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EQUIDISTRIBUTION SPEED FOR FEKETE POINTS
ASSOCIATED WITH AN AMPLE LINE BUNDLE

 T-C DINH, X MA  V-A NGUYÊN

A. – LetK be the closure of a bounded open set with smooth boundary in Cn. A Fekete
configuration of order p for K is a finite subset of K maximizing the Vandermonde determinant
associated with polynomials of degree� p. A recent theorem by Berman, Boucksom and Witt Nyström
implies that Fekete configurations forK are asymptotically equidistributed with respect to a canonical
equilibrium measure, as p ! 1. We give here an explicit estimate for the speed of convergence. The
result also holds in a general setting of Fekete points associated with an ample line bundle over a
projective manifold. Our approach requires a new estimate on Bergman kernels for line bundles and
quantitative results in pluripotential theory which are of independent interest.

R. – Soit K l’adhérence d’un ouvert borné à bord lisse dans Cn. Une configuration de
Fekete d’ordre p pourK est un sous-ensemble fini deK qui maximise le déterminant de Vandermonde
associé aux polynômes de degré � p. Un théorème récent de Berman, Boucksom et Witt Nyström
implique que les configurations de Fekete sont asymptotiquement équiréparties par rapport à une
mesure d’équilibre canonique quand p ! 1. Nous donnons ici une estimation précise de la vitesse
de convergence. Le résultat est aussi valable dans un cadre général des points de Fekete associés à
un fibré en droites ample au-dessus d’une variété projective. Notre approche nécessite une estimation
nouvelle sur les noyaux de Bergman pour les fibrés en droites et des résultats quantitatifs de la théorie
du pluripotentiel qui sont d’intérêt indépendant.

Notation. – Throughout the paper, L denotes an ample holomorphic line bundle over a
projective manifold X of dimension n. Fix also a smooth Hermitian metric h0 on L whose
first Chern form, denoted by !0, is a Kähler form. For simplicity, we use the Kähler metric
on X induced by !0. The induced distance is denoted by dist. Define �0 WD k!n0k

�1!n0 the
probability measure associated with the volume form!n0 . The space of holomorphic sections
of Lp WD L˝p, the p-th power of L, is denoted by H 0.X;Lp/. Its dimension is denoted
by Np. The metric h0 induces, in a canonical way, metrics on the line bundle Lp over X , the
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vector bundle of the product Lp � � � � �Lp (Np times) overXNp , and the determinant of the
last one which is a line bundle overXNp and denoted by .Lp/�Np . For simplicity, the norm,
induced by h0, of a section of these vector bundles is denoted by j � j.

A general singular metric on L has the form h D e�2 h0, where  is an integrable
function onX with values in R[f˙1g. Such a function  is called a weight. It also induces
singular metrics on the above vector bundles, and we denote by j�jp the corresponding norm
of a section of Lp or the associated determinant line bundle over XNp . This is a function
onX orXNp respectively. IfK is a subset ofX , the supremum onK orKNp of this function
is denoted by k � kL1.K;p / or k � kL1.KNp ;p /. Its L2.�/ or L2.�˝Np /-norm is denoted
by k � kL2.�;p / or k � kL2.�˝Np ;p /, where � is a probability measure on X . We sometimes
drop the power Np for simplicity. In the same way, we often add the index “ ” or “p ,” if
necessary, to inform the use of the weight  for L and hence p for Lp.

The notations �p.�; �/, Bp.�; �/ will be introduced in Subsection 2.3, B
1

p .K; �/,

B
2
p.�; �/, Lp.K; �/, Lp.�; �/, E .�/, E eq.K; �/ in Subsection 3.1, and Vp.�1; �2/,

W.�1; �2/, "p, Dp.K; �/ in Subsection 3.2. Let B.x; r/ denote the ball of center x and
radius r in X or in an Euclidean space. Similarly, D.x; r/ is the disk of center x and radius
r in C, Dr WD D.0; r/ and D WD D.0; 1/. The Lebesgue measure on an Euclidean space is
denoted by Leb. The operators d c and dd c are defined by

d c WD

p
�1

2�
.@ � @/ and dd c WD

p
�1

�
@@:

For m 2 N and 0 < ˛ � 1, Cm;˛ is the class of Cm functions/differential forms whose
partial derivatives of order m are Hölder continuous with Hölder exponent ˛. We have
Cm;˛ D CmC˛ except for ˛ D 1. We use the natural norms on these spaces and for simplicity,
define k � km WD 1 C k � kCm and k � km;˛ WD 1 C k � kCm;˛ . Denote by Lip the space of
Lipschitz functions which is also equal to C 0;1 and by gLip the space of functions v such that
jv.x/�v.y/j . � dist.x; y/ log dist.x; y/ for x; y close enough. We endow the last space with
the norm

kvkgLip WD kvk1 C inf
˚
A � 0 W jv.x/ � v.y/j � �A dist.x; y/ log dist.x; y/ if dist.x; y/ � 1=2

	
:

A function � W X ! R [ f�1g is called quasi-plurisubharmonic (quasi-p.s.h. for short)
if it is locally the sum of a plurisubharmonic (p.s.h. for short) and a smooth function. A
quasi-p.s.h. function � is called !0-p.s.h. if dd c� C !0 � 0 in the sense of currents. Denote
by PSH.X; !0/ the set of such functions. If � is a bounded function in PSH.X; !0/, define
the associated Monge-Ampère measure and normalized Monge-Ampère measure by

MA.�/ WD .dd c� C !0/n and NMA.�/ WD kMA.�/k�1MA.�/:

So MA.�/ is a positive measure and NMA.�/ is a probability measure on X . A quasi-p.s.h.
function � is called strictly !0-p.s.h. if dd c� C !0 is larger than a Kähler form in the sense
of currents, see [11, 14] for the basic notions and results of pluripotential theory.

Some remarks. – The constants involved in our computations below may depend onX;L; h0
and hence on !0 and �0. However, they do not depend on the other weights used for the
line bundle L but only on the upper bounds of suitable norms (C ˛, gLip, ...) of these weights.
This property can be directly seen in our arguments. For simplicity, we will not repeat it in
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each step of the proofs. The notations & and . mean inequalities up to a positive multiple
constant.

1. Introduction

Let K be a non-pluripolar compact subset of Cn. The pluricomplex Green function of K,
denoted by V �K .z/, is the upper-semicontinuous regularization of the Siciak-Zahariuta
extremal function

VK.z/ WD sup
˚
u.z/ W u p.s.h. on Cn; ujK � 0; u.w/ � log kwk D O.1/ as w !1

	
:

This function V �K is locally bounded, p.s.h. and .dd cV �K /
n defines a probability measure with

support in K. It is called the equilibrium measure of K and denoted by �eq.K/, see [29, 32].
Let Pp be the set of holomorphic polynomials of degree � p on Cn. This is a complex

vector space of dimension

Np WD

 
p C n

n

!
D

1

nŠ
pn CO.pn�1/:

Let .e1; : : : ; eNp / be a basis of Pp. Define forP D .x1; : : : ; xNp / 2 .Cn/Np the Vandermonde
determinant W.P / by

W.P / WD det

0BB@
e1.x1/ : : : e1.xNp /

:::
: : :

:::

eNp .x1/ : : : eNp .xNp /

1CCA :
A point P 2 KNp is called a Fekete configuration for K if the function jW.�/j, restricted
to KNp , achieves its maximal value at P . It is not difficult to check that this definition does
not depend on the choice of the basis .e1; : : : ; eNp /, see [28].

Recently, Berman, Boucksom and Witt Nyström have proved that Fekete points
x1; : : : ; xNp are asymptotically equidistributed with respect to the equilibrium measure
�eq.K/ as p tends to infinity [3]. This property had been conjectured for quite some time,
probably going back to the pioneering work of Leja in [19, 20], where the dimension 1 case
was obtained. See also [22, 28] for more recent references on this topic. More precisely, let

�p WD
1

Np

NpX
jD1

ıxj

denote the probability measure equidistributed on x1; : : : ; xNp . We call it a Fekete measure
of order p. The above equidistribution result says that in the weak-� topology

lim
p!1

�p D �eq.K/:

In fact, this theorem by Berman, Boucksom and Witt Nystöm holds in a more general
context of Fekete points associated with a line bundle. We will discuss this case later together
with an interesting new approach by Ameur, Lev and Ortega-Cerdà [1, 21].

Fekete points are well known to be useful in several problems in mathematics and math-
ematical physics. It is therefore important to study the speed of the above convergence. For
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this purpose, it is necessary to make some hypothesis on the compact setK. For instance, we
have the following result, see also Corollary 1.6.

T 1.1. – Let K be the closure of a bounded non-empty open subset of Cn with C 2

boundary. Then for all 0 <  � 2 and " > 0, there is a constant c D c.K; ; "/ > 0, independent
of p > 1, such that

jh�p � �eq.K/; vij � ckvkCp
�=36C"

for every Fekete measure �p of order p and every test function v of class C  on Cn.

In fact, our result is still true in a more general setting that we will state below after
introducing necessary notation and terminology.

LetL be an ample holomorphic line bundle over a projective manifoldX of dimension n.
Fix a smooth Hermitian metric h0 on L whose first Chern form !0 WD

p
�1
2�

RL0 is a Kähler
form, where RL0 is the curvature of the Chern connection on .L; h0/.

D 1.2. – We call weighted compact subset of X a data .K; �/, where K is a
non-pluripolar compact subset of X and � is a real-valued continuous function on K. The
function � is called a weight onK. The equilibrium weight associated with .K; �/ is the upper
semi-continuous regularization ��K of the function

�K.z/ WD sup
˚
 .z/ W  !0-p.s.h.;  � � on K

	
:

We call equilibrium measure of .K; �/ the normalized Monge-Ampère measure

�eq.K; �/ WD NMA.��K/:

Note that the equilibrium measure�eq.K; �/ is a probability measure supported byK and
��K D �K almost everywhere with respect to this measure, see e.g., [2].

D 1.3. – Denote by PK the projection onto PSH.X; !0/ which associates �
with ��K . We say that .K; �/ is regular if �K is upper semi-continuous, i.e., PK� D �K . Let
.E; k kE / be a normed vector space of functions on K and .F; k kF / a normed vector space
of functions on X . We say that K is .E; F /-regular if .K; �/ is regular for � 2 E and if the
projection PK sends bounded subsets of E into bounded subsets of F .

We will see in Theorem 2.7 below that when K is the closure of an open set with C 2

boundary, then it is .C ˛;C ˛/-regular for 0 < ˛ < 1, i.e., .E; F /-regular with E D C ˛.K/

and F D C ˛.X/.
Consider now an integrable real-valued function  on X and the singular Hermitian

metric h WD e�2 h0 on the line bundle L. We will use the notations given at the beginning
of the paper. Consider also a basis Sp D .s1; : : : ; sNp / of the vector spaceH 0.X;Lp/, where
Np WD dimH 0.X;Lp/. This basis can be seen as a section of the rank Np vector bundle
over XNp which is the product Lp � � � � �Lp (Np-times). The determinant line bundle asso-
ciated with this vector bundle is denoted by .Lp/�Np . The determinant det.si .xj //1�i;j�Np
for P D .x1; : : : ; xNp / in XNp defines a section of the last line bundle over XNp that we will
denote by detSp or det.si .xj //. The metric h0 induces in a canonical way a metric .hp0 /

�Np

on .Lp/�Np . As mentioned above, we denote by j det.si .xj //j the norm of det.si .xj //
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with respect to .hp0 /
�Np . For P D .x1; : : : ; xNp / in XNp , we will consider the weighted

Vandermonde determinant

j det.si .xj //jp WD j det.si .xj //je�p .x1/�����p .xNp /:

The following notion does not depend on the choice of the basis Sp D .s1; : : : ; sNp /.

D 1.4. – The point P D .x1; : : : ; xNp / in KNp is called a Fekete configuration
of order p of .L; h0/ in the weighted compact set .K; �/ if the above weighted Vandermonde
determinant, restricted to KNp , achieves its maximal value at P . The associated probability
measure

1

Np
.ıx1 C � � � C ıxNp /;

on K is called a Fekete measure of order p.

In order to study the speed of equidistribution of Fekete points, it is convenient to use
some distance notions on the space M .X/ of (Borel) probability measures onX . For  > 0,
define the distance dist between two measures � and �0 in M .X/ by

dist .�; �0/ WD sup
kvkC�1

ˇ̌
h� � �0; vi

ˇ̌
;

where v is a test smooth real-valued function. This distance induces the weak topology
on M .X/. By interpolation between Banach spaces (see [14, 31]), for 0 <  �  0, there
exists c > 0 such that

dist 0 � dist � cŒdist 0 �=
0

:(1.1)

Note that dist1 is equivalent to the classical Kantorovich-Wasserstein distance.

Here is our main result which is the version of Theorem 1.1 in the general setting. It is
already interesting for K D X .

T 1.5. – Let X;L; h0 be as above and K a non-pluripolar compact subset of X .
Let 0 < ˛ � 2, 0 < ˛0 � 1 and 0 <  � 2 be constants. Assume that K is .C ˛;C ˛0/-regular.
Let � be a C ˛ real-valued function onK and�eq.K; �/ the equilibrium measure associated with
the weighted set .K; �/. Then, there is c > 0 such that for every p > 1 and every Fekete measure
�p of order p associated with .K; �/, we have

dist .�p; �eq.K; �// � cp
�ˇ .logp/3ˇ with ˇ WD ˛0=.24C 12˛0/:

We will see later in Theorem 2.7 that the hypothesis onK is satisfied for ˛ D ˛0 < 1 when
K is the closure of an open set with C 2 boundary (we think that the techniques we use can
be applied to study other classes of compact sets but we don’t develop this direction here).
So the result below is a consequence of Theorem 1.5 for ˛ D ˛0 < 1.

C 1.6. – LetX;L; h0 be as above andK the closure of a non-empty open subset
of X with C 2 boundary. Let � be a C ˛ real-valued function on K, 0 < ˛ < 1, and �eq.K; �/

the equilibrium measure associated with .K; �/. Then, for every 0 <  � 2, there is c > 0 such
that for every p > 1 and every Fekete measure �p of order p associated with .K; �/, we have

dist .�p; �eq.K; �// � cp
�ˇ .logp/3ˇ with ˇ WD ˛=.24C 12˛/:
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When X is the projective space Pn and L is the tautological line bundle O.1/ on Pn, we
can consider X as the natural compactification of Cn and the sections in H 0.X;Lp/ D

H 0.Pn; O.p// can be identified to polynomials of degree � p on Cn. We then see that
Theorem 1.1 is a particular case of the last corollary.

Our theorem applies to the case where K D X and � is a smooth function on X . If
the metric h WD e�2�h0 of L has strictly positive curvature form, our approach gives an
estimate better than the one in the last theorem. Namely, we have the following result, see
also Remark 3.15.

T 1.7. – LetX;L and h0 be as above. Let � be a C 3 real-valued function onX such
that the first Chern form of the metric h WD e�2�h0 is strictly positive. Let �eq.X; �/ denote
the equilibrium measure associated with the weighted set .X; �/. Then for any 0 <  � 3, there
is c > 0 such that

dist .�p; �eq.X; �// � cp
�=12.logp/=4

for all p > 1 and all Fekete measures �p of order p associated with .X; �/.

This result is close to the one recently obtained by Lev and Ortega-Cerdà in [21]. These
authors proved that when � is smooth !0-strictly p.s.h., there is a constant c > 0 such that

c�1p�1=2 � dist1.�p; �eq.X; �// � cp
�1=2(1.2)

for all p and Fekete measures �p of order p associated with .X; �/. Using (1.1), we can
deduce similar estimates for dist with 0 <  � 1. So the result of Lev and Ortega-Cerdà
is optimal for 0 <  � 1 in their assumption. Although for 0 <  � 1 estimate in
Theorem 1.7. is weaker than (1.2) and its interpolated version, our assumption of smoothness
for � is only C 3 and can be easily reduced to C ˛ with similar estimates depending on ˛, see
Remark 3.15. Of course, in the case where the curvature of the metric induced by � is only
semi-positive or even not semi-positive, one can apply Corollary 1.6 to K D X .

In their approach, Lev and Ortega-Cerdà relate the equidistribution of Fekete points to
the problem of sampling and interpolation on line bundles as in a previous work by Ameur
and Ortega-Cerdà [1]. The main ingredients of their method consist in using Toeplitz oper-
ators as well as known asymptotic expansions for the Bergman kernels on/off the diagonal
ofX �X due to [8, 24, 30, 33], cf. also [25, 26]. The key points here are (1) the Fekete config-
urations are also sampling and interpolation, and (2) the points of such a configuration are
geometrically equidistributed. These crucial properties are obtained using the assumption
that the metric weight � is smooth !0-strictly p.s.h.

Our approach is different because our metric weight � is, in general, only Hölder contin-
uous and it may originally be defined on a proper compact setK � X . In this context,PK� is
only weakly!0-p.s.h., and moreover, not smooth in general. So the result by Lev and Ortega-
Cerdà is not applicable in the general context.

We will follow the original method of Berman, Boucksom and Witt Nyström [2, 3].
We will need, among other things, a controlled regularization for quasi-p.s.h. functions,
quantitative properties of quasi-p.s.h. envelopes of functions and an estimate of Bergman
kernels associated with holomorphic line bundles. These results are of independent interest
and will be presented in the next section while the proofs of the main results will be given in
the last section.
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2. Quasi-p.s.h. functions, equilibrium weight and Bergman functions

Let X be a compact Kähler manifold of dimension n and let !0 be a fixed Kähler form
on X . We will use later the equilibrium weight PK� associated with a regular weighted
compact set .K; �/ of X . This is a quasi-p.s.h. function which is not smooth in general. So
we will need to approximate it by smooth quasi-p.s.h. functions and control the cost of this
regularization procedure.

In this section, we will give a version of the theorem of regularization for Hölder contin-
uous quasi-p.s.h. functions and study the Hölder continuity of equilibrium weights. The
behavior of Bergman functions associated with the powers of a line bundle with small posi-
tive curvature is crucial in our approach. This question will also be considered here in the
last subsection.

2.1. Regularization of quasi-p.s.h. functions

The purpose of this subsection is to establish the following regularization theorem for
Hölder continuous quasi-p.s.h. functions with a control of positivity and controlled Cm

norms.

T 2.1. – For each 0 < ˛ � 1, there exist c > 0 which only depends on X , !0; ˛,
and cm > 0 which only depends on X;!0; ˛ and m 2 N� satisfying the following property. Let
� be an !0-p.s.h. function on X of class C 0;˛. Then, for each 0 < " � 1, there exists a smooth
function �" such that

a) �" is !0-p.s.h.;
b) k�" � �k1 � c"˛k�k0;˛ (see the beginning of the paper for notation);
c) k�"kCm.X/ � cm"�mC˛k�k0;˛ for m 2 N�.

We are inspired by Demailly’s regularization theorem [11, 10] and a technique of Blocki-
Kolodziej [7]. First, we construct suitable regularized maximum functions. Fix a function
# 2 C1.R;RC/ with support in Œ�1; 1� such that

R
R #.h/dh D 1 and

R
R h#.h/dh D 0.

For each 0 < " � 1 and each integer l � 1, consider the regularized maximum function
max" W Rl ! R defined by

max".t1; : : : ; tl / WD
Z
Rl

max.t1 C h1; : : : ; tl C hl /"
�l

lY
iD1

#.hi="/dh1 : : : dhl :

Here are some properties of max" which will be used later. The notation .t1; : : : ;bti ; : : : ; tl /
below means that the component ti is omitted in the expression.

L 2.2. – a) max".t1; : : : ; tl / is non-decreasing in all variables, smooth and convex
on Rl I

b) max.t1; : : : ; tl / � max".t1; : : : ; tl / � "Cmax.t1; : : : ; tl /I
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c) max".t1; : : : ; tl / D max".t1; : : : ;bti ; : : : ; tl / if ti C 2" � max.t1; : : : ;bti ; : : : ; tl /I
d) if u1; : : : ; ul are p.s.h. functions defined on some domain D in Cn, then so is

max".u1; : : : ; ul /.
e) If u1; : : : ; ul are real-valued functions in Cm.D/, wherem 2 N� andD is a domain in Cn,

then there is a constant cl;m > 0 depending only on l; m and # such that

kmax".u1; : : : ; ul /kCm � "C sup
1�i�l

kuik1 C cl;m
X
rij

"1�
P
rij
Y
i;j

kuik
rij

C j
;

the sum being taken over all rij > 0 with 1 � i � l and j � 1 such that
P
jrij � m.

Proof. – Assertions a)-d) are contained in Lemma I.5.18 of [11], where the above prop-
erties of # are used. We turn to assertion e). Note that assertion b) allows us to bound the
sup-norm of max".u1; : : : ; ul /, and hence explains the presence of " C sup kuik1 in asser-
tion e).

Observe that the function max is Lipschitz. Therefore, any partial derivative of order 1
of max".u1; : : : ; ul /, seen as a function in D, is a finite sum of integrals of type

(2.1) v

Z
Rl
ˆ.u1 C h1; : : : ; ul C hl /"

�l

lY
iD1

#.hi="/dh1 : : : dhl ;

where ˆ is a partial derivative of order 1 of max and v is a partial derivative of order 1 of a
function ui . Note that ˆ is bounded.

Performing the change of variables ui C hi D si , the expression in (2.1) is equal to

v

Z
jsi�ui j�"

ˆ.s1; : : : ; sl /"
�l

lY
iD1

#
�si � ui

"

�
ds1 : : : dsl ;

which is a function in D. We see that any derivative up to order m � 1 of this function is
bounded by a constant times X

rij

"1�
P
rij
Y
i;j

kuik
rij

C j
;

where the sum is taken over all rij > 0 with 1 � i � l and j � 1 such that
P
jrij � m. This,

together with the control of the sup-norm using b), implies assertion e).

Recall the following standard regularization by convolution. Let �.z/ WD O�.jzj/ 2

C10 .Cn/ be a radial function such that O� � 0, O�.t/ D 0 for t � 1,
R
Cn �d Leb D 1, where

Leb is the Lebesgue measure onCn. For ı > 0we set �ı.z/ WD ı�2n�.z=ı/. For every function
u on an open set U � Cn and every subset U 0 b U , define

uı.z/ WD .u � �ı/.z/ D

Z
Cn
u.z � ıw/�.w/d Leb.w/ with z 2 U 0;(2.2)

for 0 < ı < dist.U 0; bU /. If u is in C 0;˛.U / then uı is in C1.U 0/ and we have

kuı � uk1;U 0 . kukC0;˛ı
˛ and kuıkCm.U 0/ . kukC0;˛ı

�mC˛ for m 2 N�:(2.3)

If u is p.s.h. then uı is also p.s.h. and uı is decreasing to u as ı & 0. We need the following
elementary lemma, whose proof is left to the reader, see also [7].
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L 2.3. – Let F W W ! W 0 be a biholomorphic map between two open subsets W
and W 0 of Cn. Let u 2 PSH.W / \ C 0;˛.W / with 0 < ˛ � 1. Then, for every set U b W we
can find a constant ıU > 0 such that for 0 < ı < ıU , the function uF

ı
WD .u ı F �1/ı ı F is

well-defined on a neighborhood of U . Moreover, there are cU > 0 and cU;m > 0 for m 2 N�

such that when 0 < ı < ıU ,

kuFı � uk1;U � cU kukC0;˛ı
˛ and kuFı kCm.U / � cU;mkukC0;˛ı

�mC˛:

End of the proof of Theorem 2.1. – Denote for simplicityM WD k�k0;˛. The constants we will
use below do not depend on M . Observe that we only need to construct a
.1C c0M"˛/!0-p.s.h. function �" such that

k�" � �k1 � cM"˛ and k�"kCm � cmM"�mC˛ for m � 1;(2.4)

where c; c0 and cm are constants. Indeed, we can just multiply it by .1Cc0M"˛/�1 in order to
obtain a function as in Theorem 2.1. We can also add to this function a constant timesM"˛

if we want to get a function larger or smaller than �.
First fix a finite cover of X by small enough local charts .Uj /j2J . We also choose a finite

cover of X by local charts .Vj /j2J indexing by the same index set J such that Vj b Uj . For
each j 2 J fix a smooth function fj defined on a neighborhood of Uj such that

dd cfj D !0 on a neighborhood of Uj :(2.5)

Then the function

uj WD � C fj(2.6)

satisfies dd cuj D dd c� C dd cfj D dd c� C !0 � 0. So uj is p.s.h. on Uj .
Let j and k be in J such that Uj \ Uk 6D ;. There are two natural ways to regularize the

restriction uj jUj\Uk using Formula (2.2). The first one is to use the local chart of Uj , i.e.,
Uj will play the role of U in (2.2), and we get a function uj;". Similarly, the second way is to
use the local chart of Uk . Let F be the change of coordinates on Uj \ Uk from Uj to Uk .
Denote by uF

j;ı
the function given by Lemma 2.3 which corresponds to the regularization

of uj using the local chart of Uk . Write

uj;" � uk;" D uj;" � u
F
j;" C .uj � uk/" on Uj \ Uk ;

where the term .uj � uk/" is the regularization of uj � uk by Formula (2.2) using the local
chart of Uk . Recall from (2.6) that uj � uk D fj � fk which is a smooth function. This
together with the previous equality and Lemma 2.3, imply

k.uj;" � uk;"/ � .fj � fk/k1 .M"˛ on Uj \ Uk :(2.7)

Fix a constant c > 0 large enough. For each j 2 J let �j be a smooth function defined
in Uj such that �j D 0 on Vj and that �j D �c away from a compact subset of Uj . We have
that dd c�j � �c0!0 for some constant c0 > 0. For each " > 0 and j 2 J , consider the
function

vj WD uj;" � fj CM"˛�j on Uj :(2.8)

We identify J with f1; : : : ; lg and set

�" WDM"˛�1max"
�
M�1"1�˛v1; : : : ;M

�1"1�˛vl
�
:(2.9)
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Note that to define �".x/, x 2 X , we remove M�1"1�˛vj from the last formula if x 62 Uj .

We first show that the function �" is smooth on X . For this purpose, we only need to
prove the property in a neighborhood of an arbitrary fixed point of X . Since each vj is well-
defined and smooth on Uj , using (2.9) and assertion a) in Lemma 2.2, it is enough to prove
the following claim.

Claim 1. – For all x 2 Uj close enough to bUj , we have

max"
�
M�1"1�˛v1; : : : ;M

�1"1�˛vl
�
.x/

D max"
�
M�1"1�˛v1; : : : ; ̂M�1"1�˛vj ; : : : ;M

�1"1�˛vl
�
.x/:

Let k 2 J such that x 2 Vk . We infer from (2.8) and the equality �k.x/ D 0 that

vk.x/ D uk;".x/ � fk.x/:

The same argument using the equality �j .x/ D �c gives

vj .x/ D uj;".x/ � fj .x/ � cM"˛:

Putting the two last equalities together with (2.7), and using that c > 0 is large enough, we
infer

vk.x/ � vj .x/C 2M"˛:

This, combined with assertion c) in Lemma 2.2, implies Claim 1.

Claim 2. – The function �" belongs to PSH.X; .1C c0M"˛/!0/.

It is enough to work in a small open set W in X . By Claim 1, we can remove from the
Definition (2.9) of �" all functions M�1"1�˛vj if W 6� Uj . So we have W � Uj for the
indexes j considered below. Since uj is p.s.h., so is uj;". Therefore, we deduce from (2.5) and
(2.8) that

dd cvj D dd
cuj;" � !0 CM"˛dd c�j � �.1C c

0M"˛/!0:

Choose a function f on W such that dd cf D M�1"1�˛.1 C c0M"˛/!0. We deduce from
(2.9) and the construction of max" that

�" DM"˛�1max"
�
M�1"1�˛v1 C f; : : : ;M

�1"1�˛vl C f
�
�M"˛�1f:

SinceM�1"1�˛vj Cf is p.s.h. onW , applying assertion d) in Lemma 2.2, we obtain that �"
belongs to PSH.X; .1C c0M"˛/!0/, thus proving Claim 2.

We continue the proof of the theorem. By (2.6) and (2.8), we get on Vj

k� � vj k1 D k.uj � fj / � .uj;" � fj CM"˛�j /k1 � kuj � uj;"k1 CM"˛k�j k1 .M"˛:

This and assertion b) in Lemma 2.2 prove the first estimate in (2.4). For the second estimate,
we infer from assertion e) of Lemma 2.2 that

k�"kCm D M"˛�1
max".M�1"1�˛v1; : : : ;M�1"1�˛vl /


Cm

. M"˛ C sup
1�i�l

kvik1 CM"˛�1
X
rij

"1�
P
rij
Y
i;j

�
M�1"1�˛kvikC j

�rij ;(2.10)
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the sum being taken over all rij > 0 with 1 � i � l and j � 1 such that
P
jrij � m. On the

other hand, by (2.3) and (2.8), we have

kvikC j D kui;" � fi CM"˛�ikC j .M"�jC˛:

Inserting these estimates into (2.10), we obtain that �" satisfies the second inequality in (2.4).
The theorem follows. Note that we can get similar estimates for every m 2 RC. �

R 2.4. – We can prove in the same way the existence of constants c > 0 depending
only on X , !0, and cm > 0 depending only on X;!0; m 2 N�, satisfying the following
property. Let � be an !0-p.s.h. function in gLip.X/. Then, for each 0 < " � 1=2, there exists
a smooth function �" such that

a) �" is !0-p.s.h.;
b) k�" � �k1 � �c.1C k�kgLip/" log "I
c) k�"kCm.X/ � �cm.1C k�kgLip/"

�mC1 log " for m 2 N�.

2.2. Regularity of equilibrium weight

In this subsection, we study the equilibrium weight associated with a weighted compact
subset .K; �/ ofX . We start with the following tautological maximum principle, and we refer
the reader to the beginning of the paper and the Introduction for the notation used below.

P 2.5. – Let .K; �/ be a regular weighted subset of X and let PK� be the
associated equilibrium weight. Then for every !0-p.s.h. function  on X , we have

sup
K

. � �/ D sup
K

. � PK�/ D sup
X

. � PK�/:

In particular, for every section s 2 H 0.X;Lp/ we have

kskL1.K;p�/ D kskL1.K;pPK�/ D kskL1.X;pPK�/:

Proof. – By Definition 1.2, we have PK� � � on K. Hence,

sup
K

. � �/ � sup
K

. � PK�/ � sup
X

. � PK�/:

To prove the converse inequality, observe that  � supK. � �/ � � on K. This, combined
with Definition 1.2 and the fact that  is !0-p.s.h., implies that  � supK. � �/ � PK�

on X . We deduce  � PK� � supK. � �/ and then the first assertion in the proposition.

Next, observe that

dd c
1

p
log jsj D

1

p
Œs D 0� � !0 � �!0;

where Œs D 0� is the current of integration on the hypersurface fs D 0g. So 1
p

log jsj is!0-p.s.h.
Applying the first assertion of the proposition to this function instead of  gives the second
assertion.

The following basic result has been stated in [2, Lemma 2.14].
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L 2.6. – Let K be a non-pluripolar compact subset of X . Then the projection PK is
non-decreasing, concave, and continuous along decreasing sequences of continuous weights �
on K. It is also 1-Lipschitz continuous, that is,

sup
X

jPK�1 � PK�2j � sup
K

j�1 � �2j

for all continuous weights �1 and �2 on K.

Proof. – We only give the proof of the inequality in the lemma and leave the verification
of the other statements to the reader. Since �1 � �2 C supK j�1 � �2j on K, it follows from
Definitions 1.2 and 1.3 that

PK�1 � PK�2 C sup
K

j�1 � �2j on X:

This and the similar estimate which is obtained by interchanging �1 and �2, imply the desired
inequality.

The following theorem is the main result of this subsection. It gives us a class of compact
sets K satisfying regularity properties mentioned in the Introduction.

T 2.7. – LetK be the closure of a non-empty open subset of X with C 2 boundary.
Then K is .C ˛;C ˛/-regular for every 0 < ˛ < 1.

It is known that such a compact set is regular. To prove this property, it is enough to show
that PK� is continuous when � is Hölder continuous and then obtain the same property
for continuous � by approximation. Thus, the regularity of K can be also obtained with the
arguments given below.

Proof of Theorem 2.7 in the case K D X . – Let � be a C ˛ function on X with bounded
C ˛-norm. We have to show that  WD PX� has bounded C ˛-norm. We will need to
regularize  using the method introduced by Demailly in [10]. Recall that for simplicity we
use here the metric on X induced by the Kähler form !0.

Consider the exponential map associated with the Chern connection on the tangent
bundle TX of X . The formal holomorphic part of its Taylor expansion is denoted by

exph W TX ! X with TzX 3 � 7! exphz.�/:

It is approximatively the part of the exponential map which is holomorphic in �, see [10] for
details. Let � W R! Œ0;1/ be a smooth function with support in .�1; 1� defined by

�.t/ WD
const
.1 � t /2

exp
1

t � 1
for t < 1; �.t/ D 0 for t � 1;

where the constant const is adjusted so that
R
j� j�1

�.j�j2/d Leb.�/ D 1 with respect to the
Lebesgue measure d Leb.�/ on Cn ' TzX . Fix a constant ı0 > 0 small enough. Define

‰.z; t/ WD

Z
�2TzX

 .exphz.t�//�.j�j
2/d Leb.�/ for .z; t/ 2 X � Œ0; ı0�:(2.11)

By [10], there is a constant b > 0 such that the function t 7! ‰.z; t/Cbt is increasing for t
in Œ0; ı0�. Observe also that ‰.z; 0/ D  .z/. By definition,  D PX� is bounded by min�
and max�. The values of ‰.z; t/ are averages of values of  . So ‰.z; t/ is also bounded by
the same constants min� and max�.
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Consider for c > 0 and ı 2 .0; ı0� the Kiselman-Legendre transform

(2.12)  c;ı.z/ WD inf
t2.0;ı�

�
‰.z; t/C bt � bı � c log

t

ı

�
:

Since t � ı � ı0, we see that  c;ı is bounded below by min�� bı0 and taking t D ı we also
see that  c;ı is bounded above by max�.

Using a result by Kiselman, it is not difficult to show (see [10], see also [4, Lemma 1.12])
that  c;ı is quasi-p.s.h. and

!0 C dd
c c;ı � �.ac C bı/!0;

where a > 0 is a constant, see also [17, 18]. Therefore, we have

dd c
 c;ı

1C ac C bı
C !0 � 0 for all c > 0:

From now on, we take c D ı˛. We have seen that  c;ı is bounded uniformly in c; ı for c and
ı as above. Hence,

(2.13)
ˇ̌̌  c;ı

1C ac C bı
�  c;ı

ˇ̌̌
. ı˛:

For t WD ı we obtain from (2.12) that

 c;ı.z/ � ‰.z; ı/:

On the other hand, we deduce from (2.11) that the value of ‰.z; ı/ is an average of the
values  in the ball B.z; Aı/ in X for some constant A depending only on X and !0. Since
 � � and the C ˛-norm of � is bounded, we have

‰.z; ı/ � �.z/CO.ı˛/:

This, coupled with (2.13), gives

 c;ı

1C ac C bı
� � CO.ı˛/:

Since the left hand side is an !0-p.s.h. function, the identity  D PK� implies

 c;ı

1C ac C bı
�  CO.ı˛/:

Then, using that c D ı˛, we get

 c;ı �  CO.ı
˛/:

This and (2.12) imply the existence of tz 2 .0; ı� such that

(2.14) ‰.z; tz/C btz �  .z/C c log
tz

ı
CO.ı˛/:

Recall that the function t 7! ‰.z; t/C bt is increasing and observe that its value at t D 0 is
equal to  .z/. So the last identity implies

c log
tz

ı
CO.ı˛/ � 0:

Therefore, since c D ı˛, we have �ı � tz � ı, where 0 < � < 1 is a constant. By (2.14) and
using again that t 7! ‰.z; t/C bt is increasing, we obtain

‰.z; �ı/ �  .z/ � O.ı˛/:(2.15)
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Fix a point z 2 X and local coordinates in a neighborhood of z so that the metric
on X coincides at z with the standard metric given by the coordinates. The function  is the
difference between a p.s.h. function  0 and a smooth function. In particular, � � � 0 is
smooth. Denote by � the positive measure defined by� 0. Consider the following quantity
involving the mass of � on the ball B.z; r/

�.r/ WD
.n � 1/Š

�n�1r2n�2
k�kB.z;r/ for 0 < r � 1:

Note that if instead of�we use the measure defined by� , then the last quantity is changed
by a term O.r2/. So in the following computation, the use of � 0 is equivalent to the
one of � . The advantage of � 0 is that by Lelong’s theorem, the above function �.r/ is
increasing.

According to [10, (4.5)] and using that � is strictly positive on Œ0; 1/, we have the following
Lelong-Jensen type inequality

‰.z; t/ �  .z/ D

Z t

0

d

d�
‰.z; �/d�

�

Z t

0

d�

�

h Z
B.0;1/

�.� j�j/�.j�j2/d Leb.�/ �O.�2/
i

�

Z t

t=2

d�

�

h Z
1=2<j� j<3=4

�.� j�j/�.j�j2/d Leb.�/
i
�O.t2/

&
Z t

t=2

�1�2nk�kB.z;�=2/d� �O.t
2/

& t2�2nk�kB.z;t=4/ �O.t
2/:

Combining this and (2.15), we obtain

k�kB.z;t/ . t
2n�2C˛ for t � 1:

The estimate is uniform in z 2 X . Applying Lemma 2.8 below gives the result. �

To complete the proof of Theorem 2.7 for K D X , it remains to prove the following
elementary result, see also [13]. For the reader’s convenience, we give here a proof.

L 2.8. – Let � be a subharmonic function in a neighborhood U of B.0; 1/ � Rm and
0 < ˛ < 1. Suppose there are constants A > 0 and t0 > 0 such that k�k1 � A, and for every
x 2 B.0; 1/ and 0 < t � t0, we have

k��kB.x;t/ � At
m�2C˛:(2.16)

Then � is of class C ˛ and its C ˛-norm on B.0; 1/ is bounded by a constant depending only
on U;A; t0 and ˛. The result still holds for ˛ D 1 if we replace C ˛ by gLip.

Proof. – For simplicity, we only consider 0 < ˛ < 1 and m � 3. In this case,
the Newton kernel E.x/ for x 2 Rm is equal to a negative constant times jxj2�m and
�.E � �/ D � for all measure � with compact support, see [16, Theorem 3.1.2]. We can
assume thatU D B.0; 1C 4r0/ for some constant r0 < t0=4 and that�� has finite mass inU .
So (2.16) holds for t � 4r0. Define � WD �� on U and f WD E � �. The function f � � is
harmonic on U . Therefore, we only need to show that f has bounded C ˛-norm on B.0; 1/.
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Fix two points x; y 2 B.0; 1/ and define r WD 1
2
jx � yj. Since k�k1 � A, we only need to

show that jf .x/ � f .y/j . r˛ for r � r0. Define

D1 WD B.x; r/; D2 WD B.y; r/; D3 WD B.x; r0/ n .D1 [D2/;D4 WD B.0; 1C 4r0/ nB.x; r0/

and

Ik WD

Z
Dk

ˇ̌
jx � zj2�m � jy � zj2�m

ˇ̌
d�.z/:

Observe that jf .x/ � f .y/j . I1 C I2 C I3 C I4. So it is enough to bound I1; I2; I3; I4.
Consider the integral I1. The case of I2 can be treated in the same way. Since jz � xj �

jy � zj for z 2 D1, we have

I1 � 2

Z
B.x;r/

jx � zj2�md�.z/:(2.17)

Recall that � D �� and it satisfies (2.16). Observe that jx � zj2�m can be bounded by a
constant times the following combination of the characteristic functions of balls

jx � zj2�m .
1X
kD0

.2�kr/2�m1B.x;2�kr/:

The integral in (2.17) is bounded by a constant times
1X
kD0

.2�kr/2�mk��kB.x;2�kr/ .
1X
kD0

Z 2�kC1r

2�kr

�1�mk��kB.x;�/d� D

Z 2r

0

�1�mk��kB.x;�/d�:

We then deduce from (2.16) that I1 . r˛.
Consider now the integral I3. Observe that jx � zj � jy � zj when z 62 D1 [D2. Henceˇ̌

jx � zj2�m � jy � zj2�m
ˇ̌
. r jx � zj1�m(2.18)

and

I3 . r
Z
B.x;r0/nB.x;r/

jx � zj1�md�.z/:

We need to bound the last integral by O.r˛�1/ and we can assume that x D 0. Observe that
we have on the domain r < jzj < r0,

1

jzjm�1
.

� log2 rX
kD� log2 r0

.2�k/1�m1B.0;2�k/:

Hence, we obtain the following inequalities which imply the desired estimate for I3Z
r<jzj<r0

d�.z/

jzjm�1
.

� log2 rX
kD� log2 r0

.2�k/1�mk�kB.0;2�k/ .
� log2 rX

kD� log2 r0

.2�k/˛�1:

Finally, for the integral I4 with z 2 D4, observe that (2.18) impliesˇ̌
jx � zj2�m � jy � zj2�m

ˇ̌
. r:

The estimate I4 . r follows immediately. This completes the proof of the lemma.

We continue the proof of Theorem 2.7. We need the following lemma. For r > 0 and
w 2 C, denote by D.w; r/ the disk of center w and radius r in C.
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L 2.9. – Let ˛ > 0 be a constant. Let u be a quasi-subharmonic function on a
neighborhood of D.�1; 3/ such that �u � �1, u � 1 on D.�1; 3/ and u.z/ � jzj˛ for all
z 2 D.1; 1/. Then there is a constant c > 0 depending only on ˛ such that for all t 2 Œ�1=2; 0�
we have u.t/ � cjt jmin.1;˛/ if ˛ 6D 1 and u.t/ � �cjt j log jt j if ˛ D 1.

Proof. – Replacing ˛ by min.2; ˛/ allows us to assume that ˛ � 2. Observe that the
function jzj2 is smooth and its Laplacian is equal to 2. So replacing u.z/ by 1

20

�
u.z/C jzj2

�
allows us to assume, from now on, that u is subharmonic. Let � denote the domain
D.�1; 3/ n D.1; 1/. Let ˆ W � ! D.0; 1/ be a bi-holomorphic map which sends �4; 0 and
Œ�4; 0� to �1; 1 and Œ�1; 1�, respectively. Since b� n f2g is smooth analytic real, by Schwarz
reflexion, ˆ can be extended to a holomorphic map in a neighborhood of this curve and
ˆ0 does not vanish there.

Define z0 D ˆ.z/ and v.z0/ WD u ı ˆ�1.z0/ D u.z/. We deduce from u.z/ � jzj˛ that
v.z0/ . jz0 � 1j˛ for z0 2 bD.0; 1/. Let t be as in the statement of the lemma and define
t 0 WD ˆ.t/ and s WD 1 � t 0. We have s 2 Œ0; 2� and s . jt j . s. We only have to show that
v.t 0/ . smin.1;˛/ if ˛ 6D 1 and v.t 0/ . �s log s if ˛ D 1. Since v is subharmonic, it satisfies
the following inequality involving the Poisson integral on the unit circle

v.t 0/ .
Z �

��

1 � jt 0j2

jei� � t 0j2
v.ei� /d�:

Observe that 1 � jt 0j2 . s and jei� � t 0j2 & s2 C �2. The last inequality is clear for � < 4s

because jei� � t 0j & s as t 0 cannot be too close to �1, and it is also clear when � � 4s. We
then deduce from the estimate of v on the unit circle that

v.t 0/ .
Z �

��

sj� j˛

s2 C �2
d� D s˛

Z �=s

��=s

j� 0j˛

1C � 02
d� 0 � s˛

Z 1
�1

j� 0j˛

1C � 02
d� 0:

When ˛ < 1, the last integral is finite and the lemma follows. Using the integral before the
last one, we also see that if ˛ D 1 then v.t 0/ . �s log s which also implies the lemma in this
case. Consider now the case ˛ > 1. We deduce from the above inequality that

v.z/ . s
Z �

��

j� j˛�2d� . s:

This completes the proof of the lemma.

Proof of Theorem 2.7 in the caseK 6D X . – Consider a weight � of bounded C ˛-norm onK
with 0 < ˛ < 1. Adding to � a constant allows us to assume that � � 0. Dividing � and
!0 by a constant allows us to assume that k�kC˛ � 1=100. We have to show that PK� is of
class C ˛.

Fix a large constant A� k�kC˛ and definee�.x/ WD min
y2K

�
�.y/C A dist.x; y/˛

�
for x 2 X:

Since � is C ˛ and A is large, e� is an extension of � to X , i.e., e� D � on K. Moreover, if the
above minimum is achieved at a point y0 2 K, by definition of e�, we have for x0 2 Xe�.x0/ � e�.x/ � ��.y0/C A dist.y0; x0/˛

�
�
�
�.y0/C A dist.y0; x/˛

�
� A dist.x; x0/˛:

Therefore, the function e� is C ˛.

4 e SÉRIE – TOME 50 – 2017 – No 3



EQUIDISTRIBUTION SPEED FOR FEKETE POINTS 561

The idea is to reduce the problem to the caseK D X which was already treated above. We
only need to show thatPK� � e� because this inequality implies thatPK� D PXe�. Moreover,
sincePK� is bounded andA is large enough, we only need to check thatPK�.x/ � e�.x/ for x
outside K and close enough to K.

Fix a finite atlas with local holomorphic coordinates (that we always denote by z D
.z1; : : : ; zn/) on open subsets Ui of X satisfying the following properties

1. Each open set Ui corresponds to a ball B.ai ; 10/ of radius 10 centered at some point
ai in Cn;

2. If Vi � Ui denotes the open set corresponding to B.ai ; 1/, then these Vi cover X ;
3. � restricted toK\Ui is identified to a function on a subset of B.ai ; 10/; we still denote

this function by �; it satisfies k�kC˛ � 1=100; for simplicity,K\Ui will be also written
as K \ B.ai ; 10/;

4. PK� restricted to Ui is identified to a quasi-p.s.h. function on B.ai ; 10/ that we still
denote by PK�; it satisfies PK� � � on K \ B.ai ; 10/ and dd cPK� � �!0 �
�
1
2
dd ckzk2 on B.ai ; 10/;

5. For any point y in bK\B.ai ; 2/,K contains a ball B of radius 2 such that y 2 bB and
bB is tangent to bK at y. This can be done because K has C 2 boundary.

This choice of atlas does not depend onA. So we can increase the value ofAwhen necessary.

Now, x belongs to some Vi . In what follows, we drop the index i for simplicity, e.g., we
will write a instead of ai . Recall that the point x is assumed to be outside and near the
set K. Let y0 be as above and denote by x0 the projection of x to the boundary of K, i.e.,
jx � x0j D infy2K jx � yj. Here, we use the standard metric on Cn. This point x0 is unique
becauseK has C 2 boundary and x is close toK. Define r WD jx�x0jwhich is a small number.

Claim. – We have jx0 � y0j . r and hence y0 2 B.a; 2/ and e�.x/ � �.x0/ C A0r˛, where
A0 > 0 is a big constant (if we take A!1 then A0 !1).

Indeed, if the first inequality were wrong, we would have jx � x0j � jx � y0j � jx0 � y0j
and by definition of e�.x/ and y0e�.x/ D �.y0/C A dist.x; y0/˛ � �.x0/C A dist.x; x0/˛:

Note that the distance on U � X is comparable with the Euclidean distance with respect to
the coordinates z. This comparison is independent of A. So the inequality implies

�.x0/ � �.y0/� jx0 � y0j
˛

which is a contradiction because � is C ˛.

We also obtain the second inequality in the claim using the definition of e�; y0; x0; r and
the first inequalitye�.x/ � �.x0/ D �.y0/ � �.x0/C A dist.x; y0/˛ � r˛;

since A is large, � is C ˛, and jx � y0j � jx � x0j D r .

By the claim, it is enough to show that PK�.x/ � �.x0/C A0r˛. Using a unitary change
of coordinates, we can assume that x0 and x are the points of coordinates .0; 0; : : : ; 0/ and
.�r; 0; : : : ; 0/, respectively. This change of coordinates does not change the metric on Cn,
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so it does not change the norms of functions. We use the coordinate z1 in the complex line
ƒ WD fz2 D � � � D zn D 0g and denote by D.w; r/ the disk of center w and radius r in ƒ.

We will apply Lemma 2.9 to a suitable function u. Recall that k�kC˛ � 1=100, K has
C 2 boundary, x0 is the projection of x to K and r is small enough. By the choice of the
coordinates .z1; : : : ; zn/, the intersection K \ ƒ contains D.1; 1/, see property (5) above.
Denote by u the restriction toƒ of the function PK���.x0/. We deduce from the definition
of PK� and the above properties of the coordinates z that u satisfies the hypotheses of
Lemma 2.9. Therefore, u.x/ . r˛ and hence PK�.x/ � �.x0/ . r˛. This completes the
proof of the theorem. �

Note that the idea of the proof still works if instead of the ball B in the above point (5)
we only have a solid right circular cone of vertex y and of a given size such that its axis is
orthogonal at y to the boundary ofK. This allows us to consider the situation whereK is the
closure of an open set whose boundary is not C 2. We then need a version of Lemma 2.9 for an
angle at 0 instead of D.1; 1/. This angle is equal to the aperture of the above circular cone. If
�� denotes this angle, thenK is .C ˛;C �˛/-regular for 0 < ˛ < 1. In the case of C 1-boundary
for example, we can choose � as any constant strictly smaller than 1. As mentioned in the
Introduction, we don’t try to develop the paper in this direction. We thank Ahmed Zeriahi
for notifying us the reference [27] where Pawlucki and Plesniak considered a class of compact
sets which may be .C ˛;C ˛0/-regular.

2.3. Asymptotic behavior of Bergman functions

Recall that .L; h0/ is a holomorphic Hermitian line bundle on a projective manifold X
whose first Chern form is !0. The probability measure �0 is associated with the volume
form !n0 as in the beginning of the paper. We will work later with Hermitian metrics which
are not necessarily smooth nor positively curved. It is crucial to understand the asymptotic
behavior of the Bergman kernel associated with Lp and the new metrics when p tends to
infinity.

As mentioned above, our strategy is to approximate the considered metrics by smooth
positively curved ones. So we need to control the dependence of the Bergman kernels in terms
of the positivity of the curvature. The solution to this problem will be presented below. We
refer to [25] for basic properties of Bergman kernel.

Consider a metric h D e�2�h0 on L, where � is a continuous weight on a compact
subsetK ofX . Recall thatH 0.X;Lp/ denotes the space of holomorphic sections ofLp. Since
L is ample, by Kodaira-Serre vanishing and Riemann-Roch-Hirzebruch theorems (see [25,
Thm 1.5.6 and 1.4.6]) we have

(2.19) Np WD dimH 0.X;Lp/ D
pn

nŠ
k!n0k CO.p

n�1/:

Let � be a probability measure with support in K. Consider the natural L1 and L2 semi-
norms on H 0.X;Lp/ induced by the metric h on L and the measure �, which are defined
for s 2 H 0.X;Lp/ by

kskL1.K;p�/ WD sup
K

jsjp� and ksk2
L2.�;p�/

WD

Z
X

jsj2p�d�:(2.20)
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We will only use measures � such that the above semi-norms are norms, i.e., there is no
section s 2 H 0.X;Lp/ n f0g which vanishes on K or on the support of �. The first semi-
norm is a norm when K is not contained in a hypersurface of X . The second one is a norm
when � is the normalized Monge-Ampère measure with continuous potential because such
a measure has no mass on hypersurfaces of X . This is also the case for any Fekete measure
of order p as can be easily deduced from Definition 1.4.

From now on, assume that the above semi-norms are norms and for the rest of this section,
consider K D X . Let fs1; : : : ; sNp g be an orthonormal basis of H 0.X;Lp/ with respect to
the above L2-norm.

D 2.10. – We call Bergman function of Lp, associated with .�; �/, the func-
tion �p.�; �/ on X given by

�p.�; �/.x/ WD sup
n
js.x/j2p� W s 2 H

0.X;Lp/; kskL2.�;p�/ D 1
o
D

NpX
jD1

jsj .x/j
2
p�

and we define the Bergman measure associated with .�; �/ by

Bp.�; �/ WD N
�1
p �p.�; �/�:

Note that it is not difficult to obtain the identity in the definition of �p.�; �/ and check that
Bp.�; �/ is a probability measure. For the above definition, we only need that � is defined
on the support of � or a compact set containing this support.

In the rest of this subsection, we assume that the weight � is a function of class C 3 on X
and the first Chern form ! WD dd c� C !0 satisfies

(2.21) ! � �!0 for some constant � > 0:

Note that this inequality implies that � � 1 because ! and !0 are cohomologous. Here is
the main result in this section which gives us an estimate of the Bergman function in terms
of �; !; p and �. We refer to the beginning of the paper for the notation.

T 2.11. – There exists a constant c > 0, depending only onX;L and the C 3-norm
of the Hermitian metric h0 ofL, with the following property. For everyp > 1 and every weight �
of class C 3 such that (2.21) holds for some � with � � k�k2=33 .logp/p�1=3, we have�p.�0; �/.x/

Np
�
!.x/n

!0.x/n


L1.�0/

6 c k�k3�
�3=2.logp/3=2p�1=2

with �0 WD k!n0k
�1!n0 the normalized Lebesgue measure on X , andZ

X

ˇ̌
Bp.�

0; �/.x/ � �eq.X; �/.x/
ˇ̌
6 c k�k3�

�3=2.logp/3=2p�1=2:

Proof. – By hypotheses, � is !0-p.s.h. Hence, we have � D PX� and �eq.X; �/ D

NMA.�/ D k!n0k
�1!.x/n. Therefore, the second assertion is a direct consequence of the

first one and Definition 2.10.
Consider now the first assertion. We use some ideas from Berndtsson [5, Sect. 2] and the

recent joint work of Coman, Marinescu and the second author [9], see also [12]. Consider
a point x 2 X . Choose a local system of coordinates z D .z1; : : : ; zn/ centered at x and a
constant c > 0 such that
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1. Some neighborhood of x can be identified to the unit polydisk Dn in Cn;
2.
!0.z/ � p�1� Pn

jD1 dzj ^ d Nzj
 � cjzj for z 2 Dn;

3.
ˇ̌
�.z/� q.z/�

Pn
jD1.�j � 1/jzj j

2
ˇ̌
� ck�k3jzj

3 for z 2 Dn, where �i are real numbers
and q.z/ is a harmonic polynomial in z; z of degree � 2.

Observe that after choosing z satisfying (1)-(2), we can take q.z/ as the harmonic part in
the Taylor expansion of order 2 of � at x � 0; then, using a unitary change of coordinates
allows us to assume that the non-harmonic part in this Taylor expansion is given by a
diagonal matrix. So we have (1)-(3) and furthermore, the constant c is controlled by the
C 3-norm of the metric h0 onL. The numbers �j and the coefficients of q.z/ can be controlled
by the C 2-norm of �. Note that if the metric h0 of L is C 4, thanks to a standard property in
Kähler geometry, we can replace cjzj in (2) by cjzj2.

Claim. – There is a holomorphic frame e of L over Dn such that if �0 WD � log jej (see the
beginning of the paper for the notation), thenˇ̌̌

�0.z/ �

nX
jD1

jzj j
2
ˇ̌̌
� cjzj3;

where c > 0 is a constant depending only on X;L and the C 3-norm of h0.

We first prove the claim. Consider a frameee of L over Dn. It can be chosen in a fixed
finite family of local frames of L over a finite covering of X . Define e�0 WD � log jeej. We
have by definition of curvature that !0 D dd ce�0. As above, thanks to (3), we can writee�0.z/ Deq0.z/CPn

jD1 jzj j
2CO.jzj3/, whereeq0.z/ is a harmonic polynomial of degree� 2.

So we can writeeq0.z/ D Re eQ0.z/, where eQ0.z/ is a holomorphic polynomial of degree � 2
whose coefficients are controlled by the C 2-norm of h0. Define e D e eQ0ee. We have

je.z/j2 D jee.z/j2e2eq0.z/ D e2eq0.z/�2e�0.z/:
The claim follows.

Now, by (2) and (3), we have

!.x/ D dd c�.x/C !0.x/ D

p
�1

�

nX
jD1

�jdzj ^ d Nzj :

Hence, we get

!n.x/ D �1 � � ��n!
n
0 .x/:(2.22)

Moreover, the inequality (2.21) at the point x becomes

�j � � for 1 � j � n:

Define

'.z/ WD

nX
jD1

�j jzj j
2 and  .z/ WD �.z/ � q.z/ � '.z/C �0.z/:(2.23)

Consider a normalized section s 2 H 0.X;Lp/ with kskL2.�0;p�/ D 1. We are going
to bound js.x/jp� from above. Writing s D f e˝p, where f is a holomorphic function
on Dn and e is the frame given by the above claim. We apply the submean inequality for the
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p.s.h. function jf .z/j2e�2pq.z/ on the polydisk Dnr WD Dr � � � � � Dr (n times) with radius
r WD .logp/1=2p�1=2��1=2. Thanks to the special form of ', we obtain

js.x/j2p� D jf .0/j
2e�2pq.0/ �

R
Dnr jf j

2e�2pq�2p'd LebR
Dnr e

�2p'd Leb
�(2.24)

Note that the hypothesis on � and the fact that � � 1 insure that r � pk�k3r3 � 1. We will
use this property in the computation below.

For the first integral in (2.24), observe that by (2), the Lebesgue measure in Dn is equal
to 1

nŠ

�
�
2

�n
!n0 CO.jzj/. This, together with (3), (2.23) and the above claim, givesZ

Dnr
jf j2e�2pq�2p'd Leb �

h 1
nŠ

��
2

�n
CO.r/

i Z
Dnr
jf j2e�2pq�2p'!n0

�

h 1
nŠ

��
2

�n
CO.r/

i
exp

�
2pmax

Dnr
 
� Z

Dnr
jf j2e�2p.qC'C /!n0

�

h 1
nŠ

��
2

�n
CO.r/

i
eO.pk�k3r

3/

Z
X

jsj2p�!
n
0

D
1

nŠ

��
2

�n
k!n0k CO

�
k�k3�

�3=2.logp/3=2p�1=2
�
;

because kskL2.�0;p�/ D 1 and eO.pk�k3r
3/ D 1CO.pk�k3r

3/.
Define

E.t/ WD

Z
�2Dt

e�2j�j
2

d Leb.�/ D
�

2
.1 � e�2t

2

/ �
�

2
�

A direct computation shows that the second integral in (2.24) is equal toZ
Dnr
e�2p'd Leb D

nY
jD1

Z
zj2Dr

e�2p�j jzj j
2

d Leb.zj / D
nY

jD1

E.r
p
p�j /

p�j
�

��
2

�n .1 � 1=p2/n
pn�1 : : : �n

since r2p�j � r2p� D logp.
Combining the above estimates with (2.24), we obtain

js.x/j2p� �
h
1CO

�
k�k3�

�3=2.logp/3=2p�1=2
�i 1
nŠ
pn�1 : : : �nk!

n
0k:

By Definition 2.10, we get

�p.�
0; �/.x/

pn
�

h
1CO

�
k�k3�

�3=2.logp/3=2p�1=2
�i 1
nŠ
�1 : : : �nk!

n
0k:

Then, using (2.19) and (2.22), we obtain

(2.25)
�p.�

0; �/.x/

Np
�
�
1C ck�k3�

�3=2.logp/3=2p�1=2
� !.x/n
!0.x/n

with c > 0:

Now, define for simplicity

#1.x/ WD
�p.�

0; �/.x/

Np
; #2.x/ WD

!.x/n

!0.x/n
and " WD ck�k3�

�3=2.logp/3=2p�1=2:

So #1 and #2 are two positive functions of integral 1 with respect to the probability
measure �0. Inequality (2.25) says that #1 � .1C "/#2. We need to check that k#1 � #2kL1.�0/ . ".
By triangle inequality, it is enough to check that k#1 � .1C "/#2kL1.�0/ . ". But since the
function #1 � .1C "/#2 is negative, it suffices to check that the integral of this function with
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respect to �0 is larger than or equal to �". A direct computation shows that this integral is
in fact equal to �". The proof of the theorem is now complete.

3. Equidistribution of Fekete points

In this section, we will give the proofs of the main results stated in the Introduction. The
estimates obtained in the previous section allow us to use the strategy by Berman, Boucksom
and Witt Nyström. We refer to the beginning of the article for the notation.

3.1. Energy, volumes and Bernstein-Markov property

Recall from [2] that the Monge-Ampère energy functional E , defined on bounded weights
in PSH.X; !0/, is characterized by

d

dt
jtD0

E ..1 � t /�1 C t�2/ D

Z
X

.�2 � �1/NMA.�1/:

So E is only defined up to an additive constant, but the differences such as E .�1/ � E .�2/

are well-defined, see also (3.9).
Consider a non-pluripolar compact set K � X and a continuous weight � on K. Define

the energy at the equilibrium weight of .K; �/ as

E eq.K; �/ WD E .PK�/:

This functional is also well-defined up to an additive constant. We will need the following
property which was established in [2, Th. B].

T 3.1. – The map � 7! E eq.K; �/, defined on the affine space of continuous
weights on K, is concave and Gâteaux differentiable, with directional derivatives given by
integration against the equilibrium measure:

d

dt
jtD0

E eq.K; � C tv/ D
˝
v; �eq.K; �/

˛
for every continuous function v on K:

In particular, for all continuous weights �1 and �2 on K, we have

j E eq.K; �1/ � E eq.K; �2/j � k�1 � �2k1:

Note that the second assertion is obtained by taking the integral on s 2 Œ0; 1� of the first
identity applied to � WD �1 C sv and v WD �2 � �1. We use here the fact that �eq.K; �/ is a
probability measure.

Let � be a probability measure on X and � a continuous function on the support of �.
The semi-norm k � kL2.�;p�/ on H 0.X;Lp/ is defined as in (2.20) and recall that we only

consider measures � for which this semi-norm is a norm. Let B
2
p.�; �/ denote the unit ball

in H 0.X;Lp/ with respect to this norm and Np WD dimH 0.X;Lp/. Recall from [2] the
following Lp-functional

Lp.�; �/ WD
1

2pNp
log vol B

2
p.�; �/:(3.1)

Here, vol denotes the Lebesgue measure on the vector spaceH 0.X;Lp/which is only defined
up to a multiplicative constant. Note that the differences such as Lp.�1; �1/� Lp.�2; �2/ is
well-defined and do not depend on the choice of vol for any probability measures�1 and�2,
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see also (3.9). The functional Lp satisfies the following concavity property, see [3, Proposi-
tion 2.4].

L 3.2. – The functional � 7! Lp.�; �/ is concave on the space of all continuous
weights on the support of �.

Recall from Definition 2.10 that the Bergman measure Bp.�; �/ is a probability
measure. Note that when � is the average of Np generic Dirac masses (more precisely,
for points x1; : : : ; xNp such that the vector det.si .xj // in the Introduction does not vanish),
one can easily deduce from Definition 2.10 that Bp.�; �/ D �, by considering sections
vanishing on supp.�/ except at a point. Such sections exist because Np D dimH 0.X;Lp/.
This property holds in particular for Fekete measures of order p.

The following relation between the functional Lp.�; �/ and Bp.�; �/ has been established
in [2, Lemma 5.1], see also [6, Lemma 5.1] and [15, Lemma 2].

L 3.3. – The directional derivatives of Lp.�; �/ at a continuous weight � on the
support of � are given by the integration against the Bergman measure Bp.�; �/, that is,

d

dt
Lp.�; � C tv/jtD0 D hv;Bp.�; �/i; with v; � continuous on the support of �:

In particular, for all continuous functions �1 and �2 on the support of �, we have

j Lp.�; �1/ � Lp.�; �2/j � k�1 � �2k1:

Note that as in Theorem 3.1, the second assertion of the last lemma is a direct consequence
of the first one.

Consider the norm k � kL1.K;p�/ on H 0.X;Lp/ defined in (2.20). Let B
1

p .K; �/ denote
the unit ball in H 0.X;Lp/ with respect to this norm. Define

Lp.K; �/ WD
1

2pNp
log vol B

1

p .K; �/:(3.2)

We have the following elementary lemma.

L 3.4. – If � is a probability measure with supp.�/ � K, then

Lp.K; �/ � Lp.�; �/:

Proof. – Since � is a probability measure, we see that

kskL2.�;p�/ � kskL1.K;p�/; s 2 H 0.X;Lp/:(3.3)

The lemma follows.

We have the following property that we will only use in the case of !0-p.s.h. weights.

L 3.5. – Let� be a probability measure andK � X a compact set with supp.�/ � K.
Assume the following strong Bernstein-Markov inequality: there exists a constant B > 0 such
that

sup
K

�p.�; �/ � Bp
B for p > 1:

Then there exists c > 0 depending only on B such that for p > 1, we have

0 � Lp.�; �/ � Lp.K; �/ � cp
�1 logp:
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Proof. – For all p > 1 and section s 2 H 0.X;Lp/, by (3.3) and Definition 2.10, we have

kskL2.�;p�/ � kskL1.K;p�/ � e
pcpkskL2.�;p�/;(3.4)

where

cp WD
1

2p
log sup

K

�p.�; �/:(3.5)

Since the volume form vol is homogeneous of degree 2Np D dimRH
0.X;Lp/, it follows

from (3.4) that

0 � log
vol B

2
p.�; �/

vol B
1

p .K; �/
� 2pNpcp:

Hence, by definition of the L -functionals in (3.1) and (3.2), we have

0 � Lp.�; �/ � Lp.K; �/ D
1

2pNp
log

vol B
2
p.�; �/

vol B
1

p .K; �/
� cp:

This, (3.5) and the assumed strong Bernstein-Markov inequality imply the lemma.

The following result gives us a class of compact sets K satisfying the strong Bernstein-
Markov inequality stated in Lemma 3.5 for .X; PK�/ instead of .K; �/, see also [3,
Section 1.2]. We refer to the beginning of the article for the definition of �0.

T 3.6. – LetA > 0 and ˛; ˛0 > 0 be constants. LetK � X be a .C ˛;C ˛0/-regular
compact set. Let � be a function on K such that k�kC˛ � A. Then there is a constant B > 0

depending only on X;L; h0; K;A; ˛ and ˛0 such that

sup
X

�p.�
0; PK�/ � Bp

B for p > 1:

In particular, the statement holds when K is the closure of an open set in X with C 2 boundary,
0 < ˛0 < 1, ˛ � ˛0 and A > 0.

Proof. – The second assertion is a consequence of the first one and Theorem 2.7. We
prove now the first assertion.

It is enough to consider the case where 0 < ˛0 < 1. Since K is .C ˛;C ˛0/-regular, the
function  WD PK� has bounded C ˛0 -norm onX . Consequently, we only need to prove that

(3.6) sup
X

�p.�
0;  / . p2n=˛

0

for p > 1:

For this purpose, fix a point x 2 X and a section s 2 H 0.X;Lp/ such that kskL2.�0;p / D 1.
By Definition 2.10, it is enough to prove the estimate

(3.7) js.x/j2p . p
2n=˛0

uniformly in x and s.
Choose local coordinates z near x such that z.x/ D 0 and for simplicity we still write

 .z/ for the restriction of  to a neighborhood of x. Fix also a local holomorphic frame e
of L over a neighborhood of x such that je.0/j D e� .0/. We can write s.z/ D f .z/e˝p.z/,
where f .z/ is a holomorphic function such that jf .0/je�p .0/ D js.0/jp . So we need to
check that jf .0/j2e�2p .0/ . p2n=˛

0

. Write  e.z/ WD � log je.z/j . This function differs
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from  .z/ by a pluriharmonic function. Therefore, it is also of class C ˛0 and by definition
we have  e.0/ D  .0/. It follows that j e.z/ �  .0/j . jzj˛

0

, and hence

p2n=˛
0

D p2n=˛
0

ksk2
L2.�0;p /

& p2n=˛
0

Z
jzj<p�1=˛

0
jf .z/j2e�2p e.z/d Leb.z/(3.8)

& p2n=˛
0

Z
jzj<p�1=˛

0
jf .z/j2e�2p .0/e�cpjzj

˛0

d Leb.z/

for some constant c > 0.

Using the submean property for jf .z/j2 and the new variable u WD p1=˛
0

z, we can bound
the last expression from below by

jf .0/j2e�2p .0/p2n=˛
0

Z
jzj<p�1=˛

0
e�cpjzj

˛0

d Leb.z/ D jf .0/j2e�2p .0/
Z
juj<1

e�cjuj
˛0

d Leb.u/:

Therefore, we deduce from (3.8) that jf .0/j2e�2p .0/ . p2n=˛
0

. The estimates (3.7), (3.6) and
then the theorem follow.

In the case where K D X and � D �0, we have the following lemma.

L 3.7. – LetA > 0 and˛ > 0 be constants. Let� be an!0-p.s.h. function onX whose
C ˛-norm is bounded byA. Then there exists a constant cA;˛ > 0 depending only onX;L; h0; A
and ˛ such that for every p > 1, we have

0 � Lp.�
0; �/ � Lp.X; �/ �

cA;˛ logp
p

�

Proof. – It is enough to apply Lemma 3.5 and Theorem 3.6 for K D X . Note that since
� is !0-p.s.h., we have PX� D �.

3.2. Main estimates for the volumes and energy

We gather in this subsection the main estimates needed for the proofs of our main theo-
rems.

Normalization. – From now on, in order to simplify the notation, we use the following
normalization

(3.9) E eq.X; 0/ D 0 and Lp.�
0; 0/ D 0 for p 2 N:

Here, the function identically 0 is used as a smooth strictly !0-p.s.h. weight.

For continuous weights �1; �2 on X , the following quantities will play an important role
in the sequel:

Vp.�1; �2/ WD
ˇ̌�

Lp.�
0; �1/ � Lp.�

0; �2/
�
�
�

E eq.X; �1/ � E eq.X; �2/
�ˇ̌

(3.10)

and

Wp.�1; �2/ WD
ˇ̌�

Lp.X; �1/ � Lp.X; �2/
�
�
�

E eq.X; �1/ � E eq.X; �2/
�ˇ̌
:(3.11)

Here are three crucial propositions. The first two results deal with strictly !0-p.s.h.
weights, whereas the last one considers the case with weakly !0-p.s.h. weights.
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P 3.8. – Let �1 and �2 be two weights of class C 3 on X such that
max.k�1k3; k�2k3/ � A for some given constant A > 0. Suppose dd c�1 C !0 � �!0
and dd c�2 C !0 � �!0 for some � > 0. Then, there is a constant cA;� > 0 depending only
on X;L; !0; A and � such that for all p > 1

Vp.�1; �2/ � cA;� .logp/3=2p�1=2 and Wp.�1; �2/ � cA;� .logp/3=2p�1=2:

Proof. – By Lemma 3.7, the second estimate of the proposition follows from the first one.
So we only need to prove the first estimate. In what follows, all involved constants may depend
on X;L; !0; A and �. Recall that � � 1 because dd c�j C !0 � �!0 and dd c�j C !0 is
cohomologous to !0. It is enough to consider p large enough.

For t 2 Œ0; 1�, define �t WD t�1 C .1 � t /�2. By Lemma 3.3, we get

Lp.�
0; �1/ � Lp.�

0; �2/ D

Z 1

tD0

dt

Z
X

.�1 � �2/Bp.�
0; �t /:

Since dd c�t C !0 � �!0, by Theorem 2.11 applied to �t , the right hand side of the last
identity is equal toZ 1

tD0

dt

Z
X

.�1 � �2/�eq.X; �t /CO
�
.logp/3=2p�1=2

�
:

By applying Theorem 3.1, the double integral in the last line is equal toZ 1

tD0

d

dt
jtD0

E eq.X; �t / D E eq.X; �1/ � E eq.X; �2/:

Therefore, we get

Lp.�
0; �1/ � Lp.�

0; �2/ D E eq.X; �1/ � E eq.X; �2/CO
�
.logp/3=2p�1=2

�
;

which proves the proposition.

P 3.9. – Let 0 < ˛ � 1 and A > 0 be constants. Let �1 and �2 be two weights
of class C 0;˛ on X such that max.k�1kC0;˛ ; k�2kC0;˛ / � A. Suppose dd c�1 C !0 � �!0
and dd c�2 C !0 � �!0 for some � > 0. Then, there is a constant cA;˛;� > 0 depending only
on X;L; !0; A; ˛ and � such that for all p > 1

Vp.�1; �2/ � cA;˛;� .logp/˛=2p�˛=6 and Wp.�1; �2/ � cA;˛;� .logp/˛=2p�˛=6:

Proof. – As in the last proposition, we can assume that � is fixed with � � 1 and p is
large enough. Moreover, we only need to prove the first estimate. The constants involved in
the calculus below may depend on X;L; !0; A; ˛ and �. Fix a constant c > 0 large enough
and define

" WD c
�
.logp/3=2p�1=2

�1=3
� 1

for p large enough. By Theorem 2.1 applied to .1� �/�1�1 and .1� �/�1�2, there exist two
smooth weights �j;" WD .1 � �/

�
.1 � �/�1�j

�
"

for j D 1; 2 such that

a) dd c�j;" C !0 � �!0I
b) k�j;" � �j k1 . "˛;
c) k�j;"kC3 . "

˛�3.
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We deduce from (3.10), Theorem 3.1 and Lemma 3.3 that

jVp.�1; �2/ � Vp.�1;"; �2;"/j . "
˛:

We can apply Theorem 2.11 to �j;" and their linear combinations as in the proof of Proposi-
tion 3.8. The choice of " and the above properties a)-c) allow us to check the hypotheses of
that theorem for large p. Therefore, taking into account the estimate c), we obtain

Lp.�
0; �1;"/ � Lp.�

0; �2;"/ D E eq.X; �1;"/ � E eq.X; �2;"/CO
�
.logp/3=2p�1=2"˛�3

�
;

or equivalently
Vp.�1;"; �2;"/ . .logp/3=2p�1=2"˛�3:

Thus,
Vp.�1; �2/ . .logp/3=2p�1=2"˛�3 C "˛:

This estimate and the choice of " imply the first inequality in the proposition.

P 3.10. – Let 0 < ˛ � 1 and A > 0 be constants. Let �1 and �2 be two
!0-p.s.h. weights of class C 0;˛ on X such that max.k�1kC0;˛ ; k�2kC0;˛ / � A. Then, there is a
constant cA;˛ > 0 depending only on X;L; !0; A and ˛ such that for all p > 1

Vp.�1; �2/ � cA;˛.logp/3ˇ˛p�ˇ˛ and Wp.�1; �2/ � cA;˛.logp/3ˇ˛p�ˇ˛ ;

where ˇ˛ WD ˛=.6C 3˛/.

Proof. – As above, we only need to prove the first inequality and to consider p large
enough. Choose

" WD .logp/1=.2C˛/p�1=.6C3˛/ and � WD "˛:

Define �0j WD .1 � �/�j . We proceed as in Proposition 3.9 but should take into account
the fact that � is no more fixed. The constants involved in the computation below should
be independent of �.

As in that proposition, we obtain

jVp.�1; �2/ � Vp.�
0
1; �
0
2/j . �

and since dd c�0j C !0 � �!0

Vp.�
0
1; �
0
2/ . �

�3=2.logp/3=2p�1=2"˛�3 C "˛:

We then deduce that

Vp.�1; �2/ . � C �
�3=2.logp/3=2p�1=2"˛�3 C "˛:

The above choice of " and � implies the result.

In the rest of this subsection, we give some results which relate Fekete points with the
functionals considered above. Fix an orthonormal basis Sp D .s1; : : : ; sNp / of H 0.X;Lp/

with respect to the scalar product onH 0.X;Lp/ induced by h0 and �0. Consider a weighted
compact set .K; �/ with � continuous on K. Recall that

k detSpkL1.K;p�/ WD sup
.x1;:::;xNp /2K

Np

j det.si .xj //je�p�.x1/�����p�.xNp /
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and

k detSpk2L2.�;p�/ WD
Z
.x1;:::;xNp /2K

Np

j det.si .xj //j2e�2p�.x1/�����2p�.xNp /d�.x1/ : : : d�.xNp /;

if � is a weight on K and � is a probability measure supported by K.

We assume further that .K; �/ is regular, i.e., �K D PK�, that PK� is continuous, and
also that the following strong Bernstein-Markov inequality holds

(3.12) sup
X

�p.�
0; PK�/ � Bp

B for some constant B > 0:

L 3.11. – Let Sp; K and � be as above with condition (3.12). Then there is a constant
c > 0 depending only on B such that for p > 1ˇ̌

log k detSpkL1.K;p�/ � log k detSpkL2.�0;pPK�/
ˇ̌
� cNp logp:

Proof. – Observe that the restriction of .Lp/�Np to fx1g � � � � � fxNp�1g � X can
be identified to the line bundle Lp over X . Therefore, we can apply Proposition 2.5 to
x 7! detSp.x1; : : : ; xNp�1; x/. Then, using inductively the same argument for the other
variables xi , we obtain

k detSpkL1.K;p�/ D k detSpkL1.X;pPK�/:

Hence,

k detSpkL1.K;p�/ � k detSpkL2.�0;pPK�/:

Now, to complete the proof we only need to show that

(3.13) log k detSpkL1.X;pPK�/ � log k detSpkL2.�0;pPK�/ CO.Np logp/:

By (3.12), we get

js.x/j2pPK� � �p.�
0; PK�/.x/ksk

2
L2.�0;pPK�/

� BpBksk2
L2.�0;pPK�/

for every section s 2 H 0.X;Lp/, p > 1, and x 2 X . Now, if x1; : : : ; xNp are points in X ,
then for each j

x 7! detSp.x1; : : : ; xj�1; x; xjC1; : : : ; xNp /

is a holomorphic section in H 0.X;Lp/. A successive application of the last inequality for
j D 1; 2; : : : ; Np yields

k detSpk2L1.X;pPK�/ � B
NppBNpk detSpk2L2.�0;pPK�/;

and (3.13) follows.

Taking the normalization (3.9) into account, we set, for each p > 1,

(3.14) "p WD
ˇ̌
Lp.�

0; PK�/ � E eq.K; �/
ˇ̌
D Vp.PK�; 0/;

and

Dp.K; �/ WD
1

pNp
log k detSpkL1.K;p�/:
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P 3.12. – Let Sp; K; �; "p and Dp.K; �/ be as above with condition (3.12).
Then there is a constant c > 0 depending only on X;L and B such that for p > 1

jDp.K; �/C E eq.K; �/j � c.p
�1 logp C "p/;

and for any Fekete measure �p associated with .K; �/

j Lp.�p; �/ � E eq.K; �/j � c.p
�1 logp C "p/:

Proof. – We prove the first assertion. By Lemma 3.11, we only need to check that

(3.15)
ˇ̌̌ 1

pNp
log k detSpkL2.�0;pPK�/ C E eq.K; �/

ˇ̌̌
. p�1 logp C "p:

Using that Sp is an orthonormal basis, a direct computation (see [2, Lemma 5.3] and [2,
p. 377]), gives

k detSpk2L2.�0;pPK�/ D NpŠ
vol B

2
p.�

0; 0/

vol B
2
p.�

0; PK�/
;

which implies

1

pNp
log k detSpkL2.�0;pPK�/ D Lp.�

0; 0/ � Lp.�
0; PK�/C

logNpŠ
2pNp

�

By the normalization (3.9) and (3.14),

Lp.�
0; 0/ D 0 and Lp.�

0; PK�/ D E eq.K; �/˙ "p:

On the other hand, since Np ' pn by (2.19), we have

logNpŠ
2pNp

.
pn logp
2pNp

. p�1 logp:

Combining the last four estimates together, we obtain (3.15).

Consider now the second assertion in the proposition. Using the definition of Fekete
points, we obtain (see [3, (2.4)])

1

2pNp
log

vol B
2
p.�

0; 0/

vol B
2
p.�p; �/

D Dp.K; �/ �
1

2p
logNp:

By the normalization (3.9), the left-hand side is � Lp.�p; �/. Using again that Np ' pn; we
deduce the result from the first assertion of the proposition.

3.3. Proofs of the main results and further remarks

In this subsection, we will give the proofs of the main theorems stated in the Introduction.
We need the following auxiliary lemmas.

L 3.13. – There is a constant c > 0 such that for every continuous weight � on K
and every function v of class C 1;1 on X , we haveˇ̌

h�eq.K; � C tv/ � �eq.K; �/; vi
ˇ̌
� cjt jkvkL1.K/kdd

cvk1 for t 2 R:
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Proof. – Define

‰ WD

nX
jD1

.dd cPK� C !0/
j�1
^ .dd cPK.� C tv/C !0/

n�j :

Observe that dd cPK� C !0 and dd cPK.� C tv/ C !0 are positive closed .1; 1/-currents
cohomologous to !0. So ‰ is a sum of n positive closed .n � 1; n � 1/-currents of bounded
mass. Define also u WD PK.� C tv/ � PK�. For t 2 R, we have

h�eq.K; � C tv/; vi � h�eq.K; �/; vi D
˝
NMA.PK.� C tv// �NMA.PK�/; v

˛
D consthdd cu ^‰; vi D consthdd cv ^‰; ui:

On the other hand, by Lemma 2.6,

kukL1.X/ D kPK.� C tv/ � PK�kL1.X/ � jt jkvkL1.K/:

Since v 2 C 1;1.X/, dd cv can be written as the difference of two positive closed bounded
.1; 1/-forms. Consequently, dd cv ^ ˆ is a signed sum of 2n positive measures of bounded
mass. This and the above computation imply the lemma.

L 3.14. – Let " > 0 and M > 0 be constants. Let F and G be functions defined
on Œ�"1=2; "1=2� such that

a) F.t/ � G.t/ � " and jF.0/ �G.0/j � "I
b) F is concave on Œ�"1=2; "1=2� and differentiable at 0I
c) G is differentiable in Œ�"1=2; "1=2�, and its derivativeG0 satisfies jG0.t/�G0.0/j �M"1=2

for t 2 Œ�"1=2; "1=2�. The last inequality holds when jG0.t/ �G0.0/j �M jt j.

Then we have

jF 0.0/ �G0.0/j � .2CM/"1=2:

Proof. – This is a quantitative version of [2, Lemma 7.6]. Since F is concave, we have

F.0/C F 0.0/t � F.t/

for jt j � "1=2. Hence, for t WD ˙"1=2, we get

(3.16) tF 0.0/ � G.t/ �G.0/ � 2" D G.t/ �G.0/ � 2t2:

Now, take t WD "1=2. There exists s 2 .0; t/ such that

G.t/ �G.0/

t
D G0.s/ and by c) jG0.s/ �G0.0/j �Mt:

This, combined with (3.16) yields

F 0.0/ � G0.s/ � 2t � G0.0/ � .2CM/t:

Hence, F 0.0/ � G0.0/ � �.2 C M/"1=2. The inequality F 0.0/ � G0.0/ � .2 C M/"1=2 is
obtained in the same way by using t WD �"1=2.
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End of the proof of Theorem 1.7. – By (1.1), we only need to consider the case  D 3, i.e., to
prove

(3.17)
ˇ̌
h�p � �eq.X; �/; vi

ˇ̌
. p�1=4.logp/3=4

for every test function v such that kvkC3 � 1. We will apply Lemma 3.14 to the following
functions

F.t/ WD Lp.�p; � C tv/ and G.t/ WD E eq.X; � C tv/:

By Lemma 3.4,

Lp.�p; � C tv/ � Lp.X; � C tv/:(3.18)

On the other hand, since dd cv is bounded, we can find a constant t0 > 0 such that �C tv is
.1 � �/!0-p.s.h. for jt j � t0 and � > 0 a fixed constant. Recall that the function 0 satisfies
the normalization (3.9). Consequently, Proposition 3.8, applied to �C tv and the function 0,
yields

j Lp.X; � C tv/ � E eq.X; � C tv/j . p
�1=2.logp/3=2:

This, combined with (3.18), shows that

F.t/ �G.t/ & �p�1=2.logp/3=2:(3.19)

Next, since � is !0-p.s.h., we have PK� D �. Moreover, we have the strong Bernstein-
Markov inequality thanks to Theorem 3.6 applied to K WD X . Let "p be defined as in (3.14)
with K D X and PK� D �. By Proposition 3.8 again, we have "p D O.p�1=2.logp/3=2/.
Consequently, applying Proposition 3.12 yields

jF.0/ �G.0/j . p�1=2.logp/3=2:(3.20)

Recall from Lemma 3.2 that F is concave. Moreover, by Lemma 3.3, we have

F 0.0/ D hv;Bp.�p; �/i:(3.21)

On the other hand, by Theorem 3.1, G is differentiable with

G0.t/ D hv; �eq.X; � C tv/i:(3.22)

Finally, by Lemma 3.13, condition c) in Lemma 3.14 is satisfied for a suitable constant
M > 0. Combining this and the discussion between (3.19)-(3.22), we are in the position
to apply Lemma 3.14 to a constant " of order p�1=2.logp/3=2. Using the above expression
for F 0.0/ and G0.0/, we getˇ̌

hBp.�p; �/; vi � h�eq.X; �/; vi
ˇ̌
D O

�
p�1=4.logp/3=4

�
:

Recall from the discussion before Lemma 3.3 that Bp.�p; �/ D �p. Hence, estimate (3.17)
follows immediately. �

R 3.15. – If in Theorem 1.7, the function � is only C 0;˛ for some 0 < ˛ � 1, we
can apply Proposition 3.9 instead of 3.8 in order to get

dist .�p; �eq.X; �// . .logp/˛=8p�˛=24 for 0 <  � 2:
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End of the proof of Theorem 1.5. – By (1.1), we only need to consider the case  D 2, i.e., to
prove ˇ̌

h�p � �eq.K; �/; vi
ˇ̌
. p�2ˇ .logp/6ˇ

for every test C 2 function v such that kvkC2 � 1. Recall that ˇ WD ˛0=.24C 12˛0/. Define

F.t/ WD Lp.�p; � C tv/ and G.t/ WD E eq.K; � C tv/ D E eq.X; PK.� C tv//

for t in a neighborhood of 0 2 R. By Lemma 3.4 and Proposition 2.5,

Lp.�p; � C tv/ � Lp.K; � C tv/ D Lp.X; PK.� C tv//:

As 0 < ˛ � 2, we infer that � C tv 2 C ˛.K/. Since K is .C ˛;C ˛0/-regular, we deduce
that PK.� C tv/ is an !0-p.s.h. weight on X with bounded C ˛0 -norm. This, coupled with
Proposition 3.10, applied to PK.� C tv/ and the function 0, for ˛0 instead of ˛, and the
normalization (3.9), shows that

F.t/ �G.t/ & �p�4ˇ .logp/12ˇ :

By Theorem 3.6, condition (3.12) is fulfilled. Let "p be defined as in (3.14). By Propo-
sition 3.10 for ˛0 instead of ˛, we have "p D O.p�4ˇ .logp/12ˇ /. Consequently, applying
Proposition 3.12 yields

jF.0/ �G.0/j . p�4ˇ .logp/12ˇ :

Finally, since kvkC2.X/ � 1, we can check condition c) in Lemma 3.14 using Lemma 3.13.
Applying Lemma 3.14 to a constant " of order p�4ˇ .logp/12ˇ , we easily obtain the result as
in the proof of Theorem 1.7. �

R 3.16. – Optimal estimates for the speed of convergence in our results are still
unknown. This is an interesting problem which may require a better understanding of the
Bergman kernels. Results in this direction may have consequences in theory of sampling and
interpolation for line bundles with singular metric and not necessarily of positive curvature.
Demailly suggested us to study first the case in Cn with data invariant under the action of
the real torus .S1/n.

R 3.17. – Our proofs still hold in the case of almost Fekete configurations
P D .x1; : : : ; xNp / 2 K

Np in the sense that the quantity �P below is not too big. Assume
that P is not necessarily a Fekete configuration and define

�P WD
1

pNp
log k detSpkL1.K;p�/ �

1

pNp
log k detSp.P /kp� :

Then our main estimates are still valid for this configuration if we add to their right hand sides
the term O.�

=4
P / for the estimates in Theorems 1.1, 1.5 and Corollary 1.6, and O.�=6P / for

the estimate in Theorem 1.7. The main change in the proofs is that we need to add O.�P /
to the right hand side of the second inequality in Proposition 3.12. This answers a question
that Norm Levenberg asked us, see also [23].
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