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Holomorphic immersions and
equivariant torsion forms

By Jean Michel Bismut at Orsay and Xiaonan Ma at Palaiseau

Abstract. We compute the behaviour of the equivariant torsion forms of a Kähler
fibration under composition of an immersion and a submersion. This extends previous re-
sults by the first author.

0. Introduction

The Quillen metric [Q2], [BGS3] is a natural metric on the determinant of the coho-
mology of a holomorphic Hermitian vector bundle, which one constructs using the Ray-
Singer analytic torsion [RaS]. This metric has a number of remarkable properties [BGS3].
In particular the curvature of the corresponding holomorphic Hermitian connection on the
determinant of a direct image is given by an explicit local formula, which is compatible
with the theorem of Riemann-Roch-Grothendieck at the level of di¤erential forms.

In [BL], Bismut and Lebeau have studied the behaviour of Quillen metrics under em-
beddings. In their formula, the additive R genus of Gillet-Soulé [GS1] appears. Using this
result, Gillet and Soulé have established in [GS2] an arithmetic Riemann-Roch theorem for
the determinant. In [B5], the result of Bismut-Lebeau was extended to the analytic torsion
forms constructed in [BGS2], [BK]. This result was used by Roessler [R] to establish an
arithmetic Riemann-Roch theorem for all the Chern classes.

In [B3], Bismut has obtained an equivariant version of the genus R, the genus Rðy; xÞ.
It was conjectured in [B3] that this genus should appear in an arithmetic Lefschetz formula.
In [B4], an equivariant version of the Quillen metric was defined, and an equivariant ana-
logue of the embedding formula of [BL] was obtained.

In [KR1], Köhler and Roessler proved a Lefschetz formula in Arakelov Geometry
for the determinant. Various applications of this formula have been given in [KaK], [KR2],
[KR3]. In [KR2], they also conjectured a higher degree version of their formula.

The purpose of this paper is to extend the main result of [B5] to the equivariant set-
ting. We could also say that our paper extends the formula of [B4] for the determinant to



higher Chern classes. The present paper provides the analytic arguments which should lead
to the proof of the formula conjectured in [KR2]. Applications of this formula have been
given in [K], [MR].

Let us now describe the geometric setting in more detail. Let i : W ! V be an em-
bedding of smooth complex manifolds. Let S be a complex manifold. Let pV : V ! S be a
holomorphic submersion with compact fibre X , whose restriction pW : W ! S is a holo-
morphic submersion with compact fibre Y . Then we have the diagram of holomorphic
maps:

Y ���! W???yi

???yi
pW

X ���! V ���!
pV

S

 ����
��

Let h be a holomorphic vector bundle on W . Let ðx; vÞ be a holomorphic complex
of vector bundles on V , which together with a holomorphic restriction map r : x0jW ! h,
provides a resolution of i�h.

Let G be a compact Lie group acting holomorphically, fibrewise on W ;V , whose
action lifts holomorphically to

�
ðx; vÞ; h

�
.

Let RpV�x;RpW�h be the direct images of x; h. We make the assumption that the
RipW�h are locally free. Then RpV�x is also locally free, and moreover we have a canonical
isomorphism of Z-graded G-holomorphic vector bundles on S,

RpV�xFRpW�h:ð0:1Þ

Let HðX ; xjX Þ;HðY ; hjY Þ be the hypercohomology of xjX , and the cohomology of hjY .
Then we have the canonical identification of G-bundles on S,

RpV�xFHðX ; xjX Þ; RpW�hFHðY ; hjY Þ:ð0:2Þ

Let oV ;oW be real, closed, G-invariant ð1; 1Þ forms on V ;W which, when restricted
to the relative tangent bundles TX ;TY , are the Kähler forms of Hermitian metrics hTX ; hTY

on TX ;TY . By identifying the normal bundles NW=V FNY=X to the orthogonal bundle to

TY in TX jY ;NY=X inherits a G-invariant metric hNY=X . Let hx0 ; . . . ; hxm ; hh be G-invariant
Hermitian metrics on x0; . . . ; xm; h.

By identifying HðY ; hjY Þ to the corresponding fibrewise harmonic forms in WðY ; hjY Þ,
the Z-graded vector bundle HðY ; hjY Þ is naturally equipped with a suitably normalized L2

metric hHðY ;hjY Þ.

For g A G, set Vg ¼ fx A V ; gx ¼ xg, Wg ¼ fx A W ; gx ¼ xg. Then pVg
: Vg ! S,

pWg
: Wg ! S are holomorphic submersions with compact fibre Xg;Yg. Let TdgðTX ; hTX Þ

be the Chern-Weil g-Todd form on Vg associated to the holomorphic Hermitian connection
on ðTX ; hTX Þ [B4], §2a). Other Chern-Weil forms will be denoted in a similar way. In par-
ticular, chgðh; hhÞ denote the g-Chern character form of ðh; hhÞ.
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Let PS be the vector space of smooth forms on S, which are sums of forms of type
ðp; pÞ. Let PS;0 be the vector space of the forms a A PS such that there exist smooth forms
b; g on S, for which a ¼ qb þ qg. We define PWg ;PWg;0 in the same way.

Let TgðoV ; hxiÞ;TgðoW ; hhÞ A PS be equivariant analytic torsion forms constructed in
[Ma], Definition 2.11, which generalize the construction of Bismut-Gillet-Soulé [BGS2] and
Bismut-Köhler [BK], which are such that

qq

2ip
TgðoW ; hhÞ ¼ chg

�
HðY ; hjY Þ; hHðY ;hjY Þ

�
�
Ð

Yg

TdgðTY ; hTY Þ chgðh; hhÞ:ð0:3Þ

Let
�
WðX ; xjX Þ; qX þ v

�
be the family of relative Dolbeault double complexes, whose

cohomology coincides with the hypercohomology HðX ; xjX Þ. Let hHðX ;xjX Þ be the corre-

sponding L2 metric on HðX ; xjX Þ. Put chgðx; hxÞ ¼
Pm
i¼0

ð�1Þ i chgðxi; h
xiÞ. Then we can con-

struct the equivariant analytic torsion forms TgðoV ; hxÞ A PS as in [BGS2], §2, [BK], §2,
[Ma], §2, such that

qq

2ip
TgðoV ; hxÞ ¼ chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
ð0:4Þ

�
Ð

Xg

TdgðTX ; hTX Þ chgðx; hxÞ:

In the sequel, we assume that the metrics hx0 ; . . . ; hxm verify assumption (A) of [B2],
§1b), with respect to hNY=X ; hh. By [B4], Proposition 3.5, such metrics do exist.

Let Tgðx; hxÞ be the Bott-Chern current of [B4], §6, on Vg such that

qq

2ip
Tgðx; hxÞ ¼ ðTdgÞ�1ðNY=X ; h

NY=X Þ chgðh; hhÞdfWgg � chgðx; hxÞ:ð0:5Þ

Let fTdTdgðTY ;TX jWg
; hTX Þ A PWg=PWg;0 be the Bott-Chern class of [BGS1] asso-

ciated to the exact sequence of holomorphic Hermitian vector bundles on Wg,
0! TY ! TX jWg

! NY=X ! 0, such that

qq

2ip
fTdTdgðTY ;TX jWg

; hTX Þð0:6Þ

¼ TdgðTX jWg
; hTX Þ � TdgðTY ; hTY ÞTdgðNY=X ; h

NY=X Þ:

Recall that HðX ; xjX ÞFHðY ; hjY Þ. Let echchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
A PS=PS;0 be

the Bott-Chern class of [BGS1], Theorem 1.29, such that

qq

2ip
echchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
ð0:7Þ

¼ chg

�
HðY ; hjY Þ; hHðY ;hjY Þ

�
� chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
:
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Let zðy; sÞ; hðy; sÞ be the real and imaginary parts of the Lerch series, i.e.

zðy; sÞ ¼
Pþy
n¼1

cosðnyÞ
ns

; hðy; sÞ ¼
Pþy
n¼1

sinðnyÞ
ns

:ð0:8Þ

Recall that Rðy; xÞ, defined in [B3], is given by the formula

Rðy; xÞ ¼
P
nf0

n even

i

�Pn
j¼1

1

j
hðy;�nÞ þ 2

qh

qs
ðy;�nÞ

�
xn

n!
ð0:9Þ

þ
P
nf1
n odd

�Pn
j¼1

1

j
zðy;�nÞ þ 2

qz

qs
ðy;�nÞ

�
xn

n!
:

Then Rð0; xÞ is just the Gillet-Soulé’s series RðxÞ [GS1]. We identify Rðy; �Þ to the corre-
sponding additive genus.

Over Vg;TX splits as direct sum TX ¼
L

TX y, where the y A ½0; 2p½ are distinct and
locally constant, and g acts on TX y by multiplication by eiy. Set RgðTX Þ ¼

P
y

Rðy;TX yjVg
Þ.

We use a similar notation for RgðTYÞ.

The purpose of this paper is to prove an extension of [B4], Theorem 0.1, [B5], Theo-
rem 0.1.

Theorem 0.1. The following identity holds:

ð0:10Þechchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
� TgðoW ; hhÞ þ TgðoV ; hxÞ

¼
Ð

Xg

TdgðTX ; hTX ÞTgðx; hxÞ �
Ð

Yg

fTdTdgðTY ;TX jWg
; hTX Þ

TdgðNY=X ; h
NY=X Þ

chgðh; hhÞ

þ
Ð

Xg

TdgðTXÞRgðTXÞ chgðxÞ �
Ð

Yg

TdgðTYÞRgðTY Þ chgðhÞ in PS=PS;0:

Assume now that for j > 0, R jpV�xk ¼ 0 ð0e k emÞ, R jpW�h ¼ 0. Then we have
an acyclic complex of holomorphic G-vector bundles K on S,

K : 0! H 0ðX ; xmÞ !
v

H 0ðX ; xm�1Þ � � � !
v

H 0ðX ; x0Þ !
v

H 0ðX ; xjX Þ ! 0:ð0:11Þ

Let hK be the obvious L2 metric on K. Let echchgðK; hKÞ A PS=PS;0 be the Bott-Chern class
of [BGS1] such that

qq

2ip
echchgðK; hKÞ ¼ chg

�
H 0ðX ; xjX Þ; hH 0ðX ;xjX Þ

�
ð0:12Þ

�
Pm
i¼0

ð�1Þ i chg

�
H 0ðX ; xijX Þ; hH 0ðX ;xi jX Þ

�
:

The following theorem is an extension of [B5], Theorem 0.2.
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Theorem 0.2. The following identity holds:

TgðoV ; hxÞ �
Pm
i¼0

ð�1Þ iTgðoV ; hxiÞ � echchgðK; hKÞ ¼ 0 in PS=PS;0:ð0:13Þ

The references [B4], [B5] provide all the techniques what we need in this paper. The
main point of this paper is to explain how to put these papers together to get our results.
While the general organization of our paper follows [B5], we will use at certain key point
the arguments of [B4].

Our paper is organized as follows. In Section 1, we recall the construction of equiv-
ariant torsion forms. In Section 2, we describe the basic geometric setting, and the objects
which appear in Theorem 0.1. In Section 3, which corresponds to [B4], §8, [B5], §6, we prove
Theorem 0.1. The proof is based on several intermediate results whose proof occupies Sec-
tions 4–7. Finally in Section 8, we prove Theorem 0.2.

The results contained in this paper were announced in [BMa].

The authors are indebted to a referee for his careful reading of the manuscript, and
also for helpful suggestions.

1. Equivariant analytic torsion forms

In this section, we briefly describe the construction of the equivariant analytic torsion
forms. This section is organized as follows. In Section 1.1, we recall elementary results on
Cli¤ord algebras and complex vector spaces. In Section 1.2, we construct the Levi-Civita
superconnection in the sense of [B1]. In Section 1.3, we construct the equivariant analytic
torsion forms.

1.1. Cli¤ord algebras and complex vector spaces. Let V be a complex Hermitian
vector space of complex dimension k, let V be the conjugate vector space. If z A V , z rep-
resents Z ¼ zþ z A VR, so that jZj2 ¼ 2jzj2. Let J A EndðVRÞ be the complex structure of
VR.

Let cðVRÞ be the Cli¤ord algebra of VR. Then LðV �Þ and LðV �Þ are Cli¤ord mod-
ules. Namely if X A V , X 0 A V , let X � A V �, X 0� A V � correspond to X ;X 0 by the Hermi-
tian product of V . Set

cðXÞ ¼
ffiffiffi
2
p

X �5; cðX 0Þ ¼ �
ffiffiffi
2
p

iX 0 ;ð1:1Þ

ĉcðXÞ ¼
ffiffiffi
2
p

iX ; ĉcðX 0Þ ¼ �
ffiffiffi
2
p

X 0�5:

Note that our conventions in (1.1) for ĉc di¤er from the conventions in [BL], §5a), and are
the same as in [B5], §2.2.

Then if U ;U 0 A VR nR C,
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cðUÞcðU 0Þ þ cðU 0ÞcðUÞ ¼ �2hU ;U 0i;ð1:2Þ

ĉcðUÞĉcðU 0Þ þ ĉcðU 0ÞĉcðUÞ ¼ �2hU ;U 0i:

Also cðUÞ; ĉcðUÞ act as odd operators on LðV �Þ n̂nLðV �Þ. If U ;U 0 A VRnR C, then

cðUÞĉcðU 0Þ þ ĉcðU 0ÞcðUÞ ¼ 0:ð1:3Þ

1.2. The Levi-Civita superconnection of a Kähler fibration. Let p : V ! S be a holo-
morphic submersion with compact fibre X . Let TV ;TS be the holomorphic tangent bun-
dles to V ;S. Let TX be the holomorphic relative tangent bundle TV=S. Let J TX be the
complex structure on the real tangent bundle TRX .

Let oV be a real, closed smooth ð1; 1Þ-form on V such that

hTX ðX ;YÞ ¼ oV ðJ TX X ;Y Þ ðX ;Y A TRX Þ

defines a Hermitian metric hTX on TX . For x A M, set

T H
x V ¼ fY A TxV ; for any X A TxX ;oVðX ;Y Þ ¼ 0g:ð1:4Þ

Then T HV is a sub-bundle of TV such that we have the Cy splitting TV ¼ T HV lTX .
Also ðp; hTX ;T HVÞ is a Kähler fibration in the sense of [BGS2], Definition 1.4, and oV is
an associated ð1; 1Þ-form.

If U A TRS, let U H be the lift of U in T H
R V , so that p�U

H ¼ U .

Let x be a complex vector bundle on V . Let hx be a Hermitian metric on x. Let
‘TX ;‘x be the holomorphic Hermitian connections on ðTX ; hTX Þ; ðx; hxÞ. Let RTX ;Rx

be the curvatures of ‘TX ;‘x. Let ‘LðT�ð0; 1ÞXÞ be the connection induced by ‘TX on
LðT�ð0;1ÞX Þ. Let ‘LðT�ð0; 1ÞXÞnx be the connection on LðT�ð0;1ÞXÞn x,

‘LðT�ð0; 1ÞXÞnx ¼ ‘LðT�ð0; 1ÞX Þn 1þ 1n‘x:ð1:5Þ

Definition 1.1. For 0e pe dim X , s A S, let E p
s be the vector space of smooth sec-

tions of
�
LpðT�ð0;1ÞXÞn x

�
jXs

over Xs. Set

Es ¼
Ldim X

p¼0

E p
s ; Eþs ¼

L
p even

E p
s ; E�s ¼

L
p odd

E p
s :ð1:6Þ

As in [B1], §1f ), [BGS2], §1d), we can regard the Es’s as the fibres of a smooth Z-
graded infinite dimensional vector bundle E over the base S. Smooth sections of E over S

will be identified with smooth sections of LðT�ð0;1ÞXÞn x over V .

Let dvX be the Riemannian volume form on X associated to hTX . Let � be the Hodge
operator attached to the metric hTX . Let h iLðT�ð0; 1ÞXÞnx be the Hermitian product induced
by hTX ; hx on LðT�ð0;1ÞX Þn x. If s; s 0 A E, set

hs; s 0i ¼ 1

2p

� �dim X Ð
X

hs; s 0iLðT�ð0; 1ÞXÞnx dvX ¼
1

2p

� �dim X Ð
X

hs5�s 0ihx :ð1:7Þ
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Definition 1.2. If U A TRS, if s is a smooth section of E over S, set

‘E
U s ¼ ‘

LðT�ð0; 1ÞXÞnx

U H s:ð1:8Þ

By [B1], §1f ), ‘E is a connection on the infinite dimensional vector bundle E. Let ‘E 0

and ‘E 00 be the holomorphic and anti-holomorphic parts of ‘E .

For s A S, let qXs be the Dolbeault operator acting on Es, and let qXs� be its formal
adjoint with respect to the Hermitian product (1.7). Set

DXs ¼ qXs þ qXs�:ð1:9Þ

Let hTRS be a Euclidean metric on TRS. Let ‘TRS be the Levi-Civita connection on
ðTRS; hTRSÞ. Let ‘TRV ¼ p�‘TRS l‘TRX be the connection on TRV ¼ T H

R V lTRX . Let
T be the torsion of ‘TRV .

Let PTX be the projection TV FT HV lTX ! TX . If U ;V are smooth vector fields
on S, then

TðU H ;V HÞ ¼ �PTX ½U H ;V H �:ð1:10Þ

By [BGS2], Theorem 1.7, we know that as a 2-form, T is of complex type ð1; 1Þ.

Let f1; . . . ; f2m be a base of TRS, and let f 1; . . . ; f 2m be the dual base of T �RS.

Definition 1.3. Set

cðTÞ ¼ 1

2

P
1ea;be2m

f af bc
�
Tð f H

a ; f H
b Þ
�
:ð1:11Þ

Then cðTÞ is a section of
�
LðT �RSÞ n̂nEnd

�
LðT�ð0;1ÞXÞn x

��odd
. Similarly,

if T ð1;0Þ;T ð0;1Þ denote the components of T in T ð1;0ÞX ;T ð0;1ÞX , we also define
cðT ð1;0ÞÞ; cðT ð0;1ÞÞ as in (1.11), so that

cðTÞ ¼ cðT ð1;0ÞÞ þ cðT ð0;1ÞÞ:ð1:12Þ

Definition 1.4. For u > 0, set

B 00u ¼
ffiffiffi
u
p

qX þ ‘E 00 � cðT ð1;0ÞÞ
2
ffiffiffiffiffi
2u
p ;ð1:13Þ

B 0u ¼
ffiffiffi
u
p

qX� þ ‘E 0 � cðT ð0;1ÞÞ
2
ffiffiffiffiffi
2u
p ;

Bu ¼ B 0u þ B 00u :

Then Bu is the Levi-Civita superconnection constructed in [B1], §3, [BGS2], §2a).
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Let NV be the number operator defining the Z-grading on LðT�ð0;1ÞXÞn x and on E.
NV acts by multiplication by p on LpðT�ð0;1ÞX Þn x. If U ;V A TRS, set

oHðU ;VÞ ¼ oVðU H ;V HÞ:ð1:14Þ

Definition 1.5. For u > 0, set

Nu ¼ NV þ
ioH

u
:ð1:15Þ

1.3. Higher analytic torsion forms. First, we assume that the direct image R�p�x of x
by p is locally free. For s A S, let HðXs; xjXs

Þ be the cohomology of the sheaf of holo-
morphic sections of xjXs

. Then the HðXs; xjXs
Þ’s are the fibres of a Z-graded holomorphic

vector bundle HðX ; xjX Þ on S, and R�p�x ¼ HðX ; xjX Þ. So we will write indi¤erently R�p�x
or HðX ; xjX Þ.

For s A S, set

KðXs; xjXs
Þ ¼ Ker DXs :ð1:16Þ

By Hodge theory, KðXs; xjXs
ÞFHðXs; xjXs

Þ. So the KðXs; xjXs
Þ are the fibres of a smooth

vector bundle KðX ; xjX Þ over S. By [BGS3], Theorem 3.5, this isomorphism induces a
smooth isomorphism of Z-graded vector bundles on S

HðX ; xjX ÞFKðX ; xjX Þ:ð1:17Þ

Then KðX ; xjX Þ inherits a Hermitian product from ðE; h iÞ. Let hHðX ;xjX Þ be the corre-
sponding smooth metric on HðX ; xjX Þ. Let ‘HðX ;xjX Þ be the holomorphic Hermitian con-
nection on

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
.

Let G be a compact Lie group. We assume that G acts holomorphically on V , and
preserves the fibres X . Also we assume that the action of G lifts to a holomorphic action on
x. Suppose that oV ; hx are G-invariant. Then R�p�x is also a G-equivariant vector bundle
over S, and the metric hHðX ;xjX Þ is also G-invariant.

For g A G, set

Vg ¼ fx A V ; gx ¼ xg:ð1:18Þ

Then we have a holomorphic submersion pg : Vg ! S with compact fibre Xg.

Let F be the homomorphism of LevenðT �RSÞ into itself: a! ð2ipÞ�deg a=2a.

Let 1; eiy1 ; . . . ; eiyq ð0 < yj < 2pÞ be the locally constant distinct eigenvalues of g act-
ing on TX on Vg. Let TX y0 ;TX y1 ; . . . ;TX yq ðy0 ¼ 0Þ be the corresponding eigenbundles.
Then TX splits holomorphically as an orthogonal sum

TX ¼ TX y0 l � � �lTX yq :ð1:19Þ
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Let hTX y0 ; . . . ; hTX yq
be the Hermitian metrics on TX y0 ; . . . ;TX yq induced by

hTX . Then ‘TX induces the holomorphic Hermitian connections ‘TX y0 ; . . . ;‘TX yq
on

ðTX y0 ; hTX y0 Þ; . . . ; ðTX yq ; hTX yq Þ. Let RTX y0 ; . . . ;RTX yq
be their curvatures.

If A is ðq; qÞ matrix, set

TdðAÞ ¼ det
A

1� e�A

� �
;ð1:20Þ

eðAÞ ¼ detðAÞ; chðAÞ ¼ Tr½expðAÞ�:

The genera associated to Td and e are called the Todd genus and the Euler genus.

Definition 1.6. Set

TdgðTX ; hTX Þ ¼ Td
�RTX y0

2ip

 !Qq
j¼1

Td

e

�RTX
yj

2ip
þ iyj

 !
;ð1:21Þ

Td 0gðTX ; hTX Þ ¼ q

qb

"
Td
�RTX y0

2ip
þ b

 !

�
Qq
j¼1

Td

e

�RTX
yj

2ip
þ iyj þ b

 !#
b¼0

;

ðTd�1
g Þ
0ðTX ; hTX Þ ¼ q

qb

"
Td�1 �RTX y0

2ip
þ b

 !

�
Qq
j¼1

Td

e

� ��1 �RTX
yj

2ip
þ iyj þ b

 !#
b¼0

;

chgðx; hxÞ ¼ Tr g exp
�Rx

2ip

� �� �
:

Then the forms in (1.21) are closed forms on Vg, and their cohomology class
does not depend on the g-invariant metric hTX . We denote these cohomology classes by
TdgðTX Þ;Td 0gðTXÞ; . . . ; chgðxÞ. In the same way, set

chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
¼
Pdim X

k¼0

ð�1Þk chg

�
H kðX ; xjX Þ; hHðX ;xjX Þ

�
;ð1:22Þ

ch 0g
�
HðX ; xjX Þ; hHðX ;xjX Þ

�
¼
Pdim X

k¼0

ð�1Þkk chg

�
H kðX ; xjX Þ; hHðX ;xjX Þ

�
:

In [Ma], §2d), we constructed an equivariant analytic torsion form TgðoV ; hxÞ A PS

which generalized the construction of [BK], §2 to the equivariant case. Moreover,

qq

2ip
TgðoV ; hxÞ ¼ chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
�
Ð

Xg

TdgðTX ; hTX Þ chgðx; hxÞ:ð1:23Þ
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More precisely, put

C�1;g ¼
Ð

Xg

oV

2p
TdgðTX ; hTX Þ chgðx; hxÞ;ð1:24Þ

C0;g ¼
Ð

Xg

�
�Td 0gðTX ; hTX Þ þ dim X TdgðTX ; hTX Þ

�
chgðx; hxÞ:

Then, by [Ma], (2.27),

TgðoV ; hxÞ ¼ �
Ð1
0

FTrs½gNu expð�B2
uÞ� �

C�1;g

u
� C 00;g

� �
du

u
ð1:25Þ

�
Ðþy
1

�
FTrs½gNu expð�B2

uÞ� � ch 0g
�
HðX ; xjX Þ; hHðX ;xjX Þ

�� du

u

þ C�1;g þ G 0ð1Þ
�
C 00;g � ch 0g

�
HðX ; xjX Þ; hHðX ;xjX Þ

��
:

Here C 00;g ¼ C0;g in PS=PS;0.

2. Resolutions, Bott-Chern currents, and equivariant analytic torsion forms

This section is the obvious extension of [B5], §3, to the equivariant case. When S is a
point, the corresponding result was obtained in [B4], §3, §6.

This section is organized as follows. In Section 2.1, we describe the geometric setting.
In Section 2.2, we construct the equivariant analytic torsion forms of the family of double
complexes. In Section 2.3, we give various assumptions on the metrics on TX ;TY ; x; h. In
Section 2.4, we describe the Bott-Chern currents of [B5].

2.1. A family of double complexes. Let i : W ! V be an embedding of smooth
complex manifolds. Let S be a complex manifold. Let pV : V ! S be a holomorphic sub-
mersion with compact fibre X of complex dimension l, whose restriction pW : W ! S is a
holomorphic submersion with compact fibre Y .

Let h be a holomorphic vector bundle on W . Let

ðx; vÞ : 0! xm !
v
xm�1 !

v � � � !v x0 ! 0ð2:1Þ

be a holomorphic complex of vector bundles on V . We identify x with
Lm
i¼0

xi. Let

r : x0jW ! h be a holomorphic restriction map. We make the assumption that ðx; vÞ is a
resolution of i�h, or equivalently that we have the exact sequence of OV sheaves

0! OV ðxmÞ !
v
OV ðxm�1Þ !

v � � � !v OV ðx0Þ ! i�OW ðhÞ ! 0:ð2:2Þ

Then for every s A S, ðx; vÞjXs
provides a resolution of i�hjYs

.
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Let NH be the number operator of x, i.e. NH acts on xk by multiplication by k. Let
N X

V ;N Y
V be the operators defining the Z-grading on LðT�ð0;1ÞXÞ;LðT�ð0;1ÞYÞ.

Definition 2.1. For s A S, 0e pe l, 0e iem, let E
p
i be the vector space of smooth

sections of LpðT�ð0;1ÞX Þ n̂n xi on the fibre Xs. Set

Eþ ¼
L

p�i even

E
p
i ; E� ¼

L
p�i odd

E
p
i ; E ¼ EþlE�:ð2:3Þ

Then E is the set of smooth sections of LðT�ð0;1ÞXÞ n̂n x on X . It is Z-graded by the
operator N X

V �NH.

For s A S, 1e qe dim Y , let F q
s be the set of smooth sections of LqðT�ð0;1ÞYÞ n̂n hjY

on the fibre Y . Set

Fþ; s ¼
L

q even
F q

s ; F�; s ¼
L

q odd

F q
s ; Fs ¼ Fþ; s lF�; s:ð2:4Þ

Let HðXs; xjXs
Þ be the hypercohomology of

�
OXs
ðxjXs
Þ; v
�
, let HðYs; hjYs

Þ be the
cohomology of OYs

ðhjYs
Þ. For any s A S, the map r : OXs

ðxjXs
Þ ! OYs

ðhjYs
Þ is a quasi-

isomorphism, and so

HðXs; xjXs
ÞFHðYs; hjYs

Þ:ð2:5Þ

Let qX ; qY be the Dolbeault operators acting on E;F . Then qX þ v is a chain map on E. By
[BL], Proposition 1.5, for every s A S,

HðEs; q
X þ vÞFHðXs; xjXs

Þ; HðFs; q
Y ÞFHðYs; hjYs

Þ:ð2:6Þ

We extend r to a morphism xjW ! h, with r ¼ 0 on xi, i > 0. For s A S, let rs be the
restriction map rs : a A Es ! ði� n̂n rÞa A Fs.

Now we recall a result in [BL], Theorem 1.7.

Theorem 2.2. The map r : ðE; qX þ vÞ ! ðF ; qY Þ is a quasi-isomorphism of Z-graded

complexes. It induces the canonical identification HðE; qX þ vÞFHðY ; hjY Þ.

In the whole paper, we assume that dim H iðX ; xjX Þ ðif 0Þ is locally constant. Then
the HðXs; xjXs

Þ’s are the fibres of a holomorphic vector bundle HðX ; xjX Þ on S. By (2.5),
the HðYs; hjYs

Þ’s also are the fibres of a holomorphic vector bundle HðY ; hjY Þ on S. By
(2.5), (2.6), Theorem 2.2, we get the identification of holomorphic Z-graded vector bundles
on S,

HðX ; xjX ÞFHðY ; hjY Þ; HðE; qX þ vÞFHðY ; hjY Þ:ð2:7Þ

2.2. The equivariant analytic torsion forms of the double complex. We now extend
the equivariant setting of Section 1.3. Let G be a compact Lie group. We assume that G

acts holomorphically fibrewise on V and preserves W . Also we assume that the action of G

on V and W lifts to holomorphic actions on the chain complex ðx; vÞ and on h, and the
restriction map r : x0jY ! h is G-invariant.
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Then G acts naturally by chain maps on ðE; qX þ vÞ ! ðF ; qY Þ. Therefore G acts on
H �ðX ; xijX Þ ð0e iemÞ, H �ðE; qX þ vÞ and H �ðY ; hjY Þ. Finally the canonical identifica-
tion HðE; qX þ vÞFHðY ; hjY Þ is an identification of G-vector bundles on S.

Let oV ;oW be real, closed, G-invariant smooth ð1; 1Þ forms on V ;W which, when
restricted to each fibre X ;Y , are Kähler forms of metrics hTX ; hTY on TX ;TY . To oV ;oW ,
we associate the objects considered in Section 1, to distinguish them from one another, we
will often denote them with a superscript V or W .

Let hx ¼
L

hxi ; hh be smooth G-invariant Hermitian metrics on x ¼
Lm
i¼0

xi; h. We

equip the fibres of E (resp. F ) with the Hermitian product (1.7) associated to hTX ; hx (resp.
hTY ; hh). Let v� be the adjoint of v with respect to hx. Let qX� (resp. qY�) be the formal
adjoint of qX (resp. qY ) with respect to the Hermitian product h i on E (resp. F ). Set

DX ¼ qX þ qX�; DY ¼ qY þ qY�; V ¼ vþ v�:ð2:8Þ

For g A G, set

Vg ¼ fx A V ; gx ¼ xg; Wg ¼ fx A W ; gx ¼ xg:

Then pVg
: Vg ! S, pWg

: Wg ! S are holomorphic submersions with compact fibres Xg;Yg.

For u > 0, let BV ;xi
u ð0e iemÞ, BW

u be the superconnections on Ei;F associated to
ðoV ; hxiÞ and to ðoW ; hhÞ, whose construction was given in Definition 1.4. Then we can
construct the equivariant analytic torsion forms TgðoV ; hxiÞ and TgðoW ; hhÞ as in (1.23).
By (1.23),

qq

2ip
TgðoW ; hhÞ ¼ chg

�
HðY ; hjY Þ; hHðY ;hjY Þ

�
�
Ð

Yg

TdgðTY ; hTY Þ chgðh; hhÞ:ð2:9Þ

To describe the analytic torsion forms associated to ðoV ; hxÞ, we modify the con-
structions of Section 1.3. For s A S, by Hodge theory, we have a canonical identification of
Z-graded vector spaces HðXs; xjXs

ÞFK V
s ¼ f f A Es; ðDX þ VÞ f ¼ 0g. Let hHðXs;xjXs

Þ be
the corresponding metric on HðXs; xjXs

Þ as in Section 1.3. Set

B 00Vu ¼
ffiffiffi
u
p
ðqX þ vÞ þ ‘E 00 � cðT ð1;0ÞÞ

2
ffiffiffiffiffi
2u
p ;ð2:10Þ

B 0Vu ¼
ffiffiffi
u
p
ðqX� þ v�Þ þ ‘E 0 � cðT ð0;1ÞÞ

2
ffiffiffiffiffi
2u
p ;

BV
u ¼ B 0Vu þ B 00Vu :

For u > 0, set

N V
u ¼ N X

V �NH þ
ioV ;H

u
:ð2:11Þ
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Put

chgðx; hxÞ ¼
Pm
i¼0

ð�1Þ i chgðxi; hxiÞ;ð2:12Þ

ch 0gðx; hxÞ ¼
Pm
i¼0

ð�1Þ ii chgðxi; h
xiÞ;

chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
¼
Pdim X

k¼0

ð�1Þk chg

�
H kðX ; xjX Þ; hHðX ;xjX Þ

�
;

ch 0g
�
HðX ; xjX Þ; hHðX ;xjX Þ

�
¼
Pdim X

k¼0

ð�1Þkk chg

�
H kðX ; xjX Þ; hHðX ;xjX Þ

�
:

If ðauÞu>0 is a family of smooth forms on S, we will write that as u! 0, au ¼ Oðukþ1Þ
if for any compact set K HS, and any p A N, there is C > 0 such that the sup of au and its
derivatives of ordere p on K are dominated by Cukþ1.

Then by combining the techniques of [BGS2], Theorems 2.2 and 2.16, and [B6], The-
orems 4.9–4.11, the following analogue of [Ma], Theorem 2.10, holds.

Theorem 2.3. As u! 0

FTrs½g expð�BV ;2
u Þ� ¼

Ð
Xg

TdgðTX ; hTX Þ chgðx; hxÞ þ OðuÞ:ð2:13Þ

There are forms DV
j;g A PS ð j f�1Þ such that for k A N, as u! 0

FTrs½gN V
u expð�BV ;2

u Þ� ¼
Pk

j¼�1

DV
j;gu j þ Oðukþ1Þ:ð2:14Þ

Also

DV
�1;g ¼

Ð
Xg

oV

2p
TdgðTX ; hTX Þ chgðx; hxÞ;ð2:15Þ

DV
0;g ¼

Ð
Xg

�
dim X TdgðTXÞ � Td 0gðTXÞ

�
chgðxÞ

�
Ð

Xg

TdgðTXÞ ch 0gðxÞ in PS=PS;0:

As u! þy

FTrs½g expð�BV ;2
u Þ� ¼ chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
þ O

1ffiffiffi
u
p
� �

;ð2:16Þ

FTrs½gN
V

u expð�BV ;2
u Þ� ¼ ch 0g

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
þ O

1ffiffiffi
u
p
� �

:
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By replacing in (1.25), Bu by BV
u , Nu by N V

u , as in (1.25), we construct a form
TgðoV ; hxÞ A PS such that the analogue of (1.23) holds, i.e.

qq

2ip
TgðoV ; hxÞ ¼ chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
�
Ð

Xg

TdgðTX ; hTX Þ chgðx; hxÞ:ð2:17Þ

A simple modification of the argument of [Ma], §2e), shows that the analogue of the
anomaly formulas [Ma], Theorem 2.13, still holds.

2.3. Assumption on the metrics on TX ,TY , x, h. Let NY=X be the fibrewise normal
bundle to Y in X . Let NW=V be the normal bundle to W in V . Clearly, NW=V FNY=X . We
identify NY=X as a smooth vector bundle to the orthogonal bundle to TY in TX jW with
respect to hTX jW . Let hNY=X be the metric induced by hTX jW on NY=X .

In the sequel, we assume that the metrics hx0 ; . . . ; hxm verify assumption (A) of [B2],
§1b), with respect to hNY=X ; hh. We describe this assumption in more detail.

On W , we have the exact sequence of G-equivariant holomorphic vector bundles

0! TW ! TV jW ! NY=X ! 0:ð2:18Þ

For y A W , let Hyðx; vÞ be the homology of the complex ðx; vÞy. If y A W , U A TVy,
let qU vðyÞ be the derivative of v at y in the direction U in any given holomorphic trivi-
alization of ðx; vÞ near y. By the arguments of [B2], §1b), [B4], §3d), [B5], §3d), we know
that:

a) The Hyðx; vÞ are the fibres of a holomorphic Z-graded vector bundle Hðx; vÞ on
W . The map qU vðyÞ acts on Hyðx; vÞ as a chain map, this action does not depend on the
trivialization of ðx; vÞ, and only depend on the image z of U in NW=V ;y ¼ NY=X ;y. From
now on, we will write qzvðyÞ instead of qU vðyÞ.

b) Let p be the projection NY=X !W . Then over NY=X , we have a canonical identi-
fication of Z-graded chain complexes of bundles

�
p�Hðx; vÞ; qzvðyÞ

�
F
�
p�
�
LðN �Y=X Þn h

�
;
ffiffiffiffiffiffiffi
�1
p

iz
�
:ð2:19Þ

The group G acts on both complexes in (2.19) by holomorphic chain maps, and (2.19) is an
identification of G-bundles.

By finite dimensional Hodge theory, we know that there is a canonical isomorphism
of Z-graded vector bundles over W

Hðx; vÞF f f A x; vf ¼ 0; v�f ¼ 0g:ð2:20Þ

Let hHðx; vÞ be the metric on Hðx; vÞ induced by hx by identification (2.20). Let h
LðN �

Y=X
Þnh

be
the metric on LðN �Y=X Þn h induced by hNY=X and hh. Then the metrics hHðx; vÞ; h

LðN �
Y=X
Þnh

are G-invariant.
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We say that the metrics hx0 ; . . . ; hxm verify assumption (A) with respect to hNY=X ; hh, if
the identification (2.19) also identifies the metrics.

By [B4], Proposition 3.5, given G-invariant metrics hNY=X ; hh, there exist G-invariant
metrics hx0 ; . . . ; hxm on x0; . . . ; xm which verify assumption (A) with respect to hNY=X ; hh.

2.4. A singular Bott-Chern current. In this section, we make the same assumptions
and we use the same notation as in Section 2.3.

Let ‘x ¼
Lm
i¼0

‘xi be the holomorphic Hermitian connection on ðx; hxÞ ¼
Lm
i¼0

ðxi; h
xiÞ:

For u > 0, set

Cu ¼ ‘x þ
ffiffiffi
u
p

V :ð2:21Þ

Then Cu is a G-invariant superconnection [Q1] on the Z2-graded vector bundle x on V .

Take g A G. Then we construct forms FTrs½g expð�C2
u Þ�, FTrs½gNH expð�C2

u Þ� and
Tgðx; hxÞ as in [B4], §6, on Vg. Let dfWgg be the current of integration on Wg. Then by [B4],
Theorem 6.7, Tgðx; hxÞ is a sum of currents of type ðp; pÞ over Vg, such that

qq

2ip
Tgðx; hxÞ ¼ ðTdgÞ�1ðNY=X ; h

NY=X Þ chgðh; hhÞdfWgg � chgðx; hxÞ:ð2:22Þ

More precisely, we have the formula,

ð2:23Þ

Tgðx; hxÞ ¼
Ð1
0

FTrs

	
gNH

�
expð�C2

u Þ � expð�C2
0 Þ
�
 du

u

þ
Ðþy
1

�
FTrs½gNH expð�C2

u Þ� þ ðTd�1
g Þ
0ðNY=X ; h

NY=X Þ chgðh; hhÞdfWgg
� du

u

� G 0ð1Þ
�
ch 0gðx; hxÞ þ ðTd�1

g Þ
0ðNY=X ; h

NY=X Þ chgðh; hhÞdfWgg
�
:

3. A proof of Theorem 0.1

This section is an extension of [B5], §4, §6, to the equivariant setting, and of [B4], §3,
§8, to the case of general S.

This section is organized as follows. In Section 3.1, we state our main result. In Sec-
tion 3.2, we introduce a contour integral. In Section 3.3, we state five intermediate results,
the proofs of which are delayed to the next sections. In Section 3.4, we establish our main
result.

In this section, we use the assumptions and notation of Section 2. We fix g A G in the
rest of our paper.
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3.1. The main theorem. Recall that by (2.7), we have the canonical isomorphism of
G-equivariant holomorphic Z-graded vector bundles on S

HðX ; xjX ÞFHðY ; hjY Þ:ð3:1Þ

From now on, we identify HðX ; xjX Þ and HðY ; hjY Þ by (3.1). Also, in Section 2.1, smooth

G-invariant Hermitian metrics hHðX ;xjX Þ and hHðY ;hjY Þ were constructed on HðX ; xjX Þ
and HðY ; hjY Þ. Then hHðX ;xjX Þ can be considered as a metric on HðY ; hjY Þ. Letechchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
A PS=PS;0 be the Bott-Chern class of [BGS1], Theorem

1.29, such that

qq

2ip
echchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
ð3:2Þ

¼ chg

�
HðY ; hjY Þ; hHðY ;hjY Þ

�
� chg

�
HðX ; xjX Þ; hHðX ;xjX Þ

�
:

Consider the exact sequence of holomorphic G-equivariant Hermitian vector bundles
on Wg,

0! TY ! TX jWg
! NY=X ! 0:ð3:3Þ

Let fTdTdgðTY ;TX jWg
; hTX Þ A PWg=PWg;0 be the Bott-Chern class constructed as in [BGS1],

Theorem 1.29, such that

qq

2ip
fTdTdgðTY ;TX jWg

; hTX Þ ¼ TdgðTX jWg
; hTX Þð3:4Þ

� TdgðTY ; hTY ÞTdgðNY=X ; h
NY=X Þ:

For y A R, s A C, ReðsÞ > 1, set

zðy; sÞ ¼
Pþy
n¼1

cosðnyÞ
ns

; hðy; sÞ ¼
Pþy
n¼1

sinðnyÞ
ns

:ð3:5Þ

Then for a fixed y A Rn2pZ, both functions in (3.5) extend to a holomorphic function of s

for ReðsÞ < 1. If y A 2pZ, zðy; sÞ has a simple pole at s ¼ 1.

Following [B3], Theorem 7.8, we introduce the following genus Rðy; xÞ.

Definition 3.1. For y A R, and x A C are such that jxj < 2p if y A 2pZ;
jxj < inf

k AZ
jyþ 2kpj if y A Rn2pZ, let Rðy; xÞ be the convergent power series

Rðy; xÞ ¼
P

nf0
n even

i

�Pn
j¼1

1

j
hðy;�nÞ þ 2

qh

qs
ðy;�nÞ

�
xn

n!
ð3:6Þ

þ
P

nf1
n odd

�Pn
j¼1

1

j
zðy;�nÞ þ 2

qz

qs
ðy;�nÞ

�
xn

n!
:
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Then for x A C, jxj < 2p, Rð0; xÞ is the Gillet-Soulé’s power series RðxÞ [GS1]. For
y A R, we identify Rðy; �Þ with the corresponding additive genus.

On Wg;NY=X splits holomorphically as an orthogonal sum of holomorphic vector
bundles N yj ð0e yj < 2p; j ¼ 1; . . . ; qÞ. Let hN yj

be the metrics on N yj induced by hNY=X .
Let RN

yj
be the curvature of the holomorphic Hermitian connection on ðN yj ; hN

yj Þ. Set

Rðyj;N yj ; hN
yj Þ ¼ Tr R yj;

�RN
yj

2ip

 !" #
;ð3:7Þ

RgðNY=X ; h
NY=X Þ ¼

Pq
j¼1

Rðyj;N yj ; hN
yj Þ:

Then the cohomology class of the closed form RgðNY=X ; h
NY=X Þ does not depend on the

metric hNY=X . We denote this class by RgðNY=X Þ.

Let RgðTXÞ A H �ðVg;CÞ, RgðTYÞ A H �ðWg;CÞ be the cohomology classes of TX ;TY

defined as (3.7).

By [B4], Remark 6.8, the wave front set of Tgðx; hxÞ is included in
N �Wg=Vg;R

FN �Yg=Xg;R
. It follows from [H], Theorem 8.2.12, that the integral along the fibreÐ

Xg

TdgðTX ; hTX ÞTgðx; hxÞ lies in PS.

Theorem 3.2. The following identities hold:

echchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
� TgðoW ; hhÞ þ TgðoV ; hxÞð3:8Þ

¼
Ð

Xg

TdgðTX ; hTX ÞTgðx; hxÞ �
Ð

Yg

fTdTdgðTY ;TX jWg
; hTX Þ

TdgðNY=X ; h
NY=X Þ

chgðh; hhÞ

þ
Ð

Yg

TdgðTYÞRgðNY=X Þ chgðhÞ in PS=PS;0;

echchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
� TgðoW ; hhÞ þ TgðoV ; hxÞ

¼
Ð

Xg

TdgðTX ; hTX ÞTgðx; hxÞ �
Ð

Yg

fTdTdgðTY ;TX jWg
; hTX Þ

TdgðNY=X ; hNY=X Þ
chgðh; hhÞ

þ
Ð

Xg

TdgðTXÞRgðTXÞ chgðxÞ �
Ð

Yg

TdgðTY ÞRgðTYÞ chgðhÞ in PS=PS;0:

Proof. The remainder of this section is devoted to the proof of Theorem 3.2. r

By the anomaly formula of [Ma], Theorem 2.13, one verifies easily that we only need
to establish Theorem 3.2 for one single choice of oW . In the sequel, we will assume that
oW ¼ i�oV , and we will prove Theorem 3.2 in this case.

3.2. A contour integral. For u > 0, T > 0, set
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Au;T ¼ BV
u2 þ TV ; Bu;T ¼ Au;uT ;ð3:9Þ

N V
u ¼ N X

V þ
ioV ;H

u
:

Then Au;T ;Bu;T are superconnections on E.

Let du;T be the standard de Rham operator acting on smooth forms on R�þ � R�þ.

Theorem 3.3. Let bu;T be the form on R�þ � R�þ � S,

bu;T ¼
du

u
Trs½gðN V

u2 �NHÞ expð�B2
u;TÞ� �

dT

T
Trs½gNH expð�B2

u;TÞ�:ð3:10Þ

The following identity holds:

du;Tbu;T ¼ u dT du

�
q
q

qb

�
Trs

1

u
gN V

u2 expð�B2
u;T � bv�Þ

� �
ð3:11Þ

þ Trs

1

uT
gNH exp �B2

u;T � b
q

qu
BV 0

u2

� �� ��
b¼0

þ q
q

qb

�
Trs

1

u
gN V

u2 expð�B2
u;T � bvÞ

� �

þ Trs

1

uT
gNH exp �B2

u;T � b
q

qu
BV 00

u2

� �� ��
b¼0

�
:

Proof. The proof of Theorem 3.3 is identical to the proof of [B5], Theorem 4.3. r

Take e;A;T0, 0 < ee 1eA < þy, 1eT0 < þy. Let G ¼ Ge;A;T0
be the oriented

contour in R�þ � R�þ,

The contour G is made of the four oriented pieces G1; . . . ;G4 indicated above. Also G
bounds an oriented rectangular domain D. For 1e k e 4, set

I 0
k ¼

Ð
Gk

Fbu;T :ð3:12Þ

Γ

Γ

Γ

Γ
1

2

3

A

4

1 00

u

T

∆

T
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Definition 3.4. Let g; d be the forms on S

g ¼
Ð
D

q

qb

�
Trs½gN V

u2 expð�B2
u;T � bv�Þ�ð3:13Þ

þ Trs

1

T
gNH exp �B2

u;T � b
q

qu
BV 0

u2

� �� ��
b¼0

dT du;

d ¼
Ð
D

q

qb

�
Trs½gN V

u2 expð�B2
u;T � bvÞ�

þ Trs

1

T
gNH exp �B2

u;T � b
q

qu
BV 00

u2

� �� ��
b¼0

dT du:

Theorem 3.5. The following identity holds:

P4
k¼1

I 0
k ¼ Fðqgþ qdÞ:ð3:14Þ

Proof. This follows from Theorem 3.3. r

As in [B5], the proof of Theorem 3.2 will consist in making A! þy, T0 ! þy,
e! 0 in this order in identity (3.14).

3.3. Five intermediate results.

Definition 3.6. For T > 0, we denote by h ; iT the Hermitian product on E asso-
ciated with the metrics hTX ; hx0 ; hx1=T 2; . . . ; hxm=T 2m on TX , x0; . . . ; xm respectively. Set

KT ¼ fs A E; ðqX þ vÞs ¼ 0; ðqX� þ T 2v�Þs ¼ 0g:ð3:15Þ

Let PT be the orthogonal projection operator from E on KT with respect to the Her-
mitian product h ; iT .

By Hodge theory, for any T > 0, there is a canonical isomorphism of G-equivariant
Z-graded vector bundles,

KT GH �ðE; qX þ vÞ:ð3:16Þ

Let h
HðX ;xjX Þ
T be the G-invariant metric on HðX ; xjX Þ inherited from the metric

h ; iT restricted to KT . Let ‘
HðX ;xjX Þ
T be the holomorphic Hermitian connection on�

HðX ; xjX Þ; h
HðX ;xjX Þ
T

�
.

We now state five intermediate results contained in Theorems 3.7–3.11, which are the
obvious extension of [B4], Theorems 8.4–8.8, [B5], Theorems 6.5–6.9. The proofs of The-
orems 3.7–3.11 are deferred to Sections 4–7.

Theorem 3.7. For any compact set K HS, for any u0 > 0, there exist C > 0, d A �0; 1�
such that on K, for uf u0, T f 1,
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jTrs½gðN V
u2 �NHÞ expð�B2

u;TÞ� � Trs½gN W
u2 expð�BW ;2

u2 Þ�je
C

T d
;ð3:17Þ

Trs½gNH expð�B2
u;TÞ� �

1

2
dim NY=X Trs½g expð�BW ;2

u2 Þ�
 e C

T d
:

Theorem 3.8. For any compact set K HS, there exists C > 0 such that on K, for

uf 1;T f 1,

jTrs½gN V
u2 expð�B2

u;TÞ� � Trs½gPT N X
V PT expð�‘HðX ;xjX Þ;2

T Þ�je C

u
;ð3:18Þ

jTrs½gNH expð�B2
u;TÞ� � Trs½gPT NHPT expð�‘HðX ;xjX Þ;2

T Þ�je C

u
:

Theorem 3.9. For any compact set K HS, there exist C > 0, g A �0; 1�, such that on

K, for u A �0; 1�, 0eT e 1=u, thenFTrs½gNH expð�A2
u;TÞ� �

Ð
Xg

TdgðTX ; hTX ÞFTrs½gNH expð�C2
T 2Þ�

ð3:19Þ

eC
�
uð1þ TÞ

�g
:

There exists C 0 > 0, such that on K, for u A �0; 1�, 0eT e 1,

jTrs½gNH expð�A2
u;TÞ� � Trs½gNH expð�A2

u;0Þ�jeC 0T :ð3:20Þ

In the sequel, we use the notation of [B4], §7, applied to the exact sequence
(3.3). In particular, for u > 0, we consider the operator B2

u of [B4], Definition 7.4, and
Trs½gNH expð�B2

T 2Þ� is the generalized supertrace in the sense of [B3], Definition 2.1 (cf.
[B4], Definition 7.5). We denote by BgðTY ;TX jWg

; hTX Þ A PWg the generalized analytic

torsion forms associated to (3.3) as in [B3], §6 (cf. [B4], Definition 7.9). Then

qq

2ip
BgðTY ;TX jWg

; hTX Þ ¼ TdgðTY ; hTY Þ �
TdgðTX jWg

; hTX Þ
TdgðNY=X ; h

NY=X Þ :ð3:21Þ

Theorem 3.10. For any T > 0, the following identity holds:

lim
u!0

FTrs½gNH expð�A2
u;T=uÞ� ¼

Ð
Yg

FTrs½gNH expð�B2
T 2Þ� chgðh; hhÞ:ð3:22Þ

Theorem 3.11. For any compact set K HS, there exist C > 0, d A �0; 1�, such that on

K, for u A �0; 1�, T f 1,

Trs½gNH expð�A2
u;T=uÞ� �

1

2
dim NY=X Trs½g expð�B

W ;2
u2 Þ�

 e C

T d
:ð3:23Þ

In Sections 4–7, we will assume for simplicity that S is compact. If S is not compact,
then we consider instead the compact subsets K HS, and the various constants C > 0 de-
pend explicitly on K.
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3.4. The asymptotics of the I0
k’s. Because of the formal analogies with [B5], Theo-

rems 6.5–6.9, which were indicated before, the discussion of the asymptotics of the I 0
k ’s for

k ¼ 1; 3; 4 as A! þy, T0 ! þy, e! 0 can be formally transferred from [B5], §6.4, §6.5.
Then we obtain I 3

k for k ¼ 1; 3; 4 formally as in [B5], §6.4. For k ¼ 2, by [B5], Theorem

6.10, which gives us the asymptotics of h
HðX ;xjX Þ
T as T ! þy. Then by using [B5], Theorem

6.10, as in [B5], pp. 77–78, we get

I 2
3 ¼ I 2

2 ¼
Ðþy
1

F

�
Trs½gPT NHPT expð�‘HðX ;xjX Þ;2

T Þ�ð3:24Þ

� 1

2
dim NY=X Trs½g expð�‘HðY ;hjY Þ;2Þ�

�
dT

T

¼ 1

2
echchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
in PS=PS;0:

If S is compact and Kähler, PS;0 is closed under uniform convergence. In the case,

since
P4
k¼1

I 0
k A PS;0, then

P4
k¼1

I 3
k A PS;0.

In the case of a general S;PS;0 is not necessary closed. In [B5], (6.170), an explicit

formula is given for
P4
k¼1

I 3
k as

P4
k¼1

I 3
k ¼ Fðqm3 þ qn3Þ � qq

ip
Fl3;ð3:25Þ

and the same proofs for m3; n3; l3 as in [B5], §6.6–§6.8, work as well. To keep this paper
short, we will not discuss m3; n3; l3 in more detail.

Ultimately, we obtain an extension of [B4], Theorem 8.12, [B5], Theorem 6.22:

Theorem 3.12. The following identity holds in PS=PS;0:

echchg

�
HðY ; hjY Þ; hHðX ;xjX Þ; hHðY ;hjY Þ

�
� TgðoW ; hhÞ þ TgðoV ; hxÞð3:26Þ

¼
Ð

Xg

TdgðTX ; hTX ÞTgðx; hxÞ þ
Ð

Yg

BgðTY ;TX jWg
; hTX Þ chgðh; hhÞ

� G 0ð1Þ
Ð

Yg

TdgðTYÞ
Td 0g
Tdg

ðNY=X Þ �
1

2
dim NY=X

 !
chgðhÞ:

By [B4], Theorem 7.14, (7.38), (8.26), we know that, in PWg=PWg;0

BgðTY ;TX jWg
; hTX Þ ¼ �Td�1

g ðNY=X ; hNY=X ÞfTdTdgðTY ;TX jWg
; hTX Þð3:27Þ

þ TdgðTYÞ RgðNY=X Þ þ G 0ð1Þ
Td 0g
Tdg

ðNY=X Þ �
1

2
dim NY=X

 !( )
:
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Let i 0g : Wg ! Vg be the obvious embedding. Then we have the identities in H �ðWg;CÞ,

TdgðTYÞ ¼
i 0�g TdgðTX Þ
TdgðNY=X Þ

;ð3:28Þ

RgðNY=X Þ ¼ i 0�g RgðTXÞ � RgðTYÞ:

Now the identity (3.8) follows from Theorem 3.12, (3.27) and (3.28).

The proof of Theorem 3.2 is completed. r

4. A proof of Theorems 3.7 and 3.8

In this section, we give a proof of Theorems 3.7 and 3.8. This proof relies essentially
on the results of [B5], §9, where the corresponding results were established when G is trivial.
Theorems 3.7 and 3.8 are the obvious extension of [B4], Theorems 8.4, 8.5, [B5], Theorems
6.5, 6.6.

This section is organized as follows. In Section 4.1, we recall the construction of an
extension of T HW to V [B5], §7.6. In Section 4.2, we give a proof of Theorems 3.7 and 3.8.

4.1. An extension of THW to V . In the discussion which follows, we will assume for
simplicity that S is compact. We proceed as in [B5], §7.6.

If y A W , Z A NY=X ;R;y, let t A R! xt ¼ expX
y ðtZÞ A V be the geodesic in the fibre

XpW ðyÞ with respect to hTX , such that x0 ¼ y,
dxt

dt


t¼0

¼ Z.

For e > 0, set Be ¼ fZ A NY=X ;R; jZj < eg. For e0 > 0 small enough, the map
ðy;ZÞ A NY=X ;R ! expX

y ðZÞ A V is a di¤eomorphism from B2e0
on a tubular neighbourhood

U2e0
of W in V . From now on, we use the notation x ¼ ðy;ZÞ instead of x ¼ expX

y ðZÞ. We
identify y A W with ðy; 0Þ A NY=X ;R. Since g A G is an isometry which preserves W ; g pre-
serves the geodesics in the fibre XpW ðyÞ which are normal to Y . Of course, under this iden-
tification, g acts linearly in the fibre of NY=X ;R.

As explained in [B5], §7.5, in general, T HV jW 3T HW . This is a potential source of
di‰culties. Thus we are forced to modify the horizontal bundle T HV near W .

Recall that ‘TX is the holomorphic Hermitian connection on ðTX ; hTX Þ. Let ‘p�
V

TS

be the trivial connection on p�V TS along the fibres X . We equip TV ¼ T HV lTX with the
connection along the fibres X , ‘TV ¼ ‘p�

V
TS l‘TX . Now the tensor T V is defined in Sec-

tion 1.2.

Definition 4.1. If ðy;ZÞ A NY=X ;R, if A A TRS, let A 0 A TRV be the solution of the
di¤erential equation along t A R! xt ¼ expX

y ðtZÞ,

‘TV
dx

dt

A 0 þ T V
xt

A 0;
dx

dt

� �
¼ 0;ð4:1Þ

A 00 ¼ AH;W :
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Let g : R! ½0; 1� be a smooth function such that

gðaÞ ¼ 1 for ae 1=2;ð4:2Þ

¼ 0 for af 1:

Then g
jZj
e0

� �
can be considered as a smooth function on V with values in ½0; 1�, which

vanishes on VnUe0
.

Definition 4.2. If A A TS, set

AH;W ¼ g
jZj
e0

� �
A 0 þ

 
1� g

jZj
e0

� �!
AH;V ;ð4:3Þ

AH;NY=X ¼ AH;W � AH;V :

Let T HW be the smooth subbundle of TV which is the image of TS by the map
A! AH;W .

By (4.1), it is clear that T HW extends G-equivariantly the given vector bundle T HW

on W to the whole V .

Let f1; . . . ; f2m0
be a locally defined basis of TRS, and let f 1; . . . ; f 2m0 be the corre-

sponding dual basis of T �RS. Let e1; . . . ; e2l be an orthonormal basis of TRX .

Definition 4.3. For u > 0, T > 0, set

~AAu;T ¼ exp � f a 1ffiffiffi
2
p

u
cð f H;NY=X

a Þ
� �

Au;T exp f a 1ffiffiffi
2
p

u
cð f H;NY=X

a Þ
� �

;ð4:4Þ

~BBV
u2 ¼ exp � f a 1ffiffiffi

2
p

u
cð f H;NY=X

a Þ
� �

BV
u2 exp f a 1ffiffiffi

2
p

u
cð f H;NY=X

a Þ
� �

;

~NN V
u2 ¼ exp � f a 1ffiffiffi

2
p

u
cð f H;NY=X

a Þ
� �

N V
u2 exp f a 1ffiffiffi

2
p

u
cð f H;NY=X

a Þ
� �

;

~AAT ¼ ~AA1;T ; AT ¼ A1;T :

4.2. A proof of Theorems 3.7 and 3.8. In our context, all the constructions of [B5],
§7, §8, §9, are G-invariant. The same arguments as in [B4], §9, [B5], §7, §8, §9, give us the
proof of Theorems 3.7 and 3.8.

5. The analysis of the two parameters operator g exp(CA2
u,T) in the range

u AA ]0, 1], T AA 0,
1

u

� �
The purpose of this section is to prove Theorem 3.9. This section is the obvious exten-

sion of [B4], §11, where we work on the case that S is a point, and of [B5], §11, where Theo-
rem 3.9 was established when G is trivial.
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This section is organized as follows. In Section 5.1, we prove (3.20), which is the easy
part of Theorem 3.9. In Section 5.2, we show the proof of Theorem 3.9 is local on the fibres
X . In Sections 5.3 and 5.4, we construct a coordinate system near Wg and a trivialization
of p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ n̂n x. In Section 5.5, following [B5], §11.7, we make a Getzler
rescaling [Ge] on the operator ~AAu;T . In Section 5.6, we explain the matrix structure of the
new rescaled operator L

3;Z0=T
y0;T

. In Section 5.7, we introduce graded Sobolev spaces with
weights. In Section 5.8, we prove Theorem 3.9.

We use the notation and assumptions of Sections 2, 3–4.

5.1. The limit as u? 0 of Trs[gNH exp(CA2
u,T )].

Proposition 5.1. Let T0 A ½0;þy½. There exists C > 0 such that for u A �0; 1�,
T A ½0;T0�, FTrs½gNH expð�A2

u;TÞ� �
Ð

Xg

TdgðTX ; hTX ÞFTrs½gNH expð�C2
T 2Þ�

eCu;ð5:1Þ

jFTrs½gNH expð�A2
u;TÞ� �FTrs½gNH expð�A2

u;0Þ�jeCT :

Proof. By combining the local families index theorem of [B1] and [B4], §2 (cf. [Ma],
§2e)), one finds that for any T f 0, as u! 0

FTrs½gNH expð�A2
u;TÞ� ¼

Ð
Xg

TdgðTX ; hTX ÞFTrs½gNH expð�C2
T 2Þ� þ OðuÞ:ð5:2Þ

Since T only plays the role of a parameter, one obtains the existence of C such that the first
inequality in (5.1) holds.

Also

q

qT
Trs½gNH expð�A2

u;TÞ� ¼
q

qb
fTrs½gNH expð�A2

u;T � b½Au;T ;V �Þ�gb¼0:ð5:3Þ

Again, by using the techniques of [B1] and [B4], §2 (cf. [Ma], §2e)), one finds that for u! 0,
the right-hand side of (5.3) converges boundedly for T eT0. Thus we get the second in-
equality in (5.1). r

5.2. Localization of the problem. Let d X ; d Y be the Riemannian distance along the
fibre ðX ; hTX Þ; ðY ; hTY Þ. Let aX ; aY be the infimum of the injectivity radius of the fibres

X ;Y . We take e0 > 0 as in Section 4.1. Let e; a A Rþ be such that e A 0;
1

2
infðaX ; aY ; e0Þ

� �
,

a A �0; e=8�. If x A V , let BX ðx; eÞ be the open ball along the fibre X of centre x and radius e.

In the sequel, we always assume that given e > 0, a > 0 is chosen small enough so
that if x A X , d X ðg�1x; xÞe a, then d X ðx;XgÞ < e=16, and if y A Y , d Y ðg�1y; yÞe a, then
d Y ðy;YgÞe e=16.

Let f be a smooth even function defined on R with values in ½0; 1�, such that
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f ðtÞ ¼ 1 for jtje a=2;ð5:4Þ

0 for jtjf a:

Set

gðtÞ ¼ 1� f ðtÞ:ð5:5Þ

Definition 5.2. For u A �0; 1�, a A C, set

FuðaÞ ¼
Ðþy
�y

expðita
ffiffiffi
2
p
Þ exp

�t2

2

� �
f ðutÞ dtffiffiffiffiffiffi

2p
p ;ð5:6Þ

GuðaÞ ¼
Ðþy
�y

expðita
ffiffiffi
2
p
Þ exp

�t2

2

� �
gðutÞ dtffiffiffiffiffiffi

2p
p :

The functions FuðaÞ;GuðaÞ are even holomorphic functions. So there exist holo-
morphic functions ~FFuðaÞ; ~GGuðaÞ such that

FuðaÞ ¼ ~FFuða2Þ; GuðaÞ ¼ ~GGuða2Þ:ð5:7Þ

The restrictions of Fu;Gu; ~FFu; ~GGu to R lie in the Schwartz space SðRÞ.

From (5.6), we deduce that

expð�A2
u;TÞ ¼ ~FFuðA2

u;TÞ þ ~GGuðA2
u;TÞ:ð5:8Þ

Theorem 5.3. There exist c > 0, C > 0 such that for u A �0; 1�, T f 1, then

jTrs½gNH
~GGuðA2

u;TÞ�je c exp
�C

u2

� �
:ð5:9Þ

Proof. The same proof of [B5], Theorem 11.3, gives us Theorem 5.3. r

Let ~FFuð ~AA2
u;TÞðx; x 0Þ ðx; x 0 A X Þ be the smooth kernel of ~FFuð ~AA2

u;TÞ with respect to

dvX ðx 0Þ=ð2pÞdim X . Since ~AA2
u;T is a second order elliptic operator whose principal symbol is

given by u2jxj2=2, using finite propagation speed [CP], §7.8, [T], §4.4, and (5.6), we see that
for u A �0; 1�, if x A V , ~FFuð ~AA2

u;TÞðx; x 0Þ vanishes for x 0 B BX ðx; aÞ and only depends on the
restriction of ~AA2

u;T to BX ðx; aÞ. Clearly,

Trs½gNH
~FFuðA2

u;TÞ� ¼ Trs½gNH
~FFuð ~AA2

u;TÞ�ð5:10Þ

¼
Ð
X

Trs½gNH
~FFuð ~AA2

u;TÞðg�1x; xÞ� dvX ðxÞ
ð2pÞdim X

¼
Ð

x AX ;dðx;XgÞee=8

Trs½gNH
~FFuð ~AA2

u;TÞðg�1x; xÞ� dvX ðxÞ
ð2pÞdim X

:
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By Theorem 5.3, we find that the proof of Theorem 3.9 has been reduced to a local problem
near Vg.

In the rest of this section, we fix e > 0, a A �0; e=8�.

5.3. A rescaling of the coordinate Z0 A NYg /Xg
. In the sequel, if x A X , Z A ðTRX Þx,

t A R! xt ¼ expX
x ðtZÞ A X denotes the geodesic along the fibre X such that x0 ¼ x,

dx

dt


t¼0

¼ Z. A similar notation will be used on Y ;Xg.

Let NXg=X ;NYg=Xg
be the (fibrewise) normal bundles to Xg;Yg in X ;Xg. We identify

NYg=Xg
to the orthogonal bundle to TYg in TXg with respect to hTX . As in (1.19), we have

the holomorphic orthogonal splitting TX ¼ TXg lNXg=X . Let hTXg ; hNXg=X be the metrics
on TXg;NXg=X induced by hTX . Let hTYg ; hNYg=Xg be the metrics on TYg;NYg=Xg

induced by
hTXg .

First, we identify a neighbourhood of Wg in Vg to a neighbourhood of Wg in NYg=Xg;R

using geodesic coordinates normal to Wg. Since Xg is totally geodesic in X , if y A Wg,
Z A NYg=Xg;R;y, jZje e, we can identify ðy;ZÞ with exp

Xg
y ðZÞ. We denote by UeðYg=XgÞ the

corresponding neighbourhood of Yg in Xg. Also we identify a neighbourhood of Vg in V to
a neighbourhood of Vg in NXg=X ;R using geodesic coordinates normal to Xg in X .

Thus ðy;Z;Z 0Þ A
�
Wg; ðNYg=Xg;RlNXg=X ;RÞy

�
! expX

exp
Xg
y ðZÞ
ðZ 0Þ identifies an open

neighbourhood of Wg in NYg=X ;R to an open neighbourhood of Wg in V . Since Xg is totally
geodesic in X , and since g preserves the geodesics in X , the action of g near y is given by

gðZ;Z 0Þ ¼ ðZ; gZ 0Þ:ð5:11Þ

Let dvXg
; dvYg

be the Riemannian volume forms on Xg;Yg with respect to
hTXg ; hTYg . Let dvNYg=Xg

; dvNXg=X
be the Riemannian volume forms on the fibres on

ðNYg=Xg
; hNYg=Xg Þ; ðNXg=X ; h

NXg=X Þ. For y A Wg, Z A NYg=Xg;R;y, Z 0 A NXg=X ;R;y, jZj; jZ 0j < e

2
,

let kðy;Z;Z 0Þ; k 0ðy;ZÞ be defined by

dvX ðy;Z;Z 0Þ ¼ kðy;Z;Z 0Þ dvXg
ðy;ZÞ dvNXg=X

ðZ 0Þ;ð5:12Þ

dvXg
ðy;ZÞ ¼ k 0ðy;ZÞ dvYg

ðyÞ dvNYg=Xg
ðZÞ ¼ k 0ðy;ZÞ dvTXg;yðZÞ:

Then kðy;Z; 0Þ ¼ 1, k 0ðy; 0Þ ¼ 1.

Let e1; . . . ; e2l 00 be an oriented orthonormal basis of TRXg, and let e1; . . . ; e2l 00 be the
corresponding dual basis of T �RXg. If b A LðT �RVgÞ, let bmax be the form in LðT �RSÞ which
factors e1 . . . e2l 00 in the obvious expansion of b.

Definition 5.4. For T f 0, x A Vg, let bTðxÞ A LðT �RSÞ such that

bTðxÞ
1

ð2pÞdim Xg
¼ fTdgðTX ; hTX ÞFTrs½gNH expð�C2

T 2Þ�gmax
x :ð5:13Þ
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The key result of this section is the following extension of [B4], Theorem 11.7, [B5],
Theorem 11.5.

Theorem 5.5. There exists g A �0; 1� such that for any p A N, there exists Cp > 0 such

that if u A �0; 1�, T A 1;
1

u

� �
, y0 A Wg, Z0 A NYg=Xg;R;y0

, jZ0je eT=2,

ð5:14Þ
1

T 2 dim NYg=Xg

 Ð
jZjee=8

Z ANXg=X ;R; ð y0 ;Z0=TÞ

Trs gNH
~FFuð ~AA2

u;TÞ
 

g�1 y0;
Z0

T
;Z

� �
; y0;

Z0

T
;Z

� �!" #

k y0;
Z0

T
;Z

� �
dvNXg=X

ðZÞ
ð2pÞdim NXg=X

� bT y0;
Z0

T

� �
eCpð1þ jZ0jÞ�p�

uð1þ TÞ
�g
:

Remark 5.6. From (5.10), to prove (3.19), we only need to estimate

ð5:15ÞÐ
Xg

( Ð
jZjee=8

Z ANXg=X ;R

Trs

	
gNH

~FFuð ~AA2
u;TÞ

�
g�1ðx;ZÞ; ðx;ZÞ

�

kðx;ZÞ

dvNXg=X
ðZÞ

ð2pÞdim NXg=X
� bTðxÞ

)
dvXg
ðxÞ

ð2pÞdim Xg
:

In the same way as in [B4], Remark 11.8, we decompose the above integral asÐ
Ue=2ðYg=XgÞ

þ
Ð

XgnUe=2ðYg=XgÞ
. By Theorem 5.5, we find that

Ð
Ue=2ðYg=XgÞ

is dominated by

C
�
uð1þ TÞ

�g
. Using again Theorem 5.5 for Wg ¼ j, we get a similar estimate forÐ

XgnUe=2ðYg=XgÞ
. Using now Proposition 5.1, we have thus proved Theorem 3.9.

5.4. A local coordinate system near Wg and a trivialization of

p*
VL(T *

RS ) n̂nnL(T *(0, 1)X ) n̂nn x . Let ‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞX Þ be the connection on

p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ

along the fibres X , which is induced by ‘LðT�ð0; 1ÞX Þ. Let

1‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞX Þ; 2‘p�

V
LðT �

R
SÞn̂nLðT�ð0; 1ÞX Þ

be the connections on p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ, along the fibres X defined in [B5], Defi-
nition 11.7.

For u > 0, let cu : LðT �RSÞ ! LðT �RSÞ be the map

a A LðT �RSÞ ! u�deg aa A LðT �RSÞ:ð5:16Þ

For u > 0, let 2‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞ;u be the connection on p�VLðT �RSÞ n̂nLðT�ð0;1ÞX Þ along

the fibres X (cf. [B5], Definition 11.9)

2‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞ;u ¼ cu

2‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞc�1

u :ð5:17Þ
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In the sequel, we will use trivializations with respect to the connection
2‘p�

V
LðT �

R
SÞn̂nLðT�ð0; 1ÞX Þ;u. It will be often more convenient to trivialize with respect to

2‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞX Þ, and to apply afterwords the operator cu.

In [B4], §9, [BL], §8f ), a G-invariant orthogonal splitting of Z-graded vector bundles

x ¼ xþl x� of x near W was obtained. Let PxG be the orthogonal projection operators
from x on xG. Let ~‘‘xG be the connection on xG, which is the orthogonal projection of ‘x

on xG. Set ~‘‘x ¼ ~‘‘xþ l ~‘‘x� . Then ~‘‘x is G-invariant.

Take y0 A Wg. Let BTX
y0
ð0; eÞ be the open ball in ðTRX Þy0

of centre 0 and of radius e.

The ball BTX
y0
ð0; eÞ is then identified to BX ðy0; eÞ using the map expX

y0
.

We fix Z0 A NYg=Xg;R;y0
, jZ0je e=2. Take Z A ðTRX Þy0

, jZje e=2. The curve

t A ½0; 1� ! Z0 þ tZ lies in BTX
y0
ð0; eÞ. We identify

�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ

�
Z0þZ

to�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ

�
Z0

(resp. xZ0þZ to xZ0
) by parallel transport with respect to the

connection 2‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞ;u (resp. ~‘‘x) along t A ½0; 1� ! Z0 þ tZ.

When Z0 A NYg=Xg;R;y0
, jZ0je e=2 is allowed to vary, we identify

�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞX Þ

�
Z0

(resp. ðTRX ÞZ0
; xZ0

) to
�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ

�
y0

(resp. ðTRXÞy0
; xy0

) by parallel trans-

port with respect to ‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞ (resp. ‘TRX ; ~‘‘x) along t A ½0; 1� ! tZ0. Therefore

the fibres of p�VLðT �RSÞ n̂nLðT�ð0;1ÞX Þ at Z0 þ Z and y0 are identified by parallel transport

along the broken curve t A ½0; 1� ! 2tZ0, 0e te 1=2, Z0 þ ð2t� 1ÞZ,
1

2
e te 1.

Let Hy0
be the vector space of smooth sections of

�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ n̂n x

�
y0

over ðTRXÞy0
. Let DTX be the ordinary flat Laplacian of TRX . Then DTX acts naturally on

Hy0
. Let g be a smooth function defined on R considered in (4.2). If Z A ðTRXÞy0

, put

rðZÞ ¼ g
jZj
4e

� �
:ð5:18Þ

We now fix Z0 A NYg=Xg;R;y0
, jZ0je e=2. Recall that the considered trivialization of

p�VLðT �RSÞ n̂nLðT�ð0;1ÞX Þ n̂n x depends on Z0. Therefore the action of DX also depends
on Z0.

Definition 5.7. For u > 0, T f 0, let L1;Z0

u;T ;M 1;Z0
u be the operators acting on Hy0

,

L1;Z0

u;T ¼
�
1� r2ðZÞ

� �u2

2
DTX þ T 2P

xþy0

� �
þ r2ðZÞ ~AA2

u;TðZ0 þ ZÞ;ð5:19Þ

M 1;Z0
u ¼ � u2

2

�
1� r2ðZÞ

�
DTX þ r2ðZÞ ~BBV ;2

u2 ðZ0 þ ZÞ:

Let ~FFuðL1;Z0

u;T ÞðZ;Z 0Þ ðZ;Z 0 A ðTRXÞy0
; jZ 0j < e=2Þ be the smooth kernel associated
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to ~FFuðL1;Z0

u;T Þ with respect to dvX ðZ0 þ Z 0Þ=ð2pÞdim X . By using propagation finite speed
[CP], §7.8, [T], §4.4, we see that for any y0 A Wg, Z0 A NYg=Xg;R;y0

, jZ0je e=2, Z A ðTRX Þy0
,

jZje e=2,

~FFuð ~AA2
u;TÞ

�
ðy0;Z0; g

�1ZÞ; ðy0;Z0;ZÞ
�
¼ ~FFuðL1;Z0

u;T Þðg�1Z;ZÞ:ð5:20Þ

5.5. Rescaling of the variable Z and of the Cli¤ord variables. For u > 0, let Fu be the
linear map

h A Hy0
! Fuh A Hy0

; FuhðZÞ ¼ hðZ=uÞ:ð5:21Þ

For u > 0, T f 0, set

L
2;Z0

u;T ¼ F�1
u L

1;Z0

u;T Fu;ð5:22Þ

M 2;Z0
u ¼ F�1

u M 1;Z0
u Fu:

Let e1; . . . ; e2l 0 be an orthonormal basis of ðTRYgÞy0
, let e2l 0þ1; . . . ; e2l 00 be an ortho-

normal basis of NYg=Xg;R;y0
, let e2l 00þ1; . . . ; e2l be an orthonormal basis of NXg=X ;R;y0

. Then
e1; . . . ; e2l is an orthonormal basis of ðTRXÞy0

. Let e1; . . . ; e2l be its dual basis of ðT �RX Þy0
.

For U A ðTRXÞZ0
, let tU Z0ðZÞ be the parallel transport of U with respect to ‘TX along the

curve t A ½0; 1� ! Z0 þ tZ. For 1e ie 2l, put

_eei ¼ te0
i ðZ0Þ; tZ0 _eeiðZ0 þ ZÞ ¼ t _eeZ0

i ðZÞ:ð5:23Þ

As Xg is totally geodesic along X , it is important to observe that under the con-
sidered identification of ðT �RX ÞZ0

with ðT �RXÞy0
, at Z0 A NYg=Xg;R;y0

which represents an
element of Xg, _ee1; . . . ; _ee2l 00 (resp. _ee2l 00þ1; . . . ; _ee2lÞ is an orthonormal basis of ðTRXgÞZ0

(resp.
ðNXg=X ;RÞZ0

).

Definition 5.8. For u > 0, T > 0, set

cu;TðejÞ ¼
ffiffiffi
2
p

e j

u
5� uffiffiffi

2
p iej

; 1e j e 2l 0;ð5:24Þ

cu;TðejÞ ¼
ffiffiffi
2
p

e j

uT
5� uTffiffiffi

2
p iej

; 2l 0 þ 1e j e 2l 00:

Let Op be the set of scalar di¤erential operators acting on smooth functions on
ðTRXÞy0

.

Definition 5.9. For u > 0, T > 0, let

L
3;Z0

u;T ;M 3;Z0

u;T A
�
p�WLðT �RSÞ n̂nEnd

�
LðT �RXgÞ n̂n x

�
n̂n cðNXg=X ;RÞ

�
y0
nOp

be the operator obtained from L
2;Z0

u;T ;M 2;Z0
u by replacing the Cli¤ord variables

cðejÞ ð1e j e 2l 00Þ by the operator cu;TðejÞ, while leaving unchanged the cðejÞ
ð2l 00 þ 1e j e 2lÞ.
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The complicating fact with respect to [B5], §11.7, is that the cðejÞ ð2l 00 þ 1e j e 2lÞ
are not rescaled. However, the rescaling is the same as in [B4], Definition 11.10.

Let ~FFuðL3;Z0

u;T ÞðZ;Z 0Þ ðZ;Z 0 A ðTRXÞy0
; jZ 0j < e=2Þ be the smooth kernel associated

to ~FFuðL3;Z0

u;T Þ calculated with respect to k 0ðy0;Z0Þ dvðTXÞy0
ðZ 0Þ=ð2pÞdim X . Note that, at

Z 0 ¼ 0 (representing ðy0;Z0Þ), this last density coincides with dvX=ð2pÞdim X . Here
~FFuðL3;Z0

u;T ÞðZ;Z 0Þ lies in
�
p�WLðT �RSÞ n̂nEnd

�
LðT �RXgÞ n̂n x

�
n̂n cðNXg=X ;RÞ

�
y0

. Moreover

g acts naturally on
�
LðN �Xg=X Þ n̂n x

�
y0

as an element of
�
cðNXg=X ;RÞ n̂nEndðxÞ

�
y0

. So

g ~FFuðL3;Z0

u;T ÞðZ;Z 0Þ lies in
�
p�WLðT �RS

�
n̂nEnd

�
LðT �RXgÞ

�
n̂n cðNXg=X ;RÞ n̂nEndðxÞ

�
y0

.

Now we use the notation of [B5], (11.57). Namely, ~FFuðL3;Z0

u;T Þðg�1Z;ZÞ can be ex-
panded in the form

ð5:25Þ
~FFuðL3;Z0

u;T Þðg�1Z;ZÞ ¼
P

1ei1<���<ipe2l 00

1ej1<���< jqe2l 00

ei15 � � �5eip5iej1
� � � iejq

n̂nQ
i1���ip
j1���jq ðg

�1Z;ZÞ;

Q
i1���ip
j1���jq ðg

�1Z;ZÞ A
�
p�WLðT �RSÞ n̂n cðNXg=X ;RÞ n̂nEndðxÞ

�
y0
:

Set

½ ~FFuðL3;Z0

u;T Þðg�1Z;ZÞ�max ¼ Q1;...;2l 00 ðg�1Z;ZÞð5:26Þ

A
�
p�WLðT �RSÞ n̂n cðNXg=X ;RÞ n̂nEndðxÞ

�
y0
:

The following theorem extends [B4], Proposition 11.12, [B5], Proposition 11.16:

Proposition 5.10. If Z A NXg=X ;R;y0
, the following identity holds:

1

T 2 dim NYg=Xg

Trs½gNH
~FFuðL1;Z0

u;T Þðg�1Z;ZÞ�kðy0;Z0;ZÞð5:27Þ

¼ ð�iÞdim Xg
1

u2 dim NXg=X
Trs gNH

~FFuðL3;Z0

u;T Þ
g�1Z

u
;
Z

u

� �� �max� �
:

Proof. As in the proof of [B4], Proposition 11.12, note that since g preserves the
geodesics and the obvious connections on

p�WLðT �RSÞ n̂nLðT�ð0;1ÞX Þ n̂n xF
�
p�WLðT �RSÞ n̂nLðT�ð0;1ÞXÞ n̂n x

�
y0
;

g just acts as the obvious constant linear map on
�
p�WLðT �RSÞ n̂nLðT�ð0;1ÞXÞ n̂n x

�
y0

. Since
g acts like the identity on LðT�ð0;1ÞXgÞ, g A cðNXg=X ;RÞy0

. Therefore the rescaling of the

Cli¤ord variables in (5.24) has no e¤ect on g. Identity (5.27) is now a trivial consequence
of [BL], Proposition 11.2. r

By (5.20), (5.27), we find that for Z0 A NYg=Xg;R;y0
, jZ0je eT=2,
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ð5:28Þ
1

T 2 dim NYg=Xg

Ð
jZjee=8

Z ANXg=X ;R; ð y0 ;Z0=TÞ

Trs gNH
~FFuð ~AA2

u;TÞ g�1ðy0;
Z0

T
;ZÞ; ðy0;

Z0

T
;ZÞ

� �� �

k y0;
Z0

T
;Z

� �
dvNXg=X

ðZÞ
ð2pÞdim NXg=X

¼ ð�iÞdim Xg
Ð

jZjee=8u
Z ANXg=X ;R; ð y0 ;Z0=TÞ

Trs½gNH½ ~FFuðL3;Z0=T
u;T Þðg�1Z;ZÞ�max�

dvNXg=X
ðZÞ

ð2pÞdim NXg=X
:

Let N NYg=Xg be the number operator of LðN �Yg=Xg
Þ. Then N NYg=Xg acts naturally on

LðT �RXÞjWg
. For U A ðTRXÞy0

, let ‘U be the standard di¤erential operator acting on
smooth functions on ðTRXÞy0

. Set

R 0x ¼ Rx þ 1

2
Tr½RTX �:ð5:29Þ

Let C be a smooth section of T �RX n̂nEnd
�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ n̂n x

�
. We use

the notation

�
‘

LðT�ð0; 1ÞX Þnx
_eei

þ Cð _eeiÞ
�2 ¼

P2l

i¼1

�
‘

LðT�ð0; 1ÞX Þnx
_eei

þ Cð _eeiÞ
�2

� ‘
LðT�ð0; 1ÞX Þnx

T
2l

i¼1

‘TX
_eei

_eei

� C

�P2l

i¼1

‘TX
_eei

_eei

�
:

Let

RTX
Z0
jVg

A L2ðTVgÞnEndðTXÞ; R 0xZ0
jVg

A L2ðTVgÞnEndðxÞ;�
‘xVðZ0Þ

�
jVg

A T �Vg nEndðxÞ

be the restrictions of RTX
Z0

;R 0xZ0
;‘xVðZ0Þ in the direction Vg. By using [B5], Proposition

11.8 and Theorem 11.11, L3;Z0

u;T can be extended by continuity at u ¼ 0. As in [B5], (11.60)–
(11.65), we have the formula,

L3;Z0

0;T ðZÞ ¼ T�N
NYg=Xg

�
� 1

2

P2l

i¼1

‘ _eei
þ 1

2
hRTX

Z0
jVg

Z; _eeii

� �2

ð5:30Þ

þ R 0xZ0
jVg
þ T

�
‘xVðZ0Þ

�
jVg
þ T 2V 2ðZ0Þ

�
T N

NYg=Xg
:

By [B3], (3.16)–(3.21), one finds easily that

ð5:31Þ

ð�iÞdim Xg
Ð

Z ANXg=X ;R

Trs½gNH½expð�L
3;Z0=T
0;T Þðg�1Z;ZÞ�max�

dvNXg=X
ðZÞ

ð2pÞdim NXg=X
¼ bTðy0;Z0=TÞ:
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In view of (5.27), (5.28) and (5.31), Theorem 5.5 follows from the following result.

Theorem 5.11. There exist g A �0; 1�, C > 0 such that for any p A N, there is

C0 > 0, r A N, such that for u A �0; 1�, T A ½1; 1=u�, y0 A Wg, Z0 A NYg=Xg;R;y0
, jZ0je eT=2,

Z;Z 0 A ðTRXÞy0
, jZj; jZ 0je e=8u, then� ~FFuðL3;Z0=T

u;T Þ � expð�L
3;Z0=T
0;T Þ

�
ðZ;Z 0Þ

ð5:32Þ

eC0ð1þ jZ0jÞ�pð1þ jZj þ jZ 0jÞ2r expð�CjZ � Z 0j2Þ
�
uð1þ TÞ

�g
:

Proof. The remainder of the section is devoted to the proof of Theorem 5.11, which
is similar to [B4], Theorem 11.13. r

5.6. The matrix structure of the operator L3,Z0/T
u,T . As in [B5], §11.8, we calculate the

asymptotic expansion of the operator L
3;Z0=T
u;T as u! 0. The basic di¤erence is that here,

the operators cðejÞ ð2l 00 þ 1e j e 2lÞ are not rescaled. This does not create any di‰culty.
To the contrary while the rescaled operators cu;TðejÞ, 1e j e 2l 00 are not uniformly
bounded as u! 0, the operators cðejÞ, 2l 00 þ 1e j e 2l remain constant. These operators
improve the estimates with respect to [B5], §11.8. In the limit as u! 0, they disappear, as is
made clear in equation (5.30).

If C A
�
p�VLðT �RSÞ n̂n cðT �RXÞ n̂nEndðxÞ

�
Z0þZ

, let

C
ð3Þ
u;T A

�
p�WLðT �RSÞ n̂nEnd

�
LðT �RXgÞ n̂n x

�
n̂n cðNXg=X ;RÞ

�
y0

be the operator obtained from C by the trivialization indicated in Section 5.4, and by
making the Getzler rescaling in Definition 5.8. By [B5], (11.66), as in [B5], (11.67), we get

ð5:33Þ L
3;Z0=T
u;T ¼M

3;Z0=T
u;T

þ r2ðuZÞ
��

T 2V 2 þ Tf a‘x

f
H;W
a

V þ
P2l

i¼1

uTcðtZ0=T _eeiÞ‘x

tZ0=T _eei
V

�
ðZ0=T þ uZÞ

�ð3Þ
u;T

þT 2
�
1� r2ðuZÞ

�
P

xþy0 :

Comparing with [B5], §11.8, there is an extra term

� P2l

2l 00þ1

uTcðtZ0=T _eeiÞð‘x

tZ0=T _eei
VÞðZ0=T þ uZÞ

�ð3Þ
u;T

;

but it does not introduce any extra di‰culty, because uT e 1.

5.7. A family of Sobolev spaces with weights. Set

Lp;qðT �RXgÞy0
¼ LpðT �RYgÞy0

n̂nLqðN �Yg=Xg;R
Þy0

:ð5:34Þ

Let Iy0
be the set of smooth sections of

�
p�WLðT �RSÞ n̂nLðT �RXgÞ n̂nLðN �Xg=X Þ n̂n x

�
y0

over ðTRXÞy0
. Let Iðp;q; rÞ;y0

be the set of smooth sections of

Bismut and Ma, Equivariant torsion forms220



�
p�WLrðT �RSÞ n̂nLp;qðT �RXgÞ n̂nLðN �Xg=X Þ n̂n x

�
y0

over ðTRXÞy0
. As in [B5], §11.9, we introduce a family of Sobolev spaces with weights.

These weights are strictly similar to the corresponding weights in [B5], Definition 11.17.
The results contained in [BL], Proposition 11.24–Theorem 11.30, remain valid, essentially

because the operator L
3;Z0=T
u;T which is considered here has the same structure as in [B5],

§11.8.

5.8. Proof of Theorem 5.11. We have the following analogue of [B4], Theorem
11.14, in our context.

Theorem 5.12. There is C > 0 such that for p A N, p 0 A N, there exist C0 > 0,
r A N such that for any u A �0; 1�, T A ½1; 1=u�, y0 A Wg, Z0 A NYg=Xg;R;y0

, jZ0je eT=2,
Z;Z 0 A ðTRXÞy0

, jZj; jZ 0je e=6u, then

ð1þ jZ0jÞp sup
ja0j; ja1jep 0

qja0jþja1j

qZa0qZ 0 a1

~FFuðL3;Z0=T
u;T ÞðZ;Z 0Þ


ð5:35Þ

eC0ð1þ jZj þ jZ 0jÞr expð�CjZ � Z 0j2Þ:

Proof. At least formally, the problem treated here is the obvious analogue of the
problem considered in [B4], §11h), with extra Grassmann variables f a. One can then pro-
ceed formally as in [B4], §11h) and obtain (5.35). As in [B4], §11h), the Sobolev norms in
Section 5.7 play a key role in proving the required estimates. Of course, here we deal with

the kernel of ~FFuðL3;Z0=T
u;T Þ, while in [B4], §11h), the kernel expð�L

3;Z0=T
u;T Þ was considered.

For c > 0, set

Vc ¼ l A C;Re lf
Im2 l

4c2
� c2

� �
:ð5:36Þ

Then Vc ¼ fl2; jIm lje cg. Now from (5.6), for m;m 0 A N, there exists Cm;m 0 > 0 such that
for a A C, jIm aje c,

jajmjF ðm 0Þu ðaÞjeCm;m 0 :ð5:37Þ

So given k A N, there is a unique holomorphic function ~FFu;kðlÞ defined on a neighbourhood

of Vc such that ~FFu;kðlÞ ! 0 as l! þy and ~FFuðlÞ ¼ ~FF
ðk�1Þ
u;k ðlÞ=ðk � 1Þ!. Then by (5.37),

sup
l AVc

jljmj ~FF ðm
0Þ

u;k ðlÞjeCm;m 0 :ð5:38Þ

Then ~FFuðL3;Z0=T
u;T Þ can be interpreted as a contour integral similar to [BL], (11.117). By the

argument in [B4], p. 125, we get (5.35) with C ¼ 0.

For q A N�, set

Ku;qðaÞ ¼
Ðþy
�y

expðit
ffiffiffi
2
p

aÞ exp
�t2

2

� �
f ðutÞg t

q

� �
dt:ð5:39Þ

Bismut and Ma, Equivariant torsion forms 221



There is a holomorphic function ~KKu;qðaÞ such that Ku;qðaÞ ¼ ~KKu;qða2Þ. Now as in [B4],
(11.53), we find that for any c > 0, there exists C > 0 such that for m;m 0 A N, there exists
C 0 > 0 such that for qf 1,

sup
l AVc

jljmj ~KKðm 0Þu;q ðlÞjeC 0 expð�Cq2Þ:ð5:40Þ

By proceeding as in [B4], p. 127, we get (5.35) with C > 0. r

Observe that ~FF0ðaÞ ¼ expð�a2Þ. Moreover by [B5], (11.82), for any p A N, u A �0; 1�,

sup
jImðaÞjec

jujpjFuðaÞ � expð�a2Þje c 0 exp
�C

u2

� �
:ð5:41Þ

So by (5.41) and by the analogue of [BL], Theorem 11.36, we get the analogue of [B4],

(11.62) for the estimate of a natural norm of ~FFuðL3;Z0

u;T Þ � expð�L
3;Z0

0;T Þ. By proceeding as in
[B4], §11i), when u! 0,

~FFuðL3;Z0=T
u;T ÞðZ;Z 0Þ ! expð�L

3;Z0=T
0;T ÞðZ;Z 0Þð5:42Þ

uniformly for Z;Z 0 in any compact set. By (5.42), (5.35) is also true for u ¼ 0. By using
again Theorem 5.12, as same as in [B4], §11i), we get Theorem 5.11. r

6. The analysis of the kernel of g ~FFu(A
2
u,T/u) for TI 0 as u? 0

The purpose of this section is to prove Theorem 3.10. This section is the obvious
extension of [B5], §12, where Theorem 3.10 was established when G is trivial, of [B4], §12,
where the case where S is a point was treated.

This section is organized as follows. In Section 6.1, we show that the proof of Theo-
rem 3.10 is local on X . In Section 6.2, we rescale the coordinate Z in ðTRXÞy0

and also the
Cli¤ord variables. In Section 6.3, we calculate the asymptotics of the operator L

3;y0

u;T=u
which

was obtained from A2
u;T=u by a rescaling. In Section 6.4, we prove Theorem 3.10.

We use the assumptions and notation of Sections 2, 3–5.

6.1. Localization of the problem. By (5.8), and Theorem 5.3, we see that to establish
Theorem 3.10, we just need to show that as u! 0,

FTrs½gNH
~FFuðA2

u;T=uÞ� !
Ð

Yg

FTrs½gNH expð�B2
T 2Þ� chgðh; hhÞ:ð6:1Þ

As in Section 5.2, using finite propagation speed, the proof of Theorem 3.10 has been re-
duced to a local problem near Xg. As in (5.10),

Trs½gNH
~FFuðA2

u;T=uÞ� ¼
Ð
X

Trs½gNH
~FFuð ~AA2

u;T=uÞðg�1x; xÞ� dvX ðxÞ=ð2pÞdim X :ð6:2Þ
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Take y0 A Wg. If Z A ðTRXÞy0
, jZj < e, we identify Z A ðTRXÞy0

with expX
y0
ðZÞ A X .

Take u > 0, if jZj < e, we identify
�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞX Þ

�
Z
; xZ to

�
p�WLðT �RSÞ n̂nLðT�ð0;1ÞXÞ

�
y0
; xy0

by parallel transport with respect to the connection 2‘p�VLðT �RSÞn̂nLðT�ð0; 1ÞX Þ;u; ~‘‘x along the
curve t A ½0; 1� ! tZ.

If U A ðTRXÞy0
, tUðZÞ A ðTRX ÞZ denotes the parallel transport of U along the curve

t A ½0; 1� ! tZ with respect to ‘TX .

6.2. Rescaling of the variable Z and of the horizontal Cli¤ord variables. We use the
notation of Definition 5.7.

Definition 6.1. For u > 0, T > 0, y0 A Wg, set

L
1;y0

u;T=u
¼ L

1;0
u;T=u

; M 1;y0
u ¼M 1;0

u ;ð6:3Þ

L
2;y0

u;T=u
¼ L

2;0
u;T=u

; M 2;y0
u ¼M 2;0

u :

Let ~FFuðL1;y0

u;T=u
ÞðZ;Z 0Þ ðZ;Z 0 A ðTRX Þy0

Þ be the smooth kernel associated to
~FFuðL1;y0

u;T=u
Þ calculated with respect to dvðTXÞy0

ðZ 0Þ=ð2pÞdim X .

Let NYg=X ;NYg=Y be the normal bundles of Yg in X ;Y . Then we have the holo-
morphic orthogonal splitting TY ¼ TYg lNYg=Y . We identify NYg=X to the orthogonal
bundle to TYg in ðTX ; hTX Þ. Let k 00ðy0;ZÞ be such that for Z A NYg=X ;R, jZj < e,

dvX ðy0;ZÞ ¼ k 00ðy0;ZÞ dvðTXÞy0
ðZÞ:ð6:4Þ

Then as (5.20), for jZj < e

~FFuð ~AA2
u;T=uÞ

�
ðy0; g

�1ZÞ; ðy0;ZÞ
�
k 00ðy0;ZÞ ¼ ~FFuðL1;y0

u;T=u
Þðg�1Z;ZÞ:ð6:5Þ

Let e1; . . . ; e2l 0 be an orthonormal basis of ðTRYgÞy0
. Let e2l 0þ1; . . . ; e2l 000 be an ortho-

normal basis of NYg=Y ;R;y0
. Let e2l 000þ1; . . . ; e2l be an orthonormal basis of NY=X ;R;y0

. Then
e1; . . . ; e2l is an orthonormal basis of ðTRXÞy0

. Let e1; . . . ; e2l 0 ; e2l 0þ1; . . . ; e2l be the corre-
sponding dual bases of ðT �RYgÞy0

;N �Yg=X ;R;y0
.

Definition 6.2. For u > 0, set

cuðejÞ ¼
ffiffiffi
2
p

e j

u
5� uffiffiffi

2
p iej

; 1e j e 2l 0:ð6:6Þ

For u > 0, T > 0, let

L
3;y0

u;T=u
;M 3;y0

u A
�
p�WLðT �RSÞ n̂nEnd

�
LðT �RYgÞ n̂n x

�
n̂n cðNYg=X ;RÞ

�
y0
nOp
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be the operators obtained from L
2;y0

u;T=u
;M 2;y0

u by replacing the Cli¤ord variables

cðejÞ ð1e j e 2l 0Þ by the operator cuðejÞ.

Let ~FFuðL3;y0

u;T=u
ÞðZ;Z 0Þ ðZ;Z 0 A ðTRXÞy0

Þ be the smooth kernel associated to ~FFuðL3;y0

u;T=u
Þ

calculated with respect to dvðTXÞy0
ðZ 0Þ=ð2pÞdim X . We can still expand ~FFuðL3;y0

u;T=u
Þðg�1Z;ZÞ

as in (5.25), the di¤erence being that in the right hand side of (5.25), l 00 is replaced by l 0, and
NXg=X by NYg=X . We define

½ ~FFuðL3;y0

u;T=u
Þðg�1Z;ZÞ�max A

�
p�WLðT �RSÞ n̂n cðNYg=X ;RÞ n̂nEndðxÞ

�
y0

as in (5.26), l 00 being replaced by l 0.

Also cðNYg=X ;RÞ n̂nEndðxÞ acts on
�
LðN �Yg=X Þ n̂n x

�
y0

, and so the supertrace of ele-
ments in this algebra is well defined.

We now extend [B4], Proposition 12.7, [B5], Proposition 12.4:

Theorem 6.3. For any u > 0, T > 0, y0 A Wg, Z A NYg=X ;R;y0
, Z e

e

8u
, the following

identity holds:

u2 dim NYg=X Trs½gNH
~FFuð ~AA2

u;T=uÞðg�1uZ; uZÞ�k 00ðy0; uZÞð6:7Þ

¼ ð�iÞdim Yg Trs½gNH½ ~FFuðL3;y0

u;T=u
Þðg�1Z;ZÞ�max�:

Proof. Observe that since g acts as the identity on TYg, applying Getzler rescaling
on g does not change g. By using (6.5), our theorem is a trivial consequence of [BL], Propo-
sition 11.2. r

6.3. The asymptotics of the operator L
3, y0

u,T/u as u? 0. If

C A
�
p�VLðT �RSÞ n̂n cðT �RXÞ n̂nEndðxÞ

�
Z
;

let C
ð3Þ
u A

�
p�VLðT �RSÞ n̂nEnd

�
LðT �RYgÞ n̂n x

�
n̂n cðNYg=X ;RÞ

�
y0

be the operator obtained
from C by the trivialization indicated in Section 5.4, and by making the Getzler rescaling
in Definition 6.2. By as in [B5], (11.67), and (5.33), we get

L
3;y0

u;T=u
¼M 3;y0

uð6:8Þ

þ r2ðuZÞ
��

T 2

u2
V 2 þ T

u
f a‘x

f
H;W
a

V þ
P2l

i¼1

TcðteiÞ‘x
tei

V

�
ðuZÞ

�ð3Þ
u

þ T 2

u2

�
1� r2ðuZÞ

�
P

xþy0 :

Let ig : Wg ! V be the embedding. Then we have the obvious extension of [B5], The-
orem 12.6:

Theorem 6.4. As u! 0,

M 3;y0
u !M

3;y0

0 ¼ � 1

2

P2l

i¼1

‘ei
þ 1

2
hi�g RTX

y0
Z; eii

� �2

þ i�g R 0xy0
:ð6:9Þ
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Proof. We proceed as in the proof of (5.30). The main di¤erence is that because the
Cli¤ord variables cðeiÞ ð2l 0 þ 1e ie 2lÞ are not rescaled, they ultimately disappear in the
limit. Still, we use [B5], (11.61). r

Then we have an obvious extension of [B5], Theorem 12.7, by replacing i� there by i�g ,
as we only rescale the Cli¤ord variable cðeiÞ ð1e ie 2l 0Þ.

6.4. Proof of Theorem 3.10. Recall that we reduced the proof of Theorem 3.10 to
the proof of (6.1).

We have an identification of smooth vector bundles on Wg

TX ¼ TYg lNYg=X ; NYg=X ¼ NYg=Y lNY=X :

Let PNYg=Y be the orthogonal projection TX ! NYg=Y . Let R
LðN �

Y=X
Þ
;Rh be the curvatures of

the holomorphic Hermitian connections on
�
LðN �Y=X Þ; h

LðN �
Y=X
Þ�
; ðh; hhÞ.

We claim that using Theorems 6.4 and the corresponding extension of [B5], Theorem
12.7, the proof of (6.1) is essentially identical to the proof of [B4], Theorem 8.7, given in
[B4], §12. By using the arguments of Section 5.8, the obvious analogue of [B4], Theorem
12.11, holds. Namely, we obtain uniform estimates on the kernel ~FFuðL3;y0

u;T=u
ÞðZ;Z 0Þ and its

derivatives.

Theorem 6.5. There exists C > 0 such that for p A N, there exist C 0 > 0, r A N, for

which if u A �0; 1�, y0 A Wg, Z;Z 0 A NYg=X ;R; y0
, jZj; jZ 0je e=8u, then

j ~FFuðL3;y0

u;T=u
ÞðZ;Z 0ÞjeC 0ð1þ jPNY=X ZjÞ�pð6:10Þ

ð1þ jPNYg=Y ZjÞr expð�CjZ � Z 0j2Þ:

For M > 0, p 0 A N, there exists C 00 > 0 such that for u A �0; 1�, y0 A Wg, Z;Z 0 A ðTRX Þy0
,

jZj; jZ 0jeM,

sup
jaj; ja 0 jep 0

qjajþja
0j

qZaqZ 0 a
0
~FFuðL3;y0

u;T=u
ÞðZ;Z 0Þ


eC 00:ð6:11Þ

Let IGy0
be the vector spaces of Section 5.7 which are associated to xG instead of x. We

write the operator L
3;y0

u;T=u
in matrix form with respect to the splitting Iy0

¼ I�y0
l Iþy0

so that

L
3;y0

u;T=u
¼ Lu;1 Lu;2

Lu;1 Lu;2

� �
. Then by Theorems 6.4 and the corresponding extension of [B5],

Theorem 12.7, we obtain the analogue of [BL], (12.95). Namely, as u! 0,

Lu;1 ! B
2;y0

T 2 � i�g R
LðN �

Y=X
Þ

y0 þ i�g P
x�y0 Rx

y0
P

x�y0 :ð6:12Þ

The precise sense in which (6.12) holds is made explicit in [BL]. By the argument in
[BL], §12f ), the analogue of [BL], Theorem 12.16, holds. Namely for T > 0, y0 A Wg,
l A U ¼ fl A C;ReðlÞe d Im2ðlÞ � Ag, if A > 0 is large enough, and if d > 0 is small
enough, as u! 0, in the sense of distributions,
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ðl� L
3;y0

u;T=u
Þ�1 ! P

x�y0 ðl�B
2;y0

T 2 � i�g Rh
y0
Þ�1

P
x�y0 :ð6:13Þ

Let Q
y0

T 2ðZ;Z 0Þ ðZ;Z 0 A ðTRXÞy0
Þ be the smooth kernel associated to expð�B2;y0

T 2 Þ with re-

spect to dvTX ðZ 0Þ=ð2pÞdim X . By (5.41), Theorem 6.5 and (6.11), as in [B4], §12h), we find
that as u! 0, uniformly over compact sets in ðTRXÞy0

� ðTRXÞy0

~FFuðL3;y0

u;T=u
ÞðZ;Z 0Þ ! Q

y0

T 2ðZ;Z 0Þ expð�Rh
y0
Þ:ð6:14Þ

We decompose the integral in (6.2) by
Ð

x AX
dðx;YgÞee=8

þ
Ð

x AX
dðx;YgÞfe=8

. As in Remark 5.5, the first

integral converges to (6.1). If we apply the above argument to Wg ¼ j, we get x� ¼ 0 and
the right hand side of (6.13) is 0. Thus the second integral converges to 0 as u! 0.

The proof of (6.1) is completed. r

7. The analysis of the two parameter operator g exp(CA2
u,T ) in the range u A ]0, 1], Tk 1/u

The purpose of this section is to prove Theorem 3.11. This section is the extension of
[B5], §13, where Theorem 3.11 established when G is trivial, and of [B4], §13, where it was
considered when S is a point.

This section is organized as follows. In Section 7.1, we show that our problem is lo-
calized globally near W , and we prove Theorem 3.11 by using Theorem 7.2. In Section 7.2,
we construct a coordinate system and a trivialization of p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ n̂n x. In
Section 7.3, we rescale the coordinate Z A ðTRXÞy0

, and we use a Getzler rescaling on cer-
tain Cli¤ord variables. The operator ~AA2

u;T=u is then replaced by an operator L
3;y0

u;T . In Sec-
tions 7.4–7.6, we summarize very briefly the content of key subsections of [B5], §13.6–13.8,
and we indicate the di¤erence here. In Section 7.7, we establish key estimates on the kernel
of ~FFuðL3;y0

u;T Þ, and we prove Theorem 7.2.

We use the notation and assumptions of Sections 2, 3–6.

7.1. The problem is localizable near W . We use the notation of Section 5.2. Recall
that e; a > 0 are constants taken as in Section 5.2. Now we fix e > 0. The precise value of a
will be determined in Section 7.2.

If y A Y , U A ðTRYÞy, recall that t A R! yt ¼ expY
y ðtUÞ A Y is the geodesic in Y

such that y0 ¼ y,
dy

dt


t¼0

¼ U . If U 0 A NY=X ;R;y, we still denote by U 0 A NY=X ;R; expY
y ðUÞ the

parallel transport of U 0 with respect to ‘NY=X along t A ½0; 1� ! yt A Y .

We have the following extension of [B5], Theorem 13.1:

Theorem 7.1. There exist c > 0, C > 0, d A �0; 1� such that for u A �0; 1�, T f 1,

FTrs½gNH
~GGuðA2

u;T=uÞ� �
1

2
dim NY=XFTrs½g ~GGuðBW ;2

u2 Þ�
 e c

T d
exp

�C

u2

� �
:ð7:1Þ
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Proof. The proof of our theorem is essentially the same as the proof of [B5], Theo-
rem 13.1, as we pointed out in Section 4 that each step in [B5], §9, is G-invariant. r

In view of Theorem 7.1, to prove Theorem 3.11, we only need to show that there exist
C > 0, d > 0 such that for u A �0; 1�, T f 1,

FTrs½gNH
~FFuðA2

u;T=uÞ� �
1

2
dim NY=XFTrs½g ~FFuðBW ;2

u2 Þ�
 e C

T d
:ð7:2Þ

By (6.2), we will use instead the operator ~FFuð ~AA2
u;T=uÞ. By the results of Section 5.2, we know

that ~FFuð ~AA2
u;T=uÞðx; x 0Þ vanishes for x 0 B BX ðx; aÞ and only depends on the restriction of

~AA2
u;T=u to BX ðx; aÞ.

Recall that PNXg=X ;PNYg=Y ;PNY=X are the orthogonal projections from TX on

NXg=X ;NYg=Y ;NY=X . Let ~NN be the excess normal bundle ~NN ¼
TX jWg

TXgjWg
þ TY jWg

on Wg. We

have the exact sequence of holomorphic Hermitian vector bundles on Wg,

0! NYg=Xg
lNYg=Y ! NYg=X ! ~NN ! 0:ð7:3Þ

Moreover, NYg=Xg
and NYg=Y are mutually orthogonal in NYg=X . As usual, we identify ~NN (as

a smooth vector bundle) to the orthogonal bundle to NYg=Xg
lNYg=Y in NYg=X . So we have

an identification of smooth vector bundles,

NYg=X ¼ NYg=Xg
lNYg=Y l ~NN:ð7:4Þ

Let ‘NYg=Xg ;‘NYg=Y ;‘
~NN be the holomorphic Hermitian connections on NYg=Xg

;NYg=Y ; ~NN.

Take y0 A Wg. Set

Ue ¼ fðy0;Z0Þ A NYg=X ;R; jPNYg=Y Z0j < e; jPNY=X Z0j < eg:ð7:5Þ

We identify ðy0;Z0Þ A Ue to expX

expY
y0
ðPNYg=Y Z0Þ

ðPNY=X Z0Þ.

Let kðy0;Z0Þ ððy0;Z0Þ A NYg=X ;RÞ, k 0ðy0;Z
0
0Þ ððy0;Z

0
0Þ A NYg=Y ;RÞ be the smooth

functions defined by

dvX ðy0;Z0Þ ¼ kðy0;Z0Þ dvYg
ðy0ÞdvNYg=X

ðZ0Þ;ð7:6Þ

dvY ðy0;Z
0
0Þ ¼ k 0ðy0;Z

0
0Þ dvYg

ðy0Þ dvNYg=Y
ðZ 00Þ:

Then kðy0; 0Þ ¼ k 0ðy0; 0Þ ¼ 1, and k 0 is the restriction of k to NYg=Y ;R. Let
~FFuðBW ;2

u2 Þðy; y 0Þ ðy; y 0 A Y Þ be the smooth kernel associated to ~FFuðBW ;2
u2 Þ with respect to

the volume element dvY ðy 0Þ=ð2pÞdim Y . Clearly,
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Ð
Ue=8

Trs½gNH
~FFuð ~AA2

u;T=uÞðg�1x; xÞ� dvX ðxÞ
ð2pÞdim X

ð7:7Þ

¼ 1

2p

� �dim X Ð
Yg

dvYg
ðy0Þ

Ð
Z0 ANYg=X ;R

jPNYg=Y Z0j<e=8u

jPNY=X Z0j<e
ffiffiffi
T
p

=8u

u2 dim NYg=X

T dim NY=X

Trs

"
gNH

~FFuð ~AA2
u;T=uÞ

 
g�1 y0; uPNYg=Y Z0 þ

uffiffiffiffi
T
p PNY=X Z0

� �
;

y0; uPNYg=Y Z0 þ
uffiffiffiffi
T
p PNY=X Z0

� �!#

k y0; uPNYg=Y Z0 þ
uffiffiffiffi
T
p PNY=X Z0

� �
dvNYg=X

ðZ0Þ:

Now we state an extension of [B4], Theorem 13.6, [B5], Theorem 13.2.

Theorem 7.2. If e; a are small enough, for any p A N, there exists C > 0 such that for

u A �0; 1�, T f 1, y0 A Wg, Z0 A ðNYg=X ;RÞy0
, jPNY=X Z0je

e
ffiffiffiffi
T
p

8u
, jPNYg=Y Z0je

e

8u
, then

u2 dim NYg=X

T dim NY=X

Trs

"
gNH

~FFuð ~AA2
u;T=uÞ

 
g�1 y0; uPNYg=Y Z0 þ

uffiffiffiffi
T
p PNY=X Z0

� �
;ð7:8Þ

y0; uPNYg=Y Z0 þ
uffiffiffiffi
T
p PNY=X Z0

� �!#
eC 0ð1þ jPNYg=Xg Z0jÞ�p expð�CjPNXg=X Z0j2Þ:

There exist C 00 > 0, d 0 A �0; 1=2� such that under the same conditions as before, we have

ð7:9Þ 1

2p

� �dim X
u2 dim NYg=X

T dim NY=X
Trs

"
gNH

~FFuð ~AA2
u;T=uÞ

 
g�1 y0; uPNYg=Y Z0 þ

uffiffiffiffi
T
p PNY=X Z0

� �
;

y0; uPNYg=Y Z0 þ
uffiffiffiffi
T
p PNY=X Z0

� �!#
k y0; uPNYg=Y Z0 þ

uffiffiffiffi
T
p PNY=X Z0

� �

� udim NYg=Y
expð�jPNY=X Z0j2Þ

pdim NY=X

dim NY=X

2

1

2p

� �dim Y

Trs

	
g ~FFuðBW ;2

u2 Þ
�
g�1ðy0; uPNYg=Y Z0Þ; ðy0; uPNYg=Y Z0Þ

�

k 0ðy0; uPNYg=Y Z0Þ


e

C 00

T d 0
:
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Proof. The remainder of this section is devoted to the proof of Theorem 7.2. r

Proof of Theorem 3.11. Using (7.7) and Theorem 7.2, it is clear that there exists
C > 0 such that for u A �0; 1�, T f 1, ÐUe=8

Trs½gNH
~FFuð ~AA2

u;T=uÞðg�1x; xÞ� dvX ðxÞ
ð2pÞdim X

ð7:10Þ

�
dim NY=X

2

Ð
Ue=8XW

Trs½g ~FFuðBW ;2
u2 Þðg�1y; yÞ� dvY ðyÞ

ð2pÞdim Y

e C

T d 0=2
:

As before, the integrals in (7.10) are the integrals along the fibre on S. Observe that for
y A W , if y B Ue=8 XW , then d Y ðg�1y; yÞf a. But by using again finite propagation speed,
it is clear that

g ~FFuðBW ;2
u2 Þðg�1y; yÞ ¼ 0 if d Y ðg�1y; yÞf a:ð7:11Þ

By applying Theorem 7.2 to the case where Y ¼ j, we find that

Ð
VnUe=8

Trs½gNH
~FFuð ~AA2

u;T=uÞðg�1x; xÞ� dvX ðxÞ
ð2pÞdim X


e C

T d 0=2
:ð7:12Þ

By (6.2), (7.10), (7.11), (7.12), we get (7.2). The proof of Theorem 3.11 is completed. r

7.2. A local coordinate system near y0 AA Wg and a trivialization of

p*
VL(T *

RS ) n̂nnL(T *(0, 1)X ) n̂nn x. In [B5], Definition 13.4, by parallel transport along the
geodesics normal to Y with respect to the connection ‘TX , from the smooth splitting
TX jW ¼ TY lNY=X on W , we get a smooth orthogonal splitting TX ¼ TX 1 lTX 2 near

W . Let PTX 1
;PTX 2

be the orthogonal projections from TX on TX 1;TX 2.

Also a connection 0‘TX ¼ ‘TX 1

l‘TX 2

on TX ¼ TX 1 lTX 2 is constructed in [B5],
§13.2, by projecting orthogonally ‘TX on TX 1;TX 2. On W , ‘TX 1

;‘TX 2

restrict to the holo-
morphic Hermitian connections ‘TY ;‘NY=X on ðTY ; hTY Þ; ðNY=X ; h

NY=X Þ. For details, we
refer to [B5], §13.2.

Take y0 A Wg. Recall that Yg is totally geodesic in Y . So if Z 00 A ðTRYgÞy0
, then

t! yt ¼ expY
y0
ðtZ 00Þ A Yg is the geodesic in Yg such that yjt¼0 ¼ y0,

dy

dt


t¼0

¼ Z 00.

If Z 00 A ðTRYgÞy0
, Z 00 A NYg=X ;R;y0

, we still denote by Z 00 A NYg=X ;R; expY
y0
ðZ 00Þ the parallel

transport of Z 00 along the curve t A ½0; 1� ! expY
y0
ðtZ 00Þ with respect to the connection

‘NYg=Xg l‘NYg=Y l‘
~NN .

If y A W , Z A ðTRYÞy, Z 0 A NY=X ;R;y, we still denote by Z 0 A NY=X ;R; expY
y ðZÞ the par-

allel transport of Z 0 with respect to ‘NY=X along the curve t A ½0; 1� ! expY
y ðtZÞ.

Ultimately, if Z A ðTRX Þy0
, jZj < e, we identify Z to
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expX

expY

exp Y
y0
ðP TYg ZÞ

ðPNYg=Y ZÞ
ðPNY=X ZÞ A X :

Let Weðy0Þ be the open neighbourhood of y0 in X , given by

Weðy0Þ ¼ fZ A ðTRX Þy0
; jPTY Zj < e; jPNY=X Zje eg:

Clearly, there exists a0ðeÞ > 0 such that for y0 A Wg, Z0 A NY=X ;R;y0
, jZ0j < e=8, the

open Riemannian ball in X , BX
�
Z0; a0ðeÞ

�
, is contained in We=2ðy0Þ. In particular,

0 < a0ðeÞe e=2e aY=4. We fix a A


0; inf

�
a0ðeÞ; e=8

�

small enough.

Let k 00ðZ0Þ, Z0 A ðTRXÞy0
, jZ0j < e, k 000ðZ 00Þ, Z 00 A ðTRY Þy0

, jZ 00j < e be the functions
defined by

dvX ðZ0Þ ¼ k 00ðZ0Þ dvTX ðZ0Þ;ð7:13Þ

dvY ðZ 00Þ ¼ k 000ðZ 00Þ dvTY ðZ 00Þ:

Then by (7.6), (7.13), one easily verifies that if Z0 A NYg=X ;R;y0
, Z 00 A NYg=Y ;R;y0

,

k 00ðZ0Þ ¼ kðy0;Z0Þ; k 000ðZ 00Þ ¼ k 0ðy0;Z 00Þ:ð7:14Þ

As in Section 6.2, let e1; . . . ; e2l 0 ; e2l 0þ1; . . . ; e2l 000 and e2l 000þ1; . . . ; e2l be orthonormal
bases of ðTRYgÞy0

;NYg=Y ;R;y0
and NY=X ;R;y0

. Then e1; . . . ; e2l is an orthonormal basis of

ðTRXÞy0
. Let 3‘p�

V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞ be the connection on p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ along

the fibres X over Ue defined in [B5], Definition 13.5. Put (cf. (5.16))

3‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞ;u ¼ cu

3‘p�
V
LðT �

R
SÞn̂nLðT�ð0; 1ÞXÞc�1

u :ð7:15Þ

Take u A �0; 1�. If Z A ðTRXÞy0
, we identify

�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ

�
Z

(resp. xZ) to�
p�VLðT �RSÞ n̂nLðT�ð0;1ÞXÞ

�
y0

(resp. xy0
) by parallel transport with respect to the connec-

tion 3‘p�VLðT �RSÞn̂nLðT�ð0; 1ÞX Þ;u (resp. ~‘‘x) along the path

t A ½0; 3� ! tPTYg Z; 0e te 1;ð7:16Þ

PTYg Z þ ðt� 1ÞPNYg=Y Z; 1e te 2;

PTY Z þ ðt� 2ÞPNY=X Z; 2e te 3:

Remark that by [B5], §13.2, for 2e te 3, parallel transport with respect to 0‘TX coincides
with parallel transport with respect to ‘TX .

If U A ðTRXÞy0
, Z A Weðy0Þ, let 0tUðZÞ be the parallel transport of U along the curve

(7.16) with respect to 0‘TX .

Let L1;y0

u;T ;M1;y0

u;T be the operators acting on Hy0
defined in [B5], Definition 13.7. Let

~FFuðL1;y0

u;T ÞðZ;Z 0Þ ðZ;Z 0 A ðTRXÞy0
Þ be the smooth kernel associated to ~FFuðL1;y0

u;T Þ, calcu-
lated with respect to dvTX ðZ 0Þ=ð2pÞdim X . By using finite propagation speed, it is clear that if
Z0 A NYg=X ;R;y0

, jZ0je e=8, as in (5.20),
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Trs

	
gNH

~FFuð ~AA2
u;T=uÞ

�
g�1ðy0;Z0Þ; ðy0;Z0Þ

�

k 00ðZ0Þð7:17Þ

¼ Trs

	
gNH

~FFuðL1;y0

u;T Þ
�
g�1ðy0;Z0Þ; ðy0;Z0Þ

�

:

7.3. Rescaling of the variable Z and of the Cli¤ord variables. For u > 0, T > 0, let
Gu;T be the linear map h A Hy0

! Gu;T h A Hy0
such that if Z A ðTRXÞy0

,

Gu;T hðZÞ ¼ h
PTY Z

u
þ

ffiffiffiffi
T
p

u
PNY=X Z

� �
:ð7:18Þ

Set

L
2;y0

u;T ¼ G�1
u;TL

1;y0

u;T Gu;T ;ð7:19Þ

M
2;y0

u;T ¼ G�1
u;TM

1;y0
u Gu;T :

Definition 7.3. For u > 0, T > 0, let

L
3;y0

u;T ;M3;y0

u;T A
�
p�WLðT �RSÞ n̂nEnd

�
LðT �RYgÞ n̂n x

�
n̂n cðNYg=X ;RÞ

�
y0
nOp

be the operator obtained from L
2;y0

u;T ;M2;y0

u;T by replacing the Cli¤ord variables
cðejÞ ð1e j e 2l 0Þ by the operators cuðejÞ in Definition 6.2, while leaving unchanged the
cðejÞ ð2l 0 þ 1e j e 2lÞ.

Let ~FFuðL3;y0

u;T ÞðZ;Z 0Þ ðZ;Z 0 A ðTRXÞy0
Þ be the smooth kernel associated to ~FFuðL3;y0

u;T Þ
calculated with respect to dvðTXÞy0

ðZ 0Þ=ð2pÞdim X . We still define ½ ~FFuðL3;y0

u;T Þðg�1Z;ZÞ�max as
in Section 6.2.

Proposition 7.4. For any u > 0, T > 0, y0 A Wg, Z0 A NYg=X ;R;y0
, jPTY Z0je e=8u,

jPNY=X Zje e
ffiffiffiffi
T
p

=8u, the following identity holds:

u2 dim NYg=X

T dim NY=X
Trs

"
gNH

~FFuð ~AA2
u;T=uÞ

 
g�1 y0; uPNYg=Y Z0 þ

uffiffiffiffi
T
p PNY=X Z0

� �
;ð7:20Þ

y0; uPNYg=Y Z0 þ
uffiffiffiffi
T
p PNY=X Z0

� �!#
k 00 uPNYg=Y Z0 þ

uffiffiffiffi
T
p PNY=X Z0

� �
¼ ð�iÞdim Yg Trs½gNH½ ~FFuðL3;y0

u;T Þðg�1Z0;Z0Þ�max�:

Proof. Since g preserves the geodesics in X and Y and also the connections on the
vector bundles considered before, it is clear that g acts linearly in the coordinate Z0. Observe
also that since g acts as identity on TYg, applying Getzler rescaling on g does not change g.
Our theorem is now a trivial consequence of [BL], Proposition 13.17. r

7.4. A formula for L
3,y0

u,T . If C A
�
p�VLðT �RSÞ n̂n cðT �RX Þ n̂nEndðxÞ

�
Z
ðZ A ðTRXÞy0

Þ,
let C3

u A
�
p�WLðT �RSÞ n̂nEnd

�
LðT �RYgÞ n̂n x

�
n̂n cðNYg=X ;RÞ

�
y0

be the operator obtained from
C by the trivialization indicated in Section 7.2, and be making the Getzler rescaling in
Definition 7.3.
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The discussion in [B5], §13.6, applies with minor modifications. The main di¤erence is
that the Cli¤ord variables cðeiÞ ð2l 0 þ 1e ie 2l 000Þ are not rescaled, while they are rescaled
in [B5], §13. However this just introduces fewer diverging terms than in [B5], §13. In par-
ticular, [B5], Theorem 13.10, for M

2;y0

u;T still holds. We should modify the second equation
of [B5], (13.41), as following:

ð7:21Þ

T
P2l

i¼2l 0þ1

cð0teiÞffiffiffi
2
p

� �3

u

‘x
0tei

V uPTY Z þ uffiffiffiffi
T
p PNY=X Z

� �

¼ T
P2l

i¼2l 000þ1

cðeiÞffiffiffi
2
p ð‘x

0tei
VÞðuPTY ZÞ þ u

ffiffiffiffi
T
p P2l

i¼2l 000þ1

cðeiÞffiffiffi
2
p ~‘‘x

P
NY=X Z

‘x
0tei

VðuPTY ZÞ

þ T
P2l 000

i¼2l 0þ1

cð0teiÞffiffiffi
2
p

� �3

u

ð‘x
0tei

VÞðuPTY ZÞ

þ u
ffiffiffiffi
T
p P2l 000

i¼2l 0þ1

cð0teiÞffiffiffi
2
p

� �3

u

~‘‘x

P
NY=X Z

‘x
0tei

VðuPTY ZÞ þ OðujPNY=X Zj2Þ:

After this modification, the analogues of [B5], Theorem 13.11, still holds.

7.5. The algebraic structure of the operator L
3,y0

u,T as u? 0. By replacing i� by i�g in
the limits, the analogue of [B5], §13.7, still holds. In particular, by (4.3), as in [B5], (13.63),
as u! 0,

fu2cu
3‘p�

V
LðT �

R
SÞn̂nLðT�ð0; 1ÞX Þ;2ðZ; eiÞc�1

u g
3
uð7:22Þ

! hi�g RTX
y0

Z; eii� hi�g A2
y0

PTY Z;PTY eii:

Here Ay0
is the second fundamental form of TY HTX as in [B5], (1.32). Thus as u! 0, the

operator M3;y0

u;T converges to an operator M3;y0

0;T as in [B5], (13.64).

7.6. The algebraic structure of the operator L
3,y0

u,T as T?By. For a fixed u > 0,
the analysis of the matrix structure of L3;y0

u;T as T ! þy is the same as in [B5], §13.8. Of
course the rescaling on the Cli¤ord variables, which depends on u > 0, is di¤erent, but
again, this improves the situation, since there are fewer diverging terms. In particular, the
matrix structure of the operator is unchanged with respect to [B5], Theorem 13.14.

We still define the function gu;TðZÞ; ~gguðUÞ as in [B5], Definition 13.18. The algebra�
p�WLðT �RSÞ n̂nLðT �RYgÞ

�
y0

splits into

�
p�WLðT �RSÞ n̂nLðT �RYgÞ

�
y0
¼
L

r

� L
pþq¼r

�
p�WLpðT �RSÞ n̂nLqðT �RYgÞ

�
y0

�
ð7:23Þ

¼
L

r

�
p�WLðT �RSÞ n̂nLðT �RYgÞ

�r

y0
:

Then we introduce the obvious modification of the system of norms j ju;T ;y0; j, j ¼ �1; 0; 1
of [B5], Definitions 13.19 and 13.20, adapted to the splitting (7.23).
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In view of Sections 7.4, 7.5, it should now be clear that the functional analytic argu-
ments of [BL], §13k)–13o), can be used without any change. In particular, we choose T0 f 1
as in [BL], Theorem 13.27.

7.7. Uniform estimates of the kernel of ~FFu(L
3,y0

u,T ). We now state an extension of
[B4], Theorem 13.14:

Theorem 7.5. There exists C > 0 such that for any p A N, there exists C 0 > 0
such that if u A �0; 1�, T fT0, y0 A Wg, Z0;Z

0
0 A ðTRXÞy0

, jPNY=X Z0j; jPNY=X Z 00je e
ffiffiffiffi
T
p

=4u,
jPTY Z0j; jPTY Z 00je e=4u, then

j ~FFuðL3;y0

u;T ÞðZ0;Z
0
0ÞjeC 0ð1þ jPNY=X Z0jÞ�pð7:24Þ

� ð1þ jPTY Z0jÞ2l expð�CjZ0 � Z 00j
2Þ:

There exists C > 0 such that if p 0 A N, there exists C 0 > 0 such that if jaj; ja 0je p 0, u A �0; 1�,
T fT0, y0 A Wg, Z0;Z

0
0 A ðTRX Þy0

,

qjajþja
0j

qZa
0qZ 00

a 0
~FFuðL3;y0

u;T ÞðZ0;Z
0
0Þ


ð7:25Þ

eC 0ð1þ jZ0jÞ2l expð�CjZ0 � Z 00j
2Þ:

Proof. The bounds in (7.24), (7.25) with C ¼ 0 are easily obtained by proceeding as
in the proof of [BL], Theorem 13.32. To get the required C > 0, we proceed as in the proof
of Theorem 5.12. Using finite propagation speed, we see that there is C 00 > 0 such that if
jZ0 � Z 00jfC 00q, then

~FFuðL3;y0

u;T ÞðZ0;Z
0
0Þ ¼ ~KKu;qðL3;y0

u;T ÞðZ0;Z 00Þ:ð7:26Þ

By (5.40), as in Section 5.8 and [B4], §11h), we get (7.24), (7.25). r

Let Xy0
u be the analogue of the elliptic second order di¤erential operator considered in

[B5], Definition 13.21.

Let ‘p�
W
LðT �

R
SÞn̂nLðT�ð0; 1ÞY Þ be the connection on p�WLðT �RSÞ n̂nLðT�ð0;1ÞY Þ along the

fibre Y defined in [B5], (11.32), for the fibration pW : W ! S.

If U A BTY
y0
ð0; eÞ, we identify�

p�WLðT �RSÞ n̂nLðT�ð0;1ÞY Þ
�

U
; hU with

�
p�WLðT �RSÞ n̂nLðT�ð0;1ÞYÞ

�
y0
; hy0

by parallel transport with respect to the connection cu‘
p�WLðT �

R
SÞn̂nLðT�ð0; 1ÞYÞc�1

u , ‘h along
the path

t A ½0; 2� ! tPTYgZ; 0e te 1;ð7:27Þ

PTYg Z þ ðt� 1ÞPNYg=Y Z; 1e te 2:
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Let S3;y0
u be the analogue of the operator considered in [B5], §13.11. The minor di¤erence

with [B5], §13.11, is that here, only the Cli¤ord variables cðeiÞ ð1e ie 2l 0Þ are rescaled,
while in [B5], §13.11, the Cli¤ord variables cðeiÞ ð1e ie 2l 000Þ were rescaled (cf. [B4], §13j)).
Now we have the obvious extension of [B5], Theorem 13.22:

Theorem 7.6. Over BTY
y0
ð0; e=2uÞ, the following identity holds:

S3;y0
u ¼ Xy0

u :ð7:28Þ

Again (4.3) plays an important role to get (7.28) (cf. [B5], p. 233). Using Theorem 7.5
and (7.28), and proceeding as in [BL], §13q), we get Theorem 7.2. r

8. A proof of Theorem 0.2

The proof of Theorem 0.2 is the same as the proof of [B5], Theorem 0.2. We just need
to add g at each step in [B5], §14.

This concludes the proof of Theorem 0.2.
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