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We first apply the method and results in the previous paper to give a 
new proof of a result (holds in C/Z) of Gilkey on the variation of n-
invariants associated to non self-adjoint Dirac type operators. We then 
give an explicit local expression of certain 77-invariant appearing in recent 
papers of Braverman-Kappeler on what they call refined analytic torsion, 
and propose an alternate formulation of their definition of the refined 
analytic torsion. A refinement in C of the above variation formula is 
also proposed. 
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1. I n t r o d u c t i o n 

In a previous paper , 1 4 we have given an alternate formulation of (the mod 

Z part of) the 77-invariant of Atiyah-Patodi-Singer1"3 associated to non-

uni tary flat vector bundles by identifying explicitly its real and imaginary 

parts . 

On the other hand, Gilkey has studied this kind of 77-invariants system

atically in,1 3 and in particular proved a general variation formula for them. 
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336 X. Ma and W. Zhang 

However, it lacks in13 the identification of the real and imaginary parts of 
the ^-invariants as we did in.14 

In this article, we first show that our results in14 lead to a direct deriva
tion of Gilkey's variation formula Theorem 3.7.13 

The second purpose of this paper is to apply the results in14 to examine 
the 7/-invariants appearing in the recent papers of Braverman-Kappeler7-9 

on refined analytic torsions. We show that the imaginary part of the 
77-invariant appeared in these articles admits an explicit local expression 
which suggests an alternate formulation of the definition of the refined an
alytic torsion there. This reformulation provides an analytic resolution of a 
problem due to Burghelea10'11 on the existence of a univalent holomorphic 
function on the representation space having the Ray-Singer analytic torsion 
as its absolute value. 

Finally, using the extension (to the case of non-self-adjoint operators) 
given in18 of the concept of spectral flow,3 we propose a refinement in C of 
the above variation formula for ^-invariants. 

Acknowledgements. We would like to thank Maxim Braverman for 
bringing13 to our attention, and for helpful discussions. The work of the 
second author was partially supported by the National Natural Science 
Foundation of China. 

2. ^-Invariant and the Variation Formula 

Let M be an odd dimensional oriented closed spin manifold carrying a 
Riemannian metric g™ • Let S(TM) be the associated Hermitian vector 
bundle of spinors. Let (E,gE) be a Hermitian vector bundle over M carry
ing a unitary connection VE. Moreover, let (F,gF) be a Hermitian vector 
bundle over M carrying a flat connection V F . We do not assume that V F 

preserves the Hermitian metric gF on F. 
Let DmF : T(S(TM) ® E ® F) —-• T(S(TM) ® E ® F) denote the 

corresponding (twisted) Dirac operator. 
It is pointed out in Page 933 that one can define the reduced ^-invariant 

of DE®F, denoted by rj(DE®F), by working on (possibly) non-self-adjoint 
elliptic operators. 

In this section, we will first recall the main result in Ref. 14 on fj{DE®F) 
and then show how it leads directly to a proof of the variation formula of 
Gilkey, Theorem 3.7.13 
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rj-Invariant and Flat Vector Bundles II 337 

2.1. Chern-Simons classes and flat vector bundles 

We fix a square root of V ^ and let <p : A(T*M) -> A(T*M) be the homo-
morphism defined by ip : OJ G A l(T*M) —> (27r-\/-T)~^2w- The formulas in 
what follows will not depend on the choice of the square root of ^f—l-

If W is a complex vector bundle over M and V ^ , V ^ are two connec
tions on W. Let Wt, 0 < t < 1, be a smooth path of connections on W 
connecting Vjf and V ^ . We define the Chern-Simons form CS(\7^, V ^ ) 
to be the differential form given by 

CS(v-vn=-(^=T)%fTr[
a|:exp(-(vn dt. 

(2.1) 

Then (cf. Chapter l17) 

dCS (VS", V D = ch (W, V f ) - ch (W, V | f ) . (2.2) 

Moreover, it is well-known that up to exact forms, CS(V^, Vj^) does not 
depend on the path of connections on W connecting VQ^ and V ^ . 

Let (F, V F ) be a flat vector bundle carrying the flat connection V F . 
Let gF be a Hermitian metric on F. We do not assume that V F preserves 
gF. Let (VF)* be the adjoint connection of V F with respect to gF. 

From (4.1), (4.2)6 and §l(g),5 one has 

(VFY=VF+u(F,gF) (2.3) 

with 

Then 

Lo(F,gF) = (gFy1(VFgF). (2.4) 

V F - e = V F + ^ ( F , 9
F ) (2.5) 

is a Hermitian connection on (F,gF) (cf. (4.3)6). 
Following (2.6)14 and (2.47),15 for any r G C, set 

V F,e , W = yF.e + V _ l £ w ^ ^ ) _ ( 2 6 ) 

Then for any r G R, VF 'e '( r) is a Hermitian connection on (F,gF). 
On the other hand, following (0.2),5 for any integer j > 0, let 

C2j+i(F,gF) be the Chern form defined by 

c2j+1 (F,gF) = ( 2 W = I ) - J ' 2-(^+ 1 )Tr [^ ' + 1 (F,gF)} . (2.7) 

 I
ns

pi
re

d 
by

 S
 S

 C
he

rn
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

IE
R

R
E

 &
 M

A
R

IE
 C

U
R

IE
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/0
5/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



338 X. Ma and W. Zhang 

Then C23+i(F,gF) is a closed form on M. Let c2j+i(F) be the associated 
cohomology class in H2i+l(M, R), which does not depend on the choice of 

9F-
For any j > 0 and r £ R, let a,j (r) £ R be defined as 

a3(r) = [ (1 + u2r2)j du . (2.8) 
Jo 

With these notation we can now state the following result first proved 
in Lemma 2.12.15 

Proposition 1: The following identity in Hodd(M, R) holds for any r E R, 

+ 0 0 , N 

C S ( V * > V * W > ) = - f ^ ^ p c 2 , + 1 ( ^ ) . (2.9) 

2.2. r]-invariant associated to flat vector bundles 

Let 

DB®F 'e : r (S(TM) 8 E 8 F ) —> T(S(TM) ® E ® F) (2.10) 

denote the Dirac operator associated to the connection VF,e on F and 
V B on E. Then ]jE®F>e is formally self-adjoint and one can define the 
associated reduced ^-invariant as in.1 

In view of Proposition 1, one can restate the main result of,14 which is 
Theorem 2.2,14 as follows, 

- (DE®F-J __ ̂  (DE®F,ej + f A(TM)ch{E)CS (VF 'e , V F ) mod Z , 
JM 

(2.11) 

where A(TM) and ch(E) are the A class of TM and the Chern character 
of E respectively.17 

Now let V F be another flat connection on F. We use the notation with 
~ to denote the objects associated with this flat connection. 

Then one has 

- (fiE®F^ = jj J5B8P,ej + j A(TM)ch{E)CS ( v F ' e , V F ) mod Z . 

(2.12) 
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rj-Invariant and Flat Vector Bundles II 339 

By the variation formula for r\-invariants associated to self-adjoint Dirac 
operators,1'4 one knows that 

rj (pmFA - rj (DmF'e) = ( A(TM)ch{E)CS (VF ' e , V F ' e ) mod Z . 

(2.13) 
From (2.11)-(2.13), one deduces that 

rj (^DmF^j - rj(DE®F) = f A(TM)ch{E)CS (VF ' e , V F ' e ) (2.14) 

- f A(TM)ch{E)CS (V F ' e ,V F ) + f A{TM)ch{E)CS ( v F ' e , V F ) 

= / A(TM)ch(E)CshF,S7F) mod Z , 

which is exactly the Gilkey formula, Theorem 1.613 for the operator P = 
DE therein. 

Remark 2: As was indicated in Remark 2.4,14 the main result in14 holds 
also for general Hermitian vector bundles equipped with a (possibly) non-
Hermitian connection. Indeed, if we do not assume that V F is flat, then 
at least (2.3)-(2.6) still holds. Thus for any r G R, we have well-defined 
(formally self-adjoint) operator DE®F(r) which is associated to the Hermi
tian connection V ^ 6 ' ^ on F. For any r £ R, one then has the variation 
formula1,4 

rj(DE®F(r)) -f](DmF'e) = f A{TM)ch{E)CS(VF'e,WF'e^r)) mod Z. 
JM 

(2.15) 

By (2.1), one sees easily that the right hand side of (2.15) is a holomorphic 
function (indeed a polynomial) of r. Thus, by analytic continuity, as in,14 

one gets that for any r £ C, (2.15) still holds. In particular, if we set 
r = A/—T, we get 

rj (DmF) = rj (DmF'e) + f A{TM)ch{E)CS (VF 'e , V F ) mod Z, 
JM 

(2.16) 

which generalizes (2.11). Then by proceeding as above, we see that (2.14) 
holds without the assumption of the flatness of connections V F and V F . 
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340 X. Ma and W. Zhang 

By (2.1) and (2.6), 

i r1. 
Tr r^F) 

exp ( ]= (V'e ' 

•nM 

(tr) dt 

dimM 
(2.17) 

By (2.6), one has 

i=0 

( V F A W ) = ( V ^ ) 2 + ±JL ( V ^ (F,gF)) - T - ( . (F,gF))2 . 

(2.18) 

Note that 

VF'eu (F,gF) = [VF'e,u(F,gF)} = 0, if V F is flat. (2.19) 

By taking adjoint of (2.18), we see that when r £ C is purely imaginary, 
one has 

1 ' v F , e , ( r ) x 2 

27IV-1 

1 
27TV/rT 

' V F ' e ) 2 - r <• -<V ~F^2 

2-KV^I 

\r 

("(F,9F)y 

'yF'eu;(F,gF)). (2.20) 

Prom (2.1), (2.17) and (2.20), one sees that when r £ C is purely imag
inary, then 

^ r*. 

(2.21) 

Re(cS(V>,V^<M))= X X V * V 
i even 

I m ( c 5 ( v ^ , V ^ W ) ) = - L ^ at(V
F,gF) 

i odd 

Thus when r E C is purely imaginary, from (2.16) and (2.21), we have 

Re(fj(DmF(r))) =rj{DmF^) + ^ r ' / A(TM)ch(E)ai(V
F,gF)modZ, 

i even J M 

Im (jj (£>B®*»)) = - L = E r* / l(TM)cli(£) t t i (V F , g
F ) . (2.22) 

v - l , ,. J M z odd 
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rj-Invariant and Flat Vector Bundles II 341 

In particular, by setting r — v—1, we get 

Re (rj(DE®F)) = r\ (DE®F>e) 

+ V] ( - l ) i / A(TM)ch(E)ai(V
F,gF) modZ, 

^~^ J M 
% even 

lm(rj(DmF)) = V ( - 1 ) ^ / A(TM)ch(E)ai ( V F , 5
F ) . (2.23) 

i odd JM 

This generalizes the main result in Ref. 14. 

3. ^-Invariant and the Refined Analytic Torsion of 
Braverman-Kappeler 

Recently, in a series of preprints,7^9 Braverman and Kappeler introduce 
what they call refined analytic torsion. The ^-invariant associated with flat 
vector bundles plays a role in their definition. In this section, we first ex
amine the imaginary part of the ^-invariant appearing in,7-9 from the point 
of view of the previous sections and propose an alternate definition of the 
refined analytic torsion. We then combine this refined analytic torsion with 
the 77-invariant to construct analytically a univalent holomorphic function 
on the space of representations of TT\ (M) having the absolute value equals 
to the Ray-Singer torsion, thus resolving a problem posed by Burghelea.11 

3.1. rj-invariant and the refined analytic torsion of 
Braverman-Kappeler 

Since there needs no spin condition in,7-9 here we start with a closed ori
ented smooth odd dimensional manifold M with d imM = 2n+ 1. Let g™ 
be a Riemannian metric on TM. For any X G TM, let X* € T*M denote 
its metric dual and c(X) — X* A — ix denote the associated Clifford action 
acting on A*(T*M), where X*A and ix are the notation for the exterior 
and interior multiplications of X respectively. 

Let e\, . . . , e2n+i be an oriented orthonormal basis of TM. Set 

r = ( v ^ T ) n + 1 c ( e i ) - - - c ( e 2 n + 1 ) . (3.1) 

T h e n r 2 = Idon k*(T*M). 
Let (F,gF) be a Hermitian vector bundle over M equipped with a flat 

connection V F which need not preserve the Hermitian metric gF on F. 
Then the exterior differential d on ft*(M) = T(A*(T*M)) extends naturally 

 I
ns

pi
re

d 
by

 S
 S

 C
he

rn
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 P

IE
R

R
E

 &
 M

A
R

IE
 C

U
R

IE
 U

N
IV

E
R

SI
T

Y
 o

n 
10

/0
5/

17
. F

or
 p

er
so

na
l u

se
 o

nl
y.



342 X. Ma and W. Zhang 

to the twisted exterior differential dF acting on fi*(M,F) = Y(h*(T*M) <g> 

F). 
We define the twisted signature operator DF- to be 

Dfig = - (TdF + dFT) : neven(M, F) - • fteven(M, F). (3.2) 

It coincides with the odd signature operator ^Beven in.7~9 

Let VAeve"(T*M)®^ (resp. VAeven(T*M)®F'e) be the tensor product con
nections on Aeven(T*M)®F obtained from V F (resp. VF 'e) and the canon
ical connection on Aeven(T*M) induced by the Levi-Civita connection V ™ 
oig™. 

From (3.2), it is easy to verify that 

/2n+l \ 

^ g = r ( ^ c ( e i ) v r " ( T * M H - (3.3) 
Set 

^g
e = r f E c ^ ) v r n ( T * M ) H - (3-4) 

Then Ds£ is formally self-adjoint. 
Since locally one has identification S(TM) <g> S(TM) = Aeven(T*M), 

one sees that one can apply the results in the previous section to the case 
E = S(TM) to the current situation. 

In particular, we get 

(rsfnZ \\ =*(nFA Re(rj(DF
g))=r](D^ m o d Z , 

Im (rj (DF
lg)) = - i = / L (TM, V™) CS ( V ^ , VF) 

--iijwwXwm'**^- (3'5) 3=0 

where L(TM, V T M ) is the Hirzebruch L-form defined by 

L ( r M , V T M ) = ^ d e t 1 / 2 ( - * (3.6) 
, t anh ( f l™/2)y ' 

with R™ = ( V ™ ) 2 the curvature of V ™ , and L(TM) is the associated 
class. 

Remark 3: By proceeding as in Section 2, we can get Theorem 3.713 easily 
by using the results in Remark 2. 
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rj-Invariant and Flat Vector Bundles II 343 

Proposition 4: The function 

* (F, VF) = Im (rj {Dgig)) + ±- f L(TM)Cl(F) (3.7) 
Z7T JM 

is a locally constant function on the set of flat connections on F. In par
ticular, *(F, VF) = 0 ifVF can be connected to a unitary flat connection 
through a path of flat connections. 

Proof. Let Vf, 0 < t < 1, be a smooth pass of flat connections on F. 
From (3.5), we get 

V ^ I m (rj (DgigA)) - v^I lm (rj (D^)) 

= / L (TM, V™) CS (Vf'e, Vf) - /" L (TM, V™) CS (Vf'e, Vf ) 

= V^l I L (TM, V™) Im (<7S (vf'e, vf ' e ) - CS (Vf, Vf)) 

= v ^ / L (TM, V™) Im (C5 (Vf, Vf)) . (3.8) 
JM 

Now consider the path of flat connections Vf, 0 < t < 1. Since for any 
t e [0,1], (Vf )2 = 0, from (2.1), (2.5), one gets 

CS (Vf, Vf) = (-±= J Tr (Vf - Vf) = ( — L = j Tr (Vf'e - Vf•«) 

.27TV-1 

Thus, one has 

T r Q a ; o ( F , / V ^ i ( ^ 3 F ) ) . (3-9) 

7F V 7 i ^ _ l rnv.(\,.,tT?„F\_\l.,lT?nF' Hm(CS(Vf, Vf)) = - ^ ^ j T r ^ - c 0 ( F , / ) - - W l ( * V 

= - i - l = ( C l ( F , V f ) - C l ( F , V f ) ) . (3.10) 

From (3.8) and (3.10), we get 

Im (rj (DiigA)) + i - JM L (TJlf, V™) Cl (F, Vf) 

= Im (rj (Dsf g>0)) + ^ / M L (TM, V™) Cl (F, Vf) , (3.11) 

from which Proposition 4 follows. Q.E.D. 
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344 X. Ma and W. Zhang 

Remark 5: Formula (3.11) is closely related to Theorem 12.3.7 Moreover, 
for any representation a of the fundamental group TTI(M), let (Fa,V

Fa) be 
the associated fiat vector bundle. One has 

e x p ( 7 r t f ( F a , V F « ) ) = r ( a ) , (3.12) 

where r(a) is the function appearing in Lemma 5.5.9 While from (3.5) and 
(3.7), one has 

* [F, V ) = - s /M HTM) g ^ ^ ^ W • (3-13) 

Combining with (3.12), this gives an explicit local expression of r(a) as well 
as the locally constant function re defined in Definition 5.6.9 

Remark 6: To conclude this subsection, we recall the recent modifica
tion due to Braverman-Kappeler (Braverman mentioned this in a recent 
Oberwolfach conference) themselves of the original definition of the refined 
analytic torsion in7-9 as follows: for any Hermitian vector bundle equipped 
with a flat connection VF over an oriented closed smooth odd dimensional 
manifold M equipped with a Riemannian metric g™, let p(VF,g™) be 
the element defined in (2.13).9 Then the modified definition of the refined 
analytic torsion is given by 

PL ( V F , g™) = p (VF, g™) e*V=iMFMD.is) > ( 3 . 1 4 ) 

where r](Dsig) is the reduced rj invariant in the sense of Atiyah-Patodi-
Singer1 of the signature operator coupled with the trivial complex line bun
dle over M (i.e. DSiS := D^ ) . There are two advantages of this reformula
tion. First, by multiplying the local factor e

_ 7 r * ( F ' V ) makes the compari
son formula [9, (5.8)] of the refined analytic torsion has closer resemblance 
in comparing with the formulas of Cheeger-Muller and Bismut-Zhang (cf.6). 
The advantage of this reformulation is that since fj(Dsig) various smoothly 
with respect to the metric g™ (as the dimension of ker(Dsig) does not 
depend on the metric g™), the ambiguity of the power of \f—\. disappears 
if one uses e*'v ' : rTrk( i : ,^Dsi«) to replace the factor e~ i INL(P'9 ) m 

(2.14).9 

3.2. Ray-Singer analytic torsion and univalent holomorphic 
functions on the representation space 

Let (F, V F ) be a complex flat vector bundle. Let gF be an Hermitian metric 
on F. We fix a flat connection \7F on F (note here that we do not assume 
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rj-Invariant and Flat Vector Bundles II 345 

that V F and V F can be connected by a smooth path of flat connections). 
Let g™ be a Riemannian metric on TM and V ™ be the associated 

Levi-Civita connection. 
Let ^ (V F , V F ) G C be defined by 

rj ( V F , V F ) = f L (TM, V ™ ) CS ( v F ' e , V F ) . (3.15) 

One verifies easily that rj(VF, V F ) S C does not depend on g™, and is a 
holomorphic function of V F . Moreover, by (3.5) one has 

I m ( ^ ( v F , V F ) ) = I m ( ^ ( D F
i g ) ) . (3.16) 

Recall that the refined analytic torsion of7-9 has been modified in 
(3.14). 

Set 

T a n ( V F , 3 ™ ) = p a n ( V F , 5 ™ ) e x p ( v ^ I ^ ( v F , V F ) ) . (3.17) 

Then 7 a n (V F , g™) is a holomorphic section in the sense of Definition 3.4.9 

By Theorem 11.38 (cf. (5.13)9), (3.14), (3.16) and (3.17), one gets the 
following formula for the Ray-Singer norm of 7an(VF , g™), 

| | T a n ( V F , f l ™ ) | | R S = l . (3.18) 

In particular, when restricted to the space of acyclic representations, 
'7 a n (V F ,g™) becomes a (univalent) holomorphic function such that 

| T a n ( V F , 3 ™ ) | = T f i S ( V F ) , (3.19) 

the usual Ray-Singer analytic torsion. This provides an analytic resolution 
of a question of Burghelea.11 

Remark 7: If one considers T^n, then one can further modify it to 

T a
2

n K , / M ) ' = Ta
2

n(VF,5™) 

x exp (27rv /=l (rj ( 5 F
g

e ) - rk(F)7? (£>Sig)) ) , (3.20) 

which does not depend on the choice of V F , and thus gives an intrinsic 
definition of a holomorphic section of the square of the determinant line 
bundle, having the same norm as that of T^n(S7F,g™). The dependence 
of Tan on a indicates in part the subtleness of the analytic meaning of the 
phase of the Turaev torsion (cf.12'16). 
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346 X. Ma and W. Zhang 

Next, we show how to modify the Turaev torsion12'16 to get a holomor-
phic section with Ray-Singer norm equal to one. 

Let s be an Euler structure on M and o a cohomological orientation. 
We use the notation as in9 to denote the associated Turaev torsion by pe>0. 

Let c(s) G H\ (M, Z) be the canonical class associated to the Euler 
structure e (cf.16 or Section 5.212). Then for any representation aF corre
sponding to a flat vector bundle (F, V F ) , by Theorem 10.212 one has 

!|pe,o(«F)||RS = !de ta F (c( £ ) ) | 1 / 2 . (3.21) 

Let L d i m M - i ( T M ) G Hd[mM-1{M,Z) be the degree d imM - 1 com
ponent of the characteristic class L(TM). Let Li (TM) G Hi(M, Z) denote 
its Poincare dual. Then one verifies easily that 

deto<F (L\ (TM)) = exp ( f L (TM, V ™ ) ct (F, V F ) J . (3.22) 

On the other hand, by Corollary 5.9,9 Li (TM) + c(e) G iJi(M,Z) is 
divisible by two, and one can define a class f3e G H±(M, Z) such that 

-2/3e = Li (TM) + c(e). (3.23) 

From Proposition 4, (3.22) and (3.23), one finds 

|detaF(c(e)) |1 / 2 = | de t a F ( / ^ e x p (~TT$ (F, V F ) + Trim (rj {DQ)) , 
(3.24) 

where <E>(F, V F ) is the locally constant function given by (3.13). 
We now define a modified Turaev torsion as follows: 

T£,0(F,VF) = pE,0(aF)e^(F'vF)+^^FyF) (detaF(f3e)). (3.25) 

Clearly, %y0(F,VF) is a holomorphic section in the sense of Definition 
3.4.9 Moreover, by (3.21), (3.24) and (3.25), its Ray-Singer norm equals to 
one. Thus it provides another resolution of Burghelea's problem mentioned 
above which should be closely related to what in.10 

Combining with (3.18) we get 

T a n (V F , f l 
TM) 

T£to(F,VF) 
= 1, (3.26) 

which, in view of (3.12), is equivalent to (5.10).9 

On the other hand, since now Tan(V
F,g™)/T£,0(F, V F ) is a holomor

phic function with absolute value identically equals to one, one sees that 
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n-Invariant and Flat Vector Bundles II 347 

there is a real locally constant function 6e^0(F, VF) such that 

eV=iec,0(F,vF) > ( 3 . 2 7 ) 
^an (V ,g ) _ „V=18e,0(F,VF) 

TE ,0(F,VF) 

which is equivalent to (5.8).9 

Remark 8: While the univalent holomorphic sections Tan and TEt0 depend 
on the choice of an "initial" flat connection V F , the quotients in the left 
hand sides of (3.26) and (3.27) do not involve it. 

Remark 9: One of the advantages of (3.26) and (3.27) is that they look in 
closer resemblance to the theorems of Cheeger, Muller and Bismut-Zhang6 

concerning the Ray-Singer and Reidemeister torsions. 

Now let Vf and Vf be two acyclic unitary flat connections on F. We do 
not assume that they can be connected by a smooth path of flat connections. 

By (14.11)7 (cf. (6.2)9), (3.15), (3.17) and the variation formula for 
^-invariants,1'3'4 one finds 

Tan(Vf ,g™) _ T R S (Vf) exp(-v /=T7r77(D|:ga) + v ^ r f t V f , V F ) ) 

T a n ( V f , g ™ ) THS(Vf) exp(-y=T7rr?(D|:gi2) + y=T7r^(Vr,V^)) 

T R S (Vf) exp(-y^l7rT7(£>|;8|1) + v ^ ^ P l ^ ) ) 
TRS(vf) ' exp ( - > /=T7r / M L( rM ) VrM)C5(V | ' ,Vf ) ) 

T R S (Vf) 

T*S(Vf) 
eMV^lTT • sf(D|:g i l , D^)), (3.28) 

where D^- 1 and Dgj 2 are the signature operators associated to V f and 
Vf respectively, while sf(_D|1ig)1,-Dsig2) is the spectral flow of the linear 
path connecting -DcLi a n ^ ^fig,2' m t n e s e n s e °f Atiyah-Patodi-Singer.3 

Remark 10: Since we do not assume that Vf and Vf can be connected by 
a path of flat connections, our formula extends the corresponding formula 
in Proposition 6.2.9 

Corollary 11: The ratio T a n ( V F , g ™ ) / T R S ( V F ) is a locally constant 
function on the set of acyclic unitary flat connections on F. 

Example 12: Let V F be an acyclic unitary flat connection on F. Let 
g G T(U(F)) be a smooth section of unitary automorphisms of F. Then 
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348 X. Ma and W. Zhang 

g 1S7Fg is another acyclic unitary flat connection on F. A standard calcu
lation shows that 

sf (D^F,Dif^Fo) = f L(TM)ch(5), (3.29) 

where ch(g) € Hodd(M, R) is the odd Chern character associated to g 
(cf.17). Prom (3.29), one sees that if fM L(TM)ch(g) is nonzero, then VF 

and g~1VFg do not lie in the same connected component in the set of 
acyclic unitary flat connections on F. 

3.3. More on rj-invariants, spectral flow and the phase of 
the refined analytic torsion 

We would like to point out that the (reduced) ^-invariant for non-self-
adjoint operators we used above, when considered as a C-valued function, 
is the original 77 invariant appeared in3 (see also13). In this section, we show 
that the R-valued variation formula for 77-invariants (which has been used 
in (3.28)) admits an extension to a C-valued variation formula valid also 
for the non-self-adjoint operators discussed in the present paper. 

First, the concept of spectral flow can be extended to non-self-adjoint 
operators, and this has been done in18 in a general context. 

For our specific situation, if DF
igt, 0 < t < 1, is a smooth path of 

(possibly) non-self-adjoint signature operators, following,18 we define the 
spectral flow of this path to be, tautologically, 

s f (-^Sig.Oi-Osig.l) = 

# {spec (DF
igt0) n {Re(A) > 0} - spec (DF

igtl) n {Re(/x) < 0}} 

- # {spec (£>figi0) n {Re(A) < 0} - spec (jD îg>1) n {Re(/x) > 0}} , 

(3.30) 

which simply replaces the number zero in the original definition for self-
adjoint operators3 by the axis of purely imaginary numbers. 

Now let Vf, 0 < t < 1, be a smooth path of (not necessary unitary 
and/or flat) connections on F. Let DF

{ t, 0 < t < 1, be the corresponding 
path of signature operators. With the definition of spectral flow, one then 
sees easily that the following variation formula holds in C, 

v(DF
igtl)-rj(DF

gfi)=si(DF
iefi,D

F
gA)+ [ L(TM,V™)CS(VF,Vf). 

JM 
(3.31) 
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Now we observe tha t in , 7 - 9 Braverman and Kappeler propose an alter

nate definition of (reduced) rj invariant, which if we denote by I]BK, then 

(cf. Definition 4 .3 7 and Definition 5.29) 

VBK {Dlig) = rj {DQ - m _ {D£ig) , (3.32) 

where m-(Dgi ) is the number of purely imaginary eigenvalues of D^ of 

form \^f—T with A < 0. 

Formulas (3.31) and (3.32) together give a variation formula for T/BK, 

which can be used to extend (3.28) to non-unitary acyclic representations. 
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