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SUBMERSIONS AND

EQUIVARIANT QUILLEN METRICS

by Xiaonan MA

Introduction.

Let ξ be a Hermitian vector bundle on a compact Hermitian complex
manifold X. Let λ(ξ) be the inverse of the determinant of the cohomology
of ξ. Quillen defined first a metric on λ(ξ) in the case that X is a Riemann
surface. Quillen metric is the product of the L2 metric on λ(ξ) by the
analytic torsion of Ray-Singer of ξ. The analytic torsion of Ray-Singer [RS]
is the regularized determinant of the Kodaira Laplacian on ξ. In [BGS3],
Bismut, Gillet, and Soulé have extended it to complex manifolds. They
have established the anomaly formulas for Quillen metrics, which tell us
the variation of Quillen metric on the metrics on ξ and TX by using some
Bott-Chern classes.

Later, Bismut and Köhler [BKö] (refer also [BGS2], [GS1] in the
special case) have extended the analytic torsion of Ray-Singer to the
analytic torsion forms T for a holomorphic submersion. In particular, the
equation on (∂∂/2iπ)T gives a refinement of the Grothendiek-Riemann-
Roch Theorem. They have also established the corresponding anomaly
formulas.

In [GS1], Gillet and Soulé had conjectured an arithmetic Riemann-
Roch Theorem in Arakelov geometry. In [GS2], they have proved it for
the first Chern class. The analytic torsion forms are contained in their
definition of direct image.

Let i : Y → X be an immersion of compact complex manifolds. Let
η be a holomorphic vector bundle on Y , and let (ξ, v) be a complex of
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holomorphic vector bundles which provides a resolution of i∗η. Then by
[KM], the line λ−1(η) ⊗ λ(ξ) has a nonzero canonical section σ. In [BL],
Bismut and Lebeau have given a formula for the Quillen norm of σ in terms
of Bott-Chern currents on X and of a genus R introduced by Gillet and
Soulé [GS1].

In [BerB], Bismut and Berthomieu solved a similar problem. In fact,
let π :M → B be a submersion of compact complex manifolds. Let ξ be a
holomorphic vector bundle on M . Let R•π∗ξ be the direct image of ξ. Then,
by [KM], the line λ(ξ) ⊗ λ−1(R•π∗ξ) has a nonzero canonical section σ.
In [BerB], they have given a formula for the Quillen norm of σ in terms of
Bott-Chern classes on M and the analytic torsion forms of π.

Now, let G be a compact Lie group acting holomorphically on X and ξ.
Then Bismut [B5] defined λG(ξ) the inverse of the equivariant determinant
of the cohomology of ξ on X. He also defined an equivariant Quillen metric
on λG(ξ) which is a central function on G (refer also §1a)). In [B5], Bismut
computed the equivariant Quillen metric of the nonzero canonical section
of λ−1

G (η)⊗ λG(ξ) for a G-equivariant immersion i : Y → X. In this way, he
has generalized the result of [BL] to the equivariant case. In [B4], he also
conjectured an equivariant arithmetic Riemann-Roch Theorem in Arakelov
geometry. Recently, using the result of [B5], Köhler and Roessler [KRo]
have proved a version of this conjecture.

In this paper, we shall extend the result of Bismut and Berthomieu
to the G-equivariant case. This completes the picture on the G-equivariant
case.

Let π :M → B be a submersion of compact complex manifolds with
fibre X. Let ξ be a holomorphic vector bundle on M . Let G be a compact
Lie group acting holomorphically on M and B, and commuting with π,
whose actions lift holomorphically on ξ.

Let R•π∗ξ be the direct image of ξ. We assume that the Rkπ∗ξ
(0 ≤ k ≤ dim X) are locally free.

Let σ be the canonical section of λG(ξ)⊗ λ−1
G (R•π∗ξ).

Let hTM , hTB be G-invariant Kähler metrics on TM and TB. Let hTX

be the metric induced by hTM on TX. Let hξ be a G-invariant Hermitian
metric on ξ. Let ωM be the Kähler form of hTM .

Let H(X, ξ X) be the cohomology of ξ X. By identifying H(X, ξ X)
to the corresponding fiberwise harmonic forms in Dolbeault complex
(Ω(X, ξ X), ∂X), the Z-graded vector bundle H(X, ξ X) is naturally
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equipped with a L2-metric hH(X,ξ X) associated to hTX , hξ.

Let ‖ ‖λG(ξ)⊗λ−1
G

(R•π∗ξ) be the G-equivariant Quillen metric on the

line λG(ξ) ⊗ λ−1
G (R•π∗ξ) attached to the metrics hTM , hξ, hTB , hH(X,ξ X)

on TM , ξ, TB, R•π∗ξ. The purpose of this paper is to calculate the
G-equivariant Quillen metric ‖σ‖λG(ξ)⊗λ−1

G
(R•π∗ξ).

For g ∈ G, let Tdg(TM, gTM ) be the Chern-Weil Todd form on
Mg = {x ∈ M ; gx = x} associated to the holomorphic hermitian
connection on (TM, hTM ) [B5, §2 (a)], which appears in the Lefschetz
formulas of Atiyah-Bott [ABo]. Other Chern-Weil forms will be denoted in
a similar way. In particular, the forms chg(ξ, hξ) on Mg are the Chern-Weil
representative of the g-Chern character form of (ξ, hξ).

In this paper, by an extension of [BKö], we first construct the
equivariant analytic torsion forms Tg(ωM , hξ) on Bg = {x ∈ B ; gx = x},
such that

(0.1)
∂∂

2iπ
Tg(ωM , hξ) = chg

(
H(X, ξ X), hH(X,ξ X)

)

−
∫

Xg

Tdg(TX, hTX) chg(ξ, hξ).

We also establish the corresponding anomaly formulas. The equivariant
analytic torsion forms will play a role in the higher degree version of Köhler
and Roessler’s Theorem. Notice that in [K], Köhler defined the equivariant
analytic torsion forms for (possibly non-Kähler) torus fibrations and proved
curvature and anomaly formulas for them.

Let T̃dg(TM, TB, hTM , hTB) ∈ PMg

/PMg,0 be the Bott-Chern class,
constructed in [BGS1], such that

(0.2)
∂∂

2iπ
T̃dg(TM,TB, hTM , hTB)

= Tdg(TM, hTM )− π∗
(
Tdg(TB, hTB)

)
Tdg(TX, hTX).

The main result of this paper is the following extension of [BerB,
Thm. 3.1]. Namely, we prove in Theorem 3.1 the formula

(0.3) log
(‖σ‖2

λG(ξ)⊗λ−1
G

(R•π∗ξ)

)
(g) = −

∫

Bg

Tdg(TB, hTB)Tg(ωM , hξ)

+
∫

Mg

T̃dg(TM, TB, hTM , hTB) chg(ξ, hξ).
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We apply the methods and techniques in [BerB] and [B5], with
necessary equivariant extensions, to prove Theorem 3.1. The local index
theory [B1] and finite propagation speed of the solution of the hyperbolic
equation [CP], [T] will also play an important role as in [BerB] and [B5].

This paper is organized as follows. In Section 1, we recall the
construction of the equivariant Quillen metrics [B5]. In Section 2, we
construct the equivariant analytic torsion forms, and we prove the
corresponding anomaly formulas. In Section 3, we extend the result of [BerB]
to the equivariant case. In Section 4, we state eight intermediate results
which we need for the proof of Theorem 3.1, and we prove Theorem 3.1.
In Sections 5–9, we prove the eight intermediate results.

Throughout, we use the superconnection formalism of Quillen. In
particular, Trs is our notation for the supertrace. The reader is referred for
more details to [B5], [BGS1], [BerB].

1. Equivariant Quillen metrics.

This section is organized as follows. In a), we recall the construction
of the equivariant Quillen metrics of [B5, §1]. In b), we indicate the
characteristic classes which we will often use.

a) Equivariant Quillen metrics [B5].

Let X be a compact complex manifold of complex dimension `. Let
ξ be a holomorphic vector bundle on X. Let H(X, ξ) be the cohomology
groups of the sheaf OX(ξ) of holomorphic sections of ξ over X.

Let G be a compact Lie group. We assume that G acts on X by
holomorphic diffeomorphisms and that the action of G lifts to a linear
holomorphic action on ξ.

Let E =
⊕dim X

i=0 Ei be the vector space of C∞ sections of

Λ(T ∗(0,1)X)⊗ ξ =
dim X⊕

i=0

Λi(T ∗(0,1)X)⊗ ξ

over X. Let ∂X be the Dolbeault operator acting on E. Then G acts on
the Dolbeault complex (E, ∂X) by chain homomorphisms, and we have an
identification of G-vector spaces

(1.1) H(E, ∂X) ' H(X, ξ).
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Let hTX , hξ be G-invariant Hermitian metrics on TX, ξ. Let dvX be
the Riemannian volume form on X associated to hTX . Let ∗ be the Hodge
operator attached to the metric hTX . Let 〈 〉Λ(T∗(0,1)X)⊗ξ be the Hermitian
product induced by hTX , hξ on Λ(T ∗(0,1)X)⊗ ξ. If s, s′ ∈ E, set

〈s, s′〉 =
( 1
2π

)dim X
∫

X

〈s, s′〉Λ(T∗(0,1)X)⊗ξ dvX(1.2)

=
( 1
2π

)dim X
∫

X

〈s ∧ ∗s′〉hξ .

Let ∂X∗ be the formal adjoint of ∂X with respect to the Hermitian
product (1.2). Set

(1.3) DX = ∂X + ∂X∗, K(X, ξ) = Ker DX .

By Hodge theory,

(1.4) K(X, ξ) ' H(X, ξ).

Clearly, for g ∈ G, g commutes with DX , so (1.4) is an identification of
G-spaces.

Clearly K(X, ξ) inherits a G-invariant metric from 〈 〉. Let hH(X,ξ)

be the corresponding metric on H(X, ξ).

Let Ĝ be the set of equivalence classes of complex irreducible
representations of G. Let F i (0 ≤ i ≤ k) be finite dimensional complex
G-vector spaces. We consider F =

⊕k
i=0 F i as a natural Z-graded G-vector

space. Let hF =
⊕k

i=0 hF i

be a G-invariant metric on F =
⊕k

i=0 F i. Then
we have the isotypical decomposition

F =
⊕

W∈Ĝ

HomG(W,F )⊗W,

and this decomposition is orthogonal with respect to hF . Set

(1.5) det(F,G) =
⊕

W∈Ĝ

k⊗

i=0

(
det(HomG(W,F i)⊗W )

)(−1)i

.

For W ∈ Ĝ, let χ(W ) be the character of the representation. Set

(1.6) λW (ξ) =
dim X⊗

i=0

(
det(HomG(W,Hi(X, ξ))⊗W )

)(−1)i+1

.
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Put

(1.7) λG(ξ) =
⊕

W∈Ĝ

λW (ξ).

In the sequel, λG(ξ) will be called the inverse of the equivariant determinant
of the cohomology of ξ. So λG(ξ) is a direct sum of complex lines.

Let | |λW (ξ) be the L2-metric on λW (ξ) induced by hH(X,ξ). Set

(1.8) log
(| |2λG(ξ)

)
=

∑

W∈Ĝ

log
(| |2λW (ξ)

) χ(W )
dim W

·

The formal symbol | |λG(ξ) will be called the (equivariant) L2 metric
on λG(ξ). In effect, it is a product of metrics on λG(ξ) =

⊕
W∈Ĝ

λW (ξ).

Take g ∈ G. Set

(1.9) Xg =
{
x ∈ X ; gx = x

}
.

Then Xg is a compact complex totally geodesic submanifold of X.

Let P be the orthogonal projection operator from E on K(X, ξ) with
respect to the Hermitian product (1.2). Set P⊥ = 1 − P . Let N be the
number operator of E, i.e. N acts by multiplication by i on Ei. Then by
standard heat equation methods, we know that for any g ∈ G, k ∈ N, there
exist aj (−` ≤ j ≤ k) such that as t → 0,

(1.10) Trs

[
gN exp(−tDX,2)

]
=

k∑

j=−`

aj tj + O(tk+1).

DEFINITION 1.1. — For s ∈ C, Re(s) > dim X, set

(1.11) θX(g)(s) = −Trs

[
gN(DX,2)−sP⊥

]
.

By (1.10), θX(s) extends to a meromorphic function of s ∈ C which
is holomorphic at s = 0.

DEFINITION 1.2. — For g ∈ G, set

(1.12) log
(‖ ‖2λG(ξ)

)
(g) = log

(| |2λG(ξ)

)
(g)− ∂θX(g)

∂s
(0).

The formal symbol ‖ ‖λG(ξ) will be called a Quillen metric on the

equivariant determinant λG(ξ).
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b) Some characteristic classes.

Let X be a complex manifold. Let L be a holomorphic vector bundle
over X. Let hL be a Hermitian metric on L. Let ∇L be the holomorphic
Hermitian connection on (L, hL). Let RL be its curvature.

Let g be a holomorphic section of End(L). We assume that g is an
isometry of L. Then g is parallel with respect to ∇L.

Let 1, eiθ1 , . . . , eiθq (0 < θj < 2π) be the locally constant distinct
eigenvalues of g acting on L on X. Let Lθ0 , Lθ1 , . . . , Lθq (θ0 = 0) be the
corresponding eigenbundles. Then L splits holomorphically as an orthogonal
sum

(1.13) L = Lθ0 ⊕ · · · ⊕ Lθq .

Let hLθ0
, . . . , hLθq be the Hermitian metrics on Lθ0 , . . . , Lθq in-

duced by hL. Then ∇L induces the holomorphic Hermitian connections
∇Lθ0

, . . . ,∇Lθq on (Lθ0 , hLθ0 ), . . . , (Lθq , hLθq ). Let RLθ0
, . . . , RLθq be their

curvatures.

If A is a (q, q) matrix, set

(1.14) Td(A) = det
( A

1− e−A

)
, e(A) = det(A), ch(A) = Tr[exp(A)].

The genera associated to Td and e are called the Todd genus and the Euler
genus.

DEFINITION 1.3. — Set

(1.15)





Tdg(L, hL) = Td
(−RLθ0

2iπ

) q∏

j=1

Td
e

(−RLθj

2iπ
+ iθj

)
,

Td′g(L, hL) =
∂

∂b

[
Td

(−RLθ0

2iπ
+ b

)

×
q∏

j=1

Td
e

(−RLθj

2iπ
+ iθj + b

)]
b=0

,

(Td−1
g )′(L, hL) =

∂

∂b

[
Td−1

(−RLθ0

2iπ
+ b

)

×
q∏

j=1

( Td
e

)−1(−RLθj

2iπ
+ iθj + b)

]
b=0

,

chg(L, hL) = Tr
[
g exp

(−RL

2iπ

)]
.
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Then the forms in (1.15) are closed forms on X, and their cohomology
class does not depend on the g-invariant metric hL. We denote these
cohomology classes by Tdg(L), Td′g(L), . . . , chg(L).

2. Equivariant analytic torsion forms and anomaly
formulas.

This section is organized as follows. In a), we describe the Kähler
fibrations. In b), we construct the Levi-Civita superconnection in the sense
of [B1]. In c), we indicate results concerning the equivariant superconnection
forms. In d), we construct the equivariant analytic torsion forms. In e), we
prove the anomaly formulas, along the lines of [B5], [BKö].

a) Kähler fibrations.

Let π :M → B be a holomorphic submersion with compact fibre X.
Let TM, TB be the holomorphic tangent bundles to M, B. Let TX be
the holomorphic relative tangent bundle TM/B. Let JTX be the complex
structure on the real tangent bundle TRX. Let hTX be a Hermitian metric
on TX.

Let THM be a vector subbundle of TM , such that

(2.1) TM = THM ⊕ TX.

We now define the Kähler fibration as in [BGS2, Def. 1.4].

DEFINITION 2.1. — The triple (π, hTX , THM) is said to define a

Kähler fibration if there exists a smooth real 2-form ω of complex type

(1, 1), which has the following properties:

(a) ω is closed ;

(b) TH
R M and TRX are orthogonal with respect to ω ;

(c) if X, Y ∈ TRX, then ω(X, Y ) = 〈X, JTXY 〉hTX .

Now we recall a simple result of [BGS2, Thms. 1.5 and 1.7].

THEOREM 2.2. — Let ω be a real smooth 2-form on M of complex

type (1, 1), which has the following two properties:

(a) ω is closed ;
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(b) the bilinear map X,Y ∈ TRX → ω(JTXX, Y ) defines a Hermitian

product hTX on TX.

For x ∈ M , set

(2.2) TH
x M =

{
Y ∈ TxM ; for any X ∈ TxX, ω(X, Y ) = 0

}
.

Then THM is a subbundle of TM such that TM = THM ⊕ TX. Also

(π, hTX , THM) is a Kähler fibration, and ω is an associated (1, 1)-form.

A smooth real (1, 1)-form ω′ on M is associated to the Kähler fibration

(π, hTX , THM) if and only if there is a real smooth closed (1, 1)-form η

on B such that

(2.3) ω′ − ω = π∗η.

b) The Bismut superconnection of a Kähler fibration.

Let ωM be a real (1,1)-form on M taken as in Theorem 2.2.

Let ξ be a complex vector bundle on M . Let hξ be a Hermitian
metric on ξ. Let ∇TX ,∇ξ be the holomorphic Hermitian connections
on (TX, hTX), (ξ, hξ). Let RTX , Lξ be the curvatures of ∇TX ,∇ξ.
Let ∇Λ(T∗(0,1)X) be the connection induced by ∇TX on Λ(T ∗(0,1)X).
Let ∇Λ(T∗(0,1)X)⊗ξ be the connection on Λ(T ∗(0,1)X)⊗ ξ,

(2.4) ∇Λ(T∗(0,1)X)⊗ξ = ∇Λ(T∗(0,1)X) ⊗ 1 + 1⊗∇ξ.

DEFINITION 2.3. — For 0 ≤ p ≤ dim X, b ∈ B, let Ep
b be the vector

space of C∞ sections of (Λp(T ∗(0,1)X)⊗ ξ) Xb
over Xb. Set

(2.5) Eb =
dim X⊕
p=0

Ep
b , E+

b =
⊕

p even

Ep
b , E−

b =
⊕

p odd

Ep
b .

As in [B1, §1f)], [BGS2, §1d)], we can regard the Eb’s as the fibres of
a smooth Z-graded infinite dimensional vector bundle E over the base B.
Smooth sections of E over B will be identified with smooth sections
of Λ(T ∗(0,1)X)⊗ ξ over M .

Let 〈 〉 be the Hermitian product on E associated to hTX , hξ defined
in (1.2).

If U ∈ TRB, let UH be the lift of U in TH
R M , so that π∗UH = U .
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DEFINITION 2.4. — If U ∈ TRB, if s is a smooth section of E over B,
set

(2.6) ∇E
Us = ∇Λ(T∗(0,1)X)⊗ξ

UH s.

By [B1, §1f)], ∇E is a connection on the infinite dimensional vector
bundle E. Let ∇E′ and ∇E′′ be the holomorphic and anti-holomorphic
parts of ∇E .

For b ∈ B, let ∂Xb be the Dolbeault operator acting on Eb, and
let ∂Xb∗ be its formal adjoint with respect to the Hermitian product (1.2).
Set

(2.7) DX = ∂Xb + ∂Xb∗.

Let c(TRX) be the Clifford algebra of (TRX, hTX). The bundle
Λ(T ∗(0,1)X) ⊗ ξ is a c(TRX)-Clifford module. In fact, if U ∈ TX, let
U ′ ∈ T ∗(0,1)X correspond to U by the metric hTX . If U, V ∈ TX, set

(2.8) c(U) =
√

2 U ′∧, c(V ) = −
√

2 iV .

Let PTX be the projection TM ' THM ⊕ TX → TX.

If U, V are smooth vector fields on B, set

(2.9) T (UH , V H) = −PTX [UH , V H ].

Then T is a tensor. By [BGS2, Thm. 1.7], we know that as a 2-form, T is
of complex type (1,1).

Let f1, . . . , f2m be a base of TRB, and let f1, . . . , f2m be the dual base
of T ∗RB.

DEFINITION 2.5.

(2.10) c(T ) =
1
2

∑

1≤α,β≤2m

fαfβc
(
T (fH

α , fH
β )

)
.

Then c(T ) is a section of
(
Λ(T ∗RB)⊗̂End(Λ(T ∗(0,1)X) ⊗ ξ)

)odd
. Similarly,

if T (1,0), T (0,1) denote the components of T in T (1,0)X, T (0,1)X, we also

define c(T (1,0)), c(T (0,1)) as in (2.10), so that

(2.11) c(T ) = c
(
T (1,0)

)
+ c(T (0,1)).
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DEFINITION 2.6. — For u > 0, let Bu be the Bismut superconnection

constructed in [B1, §3], [BGS2, §2a)],

(2.12)





B′′
u = ∇E′′ +

√
u ∂X − c(T (1,0))

2
√

2u
,

B
′
u = ∇E′ +

√
u ∂X∗ − c(T (0,1))

2
√

2u
,

Bu = B
′
u + B

′′
u .

Let NV be the number operator defining the Z-grading on
Λ(T ∗(0,1)X) ⊗ ξ and on E. NV acts by multiplication by p on
Λp(T ∗(0,1)X)⊗ ξ. If U, V ∈ TRB, set

(2.13) ωHH(U, V ) = ωM (UH , V H).

DEFINITION 2.7. — For u > 0, set

(2.14) Nu = NV +
i ωHH

u
·

In the rest of this subsection, we recall the definition of the tensor S

[B1, Def. 1.8] which will be used in the proof of Theorem 2.13.

Let hTRB be a Riemannian metric on TRB. Let ∇TRB be the Levi-
Civita connection on (TRB, hTRB). The metric hTRB and the connection
∇TRB lift to a metric hT H

R M and a connection ∇T H

R M on TH
R M .

Let hTRM = hT H

R M ⊕ hTRX be the metric on TRM = TH
R M ⊕ TRX which

is the orthogonal sum of the metrics hT H

R M and hTRX . Let 〈 , 〉
h

TRM denote
the correponding scalar product on TRM .

Let∇TRX be the connection on TRX induced by∇TX . Let∇TRM,L be
the Levi-Civita connection on (TRM,hTRM ). Let ∇TRM = ∇T H

R M ⊕∇TRX

be the connection on TRM = TH
R M ⊕ TRX. Set

(2.15) S = ∇TRM,L −∇TRM .

Then S is a 1-form on M taking values in antisymmetric elements of
End(TRM). By [B1, Thm. 1.9], the (3, 0) tensor 〈S(·) · , ·〉

h
TRM does not

depend on hTRB . By (2.15), for U, V ∈ TRX,

(2.16) S(U)V = S(V )U.
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c) Equivariant superconnection forms and double
transgression formulas.

At first, we assume that the direct image R•π∗ξ of ξ by π is locally free.
For b ∈ B, let H(Xb, ξ Xb

) be the cohomology of the sheaf of holomorphic
sections of ξ Xb

. Then the H(Xb, ξ Xb
)’s are the fibres of a Z-graded

holomorphic vector bundle H(X, ξ X) on B, and R•π∗ξ = H(X, ξ X).
So we will write indifferently R•π∗ξ or H(X, ξ X).

By (1.4), the K(Xb, ξ Xb
) are the fibres of a smooth vector bundle

K(X, ξ X) over B. By [BGS3, Thm. 3.5], the isomorphism of the fibre (1.4)
induces a smooth isomorphism of Z-graded vector bundles on B

(2.17) H(X, ξ X) ' K(X, ξ X).

Then K(X, ξ X) inherits a Hermitian product from (E, 〈 〉). Let hH(X,ξ X)

be the corresponding smooth metric on H(X, ξ X). Let PH(X,ξ X)

be the orthogonal projection operator from E on H(X, ξ X) '
K(X, ξ X). Let ∇H(X,ξ X) be the holomorphic Hermitian connection on
(H(X, ξ X), hH(X,ξ X)).

Let G be a compact Lie group. We assume that G acts holomorphically
on M, B, ξ, and that ξ, M are G-equivariant (vector) bundles over M,B.
We also assume ωM , hξ are G-invariant. Then R•π∗ξ is also a G–equivariant
vector bundle over B, and hH(X,ξ X) is also G-invariant.

For g ∈ G, set

(2.18) Mg =
{
x ∈ M ; gx = x

}
, Bg =

{
x ∈ B ; gx = x

}
.

Then we have a holomorphic submersion πg : Mg → Bg with compact
fibre Xg.

DEFINITION 2.8. — Let PB be the vector space of smooth forms on B,
which are sums of forms of type (p, p). Let PB,0 be the vector space of

the forms α ∈ PB such that there exist smooth forms β, γ on B for which

α = ∂β + ∂γ.

We define PMg

, PMg,0, PBg

, PBg,0 in the same way.

Let Φ be the homomorphism α 7→(2iπ)− deg α/2α of Λeven(T ∗RB) into
itself.

In the rest of the section, we will construct an equivariant
analytic torsion form Tg(ωW , hξ) ∈ PBg

corresponding to the fibration
π : π−1(Bg) → Bg. Without loss generality, we may and we will assume
that Bg = B.
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THEOREM 2.9. — For u > 0, the forms ΦTrs[g exp(−B2
u)] and

ΦTrs[gNu exp(−B2
u)] lie in PBg

. The forms ΦTrs[g exp(−B2
u)] are closed

and that their cohomology class is constant. Moreover,

(2.19)
∂

∂u
ΦTrs

[
g exp(−B2

u)
]

= − 1
u

∂∂

2iπ
ΦTrs

[
gNu exp(−B2

u)
]
.

Proof. — Since g commutes with Nu, Bu, etc., by proceeding as in
[BGS2, Thm. 2.9], we have Theorem 2.9.

Put

(2.20)





C−1,g =
∫

Xg

ωM

2π
Tdg(TX, hTX)chg(ξ, hξ),

C0,g =
∫

Xg

(− Td′g(TX, hTX)

+ dim X · Tdg(TX, hTX)
)
chg(ξ, hξ).

Set

(2.21)





chg

(
H(X, ξ X), hH(X,ξ X)

)

=
dim X∑

k=0

(−1)k chg

(
Hk(X, ξ X), hH(X,ξ X)

)
,

ch′g
(
H(X, ξ X), hH(X,ξ X)

)

=
dim X∑

k=0

(−1)kk chg

(
Hk(X, ξ X), hH(X,ξ X)

)
.

THEOREM 2.10. — As u → 0

(2.22) ΦTrs

[
g exp(−B2

u)
]

=
∫

Xg

Tdg(TX, hTX)chg(ξ, hξ) + O(u).

There are forms C ′j,g ∈ PBg

(j ≥ −1) such that for k ∈ N, as u → 0

(2.23) ΦTrs

[
gNu exp(−B2

u)
]

=
k∑

j=−1

C ′j,gu
j + O(uk+1).

Also

(2.24) C ′−1,g = C−1,g, C ′0,g = C0,g in PBg

/PBg,0.
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As u → +∞

(2.25)





ΦTrs

[
g exp(−B2

u)
]

= chg

(
H(X, ξ X), hH(X,ξ X)

)
+ O

( 1√
u

)
,

ΦTrs[gNu exp(−B2
u)] = ch′g

(
H(X, ξ X), hH(X,ξ X)

)
+ O

( 1√
u

)
.

Proof. — By combining the technique of [BGS2, Thms. 2.2, 2.16] and
[B7, Thms. 4.9–4.11], we have the equations (2.22), (2.23), (2.24).

Equation (2.25) was stated in [BKö, Thm. 3.4] if g = 1. By proceeding
as in [BeGeV, Thm. 9.23], we also have (2.25).

d) Higher analytic torsion forms.

For s ∈ C, Re(s) > 1, set

ζ1(s) = − 1
Γ(s)

∫ 1

0

us−1
(
ΦTrs

[
gNu exp(−B2

u)
]

− ch′g
(
H(X, ξ X), hH(X,ξ X)

))
du.

Using (2.23), we see that ζ1(s) extends to a holomorphic function of s ∈ C
near s = 0.

For s ∈ C, Re(s) < 1
2
, set

ζ2(s) = − 1
Γ(s)

∫ +∞

1

us−1
(
ΦTrs[gNu exp(−B2

u)]

− ch′g
(
H(X, ξ X), hH(X,ξ X)

))
du.

Then by (2.25), ζ2(s) is a holomorphic function of s.

DEFINITION 2.11. — Set

(2.26) Tg(ωM , hξ) =
∂

∂s
(ζ1 + ζ2)(0).

Then Tg(ωM , hξ) is a smooth form on Bg. Using (2.23), (2.25), we get

(2.27) Tg(ωM , hξ) = −
∫ 1

0

(
ΦTrs

[
gNu exp(−B2

u)
]− C ′−1,g

u
− C ′0,g

) du

u

−
∫ +∞

1

(
ΦTrs

[
gNu exp(−B2

u)
]− ch′g

(
H(X, ξ X), hH(X,ξ X)

)) du

u

+ C ′−1,g + Γ′(1)
(
C ′0,g − ch′g(H(X, ξ X), hH(X,ξ X))

)
.
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THEOREM 2.12. — The form Tg(ωM , hξ) lies in PBg

. Moreover,

(2.28)
∂∂

2iπ
Tg(ωM , hξ) = chg

(
H(X, ξ X), hH(X,ξ X)

)

−
∫

Xg

Tdg(TX, hTX)chg(ξ, hξ).

Proof. — As we saw before, the forms ΦTrs[gNu exp(−B2
u)] lie in PBg

.
So the form Tg(ωM , hξ) ∈ PBg

. Using Theorem 2.10 and equation (2.19),
the proof of our Theorem 2.12 proceeds as the proof of [BGS2, Thm. 2.20].

e) Anomaly formulas for the analytic torsion forms.

Now let (ω′M , h′ξ) be another couple of objects similar to (ωM , hξ).
We denote by a “ ′ ” the objects associated to (ω′M , h′ξ).

By [BGS1, §1(f)], there are uniquely defined Bott-Chern classes

T̃dg(TX, gTX , g′TX), c̃hg(ξ, hξ, h′ξ) ∈ PMg

/PMg,0,

c̃hg(H(X, ξ X), hH(X,ξ X), h′H(X,ξ X)) ∈ PBg

/PBg,0

such that

(2.29)





∂∂

2πi
T̃dg(TX, gTX , g′TX) = Tdg(TX, g′TX)− Tdg(TX, gTX),

∂∂

2πi
c̃hg(ξ, hξ, h′ξ) = chg(ξ, h′ξ)− chg(ξ, hξ),

∂∂

2πi
c̃hg

(
H(X, ξ X), hH(X,ξ X), h′H(X,ξ X)

)

= chg

(
H(X, ξ X), h′H(X,ξ X)

)− chg

(
H(X, ξ X), hH(X,ξ X)

)
.

Let C be a smooth section of T ∗RX⊗̂End(Λ(T ∗(0,1)X) ⊗ ξ). Let
e1, . . . , e2` be an orthonormal base of T ∗RX. We use the notation

(∇Λ(T∗(0,1)X)⊗ξ
ei

+ C(ei)
)2 =

2∑̀

i=1

(∇Λ(T∗(0,1)X)⊗ξ
ei

+ C(ei)
)2

−∇Λ(T∗(0,1)X)⊗ξ

Σ2`
i=1∇TX

ei
ei

− C
( 2∑̀

i=1

∇TX
ei

ei

)
.
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THEOREM 2.13. — The following identity holds in PBg

/PBg,0:

(2.30) Tg(ω′M , h′ξ)−Tg(ωM , hξ) = c̃hg

(
H(X, ξ X), hH(X,ξ X), h′H(X,ξ X)

)

−
∫

Xg

[
T̃dg(TX, hTX , h′TX)chg(ξ, hξ)

+Tdg(TX, h′TX) c̃hg(ξ, hξ, h′ξ)
]
.

In particular, the class of Tg(ω, hξ) in PBg

/PBg,0 only depends on (hTX , hξ).

Proof. — Assume first that hξ = h
′ξ. Let c ∈ [0, 1] → ωM

c be a
smooth family of G-invariant (1,1)-forms on M verifying the assumptions
of Theorem 2.2 such that ωM

0 = ωM , ωM
1 = ω′M . Then all the objects

considered in Section 2 a)–d) now depend on the parameter c. Most of the
time, we will omit the subscript c. The upper-dot “ . ” is often used instead
of ∂/∂c.

Recall that we assume that Bg = B. Set

(2.31)

{
Q = − ∗−1 .∗,
QH(X,ξ X) = PH(X,ξ X)QPH(X,ξ X).

Let e1, . . . , e2` be an orthonormal base of TRX with respect to hTX
c . Let

f1, . . . , f2m be a base of TRB, and that f1, . . . , f2m is the corresponding
dual base of T ∗RB. Set

(2.32) Mu = − i

4
.
ω(ej , ek)c(ej)c(ek)− i√

2u

.
ω(fH

α , ej)fαc(ej)

− i
.
ωHH

2u
(fα, fβ)fαfβ − 1

4
.
ω(ej , J

TXej).

By the arguments of [BGS2, Thm. 2.11], we know there is p ∈ N, µj ∈ PBg

,
(j ≥ −p) such that as u → 0, we have the asymptotic expansion

(2.33) ΦTrs

[
gMu exp(−B2

u)
]

=
k∑

j=−p

µju
j + O(uk+1).

By proceeding as in [BKö, §§2–3], we easily find an analogue of [BKö,
Thm. 3.16],

(2.34)
.

Tg(ω
M , hξ) = µ0 + ΦTrs

[
gQH(X,ξ X) exp(−(∇H(X,ξ X))2)

]

+
∂√
2iπ

θ1(0) +
∂√
2iπ

θ2(0) +
∂∂

2iπ
θ3(0).

In (2.34), the θi(0) (i = 1, 2, 3) have universal expressions in terms of
g, ωM

c , hξ as in [BKö].
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Let da, da be two odd Grassmann variables which anticommute with
the other odd elements in Λ(T ∗RB) or c(TRX). Set

(2.35) Lu = −B2
u − da u

∂Bu

∂u
− da[Bu,−Mu] + da da

(
− ∂

∂u
(uMu)

)
.

If α ∈ C(da, da), let [α]da da ∈ C be the coefficient of da da in the expansion
of α. By a formula analogous of [BKö, Thm. 3.17], we know that the class
of −µ0 in PBg

/PBg,0 coincides with the class of the constant term in the
asymptotic expansion of ΦTrs[g exp(Lu)]da da when u → 0.

Recall that the (3, 0) tensor 〈S(·) · , ·〉 was defined in (2.15). Let ∇′u be
the connection on Λ(da⊕da)⊗̂Λ(T ∗RB)⊗̂Λ(T ∗(0,1)X)⊗̂ξ along the fibres X,

(2.36) ∇′u = ∇Λ(T∗(0,1)X)⊗ξ

+
1
u

〈
S(·)ej , f

H
α

〉√ u

2
c(ej)fα +

1
2u

〈
S(·)fH

α , fH
β

〉
fαfβ

− da

2u

√
u

2
c(·)− i

.
ω

u
(ek, .)da

√
u

2
c(ek)− i

.
ω(fH

α , .)
dafα

u
·

Let KX be the scalar curvature of the fiber (X,hTX). Set

(2.37) L′ξ = Lξ +
1
2

Tr[RTX ].

By [BKö, Thm. 3.18], we get

(2.38) Lu =
u

2
(∇′u,ei

)2 −∇ei

( .
ω(ej , J

TXej)
) da

√
u c(ei)

4
√

2

−∇fH
α

( .
ω(ej , J

TXej)
) da fα

4
+

da da

4
.
ω(ej , J

TXej)

− uKX

8
− u

4
c(ei)c(ej)L′ξ(ei, ej)−

√
u

2
c(ei)fαL′ξ(ei, f

H
α )

− fαfβ

2
L′ξ(fH

α , fH
β ).

Let Pu(x, x′, b) (b ∈ B, x, x′ ∈ Xb) be the smooth kernel associated to
exp(Lu) with respect to dvX(x′)/(2π)dim X . Then

(2.39) ΦTrs

[
g exp(Lu)

]
=

∫

X

ΦTrs

[
gPu(g−1x, x, b)

] dvX(x)
(2π)dim X

·

Let NXg/X = TX/TXg be the normal bundle to Xg in X. We identify
NXg/X with the orthogonal bundle to TXg in TX. By standard estimates
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on heat kernels, for b ∈ B, the problem of calculating the limit of (2.39)
when u → 0 can be localized to an open neighbourhood Uε of Xg

b on Xb.
Using normal geodesic coordinates to Xg

b in Xb, we will identify Uε to an
ε-neighbourhood of Xg in NXg/X,R.

Since we have used normal geodesic coordinates to Xg in X, if
(x, z) ∈ NXg/X ,

(2.40) g−1(x, z) = (x, g−1z).

Let dvXg , dvNXg/X
be the Riemannian volume forms on TXg, NXg/X

induced by hTX . Let k(x, z) (x ∈ Xg, z ∈ NXg/X,R, |z| < ε) be defined by

(2.41) dvX = k(x, z) dvXg (x) dvNXg/X
(z).

Then

k(x, 0) = 1.

Take x0 ∈ Xg
b. By using the finite propagation speed as in [B5, §11b)],

we may replace Xb by (TX)x0 ' C` with 0 ∈ (TX)x0 representing x0 and
we may assume the extended fibration over C` coincides with the given
fibration over B(0, ε).

Take y ∈ C`, set Y = y + y. We trivialize

Λ(da⊕ da)⊗̂Λ(T ∗RB)⊗̂Λ(T ∗(0,1)X)⊗̂ξ

by parallel transport along the curve t 7→tY with respect to ∇′u.

Let ρ(Y ) be a C∞ function over C` which is equal to 1 if |Y | ≤ 1
4
ε,

and equal to 0 if |Y | ≥ 1
2
ε. Let Hx0 be the vector space of smooth sections

of (Λ(da ⊕ da)⊗̂Λ(T ∗RB) ⊗̂Λ(T ∗(0,1)X)⊗̂ξ)x0 over (TRX)x0 . Let ∆TX be
the standard Laplacian on (TRX)x0 with respect to the metric hTXx0 .
For u > 0, let L1

u be the operator

(2.42) L1
u =

(
1− ρ2(Y )

)(− 1
2

u∆TX
)
− ρ2(Y )Lu.

For u > 0, s ∈ Hx0 , set

(2.43) Rus(Y ) = s
( Y√

u

)
, L2

u = R−1
u L1

uRu.

Let e1, . . . , e2`′ be an orthonormal base of (TRXg)x0 , and let e2`′+1, . . . , e2`

be an orthonormal base of NXg/X,R,x0 .
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Let L3
u be the operator obtained from L2

u by replacing the Clifford
variables c(ej) (1 ≤ j ≤ 2`′) by the operators

√
2/u ej −

√
u/2 iej .

Let P i
u(z, z′) (z, z′ ∈ (TRX)x0 , i = 1, 2, 3) be the smooth kernel

associated to exp(−Li
u) with respect to dvTXx0

(z′)/(2π)dim X . By using
the finite propagation speed and (2.42), there exist c, C > 0 such that for
z ∈ NXg/X,R,x0 , |z| ≤ 1

8
ε, u ∈ ]0, 1], we have

(2.44)
∣∣Pu(g−1(x0, z), (x0, z))k(x0, z)− P 1

u(g−1z, z)
∣∣ ≤ c exp

(
− C

u2

)
.

By the discussion after (2.39), (2.41), we get

lim
u→0

ΦTrs[g exp(Lu)](2.45)

= lim
u→0

∫

Uε/8

ΦTrs

[
gPu(g−1x, x)

] dvX(x)
(2π)dim X

= lim
u→0

∫

x∈Xg

∫
|z|≤ε/8

z∈NXg/X,R

ΦTrs

[
gPu(g−1(x, z), (x, z))

]

k(x, z)
dvXg (x) dvNXg/X

(z)
(2π)dim X

·

If α ∈ C(ej , iej )(1≤j≤2`′), let [α]max ∈ C be the coefficient of
e1 ∧ . . . ∧ e2`′ in the expansion of α. Then by proceeding as in [B5,
Prop. 11.12], if z ∈ NXg/X,R, we get

(2.46) Trs

[
gP 1

u(g−1z, z)
]

= (−i)dim Xg

u− dim NXg/X

[
Trs

[
gP 3

u

( g−1z√
u

, z√
u

)]max]da da

.

For q, r ∈ N, Oq(|Y |r) will denote an expression in
(
Λ(da⊕ da)⊗̂Λ(T ∗RB)⊗̂c(TRX)⊗̂End(ξ)

)
x0

which has the following two properties:

• For k ∈ N, k ≤ r, its derivatives of order k are O(|Y |r−k) as |Y | → 0.

• It is of total length ≤ q with respect to the obvious Z-grading of
(Λ(da⊕ da)⊗̂Λ(T ∗RB) ⊗̂c(TRX)⊗̂End(ξ))x0 .

Let Γ′ be the connection form for ∇′1 in the trivialization of
(Λ(da⊕da)⊗̂Λ(T ∗RB)⊗̂Λ(T ∗(0,1)X)⊗̂ξ) with respect to∇′1. By using [ABoP,
Prop. 3.7], we see that for Y ∈ TRX,

(2.47) Γ′Y =
1
2
(∇′,21 )x0(Y, ·) + O2

(|Y |2).
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LEMMA 2.1. — The following identity holds:

∇′,21 =
1
4
〈∇TX,2ei, ej〉c(ei)c(ej) +

1
2
Tr[∇TX,2](2.48)

+
1
2
〈
(SPTXS +∇TXS)fH

α , fH
β

〉
fα ∧ fβ

+
1
2
〈
(∇TXS)ei, f

H
α

〉√
2 c(ei)fα

− i
( .
ω(ek, ·)〈S(·)ek, fH

α 〉 − (∇.
.
ω)(fH

α , ·))fαda

− i√
2
(∇.

.
ω)(ek, ·)da c(ek) + da da(i

.
ω).

Proof of Lemma 2.1. — If da = da = 0, (2.48) is exactly [B6, Prop.
11.8]. In general, by using (2.16), (2.36), we obtain straightforwardly the
extra-contributions of da, da to ∇′,21 .

By [B1, Thm. 4.14] (cf. [B6, (11.61)]), for X,Y ∈ TRX, Z, W ∈ TRM

(2.49)
〈∇TX,2(X, Y )PTXZ,PTXW

〉
+

〈
(SPTXS)(X, Y )Z, W

〉

+
〈
(∇TXS)(X, Y )Z, W

〉
=

〈∇TX,2(Z,W )X, Y
〉
.

Let RTX
Mg, Lξ

Mg, . . . be the restrictions of RTX , Lξ, . . . over Mg. Let
∇ei be the ordinary differentiation operator on (TRX)x0 in the direction ei.
By (2.38), (2.47), (2.48) and (2.49), as u → 0,

(2.50) L3
u → L3

0 = −1
2

(
∇ej +

1
2
〈RTX

MgY, ej〉

− da a1(Y, ej) + da da
( i

2
.
ω(Y, ej)

))2

−da a2 − da da

4
.
ω(ej , J

TXej) + L′ξ Mg,

and a1 ∈ Λ2(T ∗RX)x0 ⊗ (T ∗RX ⊕ T ∗RB)x0 , a2 ∈ (T ∗RX ⊕ T ∗RB)x0 . Let

(2.51) L3′
0 = −1

2

(
∇ej +

1
2
〈RTX

MgY, ej〉+ da da
( i

2
.
ω(Y, ej)

))2

− da da

4
.
ω(ej , J

TXej) + L′ξ Mg.

Let P 3′
0 (z, z′) (z, z′ ∈ (TRX)x0) be the heat kernel of exp(−L3′

0 ) over
(TRX)x0 with respect to dvTXx0

(z′)/(2π)dim X .
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By proceeding as in [B5, §§11g)–11i)], we have: There exist γ > 0,
c > 0, C > 0, r ∈ N such that for u ∈ ]0, 1], z, z′ ∈ (TRX)x0 , we have

(2.52)

{ ∣∣P 3
u(z, z′)

∣∣ ≤ c
(
1 + |z|+ |z′|)r exp

(−C|z − z′|2),
∣∣(P 3

u − P 3
0 )(z, z′)

∣∣ ≤ cuγ
(
1 + |z|+ |z′|)r exp

(−C|z − z′|2).
From (2.46), (2.50)–(2.52), we get

lim
u→0

∫
|z|≤ε/8
z∈NXg/X,R

ΦTrs

[
gP 1

u(g−1z, z)
]
dvNXg/X

(z)(2.53)

= lim
u→0

∫
|z|≤ε/8

√
u

z∈NXg/X,R

(−i)dim Xg{
ΦTrs[gP 3

u(g−1z, z)]max
}da da dvNXg/X

(z)

=
∫

NXg/X,R
(−i)dim Xg{

ΦTrs[gP 3
0 (g−1z, z)]max

}da da dvNXg/X
(z)

=
∫

NXg/X,R
(−i)dim Xg{

ΦTrs[gP 3′
0 (g−1z, z)]max

}da da dvNXg/X
(z).

Clearly for U, V ∈ TRX,

(2.54)
.
ω(U, V ) =

〈
U, JTX(hTX)−1 ∂hTX

∂c
V

〉
.

So

(2.55) L3′
0 = −1

2

(
∇ei +

1
2

〈(
RTX

Mg− i da daJTX(hTX)−1 ∂hTX

∂c

)
Y, ei

〉)2

+ Lξ
Mg − 1

2

(
Tr

[
RTX

Mg

]
+ da daTr

[
(hTX)−1 ∂hTX

∂c

])
.

Let 1, eiθ1 , . . . , eiθq (0 < θj < 2π, 1 ≤ j ≤ q) be the locally constant
distinct eigenvalues of g acting on TX over Mg. Let N

θj

Xg/X be the

corresponding eigenbundles. Let hTXg

, h
N

θj

Xg/X be the Hermitian metrics

on TXg, N
θj

Xg/X induced by hTX . Let RTXg

, R
N

θj

Xg/X be their curvatures as
in Section 1b). By proceeding as in [B4, (3.16)–(3.21)],

(2.56) (−i)dim Xg

∫

NXg/X,R

{
ΦTrs[gP 3′

0 (g−1z, z)]max
}da da dvNXg/X

(z)
(2π)dim X

=
{ ∂

∂b

[
Td

(−RTXg

2iπ
− b(hTXg

)−1 ∂hTXg

∂c

)

×
q∏

j=1

Td
e

(−R
N

θj

Xg/X

2iπ
− b

(
h

N
θj

Xg/X
)−1 ∂h

N
θj

Xg/X

∂c
+ i θj

)]
b=0

chg(ξ, hξ)
}max

.
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By (2.44), (2.53) and (2.56), we know the limit of (2.45) when u → 0. By
using [BGS1, Rem. 1.28 and Cor. 1.30] and proceeding as in [BKö, §3h)],
we obtain Theorem 2.13 in the case where hξ = h′ξ.

To prove (2.30) in the full generality, one only needs to consider the
case where ωM = ω′M . Then by using Theorem 2.12 and by proceeding as
in [BGS1, §1f)], i.e. by replacing B by B × P1, one easily obtains (2.30) in
this special case.

3. The equivariant Quillen norm of the
canonical section σ.

This section is organized as follows. In a), we describe the canonical
section σ. In b), we announce a formula for the equivariant Quillen norm
of σ.

In this section, we use the same notation as in Section 1.

a) The canonical section σ.

Let M, B be compact complex manifolds of complex dimension n

and m. Let π :M → B be a holomorphic submersion with fibre X. Let ξ

be a holomorphic vector bundle on M . Let G be a compact Lie group. We
assume that ξ,M are G-equivariant holomorphic bundles over M, B.

We assume that the sheaves Rkπ∗ξ (0 ≤ k ≤ dim X) are locally free.

If given W ∈ Ĝ, λW , µW are complex lines, if λ =
⊕

W∈Ĝ
λW ,

µ =
⊕

W∈Ĝ
µW , set

(3.1) λ−1 =
⊕

W∈Ĝ

λ−1
W , λ⊗ µ =

⊕

W∈Ĝ

λW ⊗ µW .

Now we use the notation of Section 1. Set

(3.2)





λG(ξ) = det
(
H(M, ξ), G

)−1 =
⊕

W∈Ĝ

λW (ξ),

λG(Rkπ∗ξ) = det
(
H(B, Rkπ∗ξ), G

)−1
,

λG(R•π∗ξ) =
dim X⊗

k=0

(
λG(Rkπ∗ξ)

)(−1)k

=
⊕

W∈Ĝ

λW (R•π∗ξ).
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By proceeding as in [BerB, §1b)] and [B5, §3b)], for W ∈ Ĝ, the line
λW (ξ)⊗ λ−1

W (R•π∗ξ) has a canonical nonzero section σW . Set

(3.3) σ =
⊕

W∈Ĝ

σW ∈ λG(ξ)⊗ λ−1
G (R•π∗ξ).

b) A formula for the Quillen norm of the canonical section σ.

Let hTM , hTB be G-invariant Kähler metrics on TM and TB. Let hTX

be the metric induced by hTM on TX. Let hξ be a G-invariant Hermitian
metric on ξ. Let hH(X,ξ X) be the L2-metric on H(X, ξ X) with respect to
hTX , hξ as in Section 2 c).

We have the exact sequence of G-equivariant holomorphic Hermitian
vector bundles on M ,

(3.4) 0 → TX−→TM−→π∗TB → 0.

By a construction of [BGS1,§1f)], there is a uniquely defined class of forms
T̃dg(TM,TB, hTM , hTB) ∈ PMg

/PMg,0, such that

(3.5)
∂∂

2iπ
T̃dg(TM, TB, hTM , hTB) = Tdg(TM, hTM )

− π∗
(
Tdg(TB, hTB)

)
Tdg(TX, hTX).

Let ωM be the Kähler form of hTM . Let Tg(ωM , hξ) ∈ PBg

be the
analytic torsion form constructed in Section 2 c). Let ‖ ‖λG(ξ)⊗λ−1

G
(R•π∗ξ)

be the G-equivariant Quillen metric on the line λG(ξ)⊗λ−1
G (R•π∗ξ) attached

to the metrics hTM , hξ, hTB , hH(X,ξ X) on TM, ξ, TB,R•π∗ξ.

Now we state the main result of this paper, which extends [BerB,
Thm. 3.1].

THEOREM 3.1. — For g ∈ G, the following identity holds:

(3.6) log
(‖σ‖2

λG(ξ)⊗λ−1
G

(R•π∗ξ)

)
(g) = −

∫

Bg

Tdg(TB, hTB)Tg(ωM , hξ)

+
∫

Mg

T̃dg(TM, TB, hTM , hTB)chg(ξ, hξ).

Proof. — The proof of Theorem 3.1 will be given in Sections 4-9.
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Remark 3.2. — By Theorem 2.13, to prove Theorem 3.1 for any
Kähler metrics hTM , hTB , we only need to establish (3.6) for one given
metrics hTM , hTB . So by replacing hTM by hTM + π∗hTB , we may and we
will assume that h̃TM is a Kähler metric on TM and

(3.7) hTM = h̃TM + π∗hTB .

4. A proof of Theorem 3.1.

This section is organized as follows. In a), we introduce a 1-form
on R∗+ × R∗+ as in [BerB, §3a)]. In b), we state eight intermediate results
which we need for the proof of Theorem 3.1 whose proofs are delayed to
Sections 5–9. In c), we prove Theorem 3.1.

In this section, we make the same assumption as in Section 3. Also,
we assume that hTM is given by formula (3.7). In the sequel, g ∈ G is fixed
once and for all.

a) A fundamental closed 1-form.

Recall that NV denotes the number operator of Λ(T ∗(0,1)X). Let NH

be the number operator of Λ(T ∗(0,1)B). By (2.2), we have the identification
of smooth vector bundles over M

(4.1) TM ' TX ⊕ THM, THM ' π∗TB.

This identification determines an identification of Z-graded bundles of
algebra on M

(4.2) Λ(T ∗(0,1)M) = Λ(T ∗(0,1)B)⊗̂Λ(T ∗(0,1)X).

So the operators NV and NH act naturally on Λ(T ∗(0,1)M). Of course,
N = NV + NH defines the total grading of Λ(T ∗(0,1)M)⊗ ξ and Ω(M, ξ).

DEFINITION 4.1. — For T > 0, let hTM
T be the Kähler metric on TM

(4.3) hTM
T =

1
T 2

h̃TM + π∗hTB .

Let 〈 〉T be the Hermitian product (1.2) on Ω(M, ξ) attached to
the metrics hTM

T , hξ. Let DM
T be the corresponding operator constructed

in (1.3) acting on Ω(M, ξ). Let ∗T be the Hodge operator associated to the
metric hTM

T . Then ∗T acts on Λ(T ∗RM)⊗ ξ.
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THEOREM 4.2. — Let αu,T be the 1-form on R∗+ × R∗+

(4.4) αu,T =
2du

u
Trs

[
gN exp(−u2DM,2

T )
]

+ dTTrs

[
g ∗−1

T

∂∗T

∂T
exp(−u2DM,2

T )
]
.

Then αu,T is closed.

Proof. — Clearly g is an even operator which commutes with the
operators ∂M , ∂M∗

T , ∗T , NV , NH . By using [BerB, (4.27), (4.28), (4.30)],
the proof of Theorem 4.2 is identical to the proof of [BerB, Thm. 4.3].

Take ε, A, T0, 0 < ε ≤ 1 ≤ A < +∞, 1 ≤ T0 < +∞. Let Γ = Γε,A,T0

be the oriented contour in R∗+ × R∗+

The contour Γ is made of four oriented pieces Γ1, . . . , Γ4 indicated
above. For 1 ≤ k ≤ 4, set

(4.5) I0
k =

∫

Γk

α.

THEOREM 4.3. — The following identity holds:

(4.6)
4∑

k=1

I0
k = 0.

Proof. — This follows from Theorem 4.2.

b) Eight intermediate results.

Let ∂B∗ be the formal adjoint of the operator ∂B acting on
Ω(B, R•π∗ξ), with respect to the metrics hTB , hH(X,ξ X). Set

(4.7) DB = ∂B + ∂B∗, F = Ker DB .
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By Hodge theory,

(4.8) H•(B, R•π∗ξ) ' F.

Let Q be the orthogonal projection from Ω(B, R•π∗ξ) on F with respect
to the Hermitian product (1.2) attached to the metrics hTB , hH(X,ξ X).
Set Q⊥ = 1−Q.

Let a ∈ ]0, 1] be such that the operator DB,2 has no eigenvalues
in ]0, 2a].

DEFINITION 4.4. — For T > 0, set

(4.9) ET = Ker DM,2
T .

Let PT be the orthogonal projection operator from Ω(M, ξ) on ET

with respect to 〈 〉T .

Let E
[0,a]
T (resp. E

]0,a]
T ) be the direct sum of the eigenspaces of

DM,2
T associated to eigenvalues λ ∈ [0, a] (resp. λ ∈ ]0, a]). Let D

M,2,[0,a]
T

(resp. D
M,2, ]0,a]
T ) be the restriction of DM,2

T to E
[0,a]
T (resp. E

]0,a]
T ). Let

P
[0,a]
T (resp. P

]0,a]
T ) be the orthogonal projection operator from Ω(M, ξ) on

E
[0,a]
T (resp. E

]0,a]
T ) with respect to 〈 〉T . Set P

]a,+∞[
T = 1− P

[0,a]
T .

For 0 ≤ k ≤ n, g ∈ G, set

(4.10) χg(ξ) = Trs

[
g H(M,ξ)

]
, χg(Rkπ∗ξ) = Trs

[
g H(B,Rkπ∗ξ)

]
.

Then by the Lefchetz fixed point formula of Atiyah-Bott [ABo],

(4.10)





χg(ξ) =
∫

Mg

Tdg(TM)chg(ξ),

χg(Rkπ∗ξ) =
∫

Bg

Tdg(TY )chg(Rkπ∗ξ).

We now state eight intermediate results contained in Theorems 4.5–
4.12 which play an essential role in the proof of Theorem 3.1. The proof of
Theorems 4.5–4.12 are deferred to Sections 5–9.

THEOREM 4.5. — For any u > 0,

(4.12) lim
T→+∞

Trs

[
gN exp(−u2DM,2

T )
]

= Trs

[
gN exp(−u2DB,2)

]
.
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For any u > 0, there exists C > 0 such that for T ≥ 1,

(4.13)
∣∣∣Trs

[
gNV exp(−u2DM,2

T )
]−

dim X∑

j=0

(−1)jjχg(Rjπ∗ξ)
∣∣∣ ≤ C

T
·

For any ε > 0, there exists C > 0 such that for u ≥ ε, T ≥ 1,

(4.14)
∣∣Tr

[
g exp(−u2DM,2

T )
]∣∣ ≤ C.

THEOREM 4.6. — For any u > 0,

(4.15) lim
T→+∞

Trs

[
gN exp(−u2DM,2

T )P ]a,+∞[
T

]

= Trs

[
gN exp(−u2DB,2)Q⊥

]
.

There exist c > 0, C > 0 such that for u ≥ 1, T ≥ 1,

(4.16)
∣∣Tr

[
gN exp(−uDM,2

T )P ]a,+∞[
T

]∣∣ ≤ c exp(−Cu).

THEOREM 4.7. — The following identity holds:

(4.17) lim
T→+∞

Tr
[
gD

M,2,[0,a]
T

]
= 0.

For T ≥ 1 large enough, for 0 ≤ i ≤ dim M ,

(4.18) Tr
[
g E

[0,a],i
T

]
=

i∑

j=0

Tr
[
g Hj(B,Ri−jπ∗ξ)

]
.

Let (Er, dr) (r ≥ 2) be the Leray spectral sequence associated to π, ξ.
By [Ma1, Thm. II.2.1], the Dolbeault complex (Ω(M, ξ), ∂M ) filtered as in
[BerB, §1a)] calculates the Leray spectral sequence. Then as in [BerB, §4],
for r ≥ 2, Er is equipped with a metric hEr associated to hTM , hTB , hξ. For
r ≥ 2, let r| |λG(ξ) be the corresponding metric on λG(ξ) ' det(Er, G)−1

defined as in (1.8).

For r ≥ 1, let N Er
, NH|Er

, NV |Er
be the restrictions of N,NH , NV

to Er.

THEOREM 4.8. — The following identity holds:

(4.18) lim
T→+∞

{
Trs

[
gN log(DM,2,[0,a]

T )
]

+ 2
∑

r≥2

(r − 1)
(
Trs[gN Er

]− Trs[gN Er+1]
)
log(T )

}

= log
(∞| |λG(ξ)

2| |λG(ξ)

)2

(g).

For T ≥ 1, let | |λG(ξ),T be the L2 metric on the line λG(ξ) associated
to the metrics hTM

T , hξ on TM, ξ defined in (1.8).
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THEOREM 4.9. — The following identity holds:

(4.20) lim
T→+∞

{
log

( | |λG(ξ),T

| |λG(ξ)

)2

(g)

+ 2
(− dim Xχg(ξ) + Trs[gNV |E∞ ]

)
log(T )

}

= log
(∞| |λG(ξ)

| |λG(ξ)

)2

(g).

For u > 0, let Bu be the Bismut superconnection on Ω(X, ξ X)
constructed in Definition 2.6 which is attached to hTM , hξ on TM, ξ.
Let Ñu be the operator defined in (2.14) associated to the metric h̃TM .

THEOREM 4.10. — For any T ≥ 1,

(4.21) lim
ε→0

Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε) exp(−ε2DM,2

T/ε )
]

=
2
T

∫

Bg

Tdg(TB, hTB)ΦTrs

[
gÑT 2 exp(−B2

T 2)
]− 2

T
dim Xχg(ξ).

Let ωM , ω̃M , ωB be the Kähler forms associated to hTM , h̃TM , hTB .
Let ∇TM

T be the holomorphic Hermitian connection on (TM, hTM
T ), and

let RTM
T be its curvature.

THEOREM 4.11. — There exists C > 0 such that for ε ∈ ]0, 1],
ε ≤ T ≤ 1,

(4.22)
∣∣∣Trs

[
g∗−1

T/ε

∂

∂T
(∗T/ε) exp(−ε2DM,2

T/ε )
]
− 2

T 3

∫

Mg

ω̃M

2π
Tdg(TM)chg(ξ)

+
∫

Mg

∂

∂b
Tdg

(−RTM
T/ε

2iπ
− b(hTM

T/ε)
−1 ∂

∂T
(hTM

T/ε)
)

b=0
chg(ξ, hξ)

∣∣∣ ≤ C.

THEOREM 4.12. — There exist δ ∈ ]0, 1], C > 0 such that for ε ∈ ]0, 1],
T ≥ 1,

(4.22)
∣∣∣Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε) exp(−ε2DM,2

T/ε )
]

− 2
T

( dim X∑

j=0

(−1)jjχg(Rjπ∗ξ)− dim Xχg(ξ)
)∣∣∣ ≤ C

T 1+δ
·

Theorems 4.5–4.9 can be obtained formally from [BerB, Thms. 4.8–
4.12] by introducing in the right place the operator g. This will permit us
to transfer formally the discussion in [BerB, Sect. 4] to our situation.
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c) Proof of Theorem 3.1.

By Theorem 2.12,

(4.24) chg(R•π∗ξ) =
∫

Xg

Tdg(TX)chg(ξ).

We also have the obvious equality

(4.25) Td′g(TM) = π∗
(
Td′g(TB)

)
Tdg(TX) + π∗

(
Tdg(TB)

)
Td′g(TX).

By Theorem 4.3, Theorems 4.5–4.12, and proceeding as in [BerB,
§4c),d)], using (4.24), (4.25), we get (3.6).

5. A proof of Theorems 4.5, 4.6 and 4.7.

The proof of Theorems 4.5, 4.6 and 4.7 is essentially the same as the
proof of [BerB, Theorems 4.8, 4.9 and 4.10] given in [BerB, §5], where the
corresponding results were established when G is trivial. Now we use the
notation of [BerB, §5].

At first, for each U ∈ TB, (gU)H = gUH , so the operator CT in
[BerB, (5.7)] commutes with the action of G.

Let 〈 〉∞ be the Hermitian product on E0
0 associated to the metrics

π∗hTB ⊕ hTX , hξ on TM, ξ defined by (1.2).

Let E1,T , Eµ
0 , Eµ

1,T (µ ≥ 0) be the vector spaces defined in [BerB,
Def. 5.12]. Then for any T > 0, the linear isometric embedding JT of
E1,∞ in E1,T defined in [BerB, Def. 5.16] is G-equivariant. Let E0,⊥

1,T be
the orthogonal space to E0

1,T in E0
0 with respect to 〈 〉∞. It follows from

the previous considerations that for any T > 0, the orthogonal splitting
E0

0 = E0
1,T ⊕ E0,⊥

1,T of E0
0 considered in [BerB, (5.29)] is G-invariant, i.e.

G acts on E0
1,T and E0,⊥

1,T .

Therefore the matrix of the unitary operator g with respect to the
splitting E0

0 = E0
1,T ⊕ E0,⊥

1,T can be written in the form

(5.1) g =
[

g0,T 0
0 g1,T

]
,

and moreover

(5.2) g0,T JT = JT g.

The proof of Theorems 4.5 , 4.6 and 4.7 then proceeds as in [BerB, §5
c)–g)].
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6. A proof of Theorems 4.8 4.9.

In this section, we give a proof of Theorems 4.8 and 4.9. These
generalize [BerB, §6], where the corresponding results were proved in the
case where G is trivial.

At first we can verify the formulas of [BerB,Theorems 6.1–6.5] are
G-equivariant. By using [B5, Thm. 1.4], and by proceeding as in [BerB,
§6(d)], we obtain (4.19).

By proceeding as in [BerB, §6(e)], we get (4.20).

This completes the proof of Theorems 4.8 and 4.9.

7. A proof of Theorem 4.10.

This section is organized as follows. In a), we show that the proof
of (4.21) can be localized near π−1(Bg). In b), given b0 ∈ Bg, we replace M

by (TRB)b0 × Xb0 , and rescaling on certain Clifford variables. In c), we
prove (4.21).

Recall that in this section, we will calculate the asymptotics as ε → 0
of certain supertraces involving εDM

T/ε for a fixed T ≥ 1.

In this section, we use the same notation as in Section 4.

a) The proof is local on π−1(Bg).

Let dvM (resp. dvB , resp. dvX) be the Riemannian volume form
on M (resp. B, resp. on the fibre X) associated to the metric π∗hTB ⊕ hTX

on TM ' π∗TB ⊕ TX (resp. hTB on TB, resp. hTX on TX).

Let dB , dM be the distance functions on B, M associated to hTB , hTM .
Let αB , αM be the injective radius of B,M . In the sequel, we assume
that given 0 < α < α0 < 1

4
inf{αB , αM} are chosen small enough so

that if y ∈ B, dB(g−1y, y) ≤ α, then dB(y, Bg) ≤ 1
4
α0, and if x ∈ M ,

dM (g−1x, x) ≤ α , then dM (x,Mg) ≤ 1
4
α0 . If x ∈ B, let BB(x, α) be the

open ball of center x and radius α in B.

Let f be a smooth even function defined on R with values in [0, 1],
such that

(7.1) f(t) =

{
1 for |t| ≤ 1

2
α,

0 for |t| ≥ α.
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Set

(7.2) g(t) = 1− f(t).

DEFINITION 7.1. — For u ∈ ]0, 1], a ∈ C, set

(7.3)





Fu(a) =
∫ +∞

−∞
exp(i ta

√
2 ) exp

(−t2

2

)
f(ut)

dt√
2π

,

Gu(a) =
∫ +∞

−∞
exp(i ta

√
2 ) exp

(−t2

2

)
g(ut)

dt√
2π
·

Clearly

(7.4) Fu(a) + Gu(a) = exp(−a2).

The functions Fu(a), Gu(a) are even holomorphic functions. So there
exist holomorphic functions F̃u(a), G̃u(a) such that

(7.5) Fu(a) = F̃u(a2), Gu(a) = G̃u(a2).

The restrictions of Fu, Gu, F̃u, G̃u to R lie in the Schwartz space S(R).

From (7.4), we deduce that

(7.6) exp(−ε2DM,2
T/ε ) = Fε(εDM

T/ε) + Gε(εDM
T/ε).

PROPOSITION 7.2. — For δ > 0 fixed, there exist c > 0, C > 0 such

that for 0 < ε ≤ δ, T ≥ 1,

(7.7)
∣∣∣Trs

[
g ∗−1

T

∂

∂T
(∗T )G ε

T
(

ε

T
DM

T )
]∣∣∣ ≤ c exp

(
− CT 2

ε2

)
.

Proof. — The proof of our theorem is as same as the proof of [BerB,
Prop. 8.3].

For T ≥ 1 fixed, we use (7.7) with ε = T and T replace by T/ε, we
find

(7.8)
∣∣∣Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)Gε(εDM

T/ε)
]∣∣∣ ≤ c exp

(
− C

ε2

)
.

Let Fε(εDM
T/ε)(x, x′) (x, x′ ∈ M) be the smooth kernel associated to

Fε(εDM
T/ε) with respect to the volume form dvM (x′)/(2π)dim M . Using (7.3)
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and finite propagation speed [CP, §7.8], [T, §4.4], it is clear that for
ε ∈ ]0, 1], T ≥ 1, x, x′ ∈ M , if dB(πx, πx′) ≥ α, then

(7.9) Fε(εDM
T/ε)(x, x′) = 0,

and moreover, given x ∈ M , Fε(εDM
T/ε)(x, ·) only depends on the restriction

of DM
T/ε to π−1(BB(πx, α)).

Let NBg/B be the normal bundle to Bg in B. We identify NBg/B

to the orthogonal bundle to TBg in TB. Let hNBg/B be the metric on
NBg/B induced by hTB . Let dvNBg/B

be the Riemannian volume form
on (NBg/B,R, h

NBg/B ). Let c(NBg/B,R), c(TRX) be the Clifford algebras of
(NBg/B,R, h

NBg/B ), (TRX, hTX). For U ∈ TRB, V ∈ TRX, let c(U), c(V )
denote the corresponding Clifford multiplication operators acting on
π∗Λ(T ∗(0,1)B), Λ(T ∗(0,1)X) associated to hTB , hTX defined as in (2.8).
Set

(7.10) A′ε,T =
( T

ε

)NV

εDM
T/ε

( T

ε

)−NV

.

Then by (7.10), we get

(7.11) Trs

[
g∗−1

T/ε

∂

∂T
(∗T/ε)Fε(εDM

T/ε)
]

= Trs

[
g∗−1

T/ε

∂

∂T
(∗T/ε)Fε(A′ε,T )

]
.

Let Fε(A′ε,T )(x, x′) (x, x′ ∈ M) be the smooth kernel associated to the
operator Fε(A′ε,T ) with respect to dvM (x′)/(2π)dim M .

Let Uα0(B
g) be the set of b ∈ B such that dB(b,Bg) < α0. We identify

Uα0(B
g) to {(b, Y ) ; b ∈ Bg, Y ∈ NBg/B,R, |Y | ≤ α0} by using geodesic

coordinates normal to Bg in B. By (7.9) and the choice of α, α0, we get

(7.12)
∫

M

Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)Fε(A′ε,T )(g−1x, x)

] dvM

(2π)dim M

=
∫

Bg

∫
|Y |≤α0/4

Y ∈NBg/B,R

∫

X

Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)

Fε(A′ε,T )(g−1(b, Y, x), (b, Y, x))
] dvM

(2π)dim M
·

By (7.8), (7.11), (7.12), we see that the proof of Theorem 4.10 is local
near π−1(Bg).
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b) Rescaling of the variable Y and of the Clifford variables.

Let ∇TB ,∇TX ,∇ξ be the holomorphic Hermitian connections on
(TB, hTB), (TX, hTX) and (ξ, hξ). Let RTB , RTX , Lξ be the corresponding
curvatures.

Taking b0 ∈ Bg, we identify BB(b0, α0) with B(0, α0) ⊂ (TB)b0 = Cm

by using normal coordinates.

Take y ∈ Cm, |y| ≤ α0, set Y = y + y. We identify TB Y to TB{0} by
parallel transport along the curve t 7→tY with respect to the connection∇TB .
We lift horizontally the paths t ∈ R∗+ 7→tY into paths t ∈ R∗+ 7→xt ∈ M

with xt ∈ XtY , dxt/ dt ∈ TH
R M . If x0 ∈ Xb0 , we identify TXxt

, ξxt

to TXx0 , ξx0 by parallel transport along the curve t 7→xt with respect
to the connections ∇TX ,∇ξ. These trivializations induce corresponding
trivializations of Λ(T ∗(0,1)B), Λ(T ∗(0,1)M)⊗ ξ.

Let Ωb0 = Ω(Xb0 , ξ Xb0
) be the vector space of smooth sections of

(Λ(T ∗(0,1)X) ⊗ξ) Xb0
on Xb0 . Then Ωb0 is naturally equipped with a

Hermitian product 〈 〉 attached to h
TX Xb0 , h

ξ Xb0 defined in (1.2).

Recall that the operator DX is defined in (2.7). Under our
trivialization, Ker DX

BB(b0,α0) is a Z-graded smooth vector subbundle
of Ωb0 on BB(b0, α0).

By [BerB, §8b)], there is also a smooth Z-graded vector bundle
K ⊂ Ωb0 over (TRB)b0 ' R2m which coincides with KerDX on B(0, 2α0),
with Ker DX

b0
over TRB\B(0, 3α0) and such that if K⊥ is the orthogonal

bundle to K in Ωb0 ,

(7.13) K⊥ ∩Ker DX
b0 = {0}.

Let PY (Y ∈ R2m) be the orthogonal projection operator from Ωb0 on KY .
Set P⊥Y = 1− PY .

Let ϕ :R→ [0, 1] be a smooth function such that

(7.14) ϕ(t) =
{ 1 for |t| ≤ α0,

0 for |t| ≥ 2α0.

Let ∆TB be the standard Laplacian on (TRB)b0 with respect to
the metric hTB b0 . Let Hb0 be the vector space of smooth sections of
π∗Λ(T ∗(0,1)B)b0 ⊗ (Λ(T ∗(0,1)X) ⊗ ξ) Xb0

over (TRB)b0 ×Xb0 . Let L1
ε,T be

the operator

(7.15) L1
ε,T = ϕ2

(|Y |)A′2ε,T +
(
1− ϕ2(|Y |))

(−ε2∆TB

2
+ T 2P⊥Y DX,2

b0
P⊥Y

)
.
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For (Y, x) ∈ (TRB)b0 ×Xb0 , ε > 0, s ∈ Hb0 , set

(7.16) Sεs(Y, x) = s(Y/ε, x).

Put

(7.17) L2
ε,T = S−1

ε L1
ε,T Sε.

Let Op be the set of differential operators acting on smooth sections
of (Λ(T ∗(0,1)X)⊗ ξ)Xb0

over R2m ×Xb0 . Then we find that

L2
ε,T ∈ c(TRB)⊗̂Op.

Let f1, . . . , f2m′ be an orthonormal basis of (TRBg)b0 , let f2m′+1, . . . ,

f2m be an orthonormal basis of NBg/B,R,b0 .

DEFINITION 7.3. — For ε > 0, set

(7.18) cε(fj) =
√

2
ε

f j ∧ − ε√
2

ifj
, 1 ≤ j ≤ 2m′.

Let L3
ε,T ,M3

ε,T be obtained from L2
ε,T , ∗−1

T/ε∂/∂T (∗T/ε) by replacing
the Clifford variables c(fj) (1 ≤ j ≤ 2m′) by the operators cε(fj).

For b0 ∈ Bg, Y ∈ NBg/B,R,b0 , |Y | ≤ α0, let k(b0, Y ) be defined by
dvB(b0, Y ) = k(b0, Y )dvBg (b0)dvNBg/B

(Y ). Let dv(TB)b0
be the Riemannian

volume form on ((TB)b0 , h
TB
b0

).

Let P i
ε,T ((Y, x), (Y ′, x′)), F̃ε(Li

ε,T )
(
(Y, x), (Y ′, x′)

) (
(Y, x), (Y ′, x′) ∈

(TRB)b0×Xb0

)
(i = 1, 2, 3) be the smooth kernels associated to exp(−Li

ε,T ),
F̃ε(Li

ε,T ) calculated with respect to dv(TB)b0
(Y ′) dvXb0

(x′)/(2π)dim M .
Using finite propagation speed [CP, §7.8], [T, §4.4], we see that if
(Y, x) ∈ NBg/B,R,b0 ×Xb0 , |Y | < 1

4
α0, then

(7.19) Fε(A′ε,T )
(
g−1(b0, Y, x), (b0, Y, x)

)
k(b0, Y )

= F̃ε(L1
ε,T )

(
g−1(Y, x), (Y, x)

)
.

We observe that for any k ∈ N, c > 0, there is C > 0, C ′ > 0 such
that for ε > 0,

(7.20) sup
| Im(a)|≤c

|a|k · ∣∣F̃ε(a2)− exp(−a2)
∣∣ ≤ C exp

(−C ′

ε2

)
.

Using (7.20), and proceeding as in [BerB, Prop. 8.2], we find for T ≥ 1
fixed, there exist c, C > 0 such that for |Y |, |Y ′| < 1

4
α0,

(7.21)
∣∣(F̃ε(L1

ε,T )− exp(−L1
ε,T )

)
((Y, x), (Y ′, x′))

∣∣ ≤ c exp
(−C

ε2

)
.

By (7.19), (7.21), we can replace Fε(A′ε,T ) by exp(−L1
ε,T ) in (7.12).
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We know that P 3
ε,T ((Y, x), (Y ′, x′)) lies in

(
End

(
Λ(T ∗RBg)

)⊗̂c(NBg/B,R)
)
b0
⊗̂c(TRXb0)⊗̂End(ξ).

Then M3
ε,T P 3

ε,T (g−1(Y, x), (Y, x)) can be expanded in the form

(7.22) M3
ε,T P 3

ε,T

(
g−1(Y, x), (Y, x)

)

=
∑

1≤i1<···<ip≤2m′

1≤j1<···<jq≤2m′

f i1 ∧ . . . ∧ f ip ∧ ifj1
. . . ∧ ifjq

⊗̂Ri1···ip;j1...jq ,

with Ri1...ip;j1...jq (g−1(Y, x), (Y, x)) ∈ c(NBg/B,R)b0⊗̂c(TRXb0)⊗̂End(ξ).
Set

(7.23)
[
M3

ε,T P 3
ε,T

(
g−1(Y, x), (Y, x)

)]max = R1,...,2m′(
g−1(Y, x), (Y, x)

)
.

PROPOSITION 7.4. — If Y ∈ NBg/B,R,b0 , x ∈ Xb0 , the following

identity holds:

(7.24) Trs

[
g ∗−1

T/ε

∂

∂T

(∗T/ε)P 1
ε,T (g−1(Y, x), (Y, x)

)]

= (−i)dim Bg

ε−2 dim NBg/BTrs

[
g[M3

ε,T P 3
ε,T (g−1(ε−1Y, x), (ε−1Y, x))]max

]
.

Proof. — Since g acts like the identity on Λ(T ∗(0,1)Bg), g ∈
c(NBg/B,R)b0⊗̂ c(TRXb0) ⊗̂End(ξ). Therefore the rescaling of the Clifford
variable in (7.18) has no effect on g. Identity (7.24) is now a trivial
consequence of [Ge].

c) Proof of Theorem 4.10.

Recall that for u > 0, the Bismut superconnection Bu associated
to hTM and hξ was constructed in Section 2b). Also we observe that Bu is
unchanged if hTM is changed into h̃TM .

Recall that RTB is the curvature of ∇TB . Let RTB
Bg, ω̃HH

Bg be the
restriction of RTB , ω̃HH on Bg. Also∇fα denote the ordinary differentiation
operator on (TRB)b0 in the direction fα. Then by (7.18), as in [BerB, (7.30),
(7.35)], we have as ε → 0

(7.25) L3
ε,T −→ L3

0,T ,
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and for Y ∈ (TRB)b0 ,

(7.26) e−
ĩωHH
|Bg

2T2 L3
0,T (Y ) e

ĩωHH
|Bg

2T2

= − 1
2

(
∇fα +

1
2
〈RTB

BgY, fα〉hTB

)2

+
1
2

Tr(RTB
Bg) + B2

T 2 Bg.

By [BerB, (7.36)], (7.18), as [BerB, (7.38)], we get , as ε → 0

(7.27) M3
ε,T −→ M3

0,T =
2
T

(NV − dim X) +
2i ω̃HH

|Bg

T 3
·

By [B4, (3.16)–(3.21)], [BerB, §7d)], we have

(7.28)
∫

NBg/B,R,b0

∫

Xb0

Trs

[
g[M3

0,T P 3
0,T (g−1(Y, x), (Y, x))]max

]

dvNBg/B
(Y ) dvXb0

(x)
(2π)dim M

= idim Bg 2
T

{
Tdg(TB, hTB)ΦTrs

[
g(ÑT 2 − dim X) exp(−B2

T 2)
]}max

.

THEOREM 7.5. — For T ≥ 1 fixed, there exist c > 0, C > 0, r ∈ N
such that for ε ∈ ]0, 1], (Y, x), (Y ′, x′) ∈ (TRB)b0 ×Xb0 ,

(7.29)
∣∣(P 3

ε,T − P 3
0,T )((Y, x), (Y ′, x′))

∣∣
≤ c

(
1 + |Y |+ |Y ′|)r exp

(−C|Y − Y ′|2).

To prove Theorem 7.5, we establish at first an uniform estimate on
the kernel P 3

ε,T .

THEOREM 7.6. — For T ≥ 1 fixed, there is C > 0 such that

for k ∈ N, there exist c > 0, r ∈ N such that for any ε ∈ ]0, 1],
(Y, x), (Y ′, x′) ∈ (TRB)b0 ×Xb0 ,

(7.30) sup
|α|,|α′|≤k

∣∣∣ ∂|α|+|α
′|

∂Y α∂Y ′α′ P
3
ε,T

(
(Y, x), (Y ′, x′)

)∣∣∣

≤ c
(
1 + |Y |+ |Y ′|)r exp

(−C|Y − Y ′|2).

Proof of Theorem 7.6. — Set

(7.31) gε(Y ) = 1 +
(
1 + |Y |2)

1
2 ϕ

( ε|Y |
2

)
.
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Let E0 be the vector space of square integrable sections of
(Λ(T ∗RBg)⊗̂Λ(N∗

Bg/B))b0⊗̂(Λ(T ∗(0,1)X) ⊗ ξ) Xb0
over (TRB)b0 × Xb0 . For

0 ≤ q ≤ 2m′ = 2 dimBg, let E0
q be the vector space of square

integrable sections of (Λq(T ∗RBg) ⊗̂Λ(N∗
Bg/B))b0⊗̂(Λ(T ∗(0,1)X) ⊗ ξ) Xb0

.

Then E0 =
⊕2m′

q=0 E0
q. Similarly, if p ∈ R, Ep and Ep

q denote the
corresponding pth Sobolev spaces. If s ∈ E0

q, set
(7.32)

|s|2ε,0 =
∫

(TRB)b0×Xb0

∣∣s(Y, x)
∣∣2gε(Y )2(2m′−q)

dv(TB)b0
(Y ′) dvXb0

(x′)
(2π)dim M

·

Let 〈 〉ε,0 be the Hermitian product attached to | |ε,0. If L ∈ End(E0),
let ‖L‖0,0

ε,0 be the corresponding norm of L. If s ∈ E1, put

(7.33) |s|2ε,1 = |s|2ε,0 +
∑
α

|∇fαs|2ε,0 +
∑

i

|∇eis|2ε,0.

Let ∆ = −∆TB +DX,2
b0

. Using the technique in [BerB, §9d)], especially
[BerB, (9.51)] (in our situation, T is fixed), where we replace the Sobolev
norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), we find for any k, k′ ∈ N,
there exists C ′ > 0 such that for ε ∈ ]0, 1],

(7.34)
∥∥∆k exp(−L3

ε,T )∆k′
∥∥0,0

ε,0
≤ C ′.

Take p ∈ N. Let J0
p,b0

be the set of square integrable sections of
(Λ(T ∗RBg)⊗̂Λ(N∗

Bg/B))b0⊗̂(Λ(T ∗(0,1)X)⊗ ξ) Xb0
over

{
(Y, x) ∈ (TRB)b0 ×Xb0 ; x ∈ Xb0 , |Y | ≤ p + 1

2

}
.

We equip J0
p,b0

with the Hermitian product for s ∈ J0
p,b0

,

(7.35) |s|2 =
∫

|Y |≤p+1/2

∫

Xb0

∣∣s(Y, x)
∣∣2 dv(TB)b0

(Y ′) dvXb0
(x′)

(2π)dim M
·

If L ∈ End(J0
p,b0

), let ‖L‖p,∞ be the corresponding norm of L with respect
to | |.

Obviously, there is C > 0 such that for any p ∈ N, s ∈ J0
p,b0

(7.36) |s| ≤ |s|ε,0 ≤ C(1 + p)2m′ |s|.
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By (7.34) and (7.36), we find for any k, k′ ∈ N, there exists C ′ > 0 such
that for ε ∈ ]0, 1], p ∈ N,

(7.37)
∥∥∆k exp(−L3

ε,T )∆k′
∥∥

p,∞ ≤ C ′(1 + p)2m′
.

Using (7.37) and Sobolev’s inequalities, we see that for k, k′ ∈ N, there
exist C > 0, r > 0 such that for p ∈ N, ε ∈ ]0, 1],

sup
|Y |,|Y ′|≤p+1/4

∣∣∆k
(Y,x)∆

k′
(Y ′,x′)P

3
ε,T ((Y, x), (Y ′, x′))

∣∣ ≤ C(1 + p)r.

So we get the bounds in (7.30) with C = 0.

To get the required C > 0, we proceed as in the proof of [B5,
Thm. 11.14].

Let u ∈ R→ k(u) be a smooth even function such that

(7.38) k(u) =

{
0 for |u| ≤ 1

2
,

1 for |u| ≥ 1.

For q ∈ R∗+, a ∈ C, set

(7.39) Kq(a) = 2
∫ +∞

0

cos
(
t
√

2 a
)
exp

(
− t2

2

)
k
( t

q

) dt√
2π
·

Clearly, Kq(a) is an even holomorphic function of a, therefore, there is a
holomorphic function a ∈ C→ K̃q(a) such that

(7.40) Kq(a) = K̃q(a2).

Given c > 0, set

(7.41)





Vc =
{

λ ∈ C, Re(λ) ≥ (Im λ)2

4c2
− c2

}
,

Γc =
{

λ ∈ C, Re(λ) =
(Im λ)2

4c2
− c2

}
.

Then by [B5, (11.53)], for any c > 0, there exists C ′ > 0 for which given
m,m′ ∈ N, there exists C > 0, such that for q ≥ 1,

(7.42) sup
a∈Vc

|a|m ·
∣∣K̃(m′)

q (a)
∣∣ ≤ C exp(−C ′q2).
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Also

(7.43) K̃q(L3
ε,T ) =

1
2πi

∫

Γc

K̃q(λ)
λ− L3

ε,T

dλ.

Let K̃q(L3
ε,T )((Y, x), (Y ′, x′)) be the smooth kernel associated to K̃q(L3

ε,T )
calculated with respect to dv(TB)b0(Y

′)dvXb0
(x′)/(2π)dim M . Using (7.42)

and proceeding as in [BerB, §9d)], where we always replace the Sobolev
norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), we get the following
estimation which is an analog of [B5, (11.59)] : there is C0 > 0 such
that for k ∈ N, there exist C > 0, r ∈ N for which given q ∈ N,

(Y, x), (Y ′, x′) ∈ (TRB)b0 ×Xb0 , ε ∈ [0, 1], then

(7.44) sup
|α|,|α′|≤k

∣∣∣ ∂|α|+|α
′|

∂Y α∂Y ′α′ K̃q(L3
ε,T )

(
(Y, x), (Y ′, x′)

)∣∣∣

≤ C
(
1 + |Y |+ |Y ′|)r exp(−C0q

2).

If t ≥ q, then k(t/q) = 1. Using finite propagation speed for the
solution of hyperbolic equations for cos(s

√
L3

ε,T ) [CP, §7.8], [T, 4.4], we
find there is a fixed constant C ′0 > 0 such that for q ∈ N∗,
(7.45) P 3

ε,T

(
(Y, x), (Y ′, x′)

)
= K̃q(L3

ε,T )
(
(Y, x), (Y ′, x′)

)

if |Y − Y ′| ≥ C ′0q.

From (7.44), (7.45), we deduce that there exist C0, C
′
0 > 0 for

which given k ∈ N, there exist C > 0, r ∈ N for which given q ∈ N∗,
(Y, x), (Y ′, x′) ∈ (TRB)b0 ×Xb0 , ε ∈ [0, 1], then

(7.46) sup
|α|,|α′|≤k

∣∣∣ ∂|α|+|α
′|

∂Y α∂Y ′α′ P
3
ε,T

(
(Y, x), (Y ′, x′)

)∣∣∣

≤ C
(
1 + |Y |+ |Y ′|)r exp(−C0q

2) if |Y − Y ′| ≥ C ′0q.

For (Y, x), (Y ′, x′) ∈ (TRB)b0 ×Xb0 , let q ∈ N such that

C ′0q ≤ |Y − Y ′| ≤ C ′0(q + 1).

By (7.30) with C = 0 and (7.46), we get

(7.47) sup
|α|,|α′|≤k

∣∣∣ ∂|α|+|α
′|

∂Y α∂Y ′α′ P
3
ε,T

(
(Y, x), (Y ′, x′)

)∣∣∣

≤ C
(
1 + |Y |+ |Y ′|)r exp(−C0q

2)

≤ C
(
1 + |Y |+ |Y ′|)r exp

(
− C0

( |Y − Y ′|
C ′0

− 1
)2)

.

The proof of Theorem 7.6 is completed.
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Proof of Theorem 7.5. — Using (7.25) and Theorem 7.6, and
proceeding as in [B5, §11 i)], [BL, §11 q)], we have Theorem 7.5.

Using Theorem 7.5, (7.19), (7.21), (7.24) and (7.28), we get over Bg

(7.48) lim
ε→0

∫
|Y |≤α0/4

Y ∈NBg/B,R

∫

X

Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)

Fε(A′ε,T )(g−1(b, Y, x), (b, Y, x))
]
k(b, Y )

dvNBg/B
(Y ) dvXb

(x′)
(2π)dim M

=
2
T

{
Tdg(TB, hTB)ΦTrs

[
g(ÑT 2 − dim X) exp(−B2

T 2)
]}max

.

By (7.7), (7.12) and (7.48), the proof of Theorem 4.10 is completed.

8. A proof of Theorem 4.11.

This section is organized as follows. In a), we reformulate Theo-
rem 4.11. In b), we indicate that the proof is localized near π−1(Bg) by
Proposition 7.2. In c), we prove the estimate (8.1).

In this section, we make the same assumption and we use the same
notation as in Sections 4 and 7.

a) A reformulation of Theorem 4.11.

THEOREM 8.1. — There exists C > 0 such that for 0 < u ≤ 1, T ≥ 1,

(8.1)
∣∣∣Trs

[
g ∗−1

T

∂

∂T
(∗T ) exp

(
− u2

T 2
DM,2

T

)]

− 2
u2

∫

Mg

ω̃TM

2πT
Tdg(TM)chg(ξ)

+
∫

Mg

∂

∂b
Tdg

(−RTM
T

2iπ
− b(hTM

T )−1 ∂

∂T
(hTM

T )
)

b=0
chg(ξ, hξ)

∣∣∣ ≤ Cu2

T
·

Remark 8.2. — Theorem 8.1 implies Theorem 4.11. In fact, for
0 < ε ≤ 1, ε ≤ T ≤ 1 we use (8.1), with u = T and T replaced by T/ε, then
we find that the right-hand side of (8.1) is dominated by

CT 2 ε

T
= CεT ≤ Cε.

So we have proved (4.22).
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b) Localization of the problem near π−1(Bg).

By Proposition 7.2 and the argument in Section 7b), the proof of (8.1)
can be localized near Bg. Thus, we are entitled to choose b0 ∈ Bg as in
Section 7b), to replace M by Cm ×Xb0 and to trivialize the vector bundles
as indicated in Section 7b). Then we will prove (8.1) in this situation.

c) Proof of Theorem 8.1.

By (7.10),

(8.2) A′1/T,1 = TNV
1
T

DM
T T−NV .

Therefore

(8.3) Trs

[
g ∗−1

T

( ∂

∂T
∗T

)
exp

(
− u2

T 2
DM,2

T

)]

= Trs

[
g ∗−1

T

( ∂

∂T
∗T

)
exp

(− u2A′21/T,1

)]
.

We will use the notation of Section 7 with ε replaced by 1/T , and T

by 1. By (7.25), we see that as T → +∞
(8.4) L3

1/T,1 −→ L3
0,1.

Let P i
ε,T,u((Y, x), (Y ′, x′)) ((Y, x), (Y ′, x′) ∈ (TRB)b0 × Xb0) (i =

1, 2, 3) be the smooth kernel associated to the operator exp(−u2Li
ε,T )

calculated with respect to dv(TB)b0
(Y ′) dvXb0

(x′)/(2π)dim M . For Y in
NBg/B,R,b0 , x ∈ Xb0 , set

(8.5) Qε,u(Y, x) = Trs

[
g
[
M3

ε,1P
3
ε,1,u

(
g−1(Y, x), (Y, x)

)]max]
.

By (7.24), for Y ∈ NBg/B,R,b0 , x ∈ Xb0 , we have

(8.6) Trs

[
g ∗−1

T

( ∂

∂T
∗T

)
P 1

1/T,1,u

(
g−1(Y, x), (Y, x)

)]

= (−i)dim Bg

T 2 dim NBg/B
1
T

Q1/T,u(TY, x).

By (8.6) and the argument of Section 7b), to calculate the asymptotics
of (8.3) as u → 0 uniformly in T ≥ 1, we have to find the asymptotics
as u → 0 of

(8.7)
∫

Y ∈NBg/B,R

∫

X

Q1/T,u(Y, x)
dvXb0

(x) dvNBg/B
(Y )

(2π)dim M
·

Let dX(x, x′) be the distance function on (Xb0 , h
TXb0 ). Then

d
(
(Y, x), (Y ′, x′)

)
=

(|Y − Y ′|2 + dX(x, x′)2
)1/2

is a distance function on (TRB)b0 ×Xb0 .



1580 XIAONAN MA

PROPOSITION 8.3. — There exist c, C > 0, p, r ∈ N such that for any

(Y, x), (Y ′, x′) ∈ (TRB)b0 ×Xb0 , ε ∈ [0, 1], u ∈ ]0, 1],

(8.8)
∣∣upP 3

ε,1,u

(
(Y, x), (Y ′, x′)

)∣∣ ≤ c
(
1 + |Y |+ |Y ′|)r

× exp
(
− C

|Y − Y ′|2 + dX(x, x′)2

u2

)
.

Proof. — At first, using the technique in [BerB, §9d)], where we
replace the Sobolev norms [BerB, (9.49), (9.50)] by (7.32) and (7.33), the
bounds in (8.8) with C = 0 are obtained. To get the required C > 0, we
proceed as in the proof of Theorem 7.6.

Using finite propagation speed for the solution of hyperbolic equations
for cos(s

√
L3

ε,1) [CP, §7.8], [T, §4.4], we find there is a fixed constant c′ > 0
such that for ε ∈ [0, 1], u ∈ ]0, 1], q ≥ 1,

(8.9) P 3
ε,1,u

(
(Y, x), (Y ′, x′)

)
= K̃q/u(u2L3

ε,1)
(
(Y, x), (Y ′, x′)

)

if d
(
(Y, x), (Y ′, x′)

) ≥ c′q.

By using the proof of Theorem 7.6, and [B5, Thm. 11.14], there is C > 0,
c > 0, p, r ∈ N such that for q ∈ N∗, (Y, x), (Y ′, x′) ∈ (TRB)b0 × Xb0 ,
ε ∈ [0, 1], u ∈ ]0, 1],

(8.10)
∣∣upK̃q/u(u2L3

ε,1)
(
(Y, x), (Y ′, x′)

)∣∣

≤ c
(
1 + |Y |+ |Y ′|)r exp

(
− Cq2

u2

)
.

By (8.8) with C = 0, (8.9) and (8.10), as (7.47), we have (8.8).

Let NXg/X be the normal bundle to Xg in X. We identify NXg/X

to the orthogonal bundle to TXg in TX. Let hNXg/X be the metric on
NXg/X induced by hTX

Xb0
. Let dvNXg/X

be the Riemannian volume form
on (NXg/X,R, h

NXg/X ).

By (8.8), to calculate the asymptotics of (8.7) as u → 0, we can
localize near {0} ×Xg

b0
. We identify Uα0({0} ×Xg

b0
) to

{
(Y, x, X) ; Y ∈ NBg/B,R,b0 , x ∈ Xg, X ∈ NXg/X,R, |Y |, |X| ≤ α0

}

by geodesic coordinates normal to {0} ×Xg
b0

in (TRB)b0 ×X.
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For Y ∈ (TRB)b0 , x ∈ Xg, X ∈ NXg/X,R, |Y |, |X| ≤ 1
4
α0, let

k′(Y, x, X) be defined by

(8.11) dvX(Y, x,X) = k′(Y, x, X) dvNXg/X
(X) dvXg (x).

By standard results on heat kernel (cf. [BeGeV, Thm. 2.30]), we find there
exist smooth functions a′T,−n(x), . . . , a′T,0(x) (x ∈ Mg) such that as u → 0,
for x ∈ Xg

b0

(8.12)
∫

X∈NXg/X,R,|X|≤α0/4

Y ∈NBg/B,R,|Y |≤α0/4

Q1/T,u

(
Y, (x, X)

)
k′(Y, x,X)

dvNXg/X
(X) dvNBg/B

(Y )
(2π)dim M

=
0∑

j=−n

a′T,j(x)u2j + O(u2).

Also the a′T,j(x) only depend on the operator L3
1/T ,1 and its higher

derivatives on x. By (8.4), a′T,j(x) is continuous on T ∈ [1, +∞].

By (7.12), (7.27), (8.4)–(8.8), (8.12), we know that there exist aT,j

depending continuously on T ∈ [1, +∞] such that for any u ∈ ]0, 1],
T ∈ [1, +∞]

(8.13)
∣∣∣Trs

[
g ∗−1

T

∂

∂T
(∗T ) exp

(
− u2

T 2
DM,2

T

)]
−

0∑

j=− dim M

aT,ju
2j

∣∣∣ ≤ cu2

T
·

Set

(8.14)





b−1,g =
∫

Mg

ω̃M

2π
Tdg(TM)chg(ξ),

b0,g =
∫

Mg

∂

∂b

[
Tdg

(−RTM
T

2iπ
− b(hTM

T )−1 ∂hTM
T

∂T

)]
b=0

chg(ξ, hξ).

By [B5, (2.44), (2.63)] which extends [BGS3, Thm. 1.22], for T ≥ 1 fixed,
as u → 0

(8.15) Trs

[
g ∗−1

T

∂

∂T
(∗T ) exp(−u2DM,2

T )
]

=
2
u2

b−1,g

T 3
− b0,g + O(u2).

By comparing (8.13) and (8.15), we get

(8.16) aT,j = 0 if j < −1, aT,−1 =
2
T

b−1,g, aT,0 = −b0,g.

By (8.13) and (8.16), we get (8.1).
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9. A proof of Theorem 4.12.

This section is organized as follows. In a), as in [BerB, §9], we reduce
the problem to a local problem near Bg. In b), we summarize very briefly
the content of [BerB, §9 c)]. In c), we establish key estimates on the kernel
of F̃ε(L3

ε,T ). In d), we prove Theorem 4.12.

We use the same notation as in Sections 4 and 7.

a) Finite propagation speed and localization.

PROPOSITION 9.1. — There exists C > 0, such that for 0 < ε ≤ 1,
T ≥ 1

(9.1)
∣∣∣Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)Gε(εDM

T/ε)
]

− 2
T

( dim X∑

j=0

(−1)jjχg(Rjπ∗ξ)− dim Xχg(ξ)
)
Gε(0)

∣∣∣ ≤ C

T 2
·

Proof. — For v > 0, set

Hv(a) =
∫ +∞

−∞
exp(i t

√
2 a) exp

(
− t2

2v2

)
g(t)

dt

v
√

2π
·

Clearly

Gv(a) = Hv

(a

v

)
.

By an analogue of the McKean Singer formula [MKS], we find that

(9.2) Trs

[
gNV Hε(DB)

]
=

dim X∑

j=0

(−1)jjχg(Rjπ∗ξ)Hε(0).

Using (9.2) and proceeding as in [BerB, Prop. 9.1], we have (9.1).

By (7.6) and (9.1), to establish Theorem 4.12, we only need to
establish the following result.
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THEOREM 9.2. — If α > 0 is small enough, there exist δ > 0, C > 0,
such that for 0 < ε ≤ 1, T ≥ 1

(9.3)
∣∣∣Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)Fε(εDM

T/ε)
]

− 2
T

( dim X∑

j=0

(−1)jjχg(Rjπ∗ξ)− dim Xχg(ξ)
)
Fε(0)

∣∣∣ ≤ C

T 1+δ
·

Proof. — The remainder of the section is devoted to the proof of
Theorem 9.2.

By (7.11), we deduce that

(9.4) Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)Fε(εDM

T/ε)
]

= Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)F̃ε(A′2ε,T )

]
.

Let F̃ε(A′2ε,T )(x, x′)(x, x′ ∈ M) be the smooth kernel associated to F̃ε(A′2ε,T )
with respect to dvM (x′)/(2π)dim M . Using finite propagation speed, as
in (7.9), it is clear that if x ∈ M , F̃ε(A′2ε,T )(x, ·) only depends on the
restriction of A′ε,T to π−1(BB(πx, α)).

As in Section 7, the proof of (9.3) is local near π−1(Bg).

b) The matrix structure of the operator L3
ε,T as T → +∞.

We use the same trivializations and notation as in Section 7.

Also by using (7.19), (7.24), for Y ∈ (NBg/B,R)b0 , we get

(9.5) Trs

[
g ∗−1

T/ε

∂

∂T
(∗T/ε)F̃ε(L1

ε,T )(g−1(Y, x), (Y, x))
]

=(−i)dim Bg

ε−2 dim NBg/BTrs

[
gM3

ε,T F̃ε(L3
ε,T )

(
g−1(ε−1Y, x), (ε−1Y, x)

)]max

.

Recall that the vector bundle K and the operators P, Sε were defined
in (7.13) and (7.16). Let F0

ε be the vector space of square integrable sections
of Λ(T ∗RBg) ⊗̂ Λ(N∗

Bg/B) ⊗̂S−1∗
ε K over (TRB)b0 . Then F0

ε is a Hilbert
subspace of E0. Let F0,⊥

ε be its orthogonal complement in E0. Let pε be
the orthogonal projection operator from E0 on F0

ε, set p⊥ε = 1 − pε. Then
if s ∈ E0,

(9.6) pεs(Y ) = PεY s(Y, · ) for Y ∈ TRB.
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Put

(9.7)

{
Eε,T = pεL

3
ε,T pε, Fε,T = pεL

3
ε,T p⊥ε ,

Gε,T = p⊥ε L3
ε,T pε, Hε,T = p⊥ε L3

ε,T p⊥ε .

Then we write L3
ε,T in matrix form with respect to the splitting

E0 = F0
ε ⊕ F0,⊥

ε ,

(9.8) L3
ε,T =

[
Eε,T Fε,T

Gε,T Hε,T

]
.

Recall that Lξ, RTX are the curvatures of (ξ,∇ξ), (TX,∇TX), and
that the (3, 0)-tensor 〈S(·) · , ·〉 is defined in Section 2b). In the sequel,
[ , ]+ denotes an anticommutator.

THEOREM 9.3. — There exist operators Eε, Fε, Gε, Hε such that as

T → +∞,

(9.9)

{
Eε,T = Eε + O

( 1
T

)
, Fε,T = TFε + O(1),

Gε,T = TGε + O(1), Hε,T = T 2Hε + O(T ).

Set

(9.10) Qε = ϕ2(ε|Y |)
{
− 1

2

[
∇Λ(T∗(0,1)X)⊗ξ

ei
,

2m′∑
α=1

〈
S(ei)fH

α , ej

〉
hTX

(
fα ∧ −ε2

2
ifα

)c(ej)√
2

+
ε

2

2m∑

α=2m′+1

〈
S(ei)fH

α , ej

〉
hTX c(fα)c(ej)

]
+

+
1√
2

2m′∑
α=1

(
fα ∧ −ε2

2
ifα

)
c(ej)

(
Lξ +

1
2
Tr[RTX ]

)
(fα, ei)

+
2m∑

α=2m′+1

ε

2
c(fH

α )c(ej)
(
Lξ +

1
2
Tr[RTX ]

)
(fα, ei)

}
.

Then Qε(F0
ε) ⊂ F0,⊥

ε , and

(9.11)

{
Fε = pεQεp

⊥
ε , Gε = p⊥ε Qεpε,

Hε = p⊥ε
(
ϕ2(ε|Y |)DX,2

εY +
(
1− ϕ2(ε|Y |))DX,2

b0

)
p⊥ε .
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Proof. — For a fixed ε > 0, the analysis of the matrix structure of
L3

ε,T as T → +∞ is the same as in [BerB, §9c)]. Of course, the rescaling
on the Clifford variables which depends on ε > 0, is different, but this does
not introduce any extra difficulty.

So Theorem 9.3 holds for essentially the same reasons as in [BerB,
Theorem 9.3]. Especially, by [BerB, (7.33), (9.37)], we get (9.10).

c) Uniform bounds on the kernel of F̃ε(L3
ε,T ).

We now establish an extension of [BerB, Thm. 9.6].

THEOREM 9.4. — There exists C > 0, for which if k ∈ N, there exist

C ′ > 0, r ∈ N such that if |α|, |α′| ≤ k, ε ∈ ]0, 1], T ≥ 1, (Y, x), (Y ′, x′)
∈ (TRB)b0 ×Xb0 ,

(9.12)
∣∣∣ ∂|α|+|α

′|

∂Y α∂Y ′α′ F̃ε(L3
ε,T )

(
(Y, x), (Y ′, x′)

)∣∣∣
≤ C ′

(
1 + |Y |+ |Y ′|)r exp

(−C|Y − Y ′|2).

Proof. — Recall that 〈 〉ε,0 is the Hermitian product on E0 defined
by (7.32). If s ∈ E1, put

(9.13) |s|2ε,T,1 = T 2|P⊥εY s|2ε,0 + |PεY s|2ε,0

+
∑
α

|∇fαs|2ε,0 + T 2
∑

i

|∇eiP
⊥
εY s|2ε,0.

The bounds in (9.12) with C = 0 are easily obtained by proceeding
as in [BerB,Thm. 9.6], where we replace the Sobolev norms [BerB, (9.49),
(9.50)] by (7.32) and (9.13). To get the required C > 0, we proceed as in the
proof of Theorem 7.6 where we use the Sobolev norms (7.32) and (9.13).

d) Proof of Theorem 9.2.

Let Fε be the vector space of smooth sections of Λ(T ∗RBg)⊗̂
Λ(N∗

Bg/B)⊗̂S−1∗
ε K over (TRB)b0 . Let Ξε be the operator from Fε to

itself

(9.14) Ξε = Eε − FεH
−1
ε Gε.

One verifies easily that Ξε is an elliptic second order differential operator
acting on Fε.
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The operator (εDB)2 acts on smooth sections of Λ(T ∗(0,1)B)⊗̂KerDX.
Therefore by proceeding as before, i.e. by rescaling the coordinate Y and
the Clifford variables c(fβ)(1 ≤ β ≤ 2m′), we construct from (εDB)2

an operator Σ3
ε, which acts on smooth sections of Λ(T ∗RBg)⊗̂Λ(N∗

Bg/B)
⊗̂S−1∗

ε K over B(0, 2α/ε). Then as [BerB, Prop. 9.9], we have

PROPOSITION 9.5. — Over B(0, α/ε), one has the identity

(9.15) Ξε = Σ3
ε.

Let F̃ε(Ξε)(Y, Y ′), F̃ε(Σ3
ε)(Y, Y ′)(Y, Y ′ ∈ (TRB)b0) be the smooth

kernels associated to the operator F̃ε(Ξε), F̃ε(Σ3
ε) with respect to

dvTRB(Y ′)/(2π)dim B . Using (9.15) and finite propagation speed, it is clear
that for |Y |, |Y ′| ≤ α/4ε,

(9.16) F̃ε(Ξε)(Y, Y ′) = F̃ε(Σ3
ε)(Y, Y ′).

Here, the minor difference with [BerB] is that here only the Clifford
variables c(f`) (1 ≤ ` ≤ 2 dim Bg) are rescaled, while in [BerB], the Clifford
variables c(f`) (1 ≤ ` ≤ 2 dim B) were rescaled. Because our Clifford
rescaling introduces fewer diverging terms than in [BerB, §9], so we have
the following analogue of [BerB, Thm. 9.8]: There exists C > 0 such that
for 0 ≤ ε ≤ 1, T ≥ 1,

(9.17)
∥∥F̃ε(L3

ε,T )− PεY F̃ε(Ξε)PεY

∥∥0,0

ε,0
≤ C√

T
·

Now by using (7.27), (9.5), (9.12), (9.16), (9.17), and by proceeding
as in [BerB, §9 g)] and [B5, §13 j)], we obtain Theorem 9.2.
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