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We study a Laplacian operator related to the characteristic cohomology of a smooth

manifold endowed with a distribution. We prove that this Laplacian does not behave

very well: it is not hypoelliptic in general and does not respect the bigrading on forms

in a complex setting. We also discuss the consequences of these negative results for a

conjecture of P. Griffiths, concerning the characteristic cohomology of period domains.

1 Introduction

Let X be a smooth manifold and denote by Ω•(X) its differential graded algebra of

smooth differential forms. Given a constant-rank distribution W on X, we consider the

Pfaffian system associated to W, that is the graded differential ideal J • generated by

the smooth global sections of the annihilator of W in T∗X. Pfaffian systems constitute

an important class of exterior differential systems, for which we refer the interested

reader to [2].

For a differential map f from a smooth manifold Y to X, it is equivalent for the

differential of f to have its values in the distribution W and for the pullback by f of any

form in J to vanish on Y; we call such maps solutions of the Pfaffian system. Hence, it

is reasonable to consider the complex Ω•(X)/J •, endowed with the differential induced

by exterior differentiation on Ω•(X). This is well defined since J is stable by exterior

differentiation. We define the characteristic cohomology of (X, W) to be the cohomology
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Characteristic Laplacian in Sub-Riemannian Geometry 13291

of this complex and we denote it by H •
J (X). More generally, we will attach the adjective

characteristic to the constructions related to the Pfaffian system. In [3, 4], this charac-

teristic cohomology is intensively studied. Remark that if f : Y → X is a solution of J ,

then one has a map in cohomology

f∗ : H •
J (X) → H •(Y).

In [12, Section III], the characteristic cohomology of period domains is the object

of an interesting conjecture. Period domains D are homogeneous spaces G/V , where V

is a compact subgroup of a Lie group G, encountered in the study of variations of Hodge

structures. To every variation of Hodge structures over a complex manifold S, one can

construct a holomorphic map from S to a quotient Γ \D, where Γ is a discrete subgroup

of G, and the well-known Griffiths transversality condition (a.k.a infinitesimal period

relation; see, e.g., [6]) states that the differential of such a map has its values in some

distribution W of Γ \D, coming from a G-invariant distribution of D. The conjecture can

be stated as follows.

Conjecture 1.1. Let Γ be a cocompact subgroup of G, acting freely on D = G/V . If the

distribution W is bracket-generating and if m ≤ m0, where m0 is some integer deter-

mined by the Pfaffian system J associated to W, then Hm
J (Γ \D) carries a natural pure

real Hodge structure of weight m. !

A real pure Hodge structure of weight m is a real vector space E whose complex-

ification E ⊗R C carries a decomposition

E ⊗R C =
⊕

p+q=m

E p,q,

where E p,q are complex vector spaces satisfying E p,q = Eq,p. The prototype of real pure

Hodge structure of weight m is the real cohomology in degree m of a compact Kähler

manifold, as results from Hodge theory (especially the ellipticity of the Hodge Laplacian)

and Kähler identities (see [13] or [15] for instance). One idea to study this conjecture is

to develop an analog of Hodge theory in this characteristic situation. More precisely,

following [11], one defines a Laplacian related to the Pfaffian system and one can try to

prove that there is an isomorphism between its harmonic forms and the characteristic

cohomology. In the complex setting, if the Laplacian respects the bigrading on forms, we

get a Hodge structure on harmonic forms, hence on characteristic cohomology. However,

we will see that the picture is not so bright and that Conjecture 1.1 certainly needs to be

studied in another way.
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13292 J. Daniel and X. Ma

In the first part, we construct this characteristic Laplacian. In [11, Section III. A],

it is asserted that this characteristic Laplacian is hypoelliptic and that in this case

we have an isomorphism of the characteristic cohomology with the space of harmonic

forms. However, we explain why there seems to be no reason for the hypoellipticity of

the characteristic Laplacian in general and, in Example 2.10, we give an explicit coun-

terexample to the hypoellipticity in a complex setting.

Proposition 1.2. One can construct compact complex manifolds of dimension 3,

endowed with a contact structure, for which the corresponding characteristic Laplacian

is not hypoelliptic in degree 2. !

In particular, it seems difficult to understand the characteristic cohomology via

harmonic forms. As remarked by one of the referees, this result would be much stronger

if a Hodge-theoretic example was given. Look at Remark 2.13 for a discussion.

In the second part, we nevertheless study the characteristic Laplacian in more

detail and answer the following question, asked in [11, Section III. A].

Question 1.3. Let (X, h) be a Hermitian manifold, endowed with a holomorphic distri-

bution W. Let WR denote the underlying real distribution in T X and consider the Pfaffian

system associated to WR. What are the necessary and sufficient conditions for the char-

acteristic Laplacian to respect the bigrading on differential forms on X? !

We give an unexpected answer to this question in Theorem 3.1.

Theorem 1.4. The characteristic Laplacian never respects the bigrading, in any posi-

tive degree, when the distribution W is not involutive (in particular, when it is bracket-

generating, as in Conjecture 1.1). !

This is quite deceptive since it shows that there is nothing like a Kähler condition

in the characteristic case. Indeed, in the classical case where the distribution W is the

whole space T X, we show in Theorem 3.2:

Theorem 1.5. A complex Hermitian manifold is Kähler if and only if the Hodge Laplacian

preserves the bigrading on differential forms on X. !

It seems that the necessity part was not written yet in the literature. This result

and its proof are independent of the rest of the article.
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In this paper, if E is a complex vector bundle on a manifold X, we will denote

by ER its underlying real vector bundle. Moreover, ∧ and i are the exterior and interior

products on Ω•(X) and all distributions are assumed to be of constant rank.

If A : E → E is an operator on some vector space endowed with an inner product,

and if F ⊂ E is a vector subspace, we can define an operator AF : F → F by AF = πF ◦ A,

where πF is the orthogonal projection from E onto F . We will often emphasize that this

operator is defined only on F by writing AF = πF ◦ A◦ πF .

2 The Characteristic Laplacian

This section is organized as follows. In Section 2.1, we define the characteristic Lapla-

cian associated with a distribution for Riemannian manifolds. In Section 2.2, we

explain Taylor’s counterexample for the hypoellipticity of the characteristic Laplacian.

In Section 2.3, we explain why the hypoellipticity does not seem to hold in general by

computing its principal symbol. In Section 2.4, we give a counterexample for the hypoel-

lipticity of the characteristic Laplacian in the complex setting which is the context of

the original question.

2.1 Definitions and notations

Let (X, gT X) be a smooth compact Riemannian manifold, endowed with a (constant-rank)

distribution W. We denote by F the annihilator of W in T∗X; it is a vector subbundle of

T∗X. We denote by Ω•(X) the graded algebra of differential forms on X and we endow it

with the natural metric gΩ(X) induced by gT X. We consider

• I the algebraic ideal generated by the smooth sections IX = C ∞(X, F );

• J the differential ideal generated by the smooth sections of F on X, that is

the minimal algebraic ideal containing the smooth sections of F and stable

by exterior differentiation.

Remark that J is the algebraic ideal generated by IX and dIX. If (θ j) is a frame

of F , the forms in I can locally be written as
∑

j

θ j ∧ φ j,

where φ j are arbitrary forms on X, and those in J are of the form
∑

j

θ j ∧ φ j + dθ j ∧ ψ j,

where φ j,ψ j are arbitrary forms on X.
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Let Q be the orthogonal complement of J in Ω(X). Remark that Q is naturally

graded. We define a differential operator for forms in Q by

dQ := πQ ◦ d◦ πQ :Q→Q, (2.1)

where πQ is the orthogonal projection from Ω(X) onto Q. Since J is stable by d, we have

πQ ◦ d◦ πQ = πQ ◦ d :Ω•(X) →Ω•(X). (2.2)

As a direct consequence of (2.2), we know

d2
Q = πQ ◦ d◦ πQ ◦ d◦ πQ = πQ ◦ d2 ◦ πQ = 0. (2.3)

Since Q is the orthogonal complement of J and J is stable by d, we know that Q is

stable by the adjoint d∗ of d and the restriction of d∗ to Q is d∗
Q, the adjoint of dQ for the

natural L2-structure on Q. Indeed, if α (respectively, β) is in Q (respectively, J ), then dβ

is in J and this implies
(d∗α,β) = (α, dβ) = 0.

Since this is true for any β in J , d∗α is in Q. Moreover, if α and β are in Q, then

(d∗α,β) = (α, dβ) = (α, dQβ) (2.4)

and this shows that d∗
Qα = d∗α.

Definition 2.1. The characteristic Laplacian ∆Q on X with respect to W is the differen-

tial operator on Q
∆Q = dQd∗

Q + d∗
QdQ :Q→Q. (2.5)

!

Remark 2.2. In sub-Riemmanian geometry (where the distribution W is involutive), one

defines a sub-Laplacian on functions (see [16]). This sub-Laplacian is hypoelliptic and

coincides with the characteristic Laplacian in degree 0. In Example 2.5, we will see that

hypoellipticity can fail in positive degrees. !

Remember that we defined the characteristic cohomology of X (associated to the

distribution W) to be

H •
J (X) := H •(Ω•(X)/J •, d), (2.6)

with the differential induced by exterior differentiation on Ω•(X).

The characteristic cohomology of an exterior differential system was deeply

studied in [3, 4]. More recently, some aspects of the characteristic cohomology of period
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(or Mumford–Tate) domains have been treated in [17, 18]. In particular, it is explained

in the last reference that, in low dimensions, characteristic and de Rham cohomologies

coincide. Although written in a quite specific setting in [17], this is true in general, as

will be explained in a forthcoming note of the first-named author [9].

By definition of Q and dQ, this characteristic cohomology is naturally isomorphic

to the cohomology of the complex (Q•, dQ). An analog of Hodge theory would be the

following conjecture.

Conjecture 2.3. We denote by H•
Q(X) the characteristic harmonic forms, that is the

kernel of ∆Q. Then

• H•
Q(X) is of finite dimension;

• there is an orthogonal decomposition

Q•(X) =H•
Q(X) ⊕ dQ(Q•−1(X)) ⊕ d∗

Q(Q•+1(X)); (2.7)

• the natural application H•
Q(X) → H •

J (X) is an isomorphism. !

In classical Hodge theory, one gets these results as consequences of the elliptic-

ity of the Laplacian. In the next section, we show that the characteristic Laplacian in

not even hypoelliptic in general. Hence we cannot really hope this conjecture to be true.

2.2 The question of hypoellipticity

We recall that if E and F are vector bundles over X and P : E → F is a differential oper-

ator, then P is said to be hypoelliptic if the following condition is satisfied: for every

local distribution u with values in E , if Pu is smooth on an open set U ⊂ X, then the

restriction of u to U is smooth. Elliptic operators, like the usual Hodge Laplacian, are

hypoelliptic. It is a natural question to ask whether ∆Q is hypoelliptic since this would

be the first step in order to prove Conjecture 2.3.

The best known sufficient condition for a second-order differential operator to

be hypoelliptic is due to Hörmander ([14]).

Theorem 2.4 (Sum of squares condition of hypoellipticity). Let P be a second-order

differential operator from a vector bundle E to itself. Suppose that locally one can find

smooth vector fields X0, . . . , Xk and a smooth function c such that in a local frame of E ,

Pu=
(

k∑

i=1

X2
i + X0 + c

)

u

 at U
PM

C
 on D

ecem
ber 24, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


13296 J. Daniel and X. Ma

(in particular, P acts componentwise). Then P is hypoelliptic if and only if X0, . . . , Xk

generate T X by brackets. !

In [11], it is suggested that this theorem implies that the characteristic Lapla-

cian is hypoelliptic when the distribution W is bracket-generating. We will first give a

counterexample due to Taylor [19] and then compute the principal symbol of ∆Q in order

to understand why the hypoellipticity certainly fails in general.

Example 2.5. A contact structure on a 3-manifold M is one of the simplest examples

of Pfaffian systems. It is the datum of a 2-rank distribution W on M which is bracket-

generating. For instance, one can take for W the kernel of the 1-form θ = du− pdx in

coordinates (x, u, p) in M = R3. A natural example in which M is compact is constructed

as follows: we consider H3 the 3D Heisenberg group, that is R3 with coordinates (p, q, t)

and group structure (p, q, t) · (p′, q′, t′) = (p+ p′, q + q′, t + t′ + 1
2 (pq′ − p′q)). One checks

that the 1-form θ = dt − 1
2qdp+ 1

2 pdq is right-invariant and defines a contact structure

on H3. Taking a cocompact discrete subgroup Γ of G, M = G/Γ still carries the contact

structure.

Locally, all contact structures on 3-manifolds are the same (however, the charac-

teristic Laplacian also needs a Riemannian metric to be defined; see also Example 2.10

for this important issue). Let M be a 3D Riemannian manifold with a contact form θ and

the corresponding 2-rank distribution W. Let U be an open set in M. Then

• J 0(U ) = 0,

• J 1(U ) = C ∞(U, Rθ),
• J 2(U ) =Ω2(U ), J 3(U ) =Ω3(U ),

and

• Q0(U ) = C ∞(U ),

• Q1(U ) = C ∞(U, E),

• Q2(U ) = 0, Q3(U ) = 0,

where E → U is the real vector bundle of rank 2, which is the orthogonal of Rθ in T∗R3.

In degree 1, the characteristic Laplacian is well defined on forms with compact support.

We have

∆1
Q = dQd∗

Q : C ∞
c (U, E) → C ∞

c (U, E)

and one can consider it as a second-order differential operator on E . Let us denote by

(X1, X2) a (smooth) orthonormal frame of W over Ū and by (α1,α2) the dual frame of W∗.
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Using the metric, W∗ can be seen as a subbundle of T∗M and E can be identified with

W∗ (see also the following Section 2.3).

A form µ ∈ L2(U, E) can thus be written µ = µ1α
1 + µ2α

2, with µi ∈ L2(U, R), and

d∗
Qµ is given by

d∗
Qµ = Y1µ1 + Y2µ2, (2.8)

where Y1, Y2 are first-order scalar differential operators on U .

In particular,

d∗
Q(µ1α

1) = Y1µ1.

We claim that Y1µ1 can be smooth (even zero) without µ1 being smooth. Indeed, as any

first-order scalar differential operator, Y1 can be written Y1 = X + f , with X a nonvanish-

ing vector field and f a smooth function. Let (x1, x2, x3) be some local system of centered

coordinates, star-shaped in 0, such that X = ∂
∂x1

; then Y1 has the form

Y1 = ∂

∂x1
+ f(x1, x2, x3).

Consider the function

v(x1, x2, x3) = exp
(∫ x1

0
f(t, x2, x3) dt

)
µ1(x1, x2, x3),

which is smooth if and only if µ1 is smooth. We compute that

∂

∂x1
v(x1, x2, x3) = exp

(∫ x1

0
f(t, x2, x3) dt

)
Y1µ1(x1, x2, x3).

Choosing v independent of x1 but not smooth, one has Y1µ1 = 0, proving the claim. !

Remark 2.6. In an analogous example occurring in the complex situation (Example 2.10),

we will need to be more precise. In particular, formula (2.8) can be made explicit:

d∗
Qµ = −div(µ1 X1 + µ2 X2), (2.9)

where div(X) is the divergence of the vector field X. !

In order to better understand why the hypoellipticity seems to fail, we will com-

pute the principal symbol of ∆Q. It will not show that ∆Q is not hypoelliptic but it will

at least show that the sum of squares condition cannot be applied, at least if one only

considers the second-order terms.
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2.3 The principal symbol of the characteristic Laplacian

Recall that we denote by F the annihilator of W in T∗X. Let N be the orthogonal

complement of W in (T X, gT X). Then, as a smooth vector bundle, we have

T X = W ⊕ N, and T∗X = W∗ ⊕ N∗. (2.10)

We can identify N∗ and F as C ∞ vector bundles, and

I = C ∞(X, N∗⊗̂Λ(T∗X)). (2.11)

The quotient Ω(X)/I can be identified with the orthogonal complement of I,

that is,
ΩW(X) := C ∞(X,ΛW∗). (2.12)

In what follows, we do these identifications without further notice.

Since I ⊂J , Q=J ⊥ can be viewed as a subspace of ΩW(X). The orthogonal com-

plement of Q in ΩW(X) will be identified with J /I. We thus have the following decom-

positions:
Ω(X) = I ⊕ΩW(X) (2.13)

and
ΩW(X) =J /I ⊕ Q. (2.14)

All of these spaces are naturally graded. We define a map ϕ : F →Λ2(W∗) by: for

θ ∈ C ∞(X, F ), v,w ∈ C ∞(X, W), set

ϕ(θ)(v,w) := (dθ)(v,w) = −θ([v,w]). (2.15)

We check that, for any x ∈ X, ϕ(θ)(v,w)x depends only on θx, vx, and wx.

The map ϕ : F →Λ2W∗ induces a map ϕ : F ⊗̂ΛkW∗ →Λk+2W∗ for any k. We will

assume that the rank of these maps is constant on X for any k. In particular, ϕ(F ⊗̂ΛkW∗)

forms a vector subbundle of Λk+2W∗ on X for any k. Set Fϕ := ϕ(F ⊗̂ΛW∗) and let Fϕ,⊥ be

the orthogonal complement of Fϕ in ΛW∗ over X.

By construction, we thus have an orthogonal decomposition

ΛW∗ = Fϕ ⊕ Fϕ,⊥ (2.16)

and by (2.12) and (2.16), this decomposition induces (2.14), that is

J /I = C ∞(X, Fϕ),

Q= C ∞(X, Fϕ,⊥).

(2.17)
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We denote by πFϕ and πFϕ,⊥ the orthogonal projections from ΛW∗ onto Fϕ and Fϕ,⊥. In

order to make computations with the operators on Q, we construct intermediate opera-

tors on ΛW∗. First, we define

dW := πW ◦ d◦ πW :ΛW∗ →ΛW∗, (2.18)

where πW is the projection fromΛ(T∗X) onΛW∗ in the decomposition (2.13). Beware that

there is no reason for d2
W to be 0. The adjoint d∗

W of dW satisfies

d∗
W = πW ◦ d∗ ◦ πW. (2.19)

From (2.1), (2.18), and (2.19), we have

dQ = πQ ◦ dW ◦ πQ,

d∗
Q = πQ ◦ d∗

W ◦ πQ.

(2.20)

By (2.18) and (2.19), dW and d∗
W are first-order differential operators on ΛW∗ and

their principal symbols are, for ξ ∈ T∗X,

σ1(dW, ξ) =
√

−1 ξW∧,

σ1(d∗
W, ξ) = −

√
−1 iξ∗

W
,

(2.21)

where ξW is the orthogonal projection of ξ on W∗ and ξ ∗
W ∈ W is the metric dual of ξW.

By (2.17) and (2.20), dQ and d∗
Q are first-order differential operators on Fϕ,⊥ and

their principal symbols are

σ1(dQ, ξ) =
√

−1πFϕ,⊥ξW ∧ πFϕ,⊥ ,

σ1(d∗
Q, ξ) = −

√
−1πFϕ,⊥iξ∗

W
πFϕ,⊥ .

(2.22)

One also gets the adjoint formula of (2.2)

πQ ◦ d∗ ◦ πQ = d∗ ◦ πQ. (2.23)

Taking the principal symbols of (2.2) and (2.23), we have

πFϕ,⊥ξW ∧ πFϕ,⊥ = πFϕ,⊥ξW∧,

πFϕ,⊥iξ∗
W
πFϕ,⊥ = iξ∗

W
πFϕ,⊥ .

(2.24)
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Proposition 2.7. The characteristic Laplacian is a second-order differential operator on

Fϕ,⊥ and its principal symbol is

σ2(∆Q, ξ) = πFϕ,⊥(|ξW|2 − iξ∗
W
πFϕ ξW∧)πFϕ,⊥ . (2.25)

!

Remark 2.8. The first term in (2.25) is the term suggested in [11] but the second term

was forgotten. Because of this second term, one cannot apply Hörmander’s condition of

hypoellipticity; see Example 2.9. !

Proof of Proposition 2.7. By (2.5), (2.22), and (2.24), ∆Q is a second-order differential

operator on Fϕ,⊥ and its principal symbol is

σ2(∆Q, ξ) = πFϕ,⊥ξW ∧ πFϕ,⊥iξ∗
W
πFϕ,⊥ + πFϕ,⊥iξ∗

W
πFϕ,⊥ξW ∧ πFϕ,⊥

= πFϕ,⊥ξW ∧ iξ∗
W
πFϕ,⊥ + πFϕ,⊥iξ∗

W
ξW ∧ πFϕ,⊥ − πFϕ,⊥iξ∗

W
πFϕ ξW ∧ πFϕ,⊥

= πFϕ,⊥(|ξW|2 − iξ∗
W
πFϕ ξW∧)πFϕ,⊥ .

In the second equality, we use (2.24) and in the third, we use the identity

iξ∗
W
ξW ∧ +ξW ∧ iξ∗

W
= |ξW|2.

The proof of Proposition 2.7 is completed. "

Example 2.9. We review Example 2.5 and compute the principal symbol of the charac-

teristic Laplacian in degree 1. With the identifications at the beginning of the paragraph,

Q1 is the space of sections of W∗ and Q2 is zero. Let η be in W∗. Since, in (2.25), only the

projection ξW of ξ is involved, we can restrict the symbol to the ξ belonging to W∗. We

have

σ2(∆Q, ξ)η= |ξ |2η − πFϕ,⊥iξ∗πFϕ (ξ ∧ η)

= |ξ |2η − iξ∗(ξ ∧ η)

= |ξ |2η − (|ξ |2η − η(ξ ∗)ξ)

= η(ξ ∗)ξ .

In the second equality, we use that Fϕ,⊥ (respectively, Fϕ) equalsΛW∗ in degree 1 (respec-

tively, 2).
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If ξ = (ξ1, ξ2)
t and η= (η1, η2)

t in an orthonormal frame for W∗, we obtain

σ2(∆Q, ξ)

(
η1

η2

)
= (ξ1η1 + ξ2η2)

(
ξ1

ξ2

)
=
(
ξ2

1 η1 + ξ1ξ2η2

ξ1ξ2η1 + ξ2
2 η2

)
.

Otherwise said, we have the equality

−∆Q

(
η1

η2

)
=
(

X2
1η1 + X1 X2η2

X1 X2η1 + X2
2η2

)
+ X0

(
η1

η2

)
,

where (X1, X2) is a local frame of W and X0 is a first-order differential operator, which

does not necessarily act componentwise. Since the second-order does not act componen-

twise, one cannot apply Hörmander’s condition of Theorem 2.4. !

2.4 The complex situation

In the remainder of the article, we will be interested in Pfaffian systems over a com-

plex manifold. More precisely, let (X, J) be a compact complex manifold; J induces a

splitting T X ⊗R C = T (1,0)X ⊕ T (0,1)X, where T (1,0)X and T (0,1)X are the eigenbundles of J

corresponding to the eigenvalues
√

−1 and −
√

−1, respectively. Let T∗(1,0)X and T∗(0,1)X

be the corresponding dual bundles.

We still denote by Ωk(X) the space of smooth k-forms on X with values in C. Let

Λp,q(T∗X) =Λp(T∗(1,0)X) ⊗Λq(T∗(0,1)X), Ω p,q(X) := C ∞(X,Λp,q(T∗X)). (2.26)

Then Ω p,q(X) is the space of smooth (p, q)-forms on X, and Ωk(X) = ⊕p+q=kΩ
p,q(X).

Let Θ be a real (1, 1)-form such that

gT X(·, ·) =Θ(·, J·) (2.27)

defines a Riemannian metric on T X. The triple (X, J,Θ) is called a complex Hermitian

manifold. If Θ is a closed form, then the form Θ is called a Kähler form on X.

We denote the holomorphic tangent bundle by ThX. Let W ⊂ ThX be a (constant-

rank) holomorphic distribution. We consider the Pfaffian system associated to the dis-

tribution WR. Otherwise said, if we denote by F ⊂ T∗
h X the holomorphic annihilator of W,

then the exterior differential system J we consider is generated by FR ⊂ T∗X. Beware of

the notations that differ from the real case. Remark that J is not only d-stable: it is also

∂ and ∂̄-stable. Indeed, if IX = C ∞(X, F ) is the space of smooth sections of F on X, then

ĪX = C ∞(X, F̄ ) and d acts on IX (respectively, ĪX) as ∂ modulo IX ·Ω0,1(X) (respectively, ∂̄

modulo ĪX ·Ω1,0(X)).
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13302 J. Daniel and X. Ma

Locally, if (θ j) is a holomorphic frame of F , the forms in I can be written as

∑

j

θ j ∧ ψ j + θ̄ j ∧ φ j,

where ψ j,φ j are arbitrary smooth forms, and those in J are of the form

∑

j

θ j ∧ ψ j + θ̄ j ∧ φ j + dθ j ∧ ω j + dθ̄ j ∧ χ j,

where ψ j,φ j,ω j,χ j are arbitrary smooth forms.

We still denote by Q the orthogonal of J . Besides the operator dQ, we also define

∂Q and ∂̄Q by

∂Q := πQ ◦ ∂ ◦ πQ, ∂̄Q := πQ ◦ ∂̄ ◦ πQ. (2.28)

Moreover, as in (2.4), the adjoints of ∂Q and ∂̄Q (for the natural L2-structure on

Q) are the restrictions to Q of ∂∗, ∂̄∗ the adjoints of ∂ and ∂̄.

If we denote by N the orthogonal complement of W in (T X, gT X), one obtains

decompositions analogous to those in the previous subsection. In particular, denoting

by I the algebraic ideal generated by FR, one has the analogs of (2.11)–(2.14):

I = C ∞(X, N∗
R⊗̂Λ(T∗X)),

ΩW(X) := C ∞(X,ΛW∗
R),

Ω(X) = I ⊕ΩW(X),

ΩW(X) =J /I ⊕ Q.

(2.29)

All of these spaces carry a natural bigrading. Denoting by πW the orthogonal

projection from Λ(T∗X) onto ΛW∗
R, we define

∂W := πW ◦ ∂ ◦ πW, ∂̄W := πW ◦ ∂̄ ◦ πW,

∂∗
W = πW ◦ ∂∗ ◦ πW, ∂̄∗

W = πW ◦ ∂̄∗ ◦ πW.

(2.30)

Then, we have, besides Equations (2.18), (2.19), and (2.20),

∂Q = πQ ◦ ∂W ◦ πQ, ∂̄Q = πQ ◦ ∂̄W ◦ πQ,

∂∗
Q = πQ ◦ ∂∗

W ◦ πQ, ∂̄∗
Q = πQ ◦ ∂̄∗

W ◦ πQ.

(2.31)

We still define a map ϕ : F →Λ2W∗ as in (2.15). Since, in the definition (2.15),

we can take θ, v,w to be holomorphic sections, it proves that ϕ is a holomorphic map.
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We still assume that the induced map ϕ : F ⊗̂ΛW∗
R →ΛW∗

R has constant rank. Set Fϕ :=
ϕ(F ⊗̂ΛW∗) and Fϕ,⊥ the orthogonal complement of Fϕ in ΛW∗ and let πFϕ , πFϕ,⊥ be the

orthogonal projections from ΛW∗ onto Fϕ , Fϕ,⊥.

Then Fϕ⊗̂ΛW̄∗ +ΛW∗⊗̂F̄ϕ and Fϕ,⊥⊗̂F̄ϕ,⊥ are vector subbundles ofΛW∗
R ⊗R C over

X, and

ΛW∗
R ⊗R C = (Fϕ⊗̂ΛW̄∗ +ΛW∗⊗̂F̄ϕ) ⊕ (Fϕ,⊥⊗̂F̄ϕ,⊥). (2.32)

In this decomposition, we have, as in (2.17),

J /I = C ∞(X, Fϕ⊗̂ΛW̄∗ +ΛW∗⊗̂F̄ϕ).

Q= C ∞(X, Fϕ,⊥⊗̂F̄ϕ,⊥).

(2.33)

Example 2.10.

Example 2.5 can also be seen in the complex situation but an interesting phe-

nomenon appears in degree 1. Consider the complex manifold M = C3 with complex coor-

dinates (x, u, p) and the holomorphic 1-form θ = du− pdx. We denote by (·, ·) a Hermitian

metric on M and by | · | the corresponding norm. Using the notations of this subsection,

W is a holomorphic vector subbundle of ThX of rank 2. Hence Λ2W∗ is of rank 1 and we

have Fϕ =Λ2W∗. We thus obtain the following bidegree decomposition of Q over an open

set U :

• Q0,0(U ) = C ∞(U ),

• Q1,0(U ) = C ∞(U, W∗),

• Q0,1(U ) = C ∞(U, W̄∗),

• Q1,1(U ) = C ∞(U, W∗⊗̂W̄∗).

Take (X1, X2) a holomorphic frame of W on Ū and (α1,α2) its dual frame. We

study the smoothness of harmonic forms for ∆Q in degrees 0, 1, and 2.

For f ∈ L2(U, C), one has ∆Q f = 0 if and only if dQ f = 0. Using the frames, one

obtains

dQ f = X1( f)α1 + X2( f)α2 + X̄1( f)ᾱ1 + X̄2( f)ᾱ2.

Since X1, X2, X̄1, and X̄2 generate by brackets the tangent bundle of U , a function f such

that dQ f = 0 is in fact locally constant. Remark that the same argument works for any

distribution W that is bracket-generating. This proves that the harmonic functions are

smooth.

In degree 1, let µ = µ1α
1 + µ2α

2 be in L2(U, W∗) (here µ1, µ2 ∈ L2(U, C)). Such a

form is killed by ∆1
Q if and only if it is killed by both dQ and d∗

Q.
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13304 J. Daniel and X. Ma

We denote by div(Y) the divergence of a vector field Y and by dvX the Riemannian

volume form on (X, gT X).

Lemma 2.11. The following identities hold:

dQµ = ∂̄Qµ =
2∑

i, j=1

X̄ j(µi)ᾱ
j ∧ αi, (2.34)

d∗
Qµ = −div

(
2∑

i=1

(µ,αi)X̄i

)

. (2.35)

!

Proof. Since Q2,0(U ) = 0, we know dQµ = ∂̄Qµ. The 2-form dαk satisfies

dαk(Y1, Y2) = Y1(α
k(Y2)) − Y2(α

k(Y1)) − αk([Y1, Y2]).

Since (α1,α2) is the dual basis of (X1, X2), this simplifies to dαk(Y1, Y2) = −αk([Y1, Y2])

when Yl is either a Xi or a X̄ j. Since the Xi are holomorphic, the brackets [Xi, X̄ j] vanish

and dαk(Xi, X̄ j) = 0. This implies that

dQµ =
2∑

i=1

∂̄Qµiα
i =

2∑

i, j=1

X̄ j(µi)ᾱ
j ∧ αi.

For the second equality, one has, for every smooth function f ,

(d∗
Qµ, f) = (∂∗

Qµ, f)

= (µ, ∂Q f)

=
2∑

i=1

∫

M
Xi( f)(µ,αi)dvX

= −
2∑

i=1

∫

M
f̄div((µ,αi)X̄i)dvX.

Hence d∗
Qµ = −div(

∑2
i=1(µ,αi)X̄i). "

Using Lemma 2.11, if ∆1
Qµ = 0, then X̄ j(µi) = 0 for all i, j from 1 to 2. Since the

X̄ j generate by brackets the anti-holomorphic tangent bundle, this is equivalent to µi

being holomorphic in the weak sense. Since ∂̄ is an elliptic operator on functions, the

µi are holomorphic. This shows that the harmonic forms of bidegree (1, 0) (respectively,
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(0, 1)) are holomorphic (respectively, anti-holomorphic) sections of W∗ (respectively, W̄∗).

In particular, they are smooth, contrary to what happened in the real setting.

In degree 2, consider a form ν =
∑2

i, j=1 νi jᾱ
j ∧ αi in L2(U, W∗⊗̂W̄∗). It is annihi-

lated by ∆2
Q if and only if d∗

Qν = 0.

Lemma 2.12. The 2-form ν is harmonic if and only if, for k= 1, 2,

div

(
2∑

l=1

(ν, ᾱl ∧ αk)Xl

)

= 0,

div

(
2∑

l=1

(ν, ᾱk ∧ αl)X̄l

)

= 0. !

Proof. We just show that the first equation is equivalent to the vanishing of ∂̄∗
Qν. For

every (1, 0)-form µ = µ1α
1 + µ2α

2, we obtain

(∂̄∗
Qν, µ) = (ν, ∂̄Qµ)

=
(

ν,

2∑

k,l=1

X̄l(µk)ᾱ
l ∧ αk

)

by Equation (2.34) in Lemma 2.11

=
2∑

k,l=1

∫

M
Xl(µ̄k)(ν, ᾱ

l ∧ αk) dvX

= −
2∑

k,l=1

∫

M
µ̄kdiv((ν, ᾱl ∧ αk)Xl) dvX.

This is zero for all µ if and only if div(
∑2

l=1(ν, ᾱ
l ∧ αk)Xl) is 0 for k= 1, 2. "

It seems difficult to unravel these equations in general. We will only consider

two different choices for the metric.

Standard metric. In the particular case where the metric on C3 is the stan-

dard one, one can choose for X1, X2 orthogonal holomorphic vectors with zero diver-

gence (take X1 = ∂
∂p and X2 = p ∂

∂u + ∂
∂x . Moreover, X1 has norm 1. Then the equations of

Lemma 2.12 become

∑

l

Xl(νlk|ᾱl ∧ αk|2) = 0,

∑

l

X̄l(νkl |ᾱk ∧ αl |2) = 0,
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13306 J. Daniel and X. Ma

where ν = νlkᾱ
l ∧ αk. One can take ν12 = ν21 = ν22 = 0. Then the equations are simply

X1ν11 = X̄1ν11 = 0. Since X1 is holomorphic, [X1, X̄1] = 0 and, by Frobenius theorem, one

can choose ν11 constant in the directions of X1 and X̄1 but ν11 not smooth. This shows

the existence of nonsmooth harmonic 2-forms.

Heisenberg metric. Consider the case where we see C3 as the complex Heisen-

berg group (see Example 2.5), endowed with a right-invariant Hermitian metric and

with a right-invariant contact form. Choose a basis (X′
1, X′

2) of W at the identity e of

H3. Consider the corresponding right-invariant vector fields on H3, denoted by X̃′
1 and

X̃′
2. Since these vector fields and the volume form are right-invariant, the divergences

of X̃′
1 and X̃′

2 are constant. Hence, to certain linear combination X1 of X′
1 and X′

2 cor-

responds a right-invariant vector field with zero divergence. We can moreover assume

that X1 is a unit vector and complete it to an orthonormal basis (X1, X2) of We. Thus, we

get a holomorphic orthonormal frame (X̃1, X̃2) of W and X̃1 has zero divergence. Then,

the same argument as above shows the existence of nonsmooth harmonic 2-forms. !

Remark 2.13. Still considering a contact system on a 3D complex manifold, there is

another natural example to study. For more precisions, one can look at [5] or at the

general reference [7] on period domains of (real) Hodge structures.

This example is one of the simplest situations encountered in Hodge theory. Let

h be the nondegenerate Hermitian form of signature (2, 1) on the complex vector space

C3, given by the diagonal matrix with diagonal entries 1,−1, 1. We define a complex

Hodge structure (of type (1, 1, 1)) to be an h-orthogonal decomposition

C3 = H2,0 ⊕ H1,1 ⊕ H0,2

such that H i,2−i is a complex line on which h is (−1)i positive definite.

Writing (e1, e2, e3) for the canonical basis of C3, then H2,0 = Ce1, H1,1 =
Ce2, H0,2 = Ce3 is such a complex Hodge structure that we call the standard one. Around

the standard one, the complex Hodge structures can be parameterized by three com-

plex coordinates (x, u, p) in the following way: let F 2(x, u, p) be the line generated

by the vector with coordinates (1, x, u) and let F 1(x, u, p) be the plane generated by

F 2(x, u, p) and the vector with coordinates (0, 1, p). Then, if x, u, p are sufficiently small,

H2,0(x, u, p) := F 2(x, u, p), H1,1 := F 2(x, u, p)⊥F 1(x,u,p), and H0,2 := F 1(x, u, p)⊥C3
define a

complex Hodge structure, the orthogonals being taken with respect to h. In this way,

the period domain D, that is the set of all complex Hodge structures, is endowed with

the structure of a complex manifold of dimension 3.
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Moreover, the real Lie group U (h) ∼= U (2, 1) naturally acts on D and it can be

shown that this action is transitive, with stabilizer V ∼= U (1)×3 at the standard complex

Hodge structure. Hence, D ∼= U (2, 1)/U (1)×3. Since U (1)×3 is compact, one can endow D
with a U (2, 1)-invariant structure of Hermitian manifold.

Finally, we can also define a holomorphic distribution in the (holomorphic) tan-

gent space of D. Geometrically, this distribution gives constraints to the line H2,0: more

precisely, we want the so-called infinitesimal period relation dH2,0 ⊂ H2,0 ⊕ H1,1 = F 1 to

be satisfied. By this, we mean that the derivative v̇ of a vector belonging to H2,0 has to

be contained in F 1. In the coordinates (x, u, p), this simply means that the values of the

1-form (0, dx, du) have to be in the vector space generated by (1, x, u) and (0, 1, p), which

is equivalent to the vanishing of the 1-form pdx − du. Hence, we find again a contact

system, which is U (2, 1)-invariant.

In conclusion, we have defined a 3D complex manifold, with a Hermitian struc-

ture and a contact distribution. As before, we can ask whether the characteristic Lapla-

cian is hypoelliptic in degree 2 in this situation. But the computations seem difficult to

handle and we are not able to perform them at this moment. Our intuition is that there

is no reason for the characteristic Laplacian to be hypoelliptic; but if it were, it would

be very interesting to understand whether this is a general phenomenon coming from

the Hodge-theoretic setting. !

3 Answer to Question 1.3

The aim of this section is to prove the following theorem, which is an answer to ques-

tion 1.3.

Theorem 3.1. In the notations of Question 1.3 and Section 2, the characteristic Lapla-

cian never respects the bigrading on Q• when the distribution W is not involutive. !

This section is organized as follows. In Section 3.1, we show that a complex

Hermitian manifold is Kähler if and only if the Hodge Laplacian preserves the bigrading

on Ω(X). In Section 3.2, we establish a generalized sub-Kähler identity. In Section 3.3,

we establish Theorem 3.1.

3.1 The classical case

First, we study the case where the distribution W is the whole tangent space T X, which

is interesting for itself. We thus have Q=Ω(X) and the characteristic Laplacian is the

 at U
PM

C
 on D

ecem
ber 24, 2015

http://im
rn.oxfordjournals.org/

D
ow

nloaded from
 

http://imrn.oxfordjournals.org/


13308 J. Daniel and X. Ma

usual Hodge Laplacian, which we simply denote by ∆. Remark that Theorem 3.1 says

nothing in this case.

It is well known that, for a Kähler manifold, its Hodge Laplacian preserves the

bigrading of the differential forms (cf. [13, Section 0.7; 15, Corollary 1.4.13]). This implies

the decomposition of the complex-valued de Rham cohomology in bidegree type for a

compact Kähler manifold; this was in fact the initial interest of the authors for the gen-

eral question 1.3. In [11, Section III. A], Green, Griffiths, and Kerr claimed that Chern [8]

proved that, for Hermitian manifolds, if its Hodge Laplacian preserves the bigrading of

the differential forms, then the Hermitian metric is Kähler. After communications with

Professors Bryant and Griffiths, we realized that Chern did not claim this result in his

paper [8], and it seems that one could not find a proof in the literature.

Theorem 3.2. The complex Hermitian manifold (X, J,Θ) is Kähler if and only if ∆ pre-

serves the bigrading on Ω(X), that is, ∆ sends (p, q)-forms to (p, q)-forms. !

We first introduce some notations from [15].

For any Z2-graded vector space V = V+ ⊕ V−, the natural Z2-grading on End(V)

is defined by

End(V)+ = End(V+) ⊕ End(V−), End(V)− = Hom(V+, V−) ⊕ Hom(V−, V+),

and we define deg B = 0 for B ∈ End(V)+, and deg B = 1 for B ∈ End(V)−. For B, C ∈
End(V), we define their supercommutator (or graded Lie bracket) by

[B, C ] = BC − (−1)deg B·deg C C B. (3.1)

Then, for B, B ′, C ∈ End(V), the Jacobi identity holds:

(−1)deg C ·deg B ′
[B ′, [B, C ]] + (−1)deg B ′·deg B [B, [C , B ′]]

+ (−1)deg B·deg C [C , [B ′, B]] = 0. (3.2)

We will apply the above notation for Ω•(X) with natural Z2-grading induced by the

parity of the degree (cf. [15, (1.3.31)]).

We define the Lefschetz operator L =Θ ∧ on Λ•,•(T∗X) and its adjoint Λ= i(Θ)

with respect to the Hermitian product ⟨·, ·⟩Λ•,• induced by gT X. For {w j}m
j=1 a local

orthonormal frame of T (1,0)X, we have

L =
√

−1
m∑

j=1

w j ∧ w̄ j∧, Λ= −
√

−1
m∑

j=1

iw̄ j iw j , (3.3)
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where ∧ and i denote the exterior and interior product, respectively. The Hermitian

torsion operator is defined by

T := [Λ, ∂Θ] = [i(Θ), ∂Θ] . (3.4)

Proof of Theorem 3.2. If (X, J,Θ) is Kähler, then it is a classical result that∆ preserves

the bigrading on Ω•(X); cf., for example, [15, Corollary 1.4.13] for a proof.

We assume now that ∆ preserves the bigrading on Ω•(X).

Let !̄ := ∂∂∗ + ∂∗∂; ! := ∂̄ ∂̄∗ + ∂̄∗∂̄ be the usual ∂-Laplacian and ∂̄-Laplacian.

Then, as d= ∂ + ∂̄ and d2 = 0, we have (cf. [15, 1.4.50)])

∆= [d, d∗] = [∂ + ∂̄, ∂∗ + ∂̄∗] = ! + !̄ + [∂, ∂̄∗] + [∂̄, ∂∗]. (3.5)

As !, !̄ preserve the bigrading on Ω•(X), and [∂, ∂̄∗] :Ω•,•(X) →Ω•+1,•−1(X), we know

that ∆ preserves the bigrading on Ω•(X) if and only if

[∂, ∂̄∗] = 0. (3.6)

By the generalized Kähler identities [15, (1.4.38d)] (cf. [10]) for E = C therein, we

obtain

[Λ, ∂] =
√

−1(∂̄∗ + T̄ ∗). (3.7)

From (3.7), we obtain

[∂, ∂̄∗] = −
√

−1[∂, [Λ, ∂]] − [∂, T̄ ∗]. (3.8)

But by (3.2), we obtain

[∂, [Λ, ∂]] = [Λ, [∂, ∂]] + [∂, [∂,Λ]]. (3.9)

As [∂, ∂] = 2∂2 = 0 and [∂,Λ] = −[Λ, ∂], we get from (3.9) that

[∂, [Λ, ∂]] = 0. (3.10)

From (3.8) and (3.10), we know that (3.6) is equivalent to

[∂̄∗, T ] = 0. (3.11)

By [15, (1.4.9)], the operator ∂̄∗ has the form ∂̄∗ = −
∑

j iw̄ j ∇̃T X
w j

+ 0-order terms; here ∇̃T X

is a certain connection on Λ(T∗X), thus [∂̄∗, T ] is a first-order differential operator, and
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its principal symbol σ is as follows: for ξ ∈ T∗X,

σ (ξ) = −
√

−1
∑

j

(ξ, wi) · [iw̄i , T ]. (3.12)

By [15, Lemma 1.4.10, (1.2.48), (1.2.54)],

T = −
√

−1
2

∑

jkl

(∂Θ)(w j, wk, w̄l)[2wk ∧ w̄l ∧ iw̄ j − 2δ jlw
k − w j ∧ wk ∧ iwl ]. (3.13)

From (3.13), we obtain

[iw̄i , T ] =
√

−1
∑

jkl

(∂Θ)(w j, wk, w̄l)w
k ∧ [iw̄i , w̄

l ] ∧ iw̄ j

=
√

−1
∑

jk

(∂Θ)(w j, wk, w̄i)w
k ∧ iw̄ j . (3.14)

By (3.12) and (3.14), Equation (3.11) implies that

∂Θ = 0. (3.15)

Thus, ∂̄Θ = ¯∂Θ = 0 and dΘ = 0. This means that if ∆ preserves the bigrading on Ω•(X),

then (X, J,Θ) is Kähler. "

Remark 3.3. After we sent our preliminary version to Professor Bryant, he sent us an

easier proof which works also in the almost complex case. Here is the argument:

Let (X, J,Θ) be an almost complex manifold with almost complex structure J

andΘ be a real (1, 1)-form as in (2.27). We suppose that the Hodge Laplacian∆ preserves

the bigrading. In fact, we may only suppose that ∆ sends (0, 1)-forms to (0, 1)-forms. In

particular, ∆ commutes with J : T X → T X. Using the following lemma, this implies that

J is parallel with respect to the Levi-Civita connection ∇T X on (T X, gT X). It is well known

(cf. [15]) that this condition is equivalent to the metric being Kähler. !

Lemma 3.4. Let (X, gT X) be a Riemannian manifold and L ∈ C ∞(X, End(T∗X)). If L com-

mutes with the Hodge Laplacian ∆ on 1-forms, then L is parallel with respect to the

Levi-Civita connection ∇T X. !

Proof. Let ∇Λ(T∗ X) (respectively, ∇End(T∗ X)) be the connection on Λ(T∗X) (respectively,

End(T∗X)) induced by the Levi-Civita connection ∇T X on (T X, gT X).
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Characteristic Laplacian in Sub-Riemannian Geometry 13311

For ∇ F a connection on a vector bundle F , let ∆F be the Bochner Laplacian on F

associated to ∇ F . By definition, for {ej} j an orthonormal frame of (T X, gT X), we have

∆F = −
∑

j

[(∇ F
ej

)2 − ∇ F
∇T X

ej
ej

]. (3.16)

As ∇Λ(T∗ X) preserves the Z-grading on Λ(T∗X), we know that the Bochner Lapla-

cian ∆Λ(T∗ X) on Λ(T∗X) associated to ∇Λ(T∗ X) also preserves the Z-grading on Ω(X). One

can relate ∆ and ∆Λ(T∗ X) by the Weitzenböck formula (cf. [1, Section 3.6]). In particular,

if α ∈Ω1(X), one has the equality

∆α =∆T∗ Xα + Ricα, (3.17)

where the Ricci curvature Ric is identified with a section of the bundle End(T∗X) by

means of gT X.

By (3.16) and (3.17), the principal symbol σ2(∆) of ∆ is σ2(∆)(ξ) = |ξ |2IdΛ(T∗ X)

for ξ ∈ T∗X. Thus, σ2(∆L − L∆) = 0 and ∆L − L∆ is a first-order differential operator.

We now compute the principal symbol σ1(∆L − L∆) by computing limt→∞ t−1 e−itf (∆L −
L∆) eitf when t → +∞ for any f ∈ C ∞(X). By (3.16) and (3.17), we know, for any s ∈
C ∞(X, T∗X),

σ1(∆L − L∆)(df)s = lim
t→∞

t−1 e−itf (∆L − L∆) eitf s = −2i(∇End(T∗ X)
ej

L)ej( f)s. (3.18)

By assumption, one has

∆L − L∆= 0. (3.19)

This implies σ1(∆L − L∆) = 0. Thus from (3.18), we know (3.19) implies

∇End(T∗ X)L = 0. (3.20)

The proof of Lemma 3.4 is completed. "

Remark 3.5. In the first proof of Theorem 3.2, we use the generalized Kähler identity.

When we began to clarify the situation of question 1.3, when there is a distribution, we

computed an analog of the generalized Kähler identity in this case. This is the object of

the following subsection, which is independent from Section 3.3. !

3.2 A generalized sub-Kähler identity

The Chern connection ∇ThX on ThX induces a connection on T X and on the bundle

Λ•,•(T∗X) ([15, §1.2.2]). This connection is denoted by ∇̃T X. In what follows, we identify
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13312 J. Daniel and X. Ma

ThX with T (1,0)X and thus we denote by ∇T (1,0) X the connection ∇ThX on T (1,0)X. For

v ∈ C ∞(X, T (0,1)X), we define ∇T (0,1) Xv = ¯∇T (1,0) X v̄. Then ∇̃T X = ∇T (1,0) X ⊕ ∇T (0,1) X. Moreover,

we denote by

T ∈Λ2(T∗X) ⊗ T X

the torsion of ∇̃T X.

By identifying N in (2.10) to ThX/W, N gets a holomorphic structure from ThX/W.

Let πN be the orthogonal projection from ThX onto N. We denote by ⟨, ⟩ the C-bilinear

form on T X ⊗R C induced by gT X.

Let hW, hN be the Hermitian metrics on W, N induced by hThX. Let ∇W, ∇N be the

Chern connections on (W, hW), (N, hN). Then we have

∇W = πW∇ThXπW, ∇N = πN∇ThXπN . (3.21)

As W is a holomorphic subbundle, we know

A= ∇ThX′′ − (∇W′′ ⊕ ∇N ′′
) ∈ T∗(0,1)X ⊗ Hom(N, W), (3.22)

where ∇′′
denotes the (0, 1)-part of a connection ∇. The adjoint A∗ of A takes values in

T∗(1,0)X ⊗ Hom(W, N). Note that, for w ∈ W, v ∈ N,U ∈ T X ⊗R C, we have

⟨A∗(U )w, v̄⟩ = ⟨w, A(Ū )(v)⟩. (3.23)

Then, under the decomposition ThX = W ⊕ N, we have

∇ThX =
(

∇W A

−A∗ ∇N

)

. (3.24)

Let ∇̃W, ∇̃N be the connections on WR, NR induced by ∇W, ∇N as above or as in [15,

(1.2.35)], respectively. Set
⊕∇T X = ∇̃W ⊕ ∇̃N . (3.25)

Let ∇̃W, ⊕∇̃T X be the connections on Λ(W∗
R), Λ(T∗X) induced by ∇W, ⊕∇T X as in [15,

Section 1.2.2], respectively.

Let {w j}m
j=1 be an orthonormal frame of T (1,0)X such that {w j}n

j=1 is an orthonor-

mal frame of W. Then, by [15, Lemma 1.4.4], we have

∂ =
m∑

j=1

w j ∧ ∇̃T X
w j

+ 1
2

m∑

j,k,l=1

⟨T(w j, wk), w̄l⟩w j ∧ wk ∧ iwl , (3.26)
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and

∂̄∗ = −
m∑

j=1

iw̄ j ∇̃T X
w j

−
m∑

j,k=1

⟨T(w j, wk), w̄k⟩iw̄ j

+ 1
2

m∑

j,k,l=1

⟨T(w j, wk), w̄l⟩w̄l ∧ iw̄k ∧ iw̄ j . (3.27)

Note that, for any 1 ≤ j, k≤ m, U ∈ T X, we have

(∇̃T X
U wk, w j) = −(wk, ∇̃T X

U w j) = −⟨w̄k, ∇̃T X
U w j⟩ = ⟨∇̃T X

U w̄k, w j⟩,

(∇̃T X
U w̄k, w̄ j) = ⟨∇̃T X

U wk, w̄ j⟩.
(3.28)

From (3.24), for 1 ≤ k≤ m, n+ 1 ≤ γ ≤ m, we obtain

∇̃T X
wk

w̄γ = ⊕∇T X
wk

w̄γ +
n∑

j=1

⟨A(w̄k)wγ , w j⟩w̄ j. (3.29)

From (3.24), (3.28), and (3.29), we know that, on Λ•,•(T∗X),

∇̃T X
wk

= ⊕∇̃T X
wk

+
m∑

β=n+1

n∑

j=1

[−⟨A∗(wk)w j, w̄β⟩w̄β ∧ iw̄ j + ⟨A(w̄k)wβ, w j⟩w j ∧ iwβ
]

= ⊕∇̃T X
wk

+
m∑

β=n+1

n∑

j=1

⟨A(w̄k)wβ, w j⟩(−w̄β ∧ iw̄ j + w j ∧ iwβ
). (3.30)

By (2.30), (3.25), (3.26), and (3.30), we know that

∂W =
n∑

j=1

w j ∧
(

∇̃W
w j

+ 1
2

n∑

k,l=1

⟨T(w j, wk), w̄l⟩wk ∧ iwl

)

. (3.31)

From (3.30), we obtain, for n+ 1 ≤ α ≤ m,

πWiw̄α
∇̃T X

wα
πW = −

n∑

j=1

⟨w j, A(w̄α)wα⟩iw̄ j . (3.32)

From (2.30), (3.27), (3.30), and (3.32), we obtain

∂̄∗
W =

n∑

j=1

(

−iw̄ j ∇̃W
w j

−
m∑

k=1

⟨T(w j, wk), w̄k⟩iw̄ j

)

+ 1
2

n∑

j,k,l=1

⟨T(w j, wk), w̄l⟩w̄l ∧ iw̄k ∧ iw̄ j +
m∑

α=n+1

n∑

j=1

⟨w j, A(w̄α)wα⟩iw̄ j
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13314 J. Daniel and X. Ma

=
n∑

j=1

iw̄ j

{

−∇̃W
w j

+ 1
2

n∑

k,l=1

⟨T(w j, wk), w̄l⟩iw̄k ∧ w̄l

+
m∑

α=n+1

(⟨w j, A(w̄α)wα⟩ − ⟨T(w j, wα), w̄α⟩)
}

. (3.33)

We also generalize the definition of the operators L =Θ∧ and Λ its adjoint, by defining

ΘW ∈Λ1,1(W∗
R) as the restriction to Λ1,1(W∗

R) of Θ. We thus get operators LW and ΛW on

Λ•,•(W∗
R). By (3.3), we have

LW =
√

−1
n∑

j=1

w j ∧ w̄ j∧, ΛW = −
√

−1
n∑

j=1

iw̄ j iw j . (3.34)

The Hermitian torsion operator is defined as in (3.4) and [15, (1.4.34)] by

TW := [ΛW, ∂WΘW]. (3.35)

We have the analog of [15, Theorem 1.4.11].

Proposition 3.6 (Generalized sub-Kähler identity).

[ΛW, ∂W] =
√

−1(∂̄∗
W + T̄ ∗

W)

−
√

−1
m∑

α=n+1

n∑

j=1

(⟨w j, A(w̄α)wα⟩ − ⟨T(w j, wα), w̄α⟩)iw̄ jπW. (3.36)

!

Proof. Set πW,⊥ = Id − πW. By (3.7), we have

πW[Λ, ∂]πW =
√

−1(∂̄∗
W + πWT̄ ∗πW). (3.37)

Note that

πWΛπW =ΛπW. (3.38)

From (3.38), we know

πW[Λ, ∂]πW = πWΛπW∂πW + πWΛπW,⊥∂πW − πW∂πWΛπW

= [ΛW, ∂W] + πWΛπW,⊥∂πW. (3.39)
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Characteristic Laplacian in Sub-Riemannian Geometry 13315

By (3.26) and (3.30), we have

πWΛπW,⊥∂πW = −
√

−1πW

m∑

γ=n+1

iw̄γ
iwγ
πW,⊥∂πW

=
√

−1
m∑

α=n+1

n∑

j=1

⟨w j, A(w̄α)wα⟩iw̄ jπW. (3.40)

By (3.3), (3.26), and (3.30), we have ∂WΘW = πW∂ΘπW. Thus, similarly to (3.39), we

have

πW[Λ, ∂Θ]πW = [ΛW, ∂WΘW] + πWΛπW,⊥∂ΘπW. (3.41)

By [15, (1.2.48), (1.2.54)], we have

∂Θ =
√

−1
2

m∑

i, j,k=1

⟨T(wi, w j), w̄k⟩wi ∧ w j ∧ w̄k. (3.42)

From (3.3) and (3.42), we know

πWΛπW,⊥∂ΘπW = −
m∑

α=n+1

n∑

j=1

⟨T(wα, w j), w̄α⟩w jπW. (3.43)

Taking the adjoint of (3.41), from (3.35) and (3.43), we know

πWT ∗πW = T ∗
W −

m∑

α=n+1

n∑

j=1

⟨T(w̄α, w̄ j), wα⟩iw jπW. (3.44)

Thus

πWT̄ ∗πW = T̄ ∗
W −

m∑

α=n+1

n∑

j=1

⟨T(wα, w j), w̄α⟩iw̄ jπW. (3.45)

Finally, from (3.37), (3.39), (3.40), and (3.45), we obtain

[ΛW, ∂W] =
√

−1(∂̄∗
W + T̄ ∗

W)

−
√

−1
m∑

α=n+1

n∑

j=1

(⟨w j, A(w̄α)wα⟩ + ⟨T(wα, w j), w̄α⟩)iw̄ jπW. (3.46)

From (3.46), we get (3.36). "

Remark 3.7. Because of the presence of the double sum in (3.36), we do not know if

there is a nice geometric interpretation for the vanishing of TW, except in the case where

W = T X, when the vanishing is equivalent to the metric being Kähler, as explained in

Section 3.1. !
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13316 J. Daniel and X. Ma

3.3 The proof of Theorem 3.1

Remember the construction of the holomorphic map ϕ : F ⊗̂Λ•W∗ →Λ•+2W∗ in

Section 2.4. There, we assumed for simplicity that this map has constant rank. For the

purpose of Theorem 3.1, one can easily reduce to this case. Indeed, there exists an ana-

lytic subset V of X such that ϕ : F ⊗̂ΛkW∗ →Λk+2W∗ has maximum rank on X \ V for

any k. In particular, ϕ(F ⊗̂ΛkW∗) forms a vector subbundle of Λk+2W∗ on X \ V for any k.

We can define the vector bundles Fϕ and Fϕ,⊥ on X \ V as before. On X \ V , we have the

decompositions (2.32) and (2.33) for forms with compact support; in particular

Q ∩Ω•
c (X \ V) = C ∞

c (X \ V, Fϕ,⊥⊗̂F̄ϕ,⊥). (3.47)

As X \ V is an open connected dense subset of X, the characteristic Laplacian∆Q

preserves the bigrading on Q if and only if it preserves the bigrading on Q ∩Ω•
c (X \ V).

Thus, we can work on X \ V instead of X.

From the above discussion, in the rest, we will assume that ϕ(F ⊗̂ΛkW∗) forms a

vector subbundle of Λk+2W∗ on X for any k. Then we can use the formalism developed in

Section 2.4.

By (2.1), (2.28), as in (3.5), we have

∆Q = [∂Q + ∂̄Q, ∂∗
Q + ∂̄∗

Q] = !Q + !̄Q + [∂Q, ∂̄∗
Q] + [∂̄Q, ∂∗

Q]. (3.48)

As !Q, !̄Q preserve the bigrading on Q, and [∂Q, ∂̄∗
Q] :Q•,• →Q•+1,•−1, we know that ∆Q

preserves the bigrading on Q if and only if

[∂Q, ∂̄∗
Q] = 0. (3.49)

We would like to understand the operator [∂Q, ∂̄∗
Q].

For f ∈ C ∞(X), by (2.30), we have

∂W f =
n∑

j=1

w j( f)w j ∈ W∗, (3.50)

where {w j}m
j=1 is an orthonormal frame of T (1,0)X such that {w j}n

j=1 is an orthonormal

frame of W. For ξ ∈ T∗
R X, let ξ ∗ ∈ TR X be the metric dual of ξ . In particular, if ξ ∈ W∗, then

ξ ∗ ∈ W̄.

Since J is stable by d, ∂, ∂̄, as in (2.2), we have, as maps on Ω(X),

πQ ◦ ∂ ◦ πQ = πQ ◦ ∂,

πQ ◦ ∂̄ ◦ πQ = πQ ◦ ∂̄, πQ ◦ ∂̄∗ ◦ πQ = ∂̄∗ ◦ πQ.

(3.51)
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Let hFϕ , hFϕ,⊥ be, respectively, the Hermitian metrics on Fϕ, Fϕ,⊥ induced by hΛW∗

on ΛW∗, which is induced by hW. We recall that Fϕ is a holomorphic vector subbundle

of ΛW∗. As in (3.21), let ∇ Fϕ , ∇ Fϕ,⊥ be the Chern connections on (Fϕ, hFϕ ), (Fϕ,⊥, hFϕ,⊥). Let

∇ΛW∗
be the connection on ΛW∗ induced by ∇W; then ∇ΛW∗

is the Chern connection on

(ΛW∗, hΛW∗
). Set

B = ∇ΛW∗ ′′ − (∇ F ′′
ϕ ⊕ ∇ F ′′

ϕ,⊥) ∈ T∗(0,1)X ⊗ Hom(Fϕ,⊥, Fϕ). (3.52)

The adjoint B∗ of B takes values in T∗(1,0)X ⊗ Hom(Fϕ, Fϕ,⊥). Then, under the decomposi-

tion ΛW∗ = Fϕ ⊕ Fϕ,⊥, we have

∇ΛW∗ =
(

∇ Fϕ B

−B∗ ∇ Fϕ,⊥

)

. (3.53)

We also denote by πQ the orthogonal projection from ΛW∗⊗̂ΛW̄∗ onto Fϕ,⊥⊗̂F̄ϕ,⊥, and

π⊥
Q = IdΛW∗⊗̂ΛW̄∗ − πQ. Then

πQ = πFϕ,⊥ ⊗ π̄Fϕ,⊥ ,

π⊥
Q = πFϕ ⊗ π̄Fϕ,⊥ + πFϕ,⊥ ⊗ π̄Fϕ + πFϕ ⊗ π̄Fϕ .

(3.54)

Lemma 3.8. The operator [∂Q, ∂̄∗
Q] is a first-order differential operator acting on

Fϕ,⊥⊗̂F̄ϕ,⊥. Its principal symbol, evaluated on ξ ∈ T∗X, is
√

−1 times

πQ

n∑

j,k=1

iw̄ j w
k ∧ [(ξW, T(w j, wk)) − (ξ,πN [w j, wk])]πQ

+
n∑

j=1

(B∗(w j)πFϕ ξW)⊗̂iw̄ j − πQ

n∑

j=1

w j⊗̂i(ξW)∗ B(w̄ j), (3.55)

where ξW is the orthogonal projection of ξ on W∗ !

Remark 3.9. Theorem 3.1 is an easy corollary of (3.55). Indeed, if we take ξ a holomor-

phic 1-form that is orthogonal to W∗, the principal symbol is

−
√

−1πQ
n∑

j,k=1

iw̄ j w
k ∧ (ξ,πN [w j, wk])πQ.

Evaluating at w̄ j, which belongs to Fϕ,⊥, one obtains

√
−1

n∑

k=1

(ξ,πN [w j, wk])wk.
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13318 J. Daniel and X. Ma

This term vanishes for any j and ξ if and only if the distribution is involutive, which

shows Theorem 3.1. !

Proof of Lemma 3.8. Note that, for ξ ∈ W∗, ψ ∈ Fϕ,⊥⊗̂F̄ϕ,⊥; by (2.16), (2.24), and (3.54),

we know that π⊥
Q(ξ ∧ ψ) ∈ Fϕ⊗̂F̄ϕ,⊥. Thus, by (2.24), iξ∗π⊥

Q(ξ ∧ ψ) ∈ Fϕ⊗̂F̄ϕ,⊥, as ξ ∗ ∈ W̄, and

this implies

πQiξ∗π⊥
Qξ ∧ πQ = 0 for any ξ ∈ W∗. (3.56)

We compute now the principal symbol of [∂Q, ∂̄∗
Q] by computing the asymptotics

of e−itf [∂Q, ∂̄∗
Q] eitf when t → +∞ for f ∈ C ∞(X). By (2.31), (3.31), and (3.33), we have first

e−itf∂Q eitf = itπQ∂W f ∧ πQ + ∂Q,

e−itf ∂̄∗
Q eitf = −itπQi(∂W f)∗πQ + ∂̄∗

Q.

(3.57)

Thus, from (2.24), (3.57), the principal symbol of [∂Q, ∂̄∗
Q] as a second-order dif-

ferential operator is limt→∞ t−2 e−itf [∂Q, ∂̄∗
Q] eitf , that is

[iπQ∂W f ∧ πQ,−iπQi(∂W f)∗πQ] = πQ∂W f ∧ i(∂W f)∗πQ + πQi(∂W f)∗πQ∂W f ∧ πQ

= −πQi(∂W f)∗π
⊥
Q∂W f ∧ πQ = 0; (3.58)

here we use (3.56) in the last equality. Equation (3.58) means that [∂Q, ∂̄∗
Q] is a first-order

differential operator.

By (3.57), the principal symbol of [∂Q, ∂̄∗
Q] as a first-order differential operator is

limt→∞ t−1 e−itf [∂Q, ∂̄∗
Q] eitf , that is

i[πQ∂W f ∧ πQ, ∂̄∗
Q] − i[∂Q,πQi(∂W f)∗πQ]. (3.59)

By (2.24) and (2.31), we obtain

[πQ∂W f ∧ πQ, ∂̄∗
Q] = πQ∂W f ∧ ∂̄∗

WπQ + πQ∂̄
∗
WπQ∂W f ∧ πQ

= πQ∂̄
∗
W(∂W f)πQ − πQ∂̄

∗
Wπ

⊥
Q∂W f ∧ πQ. (3.60)

Again by (2.24) and (2.31), we obtain

−[∂Q,πQi(∂W f)∗ ∧ πQ] = −πQi(∂W f)∗πQ∂WπQ − πQ∂Wi(∂W f)∗πQ

= −πQ∂W(i(∂W f)∗) ∧ πQ + πQi(∂W f)∗π
⊥
Q∂WπQ. (3.61)
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Characteristic Laplacian in Sub-Riemannian Geometry 13319

By (3.33) and (3.50), we obtain

∂̄∗
W(∂W f) = [∂̄∗

W, ∂W f ] = −

⎡

⎣
n∑

j=1

iw̄ j ∇̃W
w j

, ∂W f

⎤

⎦

= −
n∑

j,k=1

iw̄ j [w j(wk( f))wk + wk( f)∇̃W
w j

wk]

= −
n∑

j,k=1

iw̄ j w
k[w j(wk( f)) − (∂W f,∇W

w j
wk)]. (3.62)

By (3.31) and (3.50), we obtain

−∂W(i(∂W f)∗) = −[∂W, i(∂W f)∗ ] = −
[

n∑

k=1

wk∇̃W
wk

, i(∂W f)∗

]

= −
n∑

j,k=1

wk ∧ [wk(w j( f))iw̄ j + w j( f)i∇W
wk

w̄ j ]

=
n∑

j,k=1

iw̄ j w
k[wk(w j( f)) − (∂W f,∇W

wk
w j)]. (3.63)

By (3.24), (3.62), and (3.63), we obtain

∂̄∗
W(∂W f) − ∂W(i(∂W f)∗) =

n∑

j,k=1

iw̄ j w
k[(∂ f,−[w j, wk]) + (∂W f,∇W

w j
wk − ∇W

wk
w j)]

=
n∑

j,k=1

iw̄ j w
k[(∂W f, T(w j, wk)) − (∂ f,πN [w j, wk])]. (3.64)

From (3.59)–(3.64), we know that the principal symbol of the first-order differential oper-

ator [∂Q, ∂̄∗
Q] is

√
−1 times

πQ

n∑

j,k=1

iw̄ j w
k[(∂W f, T(w j, wk)) − (∂ f,πN [w j, wk])]πQ

− πQ∂̄
∗
Wπ

⊥
Q∂W f ∧ πQ + πQi(∂W f)∗π

⊥
Q∂WπQ. (3.65)
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Now, by (3.54), π⊥
Q∂W f ∧ πQ ⊂ Fϕ ⊗ F̄ϕ,⊥. By (2.24), (3.33), and (3.53), we know that

πQ∂̄
∗
Wπ

⊥
Q∂W f ∧ πQ = πQ

n∑

j=1

(−iw̄ j ∇̃W
w j

)π⊥
Q∂W f ∧ πQ

= πQ

n∑

j=1

(iw̄ j B
∗(w j) ⊗ 1)π⊥

Q∂W f ∧ πQ = −
n∑

j=1

(B∗(w j)πFϕ ∂W f∧)⊗̂iw̄ j .

(3.66)

Let P be the orthogonal projection from Λ•,•(W∗
R) onto Fϕ,⊥ ⊗ F̄ϕ . Note that π⊥

Q∂WπQ ⊂
Fϕ ⊗ΛW̄∗ ⊕ Fϕ,⊥ ⊗ F̄ϕ , as i(∂W f)∗ Fϕ ⊗ΛW̄∗ ⊂ Fϕ ⊗ΛW̄∗; from (3.31), (3.53), and (3.54), we

have also

πQi(∂W f)∗π
⊥
Q∂WπQ = πQi(∂W f)∗ P∂WπQ

= πQi(∂W f)∗ P
n∑

j=1

w j ∧ ∇̃W
w j
πQ = −πQ

n∑

j=1

w j⊗̂i(∂W f)∗ B(w̄ j). (3.67)

The proof of Lemma 3.8 is completed. "

We finally give an explicit computation of this phenomenon, in the setting of

Example 2.10, for the choice of the standard metric on C3, described after Lemma 2.12.

We start with a form µ = µ1α
1 + µ2α

2 in C ∞(U, W∗) =Q1,0(U ).

Lemma 3.10. The 1-form [∂̄Q, ∂∗
Q]µ is given by

[∂̄Q, ∂∗
Q]µ =

2∑

i, j=1

(
X̄ j.((X̄i.µ j)(α

j ∧ ᾱi,α j ∧ ᾱi))

(αi,αi)
− X̄i.(X̄ j.(µ j(α

j,α j)))

)
ᾱi. (3.68)

!

Proof. By Equation (2.34), we have

∂̄Qµ =
2∑

i, j=1

(X̄ j.µi)ᾱ
j ∧ αi =:

2∑

i, j=1

βi jᾱ
j ∧ αi = β. (3.69)

Let us compute ∂∗
Qβ. Let ν = ν1ᾱ

1 + ν2ᾱ
2 be in C ∞(U, W̄∗) =Q0,1(U ). Then, as

in (2.34),

(∂∗
Qβ, ν) = (β, ∂Qν)

=

⎛

⎝β,

2∑

i, j=1

(X j.νi)α
j ∧ ᾱi

⎞

⎠
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=
2∑

i, j=1

∫

M
(X̄ j.ν̄i)(β,α j ∧ ᾱi) dvX

= −
2∑

i, j=1

∫

M
ν̄i X̄ j.(β,α j ∧ ᾱi) dvX . (3.70)

In the last equality, we use that the X̄ j have zero divergence, as explained after

Lemma 2.12. This shows that ∂∗
Qβ = γ1ᾱ

1 + γ2ᾱ
2, where γi satisfies

γi = −
∑2

j=1 X̄ j.(β,α j ∧ ᾱi)

(ᾱi, ᾱi)

=
2∑

j=1

X̄ j.(β ji(α
j ∧ ᾱi,α j ∧ ᾱi))

(αi,αi)
. (3.71)

Here, we use that the αi are orthogonal, since we consider the standard metric.

Hence,

∂∗
Q∂̄Qµ =

2∑

i, j=1

X̄ j.((X̄i.µ j)(α
j ∧ ᾱi,α j ∧ ᾱi))

(αi,αi)
ᾱi. (3.72)

On the other hand, since the Xi have zero divergence and by Equation (2.35), one

has

∂∗
Qµ = −

2∑

j=1

X̄ j.(µ j(α
j,α j)). (3.73)

Hence,

∂̄Q∂
∗
Qµ = −

2∑

i, j=1

X̄i.(X̄ j.(µ j(α
j,α j)))ᾱi. (3.74)

"

In order to simplify the notations, we write Ni := (αi,αi) and Nij := (α j ∧ ᾱi,α j ∧
ᾱi). In particular, Nij = Ni.Nj. Then,

[∂̄Q, ∂∗
Q]µ =

2∑

i, j=1

(
X̄ j.((X̄i.µ j)Nij)

Ni
− X̄i.X̄ j.(µ j Nj)

)
ᾱi

=
2∑

i, j=1

(
[X̄ j, X̄i].µ j × Nj + (X̄i.µ j)

(
X̄ j.Nji

Ni
− X̄ j.Nj

)

−(X̄ j.µ j)(X̄i.Nj) − µ j X̄i.X̄ j.Nj
)
ᾱi. (3.75)
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Now, we take µ1 = 0 and consider the term before ᾱ1. We consider a function

µ2 that, at some fixed point z0 ∈ U satisfies: µ2(z0) = 0, (X̄1.µ2)(z0) = (X̄2.µ2)(z0) = 0 and

([X̄2, X̄1].µ2)(z0) ̸= 0. Such a function exists since the bracket [X̄1, X̄2] is not contained in

the vector subspace generated by X̄1 and X̄2.

Then [∂̄Q, ∂∗
Q]µ does not vanish at z0, which proves that in this particular example

the characteristic Laplacian cannot respect the bigrading.
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