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Abstract We study the Berezin–Toeplitz quantization using as quantum space the
space of eigenstates of the renormalizedBochner Laplacian corresponding to eigenval-
ues localized near the origin on a symplectic manifold. We show that this quantization
has the correct semiclassical behavior and construct the corresponding star-product.
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1 Introduction

Quantization is a recipe in physics for passing from a classical system to a quantum
systemby obeying certain natural rules. By a classical systemweunderstand a classical
phase space (a symplecticmanifold) and classical observables (smooth functions). The
quantum systemconsists of a quantum space (aHilbert space of functions or sections of
a bundle) and quantum observables (bounded linear operators on the quantum space).
The quantum system should reduce to the classical one as the size of the objects
gets large, that is, as the “Planck constant,” which, heuristically, corresponds to the
magnitude where the quantum phenomena become relevant, tends to zero. This is the
so-called semiclassical limit.

The original concept of quantization goes back toWeyl, vonNeumann, andDirac. In
the geometric quantization introduced by Kostant [16] and Souriau [27], the quantum
space is the Hilbert space of square integrable holomorphic sections of a prequan-
tum line bundle (see also [1–3,8,11]). Berezin–Toeplitz quantization is a particularly
efficient version of the geometric quantization theory. Toeplitz operators andmore gen-
erally Toeplitz structures were introduced in geometric quantization by Berezin [4]
and Boutet de Monvel and Guillemin [7]. Using the analysis of Toeplitz structures [7],
Bordemann et al. [6] and Schlichenmaier [25,26] showed that the Berezin–Toeplitz
quantization on a compact Kähler manifold satisfies the correspondence principle
asymptotically and introduced the Berezin–Toeplitz star product (cf. (1.17) and (1.18))
when E = C and gT X (·, ·) = ω(·, J ·).

In order to generalize the Berezin–Toeplitz quantization to arbitrary symplectic
manifolds, one has to find a substitute for the space of holomorphic sections of ten-
sor powers of the prequantum line bundle. A natural candidate is the kernel of the
Dirac operator, since it has similar features to the space of holomorphic sections in
the Kähler case, especially the asymptotics of the kernels of the orthogonal projec-
tion on both spaces [10]. The Berezin–Toeplitz quantization with quantum space the
kernel of the Dirac operator was carried over by Ma and Marinescu [22] see also
[23].

Another appealing candidate is the space of eigenstates of the renormalizedBochner
Laplacian [12,20,21] corresponding to eigenvalues localized near the origin, cf. (1.7),
(1.8). In this paper,we construct theBerezin–Toeplitz quantization for these spaces and
show that it has the correct semiclassical behavior. The difference between this case and
the quantization by the kernel of the Dirac operator comes from the possible presence
of eigenvalues localized near the origin but different from zero. In this situation the
analysis becomes more difficult.

Let us note also that Charles [9] developed a Berezin–Toeplitz type quantization
on compact symplectic prequantizable manifolds by using a semiclassical approach
to the Boutet de Monvel and Guillemin theory [7], and Hsiao and Marinescu [13]
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constructed a Berezin–Toeplitz quantization for eigenstates of small eigenvalues in
the case of arbitrary complex manifolds.

The readers are referred to themonograph [20] (also [18]) for a comprehensive study
of the (generalized) Bergman kernel, Berezin–Toeplitz quantization and its applica-
tions.

Let us describe the setting and results in detail. Let (X, ω) be a compact symplectic
manifold of real dimension 2n. Let (L , hL) be a Hermitian line bundle on X , and
let ∇L be a Hermitian connection on (L , hL) with the curvature RL = (∇L)2. Let
(E, hE ) be a Hermitian vector bundle with Hermitian connection∇E . We will assume
throughout the paper that L is a line bundle satisfying the prequantization condition

√−1

2π
RL = ω. (1.1)

We choose an almost complex structure J such that ω is J -invariant. The almost
complex structure J induces a splitting T X ⊗R C = T (1,0)X ⊕ T (0,1)X , where
T (1,0)X and T (0,1)X are the eigenbundles of J corresponding to the eigenvalues

√−1
and −√−1, respectively.

Let gT X be a J -invariant Riemannian metric on T X . Let dvX be the Riemannian
volume form of (X, gT X ). The L2-Hermitian product on the space C∞(X, L p ⊗ E)

of smooth sections of L p ⊗ E on X , with L p := L⊗p, is given by

〈
s1, s2

〉 =
∫

X

〈
s1(x), s2(x)

〉
dvX (x), (1.2)

where
〈·, ·〉 in the integrand is the pointwise Hermitian product on L p ⊗ E induced by

hL , hE . Let ∇T X be the Levi–Civita connection on (X, gT X ), and let ∇L p⊗E be the
connection on L p ⊗ E induced by ∇L and ∇E . Let {ek} be a local orthonormal frame
of (T X, gT X ). The Bochner Laplacian acting on C∞(X, L p ⊗ E) is given by

�L p⊗E = −
∑

k

[(∇L p⊗E
ek

)2 − ∇L p⊗E
∇T X
ek

ek

]
. (1.3)

Let � ∈ C∞(X,End(E)) be Hermitian (i.e., self-adjoint with respect to hE ). The
renormalized Bochner Laplacian is defined by

�p,� = �L p⊗E − τp + �, with τ =
√−1

2

∑

k

RL(ek, Jek). (1.4)

Write | · |gT X for the Hermitian norm induced by gT X on T (1,0)X , and set

μ0 = inf
u∈T (1,0)

x X, x∈X
RL(u, u)/|u|2gT X . (1.5)

By [12], [19, Corollary 1.2], [20, Theorem 8.3.1], there exists CL > 0 independent
of p such that
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Spec(�p,�) ⊂ [−CL ,CL ] ∪ [2μ0 p − CL ,+∞), (1.6)

where Spec(A) denotes the spectrum of the operator A. Since �p,� is an elliptic
operator on a compact manifold, it has discrete spectrum and its eigensections are
smooth. Let

Hp :=
⊕

λ∈[−CL ,CL ]
Ker(�p,� − λ) ⊂ C∞(X, L p ⊗ E) (1.7)

be the direct sum of eigenspaces of �p,� corresponding to the eigenvalues lying in
[−CL ,CL ].

In mathematical physics terms, the operator �p,� is a semiclassical Schrödinger
operator, and the space Hp is the space of its bound states as p → ∞. The
space Hp proves to be an appropriate replacement for the space of holomorphic
sections H0(X, L p ⊗ E) from the Kähler case. Indeed, if (X, ω) is Kähler, then
Hp = H0(X, L p ⊗ E) for p large enough. Moreover, for an arbitrary compact pre-
quantized symplectic manifold (X, ω) as above, the dimension of the space Hp is
given for p large enough as in the Kähler case by the Riemann–Roch–Hirzebruch
formula: see [19, Corollary 1.2], [20, Theorem 8.3.1], [5, Theorem 4.9],

dp := dimHp = 〈Td(X) ch(L p ⊗ E), [X ]〉 ∼ pn(rank E) volω(X), p � 1.

(1.8)

Another striking similarity is the fact that the kernel of the orthogonal projec-
tion onHp has an asymptotic expansion analogous to the Bergman kernel expansion
for Kähler manifolds, see [20,21]. We will use the asymptotic expansion of [20,21]
together with the approach of [22] to Berezin–Toeplitz quantization in order to derive
the properties of Toeplitz operators modeled on the projection onHp.

Let PHp be the orthogonal projection from C∞(X, L p ⊗ E) ontoHp. The kernel
PHp (x, x

′) of PHp with respect to dvX (x ′) is called a generalized Bergman kernel
[21]. Note that PHp (x, x

′) ∈ (L p ⊗ E)x ⊗ (L p ⊗ E)∗x ′ . For a smooth section f ∈
C∞(X,End(E)) of the bundle End(E), we define the Berezin–Toeplitz quantization
of f by

T f,p = PHp f PHp ∈ End(L2(X, L p ⊗ E)), (1.9)

where we denote for simplicity by f the endomorphism of L2(X, L p ⊗E) induced by
f , namely, s �→ f s, with ( f s)(x) = f (x)(s(x)), for s ∈ L2(X, L p ⊗ E) and x ∈ X .

Definition 1.1 A Toeplitz operator is a sequence {Tp} = {Tp}p∈N of linear operators

Tp : L2(X, L p ⊗ E) −→ L2(X, L p ⊗ E) (1.10)

with the following properties:
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(i) For any p ∈ N, we have

Tp = PHp Tp PHp ; (1.11)

(ii) There exist a sequence gl ∈ C∞(X,End(E)) such that for all k � 0 there exists
Ck > 0 with

∥∥∥∥∥
Tp − PHp

(
k∑

l=0

p−l gl

)

PHp

∥∥∥∥∥
� Ck p

−k−1, (1.12)

where ‖ · ‖ denotes the operator norm on the space of the bounded operators.

If each Tp is self-adjoint, then {Tp}p∈N is called self-adjoint.

We express (1.12) symbolically by

Tp =
k∑

l=0

p−l Tgl ,p + O(p−k−1). (1.13)

If (1.12) holds for any k ∈ N, then we write

Tp =
∞∑

l=0

p−l Tgl ,p + O(p−∞). (1.14)

The main result of this paper is as follows.

Theorem 1.2 Let (X, J, ω) be a compact symplectic manifold, (L , hL ,∇L), (E, hE ,

∇E ) be Hermitian vector bundles as above, and gT X be a J -compatible Riemannian
metric on T X. Let f, g ∈ C∞(X,End(E)). Then the product of the Toeplitz operators
T f,p and Tg,p is a Toeplitz operator, more precisely, it admits the asymptotic expansion
in the sense of (1.14):

T f,pTg,p =
∞∑

r=0

p−r TCr ( f,g),p + O(p−∞), (1.15)

whereCr arebidifferential operators,Cr ( f, g) ∈ C∞(X,End(E))andC0( f, g) = fg.
If f, g ∈ C∞(X), then we have

C1( f, g) − C1(g, f ) = √−1{ f, g} IdE , (1.16)

where {·, ·} is the Poisson bracket on (X, 2πω), and therefore the correspondence
principle holds asymptotically,

[T f,g, Tg,p] =
√−1

p
T{ f,g},p + O(p−2), p → ∞. (1.17)
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Corollary 1.3 Let f, g ∈ C∞(X,End(E)). Set

f ∗ g :=
∞∑

k=0

Ck( f, g)h̄
k ∈ C∞(X,End(E))[[h̄]], (1.18)

where Cr ( f, g) are determined by (1.15). Then (1.18) defines an associative star-
product on C∞(X,End(E)).

Theorem 1.4 For any f ∈ C∞(X,End(E)) the operator norm of T f, p satisfies

lim
p→∞‖T f, p‖ = ‖ f ‖∞ := sup

0 �=u∈Ex ,x∈X
| f (x)(u)|hE /|u|hE . (1.19)

In the special case when the Riemannian metric gT X is associated with ω, we can
even calculate C1( f, g), not only the difference C1( f, g) − C1(g, f ) from (1.16). To
state the result, let

(∇E )1,0 : C∞(X,End(E)) → C∞(X, T ∗(1,0)X ⊗ End(E)),

(∇E )0,1 : C∞(X,End(E)) → C∞(X, T ∗(0,1)X ⊗ End(E)),
(1.20)

be the (1, 0)-component and (0, 1)-component respectively of the connection∇E , and
let 〈·, ·〉 denote the pairing induced by gT X on T ∗X ⊗End(E) with values in End(E).

Following an argument of [14], we get the last result of this paper.

Theorem 1.5 If gT X (·, ·) = ω(·, J ·), then for any f, g ∈ C∞(X,End(E)), the coef-
ficient C1( f, g) ∈ C∞(X,End(E)) defined in (1.15) is given by

C1( f, g) = − 1

2π

〈
(∇E )1,0 f, (∇E )0,1g

〉
. (1.21)

Note that this formula is clearly compatible with the formula (1.16) for the Poisson
bracket in the case f, g ∈ C∞(X). Note also that (1.21) is a direct generalization of
the formula [24, (0.20)] for Kähler manifolds. The formula for the second coefficient
C1(f,g), as well as other formulas for the coefficients of the expansions of Toeplitz
operators, is remarkably universal, that is, it has the same form in different geometric
contexts (Kähler case [24], spin-c case [14], spectral spaces [13], see also [28] for an
interpretation in graph-theoretic terms, and see [14] for further references).

We completed this paper a while ago. Recently Kordyukov informed us about his
preprint [15] in which the Berezin–Toeplitz quantization by eigenstates of the Bochner
Laplacian is reconsidered.

The organization of the paper is as follows. In Sect. 2, we recall the asymptotic
expansion of the generalized Bergman kernel obtained in [17]. In Sect. 3, we obtain
the asymptotic expansion of the kernel of a Toeplitz operator. In Sect. 4, we show that
the asymptotic expansion is also a sufficient condition for a family to be Toeplitz. In
Sect. 5, we conclude that the set of Toeplitz operators forms an algebra. In Sect. 6, we
prove Theorem 1.5.
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2 The Asymptotic Expansion of the Generalized Bergman Kernel

Let aX be the injectivity radius of (X, gT X ). Let d(x, y) denote the Riemannian
distance from x to y on (X, gT X ). By [20, Proposition 8.3.5] (cf. also [17, (1.11)]),
we have the following far off-diagonal behavior of the generalized Bergman kernel.

Proposition 2.1 For any b > 0 and any k, l ∈ N and 0 < θ < 1, there exists
Cb,k,l,θ > 0 such that

∣∣∣PHp (x, x
′)
∣∣∣
C k (X×X)

� Cb,k,l,θ p−l , for d(x, x ′) > bp− θ
2 , (2.1)

here the C k-norm is induced by ∇L ,∇E , hL , hE and gT X .

Let ε ∈ (0, aX/4) be fixed. We denote by BX (x, ε) and BTx X (0, ε) the open balls
in X and Tx X with center x and radius ε, respectively. We identify BTx X (0, ε) with
BX (x, ε) by using the exponential map of (X, gT X ).

Let x0 ∈ X . For Z ∈ BTx0 X (0, ε), we identify (LZ , hLZ ), (EZ , hE
Z ) and (L p ⊗ E)Z

to (Lx0 , h
L
x0), (Ex0 , h

E
x0) and (L p ⊗ E)x0 by parallel transport with respect to the

connections ∇L , ∇E and ∇L p⊗E along the curve γZ : [0, 1] � u → expXx0(uZ). This
is the basic trivialization we use in this paper.

Using this trivialization we identify f ∈ C∞(X,End(E)) to a family { fx0}x0∈X
where fx0 is the function f in normal coordinates near x0, i. e., fx0 : BTx0 X (0, ε) →
End(Ex0), fx0(Z) = f ◦ expXx0(Z) . In general, for functions expressed in normal
coordinates centered at x0 ∈ X , we will add a subscript x0 to indicate the base point
x0.

Similarly, PHp (x, x
′) induces in terms of the basic trivialization a smooth section

(Z , Z ′) �−→ PHp, x0(Z , Z ′)

of π∗ End(E) over {(Z , Z ′) ∈ T X ×X T X : |Z |, |Z ′| < ε}, which depends smoothly
on x0. Here π : T X ×X T X → X is the natural projection from the fibered product
T X ×X T X on X and we identify a section S ∈ C∞(

T X ×X T X, π∗ End(E)
)
with

the family (Sx )x∈X , where Sx = S|π−1(x).

Let dvT X be the Riemannian volume form on (Tx0X, gTx0 X ). Let κx0(Z) be the
smooth positive function defined by the equation

dvX (Z) = κx0(Z)dvT X (Z), κx0(0) = 1, (2.2)

where the subscript x0 of κx0(Z) indicates the base point x0 ∈ X .
Writing 〈·, ·〉 for the C-bilinear product induced by gT X on T (1,0)X , we identify

the 2-form RL with the Hermitian matrix ṘL ∈ End(T (1,0)X) such that for any
W,Y ∈ T (1,0)X ,

RL(W,Y ) = 〈
ṘLW,Y

〉
. (2.3)
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Choose {w j }nj=1 an orthonormal basis of T (1,0)
x0 X such that

ṘL(x0) = diag(a1, . . . , an) ∈ End(T (1,0)
x0 X). (2.4)

Then a j > 0, for all 1 ≤ j ≤ n. We fix an orthonormal basis of Tx0X given by

e2 j−1 = 1√
2
(w j + w j ) and e2 j =

√−1√
2

(w j − w j ). Then z j = Z2 j−1 + √−1Z2 j is a

complex coordinate of Z ∈ R
2n � (Tx0X, J ).

By [17, Theorem 2.1] and [22, Theorem 1.18], we obtain the following version of
the off diagonal expansion of the generalized Bergman kernel.

Theorem 2.2 For any x0 ∈ X and r ∈ N, there exist polynomials Jr,x0(Z , Z ′) ∈
End(Ex0) in Z , Z ′ with the same parity as r and with deg Jr,x0 � 3r such that by
setting

Fr,x0(Z , Z ′) = Jr,x0(Z , Z ′)P(Z , Z ′), J0,x0(Z , Z ′) = IdEx0
, (2.5)

with

P(Z , Z ′) =
n∏

j=1

a j

2π
exp

⎡

⎣− 1

4

n∑

j=1

a j
(|z j |2 + |z′j |2 − 2z j z

′
j

)
⎤

⎦ , (2.6)

the following statement holds: for any b > 0 and k0,m,m′ ∈ N, there exists

Cb,k0,m,m′ > 0 such that for |α| + |α′| � m′ and any |Z |, |Z ′| < bp− 1
2+θ with

θ = 1

2
(
2n + 8 + 2k0 + 3m′ + 2m

) , (2.7)

we have

∣∣∣∣
∂ |α|+|α′|

∂Zα∂Z ′α′
(
p−n PHp ,x0 (Z , Z ′) −

k∑

r=0

Fr,x0

(√
pZ ,

√
pZ ′)κ−1/2

x0 (Z)κ
−1/2
x0 (Z ′)p− r

2

)∣∣∣∣
C m (X)

� Cb,k0,m,m′ p− k0
2 −1,

(2.8)

where k = k0 + m′ + 2 and C m(X) is the C m norm for the parameter x0 ∈ X.

In particular when m′ = 0, the following statement holds: for any b > 0 and

k,m ∈ N, there exists C > 0 such that for any |Z |, |Z ′| < bp− 1
2+θ2 with

θ2 = 1

4
(
n + k + m + 2

) , (2.9)
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we have

∣∣∣∣p
−n PHp,x0(Z , Z ′) −

k∑

r=0

Fr,x0(
√
pZ ,

√
pZ ′)κ−1/2

x0 (Z)κ
−1/2
x0 (Z ′)p− r

2

∣∣∣∣
C m (X)

� Cp−k/2.

(2.10)

Note that the more expansion terms in (2.10), the smaller of the expansion domain
for the variables Z and Z ′. This serves as the main ingredient for the generalized
Bergman kernel case.

By [22, Lemma2.2], for any polynomials F,G ∈ C[Z , Z ′] there existsK [F,G] ∈
C[Z , Z ′] such that

(
(FP) ◦ (GP)

)
(Z , Z ′) = K [F,G](Z , Z ′)P(Z , Z ′). (2.11)

3 Asymptotic Expansion of Toeplitz Operators

For f ∈ C∞(X,End(E)) we define the Toeplitz operator T f,p on L2(X, L p ⊗ E) by
(1.9). The Schwartz kernel of T f,p is given by

T f,p(x, x
′) =

∫

X
PHp (x, x

′′) f (x ′′)PHp (x
′′, x ′)dvX (x ′′). (3.1)

Note that if f ∈ C∞(X,End(E)) is self-adjoint, i.e., f (x) = f (x)∗ for all x ∈ X ,
then the operator T f,p is self-adjoint.

We examine now the asymptotic expansion of the kernel of Toeplitz operators T f,p.
Outside the diagonal of X × X , we have the following analogue of [22, Lemma4.2].

Lemma 3.1 Let θ ∈ (0, 1) and f ∈ C∞(X,End(E)) fixed. For any b > 0 and
k, l ∈ N, there exists Cb,k,l > 0 such that

∣∣∣T f,p(x, x
′)
∣∣∣
C k (X×X)

� Cb,k,l p
−l , (3.2)

for all p � 1 and all (x, x ′) ∈ X × X with d(x, x ′) > bp−θ , where the C k-norm is
induced by ∇L ,∇E , hL , hE and gT X .

Proof FromProposition 2.1 and (2.10), we know that for any k ∈ N there existCk > 0
and Mk > 0 such that for all (x, x ′) ∈ X × X ,

∣∣∣PHp (x, x
′)
∣∣∣
C k (X×X)

� Ck p
Mk . (3.3)
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We split the integral in (3.1) in a sum of two integrals as follows:

T f,p(x, x
′)=

(∫

BX (x, b2 p
−θ )

+
∫

X\BX (x, b2 p
−θ )

)

PHp (x, x
′′) f (x ′′)PHp (x

′′, x ′)dvX (x ′′).

(3.4)

Assume that d(x, x ′) > bp−θ . Then

d(x ′′, x ′) >
b

2
p−θ for x ′′ ∈ BX

(
x,

b

2
p−θ

)
,

d(x, x ′′) � b

2
p−θ for x ′′ ∈ X

∖
BX

(
x,

b

2
p−θ

)
.

(3.5)

Now from (2.1) and (3.3)–(3.5), we get (3.2). The proof of Lemma 3.1 is complete. ��
We concentrate next on a neighborhood of the diagonal of X × X in order to obtain

the asymptotic expansion of the kernel T f,p(x, x ′).
Let {�p}p∈N be a sequence of linear operators�p : L2(X, L p⊗E) → L2(X, L p⊗

E)with smooth kernel�p(x, y)with respect to dvX (y). Recall thatπ : T X×X T X →
X is the natural projection. Under our trivialization,�p(x, y) induces a smooth section
�p,x0(Z , Z ′) of π∗(End(E)

)
over T X ×X T X with Z , Z ′ ∈ Tx0X , |Z |, |Z ′| < aX .

Recall also that Px0 = P was defined by (2.6).
Consider the following condition for {�p}p∈N.

Condition A There exists a family {Qr,x0}r∈N,x0∈X such that

(a) Qr,x0 ∈ End(Ex0)[Z , Z ′];
(b) {Qr,x0}r∈N,x0∈X is smooth with respect to the parameter x0 ∈ X and there exist

b1, b0 ∈ N such that deg Qr � b1r + b0;
(c) For any k,m ∈ N, there exists θk,m ∈ (0, 1/2) such that for any b > 0, there exists

Cb,k,m > 0 such that for every x0 ∈ X , Z , Z ′ ∈ Tx0X with |Z |, |Z ′| < bp− 1
2+θk,m

and p ∈ N
∗, the following estimate holds:

∣∣∣∣p
−n�p,x0(Z , Z ′)κ1/2

x0 (Z)κ
1/2
x0 (Z ′) −

k∑

r=0

(Qr,x0Px0)(
√
pZ ,

√
pZ ′)p−r/2

∣∣∣∣
C m (X)

� Cb,k,m p−k/2.

(3.6)

(d) For any θ ∈ (0, 1), b > 0, k,m ∈ N, there exists C > 0 such that for any
p ∈ N

∗, d(x, x ′) > bp−θ/2, we have

∣∣�p(x, x
′)
∣∣
C m (X×X)

� Cp−k .
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Notation A For any k,m ∈ N we write the Eq. (3.6) for |Z |, |Z ′| < bp− 1
2+θk,m as

p−n�p,x0(Z , Z ′) ∼=
k∑

r=0

(Qr,x0Px0)(
√
pZ ,

√
pZ ′)p−r/2 + Om(p−k/2). (3.7)

Remark 3.2 By Theorem 2.2, (2.9) and (2.10), we have

p−n PHp,x0(Z , Z ′) ∼=
k∑

r=0

(Jr,x0Px0)(
√
pZ ,

√
pZ ′)p−r/2 + Om(p−k/2), (3.8)

in the sense of Notation A with

θk,m = 1

4(n + k + m + 2)
for k,m ∈ N, (3.9)

where Jr,x0(Z , Z ′) ∈ End(Ex0) are the polynomials in Z , Z ′ defined in (2.5). Note
that Jr,x0(Z , Z ′) has the same parity as r and deg Jr,x0 � 3r , J0,x0 = IdEx0

.

The following result is about the near diagonal asymptotic expansion of the kernel
T f,p(x, x ′). It is a version of [22, Lemma4.6] in our situation.

Lemma 3.3 Let f ∈ C∞(X,End(E)). There exists a family {Qr,x0( f )}r∈N,x0∈X such
that

(a) Qr,x0( f ) ∈ End(Ex0)[Z , Z ′] are polynomials with the same parity as r;
(b) {Qr,x0( f )}r∈N,x0∈X is smooth with respect to x0 ∈ X, and deg Qr,x0 � 3r;
(c) For any k0,m ∈ N, we have

p−nT f,p,x0(Z , Z ′) ∼=
k0∑

r=0

(
Qr,x0( f )Px0

)
(
√
pZ ,

√
pZ ′)p−r/2 + Om(p−k0/2),

(3.10)

in the sense of Notation A with

θk0,m = 1

4(n + k + m + 2)
for some k � k0, (3.11)

and Qr,x0( f ) are expressed by

Qr,x0( f ) =
∑

r1+r2+|α|=r

K

[
Jr1,x0 ,

∂α fx0
∂Zα

(0)
Zα

α! Jr2,x0
]

. (3.12)

Especially,

Q0,x0( f ) = f (x0) IdEx0
. (3.13)
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Proof For k0,m ∈ N fixed, let k � k0 to be determined. Set

θ2 = 1

4(n + k + m + 2)
, θ1 = 1 − 2θ2. (3.14)

By (2.10), we have for any |Z |, |Z ′| < 2bp− 1
2+θ2 = 2bp−θ1/2,

∣∣∣p−n PHp,x0(Z , Z ′) −
k∑

r=0

Fr,x0(
√
pZ ,

√
pZ ′)κ−1/2

x0 (Z)κ
−1/2
x0 (Z ′)p−r/2

∣∣∣
C m (X)

� Ck,l p
−k/2.

(3.15)

For |Z |, |Z ′| < b
2 p

− 1
2+θ2 = b

2 p
−θ1/2, we get from (3.1) that

T f,p,x0(Z , Z ′) =
∫

X
PHp,x0(Z , y) f (y)PHp,x0(y, Z

′)dvX (y). (3.16)

We split the integral into integrals over BX (x, bp−θ1/2) and X \ BX (x, bp−θ1/2).
We have

d(y, expx0 Z) � d(y, x0) − |Z | >
b

2
p−θ1/2 on X\BX (x, bp−θ1/2), (3.17)

since on this set d(y, x0) > bp−θ1/2 holds. By Proposition 2.1 for θ1 in (3.14), (3.3)
and (3.17) we have for |Z |, |Z ′| < b

2 p
−θ1/2,

T f,p,x0(Z , Z ′) =
∫

|Z ′′|<bp− θ1
2
PHp,x0(Z , Z ′′) fx0(Z ′′)PHp,x0(Z

′′, Z ′)κx0(Z ′′)dvT X (Z ′′)

+Om(p−∞). (3.18)

Then

p−nT f,p,x0(Z , Z ′)κ1/2
x0 (Z)κ

1/2
x0 (Z ′)

= p−n
∫

|Z ′′|<bp− θ1
2
PHp,x0(Z , Z ′′)κ

1
2
x0(Z)κ

1
2
x0(Z

′′) fx0(Z ′′)

× PHp,x0(Z
′′, Z ′)κ

1
2
x0(Z

′′)κ
1
2
x0(Z

′)dvT X (Z ′′) + Om(p−∞).

(3.19)
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We consider the Taylor expansion of fx0 :

fx0(Z) =
∑

|α|�k

∂α fx0
∂Zα

(0)
Zα

α! + O(|Z |k+1)

=
∑

|α|�k

p−|α|/2 ∂α fx0
∂Zα

(0)
(
√
pZ)α

α! + p− k+1
2 O(|√pZ |k+1). (3.20)

Combining the asymptotic expansion (3.15) and (3.20), to obtain the asymptotic
expansion of (3.19), we need to consider Ir1,|α|,r2(Tx0X)(Z , Z ′) defined by

p−n+ r1+|α|+r2
2 Ir1,|α|,r2(Tx0X)(Z , Z ′)

:=
∫

Tx0 X
(Jr1,x0Px0)(

√
pZ ,

√
pZ ′′)∂

α fx0
∂Zα

(0)
(
√
pZ ′′)α

α!
× (Jr2,x0Px0)(

√
pZ ′′,√pZ ′)dvT X (Z ′′).

(3.21)

Clearly,we candefine Ir1,|α|,r2
(
BTx0 X (0, a)

)
(Z , Z ′) and Ir1,|α|,r2

(
Tx0X\BTx0 X (0, a)

)

(Z , Z ′) for a > 0 in the same manner. Then by (3.19),

p−nT f,p,x0(Z , Z ′)κ1/2(Z)κ−1/2(Z ′)

=
∑

r1,|α|,r2�k

Ir1,|α|,r2
(
BTx0 X (0, bp−θ1/2)

)
(Z , Z ′)

+ I1(Z , Z ′) + I2(Z , Z ′) + I3(Z , Z ′) + Om(p−∞), (3.22)

with

I1(Z , Z ′) =
∫

|Z ′′|<bp−θ1/2

[
p−n PHp (Z , Z ′′)κ1/2(Z)κ1/2(Z ′′)

−
∑

r�k

(Jr,x0Px0)(
√
pZ ,

√
pZ ′′)p−r/2

]

× fx0(Z
′′)PHp (Z

′′, Z ′)κ1/2(Z ′′)κ1/2(Z ′)dvT X (Z ′′), (3.23)

and

I2(Z , Z ′) =
∫

|Z ′′|<bp−θ1/2

∑

r1�k

(Jr1,x0Px0)(
√
pZ ,

√
pZ ′′)p−r1/2

×
⎡

⎣ fx0(Z
′′) −

∑

|α|�k

∂α fx0
∂Zα

(0)
(
√
pZ ′′)α

α! p−|α|/2
⎤

⎦

× PHp (Z
′′, Z ′)κ1/2(Z ′′)κ1/2(Z ′)dvT X (Z ′′),
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I3(Z , Z ′) = pn
∫

|Z ′′|<bp−θ1/2

∑

r1�k

(Jr1,x0Px0)(
√
pZ ,

√
pZ ′′)p−r1/2

×
∑

|α|�k

∂α fx0
∂Zα

(0)
(
√
pZ ′′)α

α! p−|α|/2

×
[
p−n PHp (Z

′′, Z ′)κ1/2(Z ′′)κ1/2(Z ′)

−
∑

r2�k

(Jr2Px0)(
√
pZ ′′,√pZ ′)p−r2/2

]
dvT X (Z ′′). (3.24)

We claim that for k large,

∣∣I j (Z , Z ′)
∣∣
C m (X)

� Cp−k0/2 for j = 1, 2, 3. (3.25)

In fact, by (3.3), there exists C0 > 0 and M0 > 0 such that for all (x, x ′) ∈ X × X ,

∣∣PHp (x, x
′)
∣∣
C 0(X×X)

� C0 p
M0 . (3.26)

Combining (3.15), (3.23) and (3.26) yields

|I1(Z , Z ′)|C m (X) � Cp− k
2+M0 . (3.27)

By (3.20), (3.26) and the fact that deg Jr � 3r ,

∣∣I2(Z , Z ′)
∣∣
C m (X)

� C(1 + √
p|Z |)3k · p− k+1

2 · pM0

� Cp− k+1
2 +3kθ2+M0 .

(3.28)

By (3.15) and the fact that deg Jr � 3r , we have for |Z |, |Z ′| < b
2 p

−θ1/2,

∣∣I3(Z , Z ′)
∣∣
C m (X)

� C(1 + √
p|Z |)3k p− k

2 . (3.29)

From (3.27)–(3.29), choose k > k0 big enough such that

k + 1 − 6kθ2 − 2M0 = k
(
1 − 3

2(n + k + m + 2)

)
− 2M0 + 1 > k0. (3.30)

Then the claim (3.25) holds. By (3.22) and (3.25),

∣∣∣p−nT f,p,x0(Z , Z ′)κ1/2(Z)κ−1/2(Z ′)

−
∑

r1,α,r2�k

Ir1,|α|,r2(BTx0 X (0, bp−θ1/2))(Z , Z ′)
∣∣∣
C m (X)

� Cp−k0/2.
(3.31)
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Note by (1.5) and (2.6),

∣∣∣P(
√
pZ ,

√
pZ ′)

∣∣∣ =
∏

j

a j

2π
e− p

4

∑
j a j |z j−z′j |2 � Ce− p

4 μ0|Z−Z ′|2 . (3.32)

By (3.32) and the fact that deg Jr � 3r , we obtain

∣∣∣Ir1,|α|,r2
(
Tx0X\BTx0 X (0, bp−θ1/2)

)
(Z , Z ′)

∣∣∣
C m (X)

� Cpn
∫

|Z ′′|>bp−θ1/2
(1 + √

p|Z | + √
p|Z ′′|)3r1(1 + √

p|Z ′| + √
p|Z ′′|)3r2

× (
√
p|Z ′′|)|α| exp

(
− μ0

2
√
p|Z − Z ′′| − μ0

2
√
p|Z ′′ − Z ′|

)
dvT X (Z ′′).

(3.33)

Note that for any |Z |, |Z ′| < b
2 p

−θ1/2 and |Z ′′| > bp−θ1/2, we have

|Z | < |Z ′′|, |Z ′| < |Z ′′|, |Z − Z ′′| � 1

2
|Z ′′|, |Z ′ − Z ′′| � 1

2
|Z ′′|. (3.34)

Substituting (3.34) into (3.33) yields for any |Z |, |Z ′| < b
2 p

−θ1/2,

∣∣∣Ir1,|α|,r2
(
Tx0 X\BTx0 X (0, bp−θ1/2)

)
(Z , Z ′)

∣∣∣
C m (X)

� Cpn
∫

|Z ′′|>bp−θ1/2

(
1 + √

p|Z ′′|)3(r1+r2)(
√
p|Z ′′|)|α|e− μ0

2
√
p|Z ′′|dvT X (Z ′′)

� Cpn exp

(
−b

4
μ0 p

θ2

)∫

|Z ′′|>bp−θ1/2

(
1 + √

p|Z ′′|)3(r1+r2)+|α|
e− μ0

4
√
p|Z ′′|dvT X (Z ′′)

� C exp

(
−b

4
μ0 p

θ2

)∫

|Z ′′|>bpθ2

(
1 + |Z ′′|)3(r1+r2)+|α|

e− μ0
4 |Z ′′|dvT X (Z ′′)

� C exp

(
−b

4
μ0 p

θ2

)
. (3.35)

Combining (3.31) and (3.35), we obtain

∣∣∣p−nT f,p,x0(Z , Z ′)κ1/2(Z)κ1/2(Z ′) −
∑

r1,|α|,r2�k

Ir1,|α|,r2(Tx0X)(Z , Z ′)
∣∣∣
C m (X)

� Cp− k0
2 . (3.36)
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Clearly,

∑

r1,|α|,r2�k

Ir1,|α|,r2(Tx0X)(Z , Z ′)

=
⎛

⎝
∑

r1+|α|+r2�k0

+
3k∑

r1+|α|+r2=k0+1

⎞

⎠ Ir1,|α|,r2(Tx0X)(Z , Z ′).
(3.37)

By (2.11) and (3.21),

Ir1,|α|,r2(Tx0X)(Z , Z ′)

= p−(r1+|α|+r2)/2
(
K

[
Jr1,x0 ,

∂α fx0
∂Zα

(0)
Zα

α! Jr2,x0
]
P

)
(
√
pZ ,

√
pZ ′).

(3.38)

In view of (3.36)–(3.38), to finish the proof of Lemma 3.3, it suffices to prove that
the C m norm with respect to the parameter x0 ∈ X of the term

3k∑

r1+|α|+r2=k0+1

Ir1,|α|,r2(Tx0X)(Z , Z ′), for |Z |, |Z ′| <
b

2
p−θ1/2, (3.39)

is controlled by Cp−k0/2 for large k.
Estimating Ir1,|α|,r2(Tx0X)(Z , Z ′) for |Z |, |Z ′| < b

2 p
−θ1/2, using (3.32), (3.38) and

the fact that deg Jr � 3r , we obtain

∣∣Ir1,|α|,r2(Tx0X)(Z , Z ′)
∣∣
C m (X)

� Cp−s/2(1 + √
p|Z | + √

p|Z ′|)3s exp
(

− p

4
μ0|Z − Z ′|2

)

� Cp− s
2 p

1−θ1
2 ·3s = Cp−s(1−6θ2)/2,

(3.40)

with s = r1 + |α| + r2. If s > k0, then

s(1 − 6θ2) � (k0 + 1)

(
1 − 6

4(n + k + m + 2)

)
. (3.41)

Choose k big enough such that

(k0 + 1)

(
1 − 6

4(n + k + m + 2)

)
> k0. (3.42)

Then
∣∣∣Ir1,|α|,r2(Tx0X)(Z , Z ′)

∣∣∣
C m (X)

� Cp−k0/2 for r1 + |α| + r2 = s > k0. (3.43)
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To sum up, we have proved the following statement: for fixed k0, choose k > k0
such that (3.30) and (3.42) hold. Set

θ2 = 1

4(n + k + m + 2)
, θ1 = 1 − 2θ2, (3.44)

then for any |Z |, |Z ′| < b
2 p

−θ1/2, we have

∣∣∣p−nT f,p,x0(Z , Z ′)κ1/2
x0 (Z)κ

1/2
x0 (Z ′)−

k0∑

r=0

(
Qr,x0( f )Px0

)
(
√
pZ ,

√
pZ ′)p−r/2

∣∣∣
C m (X)

� Cp−k0/2, (3.45)

where Qr,x0( f ) is given by (3.12). This completes the proof of Lemma 3.3. ��
Remark 3.4 Let �p be a sequence of operators satisfying Condition A and assume
that �p = PHp�p PHp for all p ∈ N. Applying the proof of Lemma 3.3, by splitting
integrals and studying different integration regions, we deduce by Theorem 2.2 and
(3.6):

For any k,m,m′ ∈ N, there exists θk,m,m′ ∈ (0, 1/2) such that for any b > 0, there

exists C > 0 such that for every x0 ∈ X , Z , Z ′ ∈ Tx0X with |Z |, |Z ′| < bp− 1
2+θk,m,m′

and p ∈ N
∗, |α| + |α′| � m′, we have

∣∣∣∣
∂ |α|+|α′|

∂Zα∂Z ′α′
(
p−n�p,x0(Z , Z ′)κ1/2

x0 (Z)κ
1/2
x0 (Z ′)

−
k∑

r=0

(Qr,x0Px0)(
√
pZ ,

√
pZ ′)p−r/2

)∣∣∣∣
C m (X)

� Cp−(k−m′)/2.

(3.46)

In fact, by �p = PHp�p PHp , for |Z |, |Z ′| < bp− 1
2+θk,m,m′ , we have the analogue of

(3.16):

�p,x0(Z , Z ′) =
∫

X
PHp,x0

(Z , y)�p(y, Z
′)PHp,x0(y, Z

′)dvX (y). (3.47)

Then the estimate (3.46) follows from Theorem 2.2, (3.6), (3.15) and (3.47) in the
same manner as (3.45) follows from (3.15), (3.16) and (3.20).

4 A Criterion for Toeplitz Operators

In this section,we prove a useful criterionwhich ensures that a given family of bounded
linear operators is a Toeplitz operator.

Theorem 4.1 Let {Tp : L2(X, L p ⊗ E) → L2(X, L p ⊗ E)} be a family of bounded
linear operators which satisfies the following three conditions:
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(i) For any p ∈ N, PHp Tp PHp = Tp.
(ii) For any b > 0, l ∈ N and 0 < θ < 1, there exists Cb,l,θ > 0 such that for all

p � 1 and all (x, x ′) ∈ X × X with d(x, x ′) > bp−θ/2,

∣∣∣Tp(x, x
′)
∣∣∣ � Cb,l,θ p

−l . (4.1)

(iii) There exists a family of polynomials
{
Qr,x0 ∈ End(Ex0)[Z , Z ′]}x0∈X such that

(a) Each Qr,x0 has the same parity as r and there exist b1, b0 ∈ N such that
degQr � b1r + b0,

(b) The family is smooth in x0 ∈ X and
(c) For any k0,m ∈ N, there exists θk0,m ∈ (0, 1/2) such that for any b > 0,

p ∈ N
∗, x0 ∈ X and every Z , Z ′ ∈ Tx0X with |Z |, |Z ′| < bp− 1

2+θk0,m , we
have

p−nTp,x0(Z , Z ′) ∼=
k0∑

r=0

(
Qr,x0Px0

)
(
√
pZ ,

√
pZ ′)p−r/2 + Om(p−k0/2),

(4.2)

in the sense of Notation A for k0,m, θk0,m.
Then {Tp} is a Toeplitz operator.

Remark 4.2 By Lemmas 3.1 and 3.3, and by (1.11), (1.12) and the Sobolev inequality
(cf. [10, (4.14)]), it follows that every Toeplitz operator in the sense of Definition 1.1
verifies the Conditions (i), (ii) and (iii) of Theorem 4.1.

We start the proof of Theorem 4.1. Let T ∗
p be the adjoint of Tp. By writing

Tp = 1

2

(
Tp + T ∗

p

)
+ √−1

1

2
√−1

(
Tp − T ∗

p

)
, (4.3)

we may and will assume from now on that Tp is self-adjoint.
We will define inductively the sequence (gl)l�0, gl ∈ C∞(X,End(E)) such that

Tp =
q∑

l=0

PHp gl p
−l PHp + O(p−q−1) for all q � 0. (4.4)

Moreover, we can make these gl ’s to be self-adjoint.
Let us start with the case q = 0 of (4.4). For an arbitrary but fixed x0 ∈ X , we set

g0(x0) = Q0,x0(0, 0) ∈ End(Ex0). (4.5)

We will show that

p−n(Tp − Tg0,p)x0(Z , Z ′) ∼= Om(p−1), (4.6)
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which implies the case q = 0 of (4.4), namely,

Tp = PHp g0PHp + O(p−1). (4.7)

The proof of (4.6)–(4.7) will be done in Propositions 4.3 and 4.9.

Proposition 4.3 Under the conditions of Theorem 4.1, we have

Q0,x0(Z , Z ′) = Q0,x0(0, 0) ∈ End(Ex0) (4.8)

for all x0 ∈ X and all Z , Z ′ ∈ Tx0X.

Proof The proof is divided in the series of Lemmas 4.4– 4.8. Our first observation is
as follows. ��
Lemma 4.4 Q0,x0 ∈ End(Ex0)[Z , Z ′] and Q0,x0 is a polynomial in z, z′.

Proof By (4.2), for k0 = 2 there exists θ3 ∈ (0, 1/2) such that for any b > 0 and

every Z , Z ′ ∈ Tx0X with |Z |, |Z ′| < bp− 1
2+θ3 , we have

p−nTp,x0(Z , Z ′) ∼=
2∑

r=0

(Qr,x0Px0)(
√
pZ ,

√
pZ ′)p−r/2 + Om(p−1). (4.9)

By (3.8),

p−n PHp,x0(Z , Z ′) ∼=
2∑

r=0

(Jr,x0Px0)(
√
pZ ,

√
pZ ′)p−r/2 + Om(p−1), (4.10)

in the sense of Notation A with θ4 = 1/4(n + m + 4). Combining (4.9) and (4.10),
modeled the waywe get (3.45) from (3.15) and (3.20), we obtain that for every Z , Z ′ ∈
Tx0X with |Z |, |Z ′| < bp− 1

2+θ2 , with θ2 is given in (3.44) for some large k,

p−n(PHp Tp PHp )x0(Z , Z ′)

∼=
2∑

r=0

∑

r1+r2+r3=r

[
(Jr1,x0Px0) ◦ (Qr2,x0Px0) ◦ (Jr3,x0Px0)

]
(
√
pZ ,

√
pZ ′)p−r/2

+ Om(p−1).

(4.11)

Since PHp Tp PHp = Tp, we deduce from (4.9) and (4.11) that

Q0,x0Px0 = Px0 ◦ (Q0,x0Px0) ◦ Px0 . (4.12)

By [22, (2.8)] and (4.12), we obtain

Q0,x0 ∈ End(Ex0)[z, z′]. (4.13)
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The proof of Lemma 4.4 is complete. ��
For simplicity we denote in the rest of the proof Fx = Q0,x ∈ End(Ex ). Let

Fx = ∑
i�0 F

(i)
x be the decomposition of Fx in homogeneous polynomials F (i)

x of

degree i . We will show F (i)
x vanish identically for i > 0, that is

F (i)
x (z, z′) = 0 for all i > 0 and z, z′ ∈ C. (4.14)

The first step is to prove

F (i)
x (0, z′) = 0 for all i > 0 and z′ ∈ C. (4.15)

Since Tp is self-adjoint, then we have

F (i)
x (z, z′) = (

F (i)
x (z′, z)

)∗
. (4.16)

Consider 0 < θk0,m < 1 as in hypothesis (iii) (c) of Theorem 4.1. For Z ′ ∈ R
2n � Tx X

and y = expXx (Z ′), set

F (i)(x, y) = F (i)
x (0, z′) ∈ End(Ex ),

F̃ (i)(x, y) = (
F (i)(y, x)

)∗ ∈ End(Ey).
(4.17)

F (i) and F̃ (i) define smooth sections on a neighborhood of the diagonal of X × X .
Clearly, the F̃ (i)(x, y)’s need not be polynomials in z and z′.

Since we wish to define global operators induced by these kernels, we use a cut-off
function in the neighborhood of the diagonal. Pick a smooth function η ∈ C∞(R)

such that

η(u) = 1 for |u| � ε/2 and η(u) = 0 for |u| � ε. (4.18)

We denote by F (i)PHp and PHp F̃
(i) the operators defined by the kernels

η(d(x, y))F (i)(x, y)PHp (x, y) and η(d(x, y))PHp (x, y)F̃
(i)(x, y) (4.19)

with respect to dvX (y). Set

Tp = Tp −
∑

i�degFx

(F (i)PHp )p
i/2. (4.20)

The operators Tp extend naturally to bounded operators on L2(X, L p ⊗ E).
From (4.2) and (4.20), we deduce that for any k0,m ∈ N, there exists θk0,m ∈

(0, 1/2) such that for any |Z ′| < εp− 1
2+θk0,m , we have the following expansion in the
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normal coordinates around x0 ∈ X (which has to be understood in the sense of (3.7)):

p−nTp,x0(0, Z
′) ∼=

k0∑

r=1

(Rr,x0Px0)(0,
√
pZ ′)p−r/2 + Om(p−k0/2), (4.21)

for some polynomials Rr,x0 of the same parity as r . For simplicity let us define similarly
to (4.17) the kernel

Rr,p(x, y) = pn(Rr,xPx )(0,
√
pZ ′)κ−1/2

x (Z ′)η(d(x, y)), (4.22)

where y = expXx (Z ′), and denote by Rr,p the operator defined by this kernel.

Lemma 4.5 For k0 � 2(n + 1), there exists C > 0 such that for every p � 1 and
s ∈ L2(X, L p ⊗ E), we have

∥∥Tps
∥∥
L2 � Cp−1/2

∥∥s
∥∥
L2 ,

∥∥T ∗
p s

∥∥
L2 � Cp−1/2

∥∥s
∥∥
L2 .

(4.23)

Proof In order to use (4.21), we write

∥∥Tps
∥∥
L2 �

∥∥∥∥∥
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
s

∥∥∥∥∥
L2

+
∥∥∥∥∥

k0∑

r=1

p−r/2Rr,ps

∥∥∥∥∥
L2

. (4.24)

By the Cauchy–Schwarz inequality we have

∥∥∥
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
s
∥∥∥
2

L2

�
∫

X

( ∫

X

∣∣∣
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
(x, y)

∣∣∣dvX (y)
)

×
( ∫

X

∣∣∣
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
(x, y)

∣∣∣
∣∣s(y)

∣∣2dvX (y)
)
dvX (x).

(4.25)

By (2.1), (4.1), (4.19), (4.20) and (4.22), we obtain uniformly in x ∈ X ,
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∫

X

∣∣∣
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
(x, y)

∣∣∣
∣∣s(y)

∣∣2dvX (y)

�
∫

BX (x, ε
2 p

− 1
2+θk0,m )

∣∣∣
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
(x, y)

∣∣∣
∣∣s(y)

∣∣2dvX (y)

+ O(p−∞)

∫

X\BX (x, ε
2 p

− 1
2+θk0,m )

|s(y)|2dvX (y),

(4.26)

where θk0,m is given by (4.21). By (3.6) and (4.21) we obtain

∫

BX (x, ε
2 p

− 1
2+θk0,m )

∣∣∣
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
(x, y)

∣∣∣
∣∣s(y)

∣∣2dvX (y)

= O(p−1)

∫

BX (x, ε
2 p

− 1
2+θk0,m )

∣∣s(y)
∣∣2dvX (y).

(4.27)

In the same vein (by splitting the integral region as above), we obtain

∫

X

∣∣∣
(
Tp −

k0∑

r=1

p−r/2Rr,p
)
(x, y)

∣∣∣dvX (y) = O(p−1) + O(p−∞). (4.28)

Combining (4.25)–(4.28) yields

∥∥∥
(
Tp −

k0∑

r=1

p−r/2Rr,p

)
s
∥∥∥
L2

� Cp−1
∥∥s

∥∥
L2 . (4.29)

A similar proof as for (4.29) delivers for s ∈ L2(X, L p ⊗ E),

∥∥Rr,ps
∥∥
L2 � C

∥∥s
∥∥
L2 , (4.30)

which implies

∥∥
k0∑

r=1

p−r/2Rr,ps
∥∥
L2 � Cp−1/2

∥∥s
∥∥
L2 for s ∈ L2(X, L p ⊗ E), (4.31)

for someconstantC > 0.Relations (4.29) and (4.31) entail thefirst inequality of (4.23),
which is equivalent to the second of (4.23), by taking the adjoint. This completes the
proof of Lemma 4.5. ��

Let us consider the Taylor development of F̃ (i) in normal coordinates around x
with y = expXx (Z ′):
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F̃ (i)(x, y) =
∑

|α|�k

∂α F̃ (i)

∂Z ′α (x, 0)
(
√
pZ ′)α

α! p−|α|/2 + O(|Z ′|k+1). (4.32)

The next step of the proof of Proposition 4.3 is the following.

Lemma 4.6 For every j > 0, we have

∂α F̃ (i)

∂Z ′α (x, 0) = 0 for i − |α| � j > 0. (4.33)

Proof The definition (4.20) of Tp shows that

T ∗
p = Tp −

∑

i�degFx

pi/2(PHp F̃
(i)). (4.34)

Let us develop the sum on the right-hand side. Considering the Taylor development
(4.32) with the expansion (3.8) of the Bergman kernel we obtain

p−n(PHp F̃
(i))

x0
(0, Z ′)κ1/2(Z ′)

−
∑

r,|α|�k

(
Jr,x0Px0

)
(0,

√
pZ ′)∂

α F̃ (i)

∂Z ′α (x0, 0)
(
√
pZ ′)α

α! p− |α|+r
2

=
[
p−n PHp,x0(0, Z

′)κ1/2(Z ′) −
∑

r�k

(
Jr,x0Px0

)
(0,

√
pZ ′)p−r/2

]
F̃ (i)
x0 (0, Z ′)

+
∑

r�k

(
Jr,x0Px0

)
(0,

√
pZ ′)p−r/2

[
F̃ (i)
x0 (0, Z ′)

−
∑

|α|�k

∂α F̃ (i)

∂Z ′α (x0, 0)
(
√
pZ ′)α

α! p− |α|
2

]
. (4.35)

By (3.8), (3.32), (4.32) and deg Jr,x0 � 3r , we obtain for k � degFx + 1 and m ∈ N,

there exists θk,m ∈ (0, 1) such that for any Z ′ ∈ Tx0X with |Z ′| � bp− 1
2+θk,m , we

have

p−n
∑

i

(
PHp F̃

(i))
x0

(0, Z ′)pi/2

∼=
∑

i

∑

|α|,r�k

(
Jr,x0Px0

)
(0,

√
pZ ′)∂

α F̃ (i)

∂Z ′α (x0, 0)
(
√
pZ ′)α

α! p(i−|α|−r)/2

+ Om(p(deg F−k)/2). (4.36)

Having in mind the second inequality of (4.23), this is only possible if for every j > 0
the coefficients of p j/2 on the right-hand side of (4.36) vanish. Thus, we have for
every j > 0:
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deg Fx∑

l= j

∑

|α|+r=l− j

Jr,x0(0,
√
pZ ′)∂

α F̃ (l)

∂Z ′α (x0, 0)
(
√
pZ ′)α

α! = 0. (4.37)

From (4.37), we will prove by recurrence that for any j > 0, (4.33) holds. As the
first step of the recurrence let us take j = deg Fx in (4.37). Since J0,x0 = IdEx0

, then

we get immediately F̃ (deg Fx )(x0, 0) = 0. Hence (4.33) holds for j = deg Fx . Assume
that (4.33) holds for j > j0 > 0. Then for j = j0, the coefficient with r > 0 in (4.37)
is zero. Since J0,x0 = IdEx0

, then (4.37) reads

∑

α

∂α F̃ ( j0+|α|)

∂Z ′α (x0, 0)
(
√
pZ ′)α

α! = 0, (4.38)

which entails (4.33) for j = j0. The proof of (4.33) is complete. ��
Lemma 4.7 For i > 0, we have

∂αF (i)
x

∂z′α
(0, 0) = 0, |α| � i. (4.39)

Therefore, F (i)
x (0, z′) = 0 for all i > 0 and z′ ∈ C, i.e., (4.15) holds true. Moreover,

F (i)
x (z, 0) = 0 for all i > 0 and all z ∈ C. (4.40)

Proof Let us start with some preliminary observations. In view of (4.23), (4.33), and
(4.36), a comparison of the coefficients of p0 in (4.9) and (4.34) yields

F̃ (i)(x, Z ′) = F (i)
x (0, z′) + O(|Z ′|i+1). (4.41)

Using the definition (4.17) of F̃ (i)(x, Z ′) and taking the adjoint of (4.41), we get

F (i)(Z ′, x) = (
F (i)
x (0, z′)

)∗ + O(|Z ′|i+1), (4.42)

which implies

∂α

∂zα
F (i)(·, x)

∣∣∣
x

=
( ∂α

∂z′α
F (i)
x (0, z′)

)∗
for |α| � i. (4.43)

In order to prove the Lemma, it suffices to show that

∂α

∂zα
F (i)(·, x)

∣∣∣
x

= 0 for |α| � i. (4.44)

We prove this by induction over |α|. For |α| = 0, it is obvious that F (i)(0, x) = 0,
since F (i)(x, z′) is a homogeneous polynomial of degree i > 0. For the induction
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step, let jX : X → X × X be the diagonal injection. By Lemma 4.4 and the definition
(4.17) of F (i)(x, y), we have

∂

∂z′j
Fi (x, y) = 0 near jX (X), (4.45)

where y = expXx (Z ′). Assume now that α ∈ N
n and (4.44) holds for |α|−1. Consider

j with α j > 0 and set

α′ = (α1, . . . , α j − 1, . . . , αn). (4.46)

Taking the derivative of (4.17) and using the induction hypothesis and (4.45), we have

∂α

∂zα
F (i)(·, x)

∣∣∣∣∣x
= ∂

∂z j
j∗X

(
∂α′

∂zα′ F
(i)

)∣∣∣∣∣
x

− ∂α′

∂zα′
∂

∂z′j
F (i)(·, ·)

∣∣∣∣
0,0

= 0. (4.47)

Thus, (4.39) is proved. The identity (4.15) follows too, since it is equivalent to (4.39).
Furthermore, (4.40) follows from (4.15) and (4.16). This finishes the proof of Lemma
4.7. ��
Lemma 4.8 We have F (i)

x (z, z′) = 0 for all i > 0 and z, z′ ∈ C
n.

Proof Let us consider the operator

1√
p
PHp

(∇L p⊗E
X,x Tp

)
PHp with X ∈ C∞(X, T X), X (x0) = ∂

∂z j
+ ∂

∂z j
. (4.48)

By Remark 3.4, the leading term of its asymptotic expansion as in (3.7) is

( ∂

∂z j
Fx0

)
(
√
pz,

√
pz′)Px0(

√
pZ ,

√
pZ ′). (4.49)

By (4.15) and (4.40), ( ∂
∂z j

Fx0)(z, z
′) is an odd polynomial in z, z′ whose constant term

vanishes. We reiterate the argument from (4.20)–(4.43) by replacing the operator Tp

with the operator (4.48); we get for i > 0,

∂

∂z j
F (i)
x (0, z′) = 0. (4.50)

By (4.16) and (4.50),

∂

∂z′j
F (i)
x (z, 0) = 0. (4.51)
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By continuing this process, we show that for all i > 0, α ∈ Z
n , z, z′ ∈ C

n ,

∂α

∂zα
F (i)
x (0, z′) = ∂α

∂z′α
F (i)
x (z, 0) = 0. (4.52)

Thus, Lemma 4.8 is proved and (4.14) holds true. ��
Lemma 4.8 finishes the proof of Proposition 4.3. ��

We come now to the proof of the first induction step leading to (4.4).

Proposition 4.9 We have

p−n(Tp − Tg0,p)x0(Z , Z ′) ∼= Om(p−1) (4.53)

in the sense of Notation A for some θm ∈ (0, 1/2). Consequently,

Tp = PHp g0PHp + O(p−1), (4.54)

i.e., relation (4.7) holds true in the sense of (1.13).

Proof Let us compare the asymptotic expansion of Tp and Tg0,p = PHp g0PHp . Using
the Notation A, the expansion (3.10) (for k0 = 2) reads for θm = 1/4(n+ k +m + 2),

p−nTg0,p,x0(Z , Z ′)
∼= (

g0(x0)Px0 + Q1,x0(g0)Px0 p
−1/2 + Q2,x0(g0)Px0 p

−1)(
√
pZ ,

√
pZ ′)

+ Om(p−1), (4.55)

since Q0,x0(g0) = g0(x0) IdEx0
by (3.13). The expansion (4.2) (also for k0 = 2) takes

the form for θm in (4.2),

p−nTp,x0(Z , Z ′)
∼= (

g0(x0)Px0 + Q1,x0Px0 p
−1/2 + Q2,x0Px0 p

−1)(
√
pZ ,

√
pZ ′) + Om(p−1),

(4.56)

where we have used Proposition 4.3 and the definition (4.5) of g0. Thus subtracting
(4.55) from (4.56) we obtain for some θm ∈ (0, 1/2),

p−n(Tp − Tg0,p)x0(Z , Z ′)
∼= (

(Q1,x0 − Q1,x0(g0))Px0

)
(
√
pZ ,

√
pZ ′)p−1/2 + Om(p−1). (4.57)

Thus, it suffices to prove the following result.

Lemma 4.10

F1,x := Q1,x − Q1,x (g0) ≡ 0. (4.58)
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Proof We note first that F1,x is an odd polynomial in z and z′; we verify this statement
as in Lemma 4.4. Thus the constant term of F1,x vanishes. To show that the rest of
the term vanish, we consider the decomposition F1,x = ∑

i�0 F
(i)
1,x in homogeneous

polynomials F (i)
1,x of degree i . To prove (4.58), it suffices to show that

F (i)
1,x (z, z

′) = 0 for all i > 0 and z, z′ ∈ C
n . (4.59)

The proof of (4.59) is similar to that of (4.14). Namely, we define as in (4.17) the
operator F (i)

1 , by replacing F (i)
x (0, z′) by F (i)

1,x (0, z
′), and we set (analogue to (4.20))

Tp,1 = Tp − PHp g0PHp −
∑

i�degF1

(F (i)
1 PHp )p

(i−1)/2. (4.60)

Due to (3.10) and (4.2), there exist polynomials R̃r,x0 ∈ C[Z , Z ′] of the same parity
as r such that the following expansion in the normal coordinates around x0 ∈ X holds
for any k0 � 2:

p−nTp,1,x0(0, Z
′) ∼=

k0∑

r=2

(R̃r,x0Px0)(0,
√
pZ ′)p−r/2 + Om(p−k0/2), (4.61)

in the sense of Notation A with θk0,m the minimum of θk0,m in (3.10) and θk0,m in
(4.2). This is an analogue of (4.21). Now we can repeat with obvious modifications
the proof of (4.14) and obtain the analogue of (4.14) with Fx replaced by F1,x . This
completes the proof of Lemma 4.10. ��

Lemma 4.10 and the expansion (4.57) imply immediately Proposition 4.9. ��
Proof of Theorem 4.1 Proposition 4.9 shows that the asymptotic expansion (4.4) of
Tp holds for q = 0. Moreover, if Tp is self-adjoint, then from (4.56), g0 is also self-
adjoint. We show inductively that (4.4) holds for every q ∈ N. To prove (4.4) for
q = 1 let us consider the operator p(Tp − PHp g0PHp ). We have to show now that
p(Tp − PHp g0PHp ) satisfies the hypotheses of Theorem 4.1. Due to Lemma 3.1 and
Theorem 4.1 (ii), the first two conditions are easily verified. To prove the third, just
subtract the asymptotics of Tp,x0(Z , Z ′) (given by (4.2)) and Tg0,p,x0(Z , Z ′) (given
by (3.10)). Taking into account Proposition 4.3 and (4.58) the coefficients of p0 and
p−1/2 in the difference vanish, which yields the desired conclusion.

Propositions 4.3 and 4.9 applied to p(Tp−PHp g0PHp )yield g1 ∈ C∞(X,End(E))

such that (4.4) holds true for q = 1.
We continue in this way the induction process to get (4.4) for any q. This completes

the proof of Theorem 4.1. ��

5 Algebra of Toeplitz Operators

The Poisson bracket {·, ·} on (X, 2πω) is defined as follows. For f, g ∈ C∞(X), let
ξ f be the Hamiltonian vector field generated by f , which is defined by 2π iξ f ω = df.
Then
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{ f, g} = ξ f (dg). (5.1)

Proof of Theorem 1.2 First, it is obvious that PHp T f,pTg,p PHp = T f,pTg,p. To prove
(4.1), note that from Lemma 3.1 and (3.10), we know that for any k ∈ N there exist
Ck > 0 and Mk > 0 such that for all (x, x ′) ∈ X × X ,

∣∣∣T f,p(x, x
′)
∣∣∣
C k (X×X)

� Ck p
Mk . (5.2)

For any b > 0 and 0 < θ < 1, if d(x, x ′) > bp−θ/2, then

T f,pTg,p(x, x
′)=

(∫

BX (x, b2 p
−θ/2)

+
∫

X\BX (x, b2 p
−θ/2)

)

T f,p(x, x
′′)Tg,p(x ′′, x ′)dvX (x ′′).

(5.3)

Then (4.1) follows from (3.2), (3.5), (5.2) and (5.3). Like (3.18), for |Z |, |Z ′| <
b
2 p

−θ/2, we have

(T f,pTg,p)x0(Z , Z ′)

=
∫

|Z ′′|<bp−θ1/2
T f,p,x0(z, z

′′)Tg,p,x0(Z ′′, Z ′)κx0(Z ′′)dvT X (Z ′′) + Om(p−∞).

(5.4)

By Lemmas 3.1 and 3.3 and (5.4), we deduce as we obtain (3.45) from Proposition
2.1, (3.15) and (3.18) in the proof of Lemma 3.3 that for |Z |, |Z ′| < b

2 p
−θ/2, we have

p−n(T f,pTg,p)x0(Z , Z ′) ∼=
k0∑

r=0

(
Qr,x0( f, g)Px0

)
(
√
pZ ,

√
pZ ′)p−r/2

+ Om(p−k0/2),

(5.5)

with

Qr,x0( f, g) =
∑

r1+r2=r

K [Qr1,x0( f ), Qr2,x0(g)]. (5.6)

Thus, T f,pTg,p is a Toeplitz operator by Theorem 4.1.Moreover, it follows form the
proofs of Lemma 3.3 and Theorem 4.1 that gl = Cl( f, g), where Cl are bidifferential
operators.

The rest of the proof of Theorem 1.2 is exactly the same as that of [22, Theorem 1.1]
and we omit it here. This finishes the proof of Theorem 1.2. ��
Proof of Theorem 1.4 Take a point x0 ∈ X and u0 ∈ Ex0 with |u0|hE = 1 such
that | f (x0)(u0)| = ‖ f ‖∞. Recall that we trivialized the bundles L , E in normal
coordinates near x0, and eL is the unit frame of L which trivializes L . Moreover, in
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these normal coordinates, u0 is a trivial section of E . Considering the sequence of
sections S p

x0 = p−n/2PHp (e
⊗p
L ⊗ u0), we have by (3.8),

∥∥T f, p S
p
x0 − f (x0)S

p
x0

∥∥
L2 � C√

p
‖S p

x0‖L2 , (5.7)

which immediately implies (1.19). ��

6 Proof of Theorem 1.5

In this section, we show how to adapt the results of [14] in order to give a proof to
Theorem 1.5, that is the computation of the coefficient C1( f, g) of Theorem 1.2.

Fix x0 ∈ X and ε ∈ (0, aX/4). It is shown in [21, Theorem 1.4] that the restriction
on BX (x0, ε) of the operator�p,� defined in (1.4) is equal, through the trivializations
given in Sect. 2 and after a convenient rescaling in

√
p := 1/t , to an operator Lt on

BTx0 X (0, ε/t) satisfying

Lt = L0 +
m∑

r=1

trOr + O(tm+1), (6.1)

for any m ∈ N, where {Or }r∈N is a family of differential operators of order equal or
less than 2, with coefficients explicitly computable in terms of local data, and where
the differential operator O(tm+1) has its coefficients and their derivatives up to order
k dominated by Cktm+1 for any k ∈ N and Ck > 0.

Moreover, as explained in [21, §1.4], the differential operatorL0 acts on the scalar
part of smooth functions onR2n with values in Ex0 , and the spectrum of its restriction
to L2(R2n) is given by {4πn | n ∈ N}. Furthermore, the kernel of the orthogonal pro-
jection P from L2(R2n, Ex0) to Ker(L0) is given byF0,x0(Z , Z ′) = P(Z , Z ′) IdEx0

as in (2.5). We write P⊥ = Id−P , and define the operator (L0)
−1P⊥ by inverting

the positive eigenvalues of L0|L2(R2n).
As shown in [21], there is a direct method to compute the family {Fr,x0(Z , Z ′)}r∈N

defined in Theorem 2.2, using (6.1). The following lemma, which has been established
in [21, Theorem 1.16, (1.30), (1.111)], gives the first elements of this family.

Lemma 6.1 For any r ∈ N, let Fr,x0 be the operator associated to the kernel
Fr,x0(Z , Z ′), and let the differential operators O1 and O2 be as in (6.1). Then the
following formulas hold:

F1,x0 = −(L0)
−1P⊥O1P − PO1(L0)

−1P⊥,

F2,x0 = (L0)
−1P⊥O1(L0)

−1P⊥O1P − (L0)
−1P⊥O2P

+ PO1(L0)
−1P⊥O1(L0)

−1P⊥ − PO2(L0)
−1P⊥

+ (L0)
−1P⊥O1PO1(L0)

−1P⊥ − PO1(L0)
−2P⊥O1P.

(6.2)
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Moreover, O1 commutes with any A ∈ End(Ex0), and we have the formula

PO1P = 0. (6.3)

In particular, F0,x0 and F1,x0 commute with any A ∈ End(Ex0).

Lemma 6.1 corresponds to [14, Lemma 3.3], and the following technical Lemma
corresponds to [14, Lemma 3.5]. It was essentially proved in [21, (2.25)].

Lemma 6.2 The following formulas hold:

(PO1(L0)
−1P⊥)(0, Z ′) = 0,

(PO1(L0)
−1P⊥)(Z , 0) = 0,

((L0)
−1P⊥O1P)(Z , 0) = 0.

(6.4)

The result of Lemma 6.2 is a simple computation from the first line of [21, (2.25)],
using [21, (1.98), (1.99)] and recalling the formula T ∗(Z , Z ′) = T (Z ′, Z)∗ for the
kernel of the dual T ∗ of an operator T . In fact, all the kernels associated to the situation
in this paper are the degree-0 part of the kernels of the corresponding situation in [14].
Lemma 6.2 is then an expression of the fact that the corresponding formulas in [14,
Lemma 3.5] have vanishing degree-0 part.

Now, from the proof of Theorem 4.1, the following formula holds,

C1( f, g)(x0) = Q2,x0( f, g)(0, 0) − Q2,x0(fg)(0, 0), (6.5)

where the coefficients Q2,x0( f, g) and Q2,x0(fg) have been defined in Lemma 3.3 and
(5.6) respectively. Note that the formula (6.5) is actually simpler than the one given
in [22, (4.82)], due to the fact that we only need to consider the degree-0 part. The
following Proposition corresponds to [14, (3.19)], and is easily seen to imply Theorem
1.5 in the trivialization described in Sect. 2.

Proposition 6.3 Assume that gT X (·, ·) = ω(·, J ·). Then in the complex coordinates
of Z ∈ R

2n � (Tx0X, J ) as in Sect. 2, the following formula holds,

Q2,x0( f, g)(0, 0) − Q2,x0(fg)(0, 0) = − 1

π

n∑

j=1

∂ fx0
∂z j

(0)
∂gx0
∂ z̄ j

(0). (6.6)

Proof By (2.11) and following [22, Lemma2.2, Example 2.3], the kernel calculus of
[20, § 7.1] as described in [14, § 2.3] is still valid. Note that the assumption gT X (·, ·) =
ω(·, J ·) is equivalent to a j = 2π in (2.4), for all 1 ≤ j ≤ n.

Recall the formulas (3.12) and (5.6) with r = 2 for the second and the first term
of (6.5) respectively. Furthermore, by Lemma 6.2, by (3.12) with r = 1 and as in the
proof of [14, Lemma 3], the following formula still holds,

Q1,x0( f ) = f (x0)J1,x0 + K

⎡

⎣J1,x0 ,
2n∑

j=1

∂ fx0
∂Z j

(0)Z j J0,x0

⎤

⎦ . (6.7)
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Then the computations of [14, § 3.2] go through, and even simplify due to Lemma
6.2. In particular, writing Z j , Z ′

j for the operators of scalar multiplication by Z j , Z ′
j

in End(Ex0)[Z , Z ′] for all 1 ≤ j ≤ 2n, by (2.5), (2.11), (6.2) and the first line of (6.4),
we have as in [14, (3.46), (3.49)],

K
[
J0,x0 ,K

[
J1,x0 , Z j J0,x0

]]
(0, 0)

= (F0,x0F1,x0 Z jF0,x0)(0, 0)

= −(PO1(L0)
−1P⊥Z j P)(0, 0)

= −
∫

R2n
(PO1(L0)

−1P⊥)(0, Z)Z jP(Z , 0)dZ = 0.

(6.8)

By (6.2) and the second line of (6.4), we have as in [14, (3.53)],

K
[
Z ′
j J0,x0 ,K

[
J1,x0 , J0,x0

]]
(0, 0)

= (Z ′
jF0,x0F1,x0F0,x0)(0, 0)

= −(Z ′
j P(L0)

−1P⊥O1P)(0, 0)

= −
∫

R2n
Z ′
jP(0, Z ′)((L0)

−1P⊥O1P)(Z ′, 0)dZ ′ = 0.

(6.9)

Finally, writing z j for the operator of multiplication by z j in End(Ex0)[Z , Z ′] for
all 1 ≤ j ≤ n, by (6.2) and the last line of (6.4), we have as in [14, (3.65)],

P(z j (L0)
−1P⊥O1P)(0, 0) =

∫

R2n
P(0, Z)z j ((L0)

−1P⊥O1P)(Z , 0)dZ

= 0.
(6.10)

Then (6.6) is precisely [14, (3.78)]. ��
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