), (2.12) as a system of stochastic equations on (I,v)(7) and
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approximate it by a system which is finite-dimensional in v:

dIy(7) = Fp(D)dr + Y My (DdBm(r), k>1, (3.1)
m>1

dvi(T) = Ri(v)dr + Y Rpm(0)dfBm(7), k<N, (3.2)
m>1

On the r.hus. of e.g. (3.2) we replace v(7) by v = (vV(7), V5N (I(7)), where v (
(vi,...,vn)(T) € R2V. So (3.1), (3.2) is a system of equations on the vector (I,
We are looking for solutions such that

I(Vk(T))EIk(T) VkSN (3.3)

For the I-component of a solution we take I = I'. Then it remains to find vV (7),
satisfying (3.2), (3.3).

Assume that for each N we constructed a solution (I,v") and denote by Nv(7)
the process M(r) = (vN(7),VyN(I(7)). Due to (3.3) and (1.12) the family of
measures D(I(-),M(-)) is tight in the space H; x H,. Any limiting measure is a
weak solution for (2.10), (2.12) and the v-component of this solutions satisfies (i)
and (ii).

It remains for each N > 1 to find a solution for (3.1)—(3.3). To do this, for any
fixed k < N consider the equation for ¢ (7) = ¢(vi(7)) which follows from (3.2) by
the Ito formula,

T) =
V).

dipp(7) = R{(v)dr + Y RY (0)dBm(T), (3.4)

m>1
where
Vg
Ry (v) = (Vvk arctan (M)) - Ry (v)
+ 1 Z (V2 arctan <Uk>> Riem - R
2V U=k A

RE (v) = (vvk arctan(;’_’fk)> R (V) -

Here - stands for the inner product in R2. If vi(7) # 0, then near 7 equation (3.2)
is equivalent to (3.1)+(3.4). Let us denote

[I] = inin {I;}. (3.5)

For any § > 0 we can cover [0,7] by a countable union of random closed intervals
Aj,j>1,and Aj,j > 1, such that
(i) Ao <A; <A <Ay <... (any two neighboring intervals intersect each other
by a point),
(ii) [I] > ¢ on each Aj, and [I] < 2§ on each A;.

We construct a solution vV on these intervals iteratively. Assume that we know

it at the left end point of some A;. To construct v () on A; we note that since
every |vi(7)|? = 2I; > 2§ on A;, then we can replace each pair of equations (3.1),
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(3.2) with k£ < N by the pair (3.1), (3.4). That is, replace the system (3.1)—(3.3) by
the system (3.1), (3.4) (in the r.h.s. of (3.4) we replace v, by Vi, (I}) if K < N and
replace it by Vy, (I) if K > N). Since I(7) = I°(7) is known, it remains to solve
(3.4), regarded as a stochastic equation with progressively measurable coefficients
for the vector ™ (1) = (¢1,...,¢n)(T). Such a solution ¢” exists. It defines vV (1)
for T € A;.

On each interval A; we have [I] < 26. By (1.13) the union of these intervals
becomes small with §. So if we can extend vV (7) to these intervals “in a controllable
way”, keeping property (3.3), we may next go to a limit as § — 0 to construct a
required weak solution of (3.1)—(3.3). The task of extending vV (7) to the intervals
A; turned out to be surprisingly complicated. Indeed, by (3.3) we have U,j(T) =

213,(7) cos pi(7), v, (1) = \/2I(7) sin gy (7) with an unknown phase ¢;. So a
priori [vi| ~ 67%/2 and the restriction of vV to UA; becomes non-negligible as
0 — 0. To construct a “right” lifting vj(7) of I(7) when I} is small, we use the fact
that the process I(7) is a limit of the processes IV(7) = I(v”(7)), where v” solves
(1.3). The process v”(7) is a lifting of IY(7) which is singular (i.e. very fast) as
v — 0. In [KuPi] we suggest a rather involved construction (repeated below in the
Appendix) which modifies any process v{(7), kK > 1, to a process v} (7) such that
I(vy) = I(v}) and ‘d%{/ﬂ ~ 1 asv — 0. A limit in the distribution of the processes
vi(r) as v = v; — 0 gives us a ‘right’ lifting of I,. Taking k = 1,..., N we get
an extension of the process vV (1) to A}, keeping the property (3.3), and such that
0N ~1asd — 0.

Iterating these two constructions we get a process (I,v")(7), 0 < 7 < T, which
solves (3.1)—(3.3) for 7 € UA; and satisfies a good estimate on the remaining small
set UA;. In Lemma 3.4 we show that any limit distribution of the processes (I, o)
as 6 — 0 is a weak solution for (3.1)—(3.3). The lemma’s proof is straightforward but
long; it occupies subsection 3.3. Considering the processes v = (v (1), VN (19(7))
and sending N — oo we get a required weak solution v().

The construction, explained above, becomes complicates when the norm of the
process I(7) is large. So, in fact, we begin the proof by introducing the stopping
times 7p = infT{]I(T)|th7 = P}, and replacing I°(7) by a trivial modification for
7 > 7p. We construct a weak solution vp(7), corresponding to the modified process
I°(7), and next go to the limit as P — oo to get a real solution v(7).

3.2 Proof of Theorem 3.1.

Step 1. Redefining the equations for large amplitudes.
For any P € N consider the stopping time
. 2 _
mp =inf {7 € (0,7 | Ju(r)]5 = [ (v(7)) |z = P}
(here and in similar situations below 7p = T if the set is empty). For 7 > 7p and
each v > 0 we redefine equations (1.3) to the trivial system

dvy, = bpdBy(t), k>1, (3.6)

and redefine accordingly equations (1.5) and (1.7). We will denote the new equations
as (1.3)p, (1.5)p and (1.7)p. If v5(7) is a solution of (1.3)p, then I} (1) = I(v)H(T))
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satisfies (1.5)p. That is, for 7 < 7p it satisfies (1.5), while for 7 > 7p it is a solution
of the It6 equations

A, = b7 dr + by (v dBy, + v_ dB_g) = L6 dr + b/ 2L dwi(T), k>1, (3.7)

where wg(7) is the Wiener process [7(cos ok dBg + singr dB_g). So (1.5)p is the
system of equations

Al = Yr<rp - (105, of (15)) + Xrsrp (%bi dr + bp/21,, dwk(T)) L k>1. (38)

Accordingly, the averaged system (1.7) p may be written as
Al = Xrrp (Fe(Ddr + 3 Kig(DdB; (7)) + Xrzrp (30747 + /20 dBy(7) )
J

(3.9)
k > 1. Here (as in (2.8)) Fj dr abbreviates the drift in e.g. (1.7), and for 7 > 7p
we replaced the Wiener process wy by the process f; this does not change weak
solutions of the system.
Similarly to v” and I” (see Lemma 4.1 in [KuPi]), the processes v}, and I}, meet
the estimates
E sup |[I[(7)|}. =E sup |[v(n)|2¥ < C(M,m,T), (3.10)
0<7<T d 0<7<T 1
uniformly in v € (0, 1].
Due to Theorem 1.3 for a sequence v; — 0 we have D(I%i(-)) — D(I°(+)).
Choosing a suitable subsequence we achieve that also D(IF(-)) — D(Ip(-)) for
some process Ip(7), for each P € N. Clearly Ip(7) satisfies estimates (3.10).

LEMMA 3.2. For any P € N, Ip(7) is a weak solution of (1.7)p=(3.9) such that
D(Ip) = D(IY) for T < 7p (that is, images of the two measures under the mapping
I(1) — I(T A7p) are equal) and D(Ip(-)) — D(I°(-)) as P — oo.
Proof. The process I} (1) satisfies the system of Itd equations (1.5) p=(3.8) which
we now abbreviate as

Iy, = Tk (1, vp(r))dr + > S (r,vp(r))dBi(r), k>1. (3.11)

J

Denote by (F)x(7, 1) and (S8 (7, I) the averaged drift and diffusion. Then

<g>k = XTSTka(I) + XTZTP% bk) <88t>km - XTSTpSkm(I) + XTZTpékmb%QIk
(cf. (2.8) and (1.9)). We claim that

/OT (Br(s,vp(s)) — (Br(s, Ip(s))ds)

q
T?:=E sup —0 asv—0, (3.12)

0<7<T

for ¢ = 1 and 4. Indeed, since §; = (§)r for 7 > 7p and v} = v¥, I} = IV for

7 < 7p, then

q

T! <E sup
0<7<T

/OT gk(s,v”(s)) — I, (I”(s))ds
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But the r.h.s. goes to zero with v, see in [KuPi, Prop. 5.2 & relation (6.17)]. So (3.12)
holds true.

Relations (3.11) and (3.12) with ¢ = 1 imply that for each k the process Zi(7) =
Ii(1) — [y (3k) ds, regarded as the natural process on the space Hj, given the
natural filtration and the measure D(Ip), is a square integrable martingale, cf.
Proposition 6.3 in [KuPi]. Using the same arguments and (3.12) with ¢ = 4 we
see that for any k and m the process Zi(7)Zm (1) — [ (SS8")pm ds also is a D(Ip)-
martingale. This means that the measure D(Ip) is a solution of the martingale
problem for e.g. (1.7) p=(3.9). That is, Ip(7) is a weak solution of (1.7)p.

Since D(I}) = D(I¥) =: P¥ for 7 < 7p, then passing to the limit as v; — 0 we
get the second assertion of the lemma. As P*{rp < T} < CP~! uniformly in v (cf.
(3.10)), then the last assertion also follows. O

Step 2. Equations for v™.

By Lemma 2.2 the process I°(7) satisfies (2.10). For any N € N we consider
the Galerkin-like approximation (3.1), (3.2) for equations (2.12), coupled with e.g.
(2.10). As at Step 1 we redefine the I-equations (3.1) after 7p to equations (3.7) and
the v-equations to (3.6). We denote the system thus obtained by S,. By Lemma 3.2
the process Ip(7) satisfies the new [-equations, and we will take Ip(7) for the I-
component of a solution for S,. To solve S, for 0 < 7 < T we first solve (3.1)+(3.2)
till time 7p and next solve the trivial system (3.6) for 7 € [7p,T]. The second step
is obvious. So we will mostly analyse the first step.

Denote

Q= Qr x Qn = C(0,T; hY) x C(0,T; R*N)

and denote by 7, mn the natural projections 7y : O — Qr, N : O — Qn. Provide
the Banach spaces Q,Q; and Qy with the Borel sigma-algebras and the natural
filtrations of sigma-algebras. Let {F;, 0 <t < T}, be the filtration for Q.

Our goal is to construct a weak solution of system S, such that its distribution
P = PY = D(I,v") satisfies m;oP = D(Ip(-)) and I(vV(-)) = IV(-) P-a.s. After
that we will go to a limit as P — oo and N — oo to get a required weak solution v
of (2.3).

We will construct P¥ as the limit when § — 0 of measures Ps = D(I(-),vV(-)),
where the process (I(7),v™ (1) “solves S, for 7 outside the (small) random set, where
[I(7)] <87 (see (3.5)).

Step 3. Construction of a measure Pg.

Fix any positive d. For the process I(7) = I°(7) we define stopping times Gj-i <T
such that --- <0, < 9}" <04y <... as follows:

e If [I(0)] < 4, then ] = 0; otherwise 6 = 0.

e If §; is defined, then 9;7 is the first moment after ;" when [I(7)] > 26 (if this

never happens, then we set 9;7 = T’ similar in the item below).

o If 0]7" is defined, then 6 ; is the first moment after 9}" when [I(7)] < 4.
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We denote A; = [0 ,6?]+] Aj = [Hj,ﬁj_ﬂ] and set

A=A"=UA;, A=A =UA;.

For segments [0,6;] and [0,9;7]7 which we denote below [0,9;:], we will itera-
tively construct processes (I,v™V)(7) = (I,v")?*(7) such that D(I(-)) = D(Ip(-)),
oV (1) = N (T A HJi) and D(IN(7)) = D(I(v™V (7)) for 7 < 9;5 Moreover, on each
segment A, C [0, 9?[] the process (I,v") will be a weak solution of S,. Next we will

obtain a desirable measure Ps as a limit of the laws of these processes as j — oo.
For the sake of definiteness assume that 0 = 9;{ .

a) 7 € Ag. We wish to construct a weak solution (I,v") of system S, for
0 <7 < 6] such that, as before, D(I) = D(Ip). We will only show how to do this
on the segment [0,0; A 7p| since construction of a solution for 7 > 7p is trivial.

Let (I(7),vN (7)) be the natural process on Q (corresponding to some measure
on Q). Assume that for some fixed k < N its component vi(7) € R? satisfies
equation (3.2);. Then Ij(7) = I(vi(7)) satisfies (3.1)g, and for 0 < 7 < 6] the
angle i (7) = ¢(vi (7)) satisfies equation (3.4). Clearly on the domain {v"" € R?V |
[I(v™)] > 6, [v)V], < P} the factors Vy, arctan(vg/v_j) and V2 arctan(vgy/v_y) are
smooth, Lipschitz and bounded.

Since the mapping v — (I, ) is a diffeomorphism of the domains {|v| > §} and
(%(52, oo) x S, then, on the contrary,

if for 7 < @ the process Ij(7) satisfies (3.1) and ¢y (7) satisfies

3.13
(3.4), where vi(7) = Vi, () (Ix(7)), then vy (7) satisfies (3.2)y . (3.13)

Similar assertions hold for the equations modified after the stopping time 7p,

LEMMA 3.3. For any positive 6 and for ¥ as in Theorem 3.1, for 0 < 7 <9, the
system S,, has a weak solution (I, UN) such that D(I(-)) = D(Ip(-)) and %|Vk\2(7') _
Ii(7), vie(0) = Vyr(lp) for k < N.

Proof. Denote by S, the system (3.1)p+(3.4)p 1<k<n. Its solution is a process
(I(1), N (7)) and in the p-equations we substitute v, = V, (Ix(7)), 1 <k < N.

For any integer M > N of the form M = M(n), n > 1 (see (2.6)), we call the
M -truncation of system S, a system, obtained from S, by omitting in equations
(3.4) with 1 < k < N the terms ﬁfm(v)dﬁm with m > M. The dispersion matrix
for the modified p-equations is R#M = {7~3¢m,1 <k < N,1 <m < M}. Since
U(p)L™ = L", then for m < M = M(n) we have Ujny(¢) = 0if j > M. So for
m < M

Riom (v Z Rt (V) Ui (¢

This relation and (2.7) imply that for 0 < 7 < 6] A 7p the diffusion matrix RPM g
Lipschitz continuous in ¢. In the M-truncation of the system S, the I-component is
known (it equals I°) and the g-equations form a system with progressively measur-
able coefficients, Lipschitz in ¢”V. So it has a unique strong solution V"M e.g. see
in [Kry2]. This gives us a solution (1%, o™M)(7), 0 < 7 < 6, for the M-truncated
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system. We first extend this solution to the segment [#; A 7p, 0 ], and next to [0, 7]
by setting VM (1) = VM (7 A O]).
For any N and for 0 <7 < 6; A 7p we have

[R# @) s = COPY[RA) 15 = OO PYIR() s

s

Since all moments of the random variable sup. ||R(v(7))| gs are finite, then the
family of processes (Ip, p™V"M) € hf) x TN, M > 1, is tight. Any limiting as M — oo
measure solves for 0 < 7 < 6] the martingale problem, corresponding to system S,,.
So this is a law of a weak solution (Ip, ") of that system (i.e. (Ip, p™V)(7) satisfies
the system with suitably chosen Wiener processes Bm) Due to (3.13) the process
(Ip,vN) with v;(1) = Vo, nIpj(1), 7 < N, is a weak solution of S,. We have
constructed a desirable weak solution (I,v™V)(7), 0 <7 < 6;. O

We denote by Py the law of the constructed solution (I,v"). This is a measure
in , supported by trajectories (I, v") such that vV (7) is stopped at 7 = 6] .

b) Now we extend P| to a measure Pf on Q, supported by trajectories (I,v"),
where vV is stopped at time 9?.

Let us denote by © = 0% the operator which stops any continuous trajectory
n(T) at time 7 = 6, . That is, replaces it by n(r A 6 ).

Since D(I}(-)) = D(Ip(-)) as v = vj — 0, then we can represent the laws P,
and D(v})) by distributions of processes (I}D(T),U}DN(T)) and vp”(7), defined on a

new probability space €2, such that
(”QDV(‘» — Ip(-) asv=wv; > 0in Hs as.,

and
1™y =1 for 7 <65 .

Since vp" (1,w), 0 < 7 < T, is a diffusion process, we may replace it by a continuous
process w'(T;w,wi) on an extended probability space € x €1 such that

1. DwY =Dvp";

2. for 7 < 67 = 07 (w) we have wY% = vp,"” (in particular, then wY% is independent
of wy);

3. for 7 > 6] the process wp depends on w only through the initial data
wh(0] ,w,w1) = vp (0] ,w). For a fixed w it satisfies (1.3)p with suitable
Wiener processes (3;’s, defined on the space €.

Using a construction from [KuPi], presented in the Appendix, for each w we
construct a continuous process (w”, WV )(r;w,w1) € WP x R 7 > 07, wy € Oy,
such that for each w we have

(i) the law of the process w”(T;w,w1), 7 > 67, w1 € 1, is the same as of the
process W (T;w, w1);

(i) I(@"N) =IN(w") for 7 > 67, and (0N (07)) = @(U}N(Gf)) a.s. in Qy;
(iii) the law of the process w"™ (1), 7 > 6], is that of an Itd process

dv™ = BN (1)dr + o (1)dw(T), (3.14)
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where for every 7 the vector BY (1) and the matrix o'V (7) satisfy v-independent
estimates
‘BN(T)‘ <C, Cc'<dV()i(r)<CI as., (3.15)

with some C = C(P, M).

Next for v = v; consider the process
_ N ~
Ep(r) = (Ip(r) = 1(@" (7)) Xyep-Vp + Xpnp- @), 0<T<T.

Due to (3.10) and (iii) the family of laws {D(£7), j > 1}, is tight in the space
C(0,T; hg x R2N). Consider any limiting measure II (corresponding to a suitable

subsequence v; — 0) and represent it by a process Ep(t) = (Ip(1), 0N (7)), ie.

Dép = I1. Clearly,
() D(Ep) |,<4-= P7.
(v) D(Ip) = D(Ip).

Since any measure D(£},) is supported by the closed set, formed by all trajectories
(I(1),vN(r)) satisfying IV = I(vN), then the limiting measure II also is supported
by it. That is, the process {p satisfies

(vi) I(oN (7)) = IN(7) as.

Moreover, for the same reasons as in the Appendix, the law of the limiting process
oW (1), T > 67, is that of an Ito process (3.14), (3.15). (Note that for 7 > 6] the
process 95 is not a solution of (3.2)).

Now we set

P = 0" o D(Ep).

c) The constructed measure P gives us the distribution of a process (1(7),v™ (7))
for 7 < ;. Next we solve system S, on the interval A; = [0],6,] with the initial
data (1(67),v™ (6;) and iterate the construction.

It is easy to see that a.s. the sequence Hji stabilises at 7 = T after a finite

(random) number of steps. Accordingly, the sequence of measures ch converges to
a limiting measure Ps on Q.

d) On the space Q, given the measure Pg, consider the natural process which we
denote & (1) = (I5(7), v (1)). We have

1. D(Is(-)) = Dp),

2. IN () =1V as.,

3. for 7 € A? the process & is a weak solution of S,,, while for 7 € A% the process

vl (7) is distributed as an It process (3.14).

Step 4. Limit § — 0.
Due to 1-3 the set of measures {Ps, 0 < § < 1} is tight. Let Pp be any limiting
measure as 6 — 0. Clearly it meets 1 and 2 above.

LEMMA 3.4. The measure P p is a solution of the martingale problem for system S,,.

The lemma is proved in the next subsection.
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Step 5. Limit P — oc.

Due to 1, 2 above, relations (3.10) and Lemma 3.4 the set of measures Pp,
P — o0, is tight. Consider any liming measure PV for this family. Repeating in a
simpler way the proof of Lemma 3.4, we find that PV solves the martingale problem
(3.1) 4 (3.2). It still satisfies 1 and 2 (see Step 3d)). Let (I(7),v"V(7)) be a weak
solution for (3.1) + (3.2) such that its law equals P?V. Denote by “v(7) the process
(vN (1), V>N(r)) and denote by p? its law in the space H, (see (1.11)).

Step 6. Limit N — oo.

Due to (1.12) the family of measures {u"} is tight in H,. Let N; — oo be a
sequence such that p™i — p.

The process Nv(7) satisfies equations (2.12);<x<y Wwith suitable standard inde-
pendent Wiener processes 3, (7). Due to Lemma 2.2 and a remark made after it, the
process also satisfies equations (2.11);<x<n. Repeating again the proof of Lemma
3.4 we see that p is a martingale solution of the system (2.11);<x<y for any N > 1.
Hence, 1 is a martingale solution of (2.11) and of (2.3). Let v(7) be a corresponding
weak solution of (2.11), D(v(-)) = p. As i — p, then the process v satisfies
assertions (i) and (ii) in Theorem 3.1 and the theorem is proved.

3.3 Proof of Lemma 3.4. Consider the space () with the natural filtration F;,
provide it with a measure Py and, as usual, complete the sigma-algebras F, with
respect to this measure. As before we denote by &5(7) = (I5(7), 0 (),0 < 7 < T),
the natural process on Q.

(i) For k > 1 consider the process Isx (7). It satisfies the Ix-equation in S,:

dly = FC(r,Ddr + Y M (1, 1)dBm(7) . (3.16)

Here F,f equals Fj, for 7 < 7p and equals %bz T > Tp, while M ,fm equals My, for
7 < 7p and equals bp/2Iy for 7 > 7p, cf. (3.9). For each § > 0 and any k the process
Xi(7) = In(7) — [y F¥(s,1(s))ds is an Ps-martingale. Due to (1.12) the Lo-norm of
these martlngales are bounded uniformly in 7 and §. Since P; — Pp and the laws
of the processes X!, corresponding to § € (0, 1] are tight in C[0, T, then xZ(7) also
is an P p-martingale.

(ii) Consider a process vsi, 1 < k < N. It satisfies S, for 7 € A% and satisfies
the k-th equation in (3.14) for 7 € A, where the vector BY(7) and the operator
aV (), 7 € A%, meet the estimates (3.15). So vg satisfies the Ito equation

dvi(7) = (Xreas BE, (T,0) + Xreas By (7))dr
+ Xrens ZRkPm(T7 U)dﬁm( ) + Xrens Z akr dwT( )
m (3.17)
T)AT + > G (1, 0)dBm (T +ZC,W )dw, (T
m>1

Note that the random dispersion matrices G°(7) and C?(7) are supported by non-
intersecting random time-sets.
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For any 0 > 0 the process Xi( ) = vi(T fo A5 )ds € R? is an Ps-martingale.
Let us compare | Ai ds with the correbpondmg term in S,. For this end we consider
the quantity

| i = [ REGso)is

gE/ \Rf(s,v(s))\ds+E/ |BY (s)|ds =: Y14+ Y2. (3.18)
A A9

E sup
0<r<T

y (3.10) and(1.13),

T T
T2 < E/ \RkP\st-E/ as(s)ds < C(P)os(1).
0 0

Similar Ty < C(P) 05(1). So (3.18) goes to zero with ¢. Since the La-norms of
the martingales Xk are uniformly bounded and their laws are tight in C(0,T;R?),
then x0(7) = vi(r fo RFP(s)ds is an Pp-martingale. Indeed, let us take any

0<1 < <T and let ® C’b(Q) be any function such that ®(£(-)) depends only
on &(7)o<r<r - We have to show that

EP? (x)(m2) — xl(r))2(§) = 0. (3.19)
The 1.h.s. equals

lim B (x}(m2) = xR (1)) 2(€))

= lim EPs <<I>(§) <vk(72 — vi(m1) / RE(s) >>
- 71
T2
= lim EP? <<1>(§) / (A9 )ds>
50 "
(we use that Xi is a Ps-martingale). The r.h.s. is

[ i) - rEs)as

< C'lim EFs sup
6—0 T

< Clim(Y1 — T2) =0.

So (3.19) is established.

(iii) For the same reasons as in (i), for each k and [ the process
1 T
Xé(T)XlI(T) - 2/0 ZMfm(S,I(S))MZI:n((S’I(S))dS

is an P p-martingale.
(iv) Due to (3.17), for any § and any k,! < N the process

Xa()X] (7 / (ZG +Ckmclm>d

=) = 5 [ () + (o)) ds
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is a Ps-martingale. We compare it with the corresponding expression for system S,,.
To do this we first consider the expression
E sup

1 /7 5 _
o<r<T 2/ (ZRkPle}:n - Xkl - Ykl)ds

T
ey [ | RERL ucasds + B | \Zaﬁmaifn
m

As in (i), the r.h.s. goes to zero with d. Hence, x2(7)x?(7) — RP ' RE ds is an
P p-martingale by the same arguments that prove (3.19).

(v) Finally consider the I,v-correlation. For £ > 1 and 1 <1 < N the process

R 5 (1)) /ZMka s—/ S S ML Gl w)(5)

m>1r=1

XseA5d8 . (320)

is an Ps martingale. We know that

1. the matrix £[B,,w,](s) is constant in s and is such that l-norms of all its
columns and rows are bounded by one;

2. |MFP| s, [C°lus < C(P) for all 6.
Therefore,

< Ci(P).

ZZMkm lrd ﬂmawr]( )

m>1r=1

Now repeating once again the arguments in (ii) we find that

E su / MT\’,—H)ds—>O
0<TI<)T2’ Z km/¥m ki
as 6 — 0. Therefore the process xi(T)x!(t) — % N ML RE ds is an Pp-
martingale.
Due to (i)—(v) the measure Pp is a martingale solution for e.g. (3.1)p. O

4 Uniqueness of Solution

In this section we will show that a regular solution of the effective equation (2.3)
(i.e. a solution that satisfies estimates (1.12)) is unique. Namely, we will prove the
following result:

Theorem 4.1. If v!(7) and v?(7) are strong regular solutions of some physical
realisation of e.g. (2.3) such that v'(0) = v%(0) a.s., then v!(-) = v?(-) a.s.
Using the Yamada—Watanabe arguments (see, for instance, [KaS]), we conclude

that uniqueness of a strong regular solution for (2.3) implies uniqueness of a regular
weak solution. So we get



26 S.B. KUKSIN GAFA

COROLLARY 4.2. If vl and v? are regular weak solutions of equations (2.3) such
that D(v'(0)) = D(v?(0)), then D(v'(-)) = D(v2(-)).
COROLLARY 4.3. Under the assumptions of Theorem 3.1 the law of a lifting v(1) is
defined in a unique way.

Evoking Theorem 3.1 we obtain

COROLLARY 4.4. Let I'(7) and I%(7) be weak regular solutions of (1.7), (1.8) as in
Theorem 1.3 (i.e. these are two limiting points of the family of measures D(I”(-))).
Then their laws coincide.

These results and Theorem 1.3 jointly imply

Theorem 4.5. The action vector I”(-) converges in the law in the space Hy to a
regular weak solution I°( -) of (1.7), (1.8). Moreover, the law of I° equals IoD(v(-)),
where v(7) is a unique regular weak solution of (2.3) such that v(0) = Vy(ly). Here
¥ is any fixed vector from the torus T°.

Proof of Theorem 4.1. Denote by (-, )¢ the inner product in h°. For a fixed £ > 0
we introduce the stopping time ©O:

© =min{r < T : v (7)[p2 V [0*(7)]2 = K}
(if the set is empty we set © =T'). Due to (1.22)
P{O <T} <cr?

Denote A ‘
vi(r) = (T AB), w(r)=uvy(r) —vi(r).

To prove the theorem it suffices to show that w(7) = 0 a.s., for each x > 0.
We have

dwy(7) = Xreo{ [RL(0)) — L) dr — [R2(v}) — RE(v3)]dr

+Z/ R(k;1,0)(v,) — R(k;lﬁ)(vi)]dﬁwde}_

>1

Application of the It6 formula yields
2 TAO 1/..1 1/.2
Blu) = [ (w(o) (7 (4h) = R ()]} s
TAO
+E/ (w(s), [R(o}) — R2(02)]) ods
+ E/ Z/ 0)(vk) — R(-.,1,60)(v2)|2 dods

>1
=H1+=0+Z23.

We will estimate the three terms in the r.h.s. and start with the term Z3. By (1.20)
and the Cauchy inequality we have

[R(-,1,0)(vi(5)) = R(1,0)(v2(s)|g < CN, 1)1 N fw(s) 3
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for any N € Z*. Therefore,
TAO
=3 < C(H)E/ lw(s)|3ds .
0

For similar reasons Z < C(k)E [ TA@ (s)|3ds.
Estimating the term Z; is more comphcated since the map v — R!'(v) is un-
bounded in every space h?. We recall that £=! := d¥(0) is the diagonal operator

_1<Zusfs> =0V, V= |s|_1/2us Vsé€Zy,
S

and introduce Wo(u) = ¥(u) — L~ u. According to Proposition (1.2), ¥y defines
analytic maps H™ — R™t! m > 0. We denote by G the inverse map G = U1,
Then G(v) = L(v) + Go(v), where Gy : h™ — H™*! is analytic for any m > 0.
Finally, denote R(v) — Av = R%(v), where A is the Fourier-image of the Laplacian:
Av—v wherev = —j%v;, V.
LEMMA 4.6. For any m > 0 the map R° : k™ — k™! is analytic.

So the effective equation (2.3) is a quasilinear stochastic heat equation, written
in Fourier coefficients.

Proof. We have
RY(v) = / . O_gLTIAN(GPg)d O + /T . O_pdWo(GDev)A(GDyv) d .
The first integrand equals
D_ gL ALDgY + P_g LT A(GoPgv) = Av + B_g L A(GoPyv)

since LTYALDy = A and A commutes with the operators ®y.
So

RO(v) = / B oL A(GoByv)d + / B_ydWo(GDy0) A(GDyv) df .

Clearly for any 6 the first integrand defines an analytic map from h™ to h™~1. We
have dW¥q(ug) : H™ — h™*l. Since the map ¥ is symplectic, then also dWo(ug) :
H" — h™1 for —m — 2 < 7 < m (cf. Proposition 1.4 in [Kul]). So for any 6
the second integrand also defines an analytic map h™ — h™ . Now the assertion
follows. O

By this lemma with m =1

TAO
a:E/ (= [w(s) + (ws), R(ol) — RO(u2))o)ds
0
TAO

TA®
<B [ (= o)+ Colutelluth)as < B [ uto s

0
Combining the obtained estimates for =1, Z5 and =3, we arrive at the inequality

MW%SQ/EMﬂ%-
0
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Since E|w(0)|3 = 0, then E|w(r)|2 = 0 for all 7. This completes the proof of
Theorem 4.1. O

5 Limiting Joint Distribution of Action-Angles

For a solution w”(¢) of (0.1), (0.2) we denote by I"(7) = I(v”(7)) and ¢"(7) =
e(v”(1)) its actions and angles, written in the slow time 7. Theorem 4.5 de-
scribes limiting behaviour of DI¥ as ¥ — 0. In this section we study joint dis-
tribution of I”(7) and ¢”(7), mollified in 7. That is, we study the measures

pp = fOT f(s)D(IV(s),cp”(s)>ds on the space hf x T*, where f > 0 is a contin-
uous function such that fOT f=1.
Theorem 5.1. Asv — 0,

s ( /0 ! f(s)D(IO(s))ds> « dg. (5.1)

In particular, fOTf(s)D(go”(s))ds — dp.

Proof. Let us first replace f(7) with a characteristic function

1
f(r) = TQ_TIX{TlngTQ}, 0<T1 <To<T.

Due to (1.6) the family of measures {,u;—, v > 0} is tight in hY x T°. Consider any
limiting measure ,u;j — Uy

Let F(I,¢) = FO(I™, ¢™), where FV is a bounded Lipschitz function on R x T™.
We claim that

1 Ty 5 . . 1 Ts o B
T /T1 EF(I (), (S))ds T2—T1/ E<F>(I (s))ds as v —0.

T1
(5.2)
Indeed, due to Theorem 4.5 we have
]. T2 1 T2 0
E(F)(I"(s))ds — / E(F)(I"(s))ds asv —0.
e [ BRI @) e [ TR (10)
So (5.2) would follow if we prove the convergence
E‘/ F(I"(s),¢"(s)) = (F)(I"(s))|ds = 0, asv—0, (5.3)
0

for any 7. But (5.3) is established in [KuP4i] (see there (6.9) and below) for FO(I™ ™)
= F(I"™,0;¢™,0)), where Fj(I, ) is the drift in e.g. (1.5). The arguments in [KuP4i]
are general and apply to any bounded Lipschitz function F©.

Relation (5.2) implies that pf = ((Tp —T1)~" 77;2 D(I%(s))ds) x dp. So (5.1) is
established for characteristic functions. Accordingly, (5.1) holds, firstly, for piece-
wise constant functions f(7) with finitely many discontinuities and, secondly, for
continuous functions. O
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6 Appendix

6.1 Whitham averaging. The n-gap solutions of the KdV equation under the
zero-meanvalue periodic boundary condition have the form (0.4), where 0 = I,,41 =
Ini2 = .... They form a subset of the bigger family of space-quasiperiodic n-gap
solutions, discovered in the 1970s by Novikov and Lax. These quasiperiodic solutions
may be written as ©"(Kz+ Wt+ ¢;w), were the parameter w has dimension 2n+1,
©" is an analytic function on T x R?"*! and the vectors K, W € R" depend on w.
See in [ZMNP], [DuN], [LLV], [Kul].

Denote by X = vz and T' = vt slow space- and time-variables. We want to solve
either the KdV itself, or some its v-perturbation (say, e.g. (0.1),—¢) in the space of
functions, bounded as |z| — oo (not necessarily periodic in z). We are looking for
solutions with the initial data

up(z) = " (K + wo; wo(X))

where wo(X) € R?"*! is a given vector-function. Assuming that a solution u(t,x)
exists, decomposes in asymptotical series in v and that the leading term may be
written as

u(t,x) = O™ (K + Wt + po; w(T, X)), (6.1)

Whitham shows that w(7T, X) has to satisfy a nonlinear hyperbolic system, known
now as the Whitham equations. In the last 40 years much attention was given to the
Whitham equations and Whitham averaging (i.e. to the claim that an exact solution
u(t, z) may be written as u = u®(¢,z) + o(1), where u° has the form (6.1)). Many
results were obtained for the Whitham equations for KdV and for other integrable
systems, e.g. see [ZMNP], [Kr], [DuN] (we note that in the last section of [DuN]
the authors discuss the damped equation (0.1),—). In these works the Whitham
equations are postulated as a first principle, without precise statements on their
connection with the original problem. Rigorous results on this connection, i.e. results
on Whitham averaging, are very few, and these are examples rather than general
theorems since they apply to some initial data and hold in some domains in the
space-time R?, see in [LLV]. (Also see [S] for some related problems and results.)

In the spirit of the Whitham theory our results may be cast in the following way.
Consider a perturbed KdV equation

U+ Ugpzy — OUUE = I/f(u, Uy, uxa:) ) (6'2>

and take initial condition ug(z) of the form above with arbitrary n, where wy is
an z-independent constant such that wg(z) is 27-periodic with zero meanvalue.
Let us write ug as a periodic oco-gap potential ug(z) = O (Kx + ¢o; Iy), where
O : T* x RY — R and now K € Z*, ¢g € T* (see [MT] for a theory of co-gap
potentials). We may write a solution of (6.2) as u”(t,z) = O (Kx + ¢”(7); ¥ (7)),
7 = vt, with unknown phases ¢” € T° and actions I” € RY. The main task is to
recover the actions. To do this we write the effective equations for I(7), correspond-
ing to (6.2). Namely, we rewrite (6.2) using the non-linear Fourier transform W,
pass to the slow time 7, delete from the obtained v-equations the KdV vector-field
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d¥ oV and apply to the rest the averaging (0.11). We claim that for some classes of
perturbed KdV equations the vector I°(7) = 7;(v(7)), where v solves the effective
equations, approximates I”(7) well with small v. Our work justifies this claim for
the damped-driven perturbations (0.1) in the sense that the convergence (0.8) holds.

This special case of Whitham averaging deals with perturbations of solutions
for KAV which oscillate fast in time (since we write them using the slow time 7),
while the general case treats solutions which oscillate fast both in the slow time T
and slow space X. The effective equations serve to find approximately the action
vector I"(7) € RS which represents a space-periodic solution for (6.2) as an infinite-
gap potential @ (Kxz + ¢”(7);I¥(7)). They play a role, similar to that of the
Whitham equations, serving to find the parameter w(T,X) € R?"*!  describing
n-gap potentials (6.1) which approximate (non-periodic in space) solutions.

6.2 Lemma 4.3 from [KuPi]. Below we present a construction from [KuPi],
used essentially in section 3.

For 7 > 0" > 0 consider a solution v(7) = v%(7) of equation (1.3)p. For any
N € N we will construct a process (v,9V)(7) € h? x R2N 7 > ¢ such that

L D(a(-)) = Dlu(-);
2. 1(5V(r)) = IV(u(7), as:

3. p(@N(0)) = ¢°, where ¥ is a given vector in TV;

4. the process vN ( ) satisfies certain estimates uniformly in v.

For 11,12 € R?\ {0} we denote by U(n1,72) the operator in SO(2) such that

U(m,ng)lml = ‘Zjl If ;p =0 or n2 =0, we set U(m,n2) =id.

Let us abbreviate in e.g. (1.3)p (PL(v) + P2(v))"" = AP (v). Then the equation
takes the form

vy, = (v 1)V (u)) dr + AL (v)dr + 3 BE(v)dB;(r), 1<k<N. (6.3)
j>1

For 1 < k < N we introduce the functions
Ap(Vi,0) = UV, Vi) Ap (v), - Bij(Vi,v) = U(Vie, vie) Biy (v)

and define an additional stochastic system for a vector o = (v1,...,vy) € R2V:

AV = Ap(¥g,v)dr + Y Brj(¥k,v)dB;(r), 1<k<N. (6.4)

j>1
Consider the system of equations (6.3), (6.4), where 7 > ', with the initial condition
oN(0) = Vo (1(0"(6))) (6.5)
and with the given v(€’). It has a unique strong solution, defined while
[Vil, [Vk| >¢>0 VE<SN,

for any fixed ¢ > 0.

Denote [('U,’LN))] = (minlSjSN %’Vﬂz) VAN (min1<j<N %|\~/]|2) Fix any vy € (0, 1/4}
and define stopping times Tji elg,1,..., T < ’T+ <71y <...,asin Step 3 in
section 3.1. Namely,
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o If [(vo,vo)] <7, then Tl_ = 0. Otherwise 7;" = 0.
e If 7 is defined, then 7'] is the first moment after 7;~ when [(v(7),(7))] > 2y

(if thls never happens, then Tj' =T).

o If 7' is defined, then 7,°, is the first moment after 7' when [(v,0)] <.

Next for 0 < v < 1/4 we construct a continuous process (v(7),?"N (7)), T > ¢,
where v(7) = v%(7), 7V (0') is given (see (6.5)), and for 7 > ¢’ the process 77V is
defined as follows:
(i) If fﬂN(T;) is known, then we extend @V to the segment A; := [Tj+, T 1) in
such a way that (v(7), 9"V (7)) satisfies (6.3), (6.4).

(ii) If 97V (7;7) is known, then on the segment A; = [, T]-Jr] we define 77V as

TN(7) = UVk(7y ), vil(7)))vi(r), k<N.
By applying Itd’s formula to the functional J(7) = (Ix(v(7)) — I (27N (7))? we
derive that if J(T;_) =0, then J(7) = 0 for all 7 € A; (see Lemma 7.1 in [KuPi]).
Hence, the process 97V (1) is well defined for 7 € [¢’, T] and

Ii(v(r)) = I (@N(r)), k< N. (6.6)

Let us abbreviate U,z = (U(Vk(7; ), vk(7;7)). Then on an interval A; the process
"N satisfies the equation
dv] = UL (v dWs(w)V (w)” + Af (v))dr + > Ul o Bfj(v)dBy(7). (6.7)
!
Formally letting |Vi|/|vi| = 1 if vj, = 0, we make the function |V} |/|vi| =1 along

all trajectories.
Due to (6.4) and (6.7), 3"V is an It process

AV} = Ag(r)dT + > Byj(r)dB,(r), 1<k<N. (6.8)
The coefficients Ay, = AZ and Bkj = B,Zj a.s. satisfy the estimates
|A(r)| <vTic, CT'E< BB <CE (6.9)
for all 7, where C' depends only on N and P and we regard B as an 2N x 2N-matrix.
Let us set
A7) =i (0) + 9/7 Al(s)ds, Z / By dpi(r

(cf. (6.5)) and consider the process

() = (vV(1), A(1), M7 (1)) € AP x RN x RE, 7>¢.
Then 77 = AY(7)+ M7 (7) and due to (6.9) the family of laws of the processes £ is
tight in the space C(¢/,T; hP) x C(¢', T; R?N) x C(¢', T; R?N). Consider any limiting
(as v; — 0) law D° and find any process (9(7), A°(1), M°(7)), distributed as D°.
Denote 9V (1) = A%(7) + M°(7) and consider the process (o(7), o™ (7)) € AP x RV,
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It is easy to see that it satisfies 1-3. In [KuPi] we show that estimates (6.9) imply
that

A(r) = / ,TBN(s)ds, MO(r) = / /TaN(s)dw(s),

where w(s) € R?V is a standard Wiener process, while BY and a” meet (3.15).
That is, 5V () is an It6 process

doN (1) = BN (1)dr + o (7)dw(7) , (6.10)
where
’3(7')‘ <C, C'E<d¥ (™) (r)<CE V7, as. (6.11)

These are the estimates, mentioned in item 4 above.

Now by (6.9) and Theorem 4 from section 2.2 in [Kryl], applied to the It6
process Vi, we have

T
E/g/ X{Ik(U}VD(T))Sz?}dT <Cd, VE<N, (6.12)

where C = C(N, P).

Taking ¢ = 0 and passing to a limit as v — 0 we see that the process Ipy(7) also
meets (6.12). Since D(Ip(-)) = D(I(-)) as P — oo, then we get estimate (1.13).

For any v > 0 the processes I, and I” coincide on the event {sup, [I”(7)|,; < P}.
Due to (1.6) probability of this event goes to 1 as P — oo, uniformly in v. So (6.12)
also implies that

T
E/ X{I};(T)S(S} —0 asd— O, (6.13)
0

uniformly in v.
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