
Séminaire de théorie spectrale et géométrie

GRENOBLE

Volume 19 (2001) 25−40

FLAT VECTOR BUNDLES AND ANALYTIC TORSION

FORMS

Xiaonan MA

1. Introduction

Let Z be a compact manifold. Let F be a flat vector bundle over Z . Let H •(Z ,F ) =

⊕dim Z
i=0 H i(Z ,F ) be the cohomologie of the sheaf of locally flat sections of F .

If E is a finite dimensional vector space, set det E = Λmax(E ). Following an establi-

shed tradition in algebraic geometry, we define the determinant of the cohomology of F

to be the line λ(F ) given by

λ(F ) = det H •
(Z ,F ) = ⊗dim Z

i=0 (det H i
(Z ,F ))(−1)i

.

Assume temporarily that hF is a flat metric on F . Let K be a smooth triangulation

of Z . We can define the Reidemeister metric ‖ ‖R,K
λ(F ) on λ(F ). It is a basic result of Franz

[13], Reidemeister [29], and de-Rham [30] (see also [25, §8]), that the metric ‖ ‖R,K
λ(F )

does not depend on K . The metric ‖ ‖R,K
λ(F ) on λ(F ) is then a topological invariant of

F . If H •(Z ,F ) = 0, it is a positive number, now called the Reidemeister torsion (or R-

torsion).

Remark that the Reidemeister torsion is the first topological invariant which is ho-

meomorphic invariant but is not a homotopy invariant. Reidmeister, Franz classified the

lens spaces Sn/G up to isometry by their fundamental group, along with R-torsion. In

[19], Köhler generalized it to quotients of Grassmannians.

In 1971, Ray and Singer asked whether as for many other real topological invariants,

there is an analytic version of the R-torsion.

Let (Ω(Z ,F ),d F ) be the de Rham complex of smooth sections of Λ(T ∗Z) ⊗ F over

Z . Let gT Z and hF be smooth metrics on T Z and F . In [28], Ray and Singer constructed

the logarithm of the analytic torsion of (Ω(Z ,F ), d F ), as a combination of derivatives at

0 of the zeta functions of the Laplacian acting on forms inΩ(Z ,F ) of various degrees. We
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can associate a metric on the line λ(F )which is the product of the standard L2 metric on

λ(F ) (obtained by identifying H •(Z ,F ) with the harmonic elements of (Ω(Z ,F ),d F )),

by the Ray-Singer analytic torsion [28]. This metric is called the Ray-Singer metric on

λ(F ), and is denoted ‖ ‖RS
λ(F ). Ray and Singer showed that if dim Z is odd, then ‖ ‖RS

λ(F )

does not depend on gT Z and hF , i.e. it is a topological invariant of F . When Z is even

dimension and oriented, and if hF is a flat metric, then the Ray-Singer torsion is equal

to 1.

In 1978, Cheeger [9] and Müller [26] proved the famous Ray-Singer conjecture. Na-

mely, if hF is flat metric on F , then Ray-Singer metric is equal to R-metric. Assume now

that Z is odd dimensional, and that only the metric ‖ ‖det F induced by hF on det F is

flat. Then the metrics ‖ ‖R,K
λ(F ) and ‖ ‖RS

λ(F ) are still topological invariants. Müller [27] has

shown that equality still holds.

In [7], Bismut and Zhang have extended the equlity between Reidemeister and Ray-

Singer metrics to any flat vector bundle F . More recently, Bismut and Goette [4] have

generalized Bismut-Zhang theorem to the family case, provided there exists a fiberwise

Morse function.

This paper is organized as follows: In Section 2, we recall the definition of Ray-Singer

analytic torsion. In Section 3, we explain characteristic classes of a flat vector bundle. In

Section 4, we construct the analytic torsion form of Bismut and Lott [6]. In Section 5,

we explain briefly the Leray spectral sequence associated to a fibration, and a flat vector

bundle which will appear naturally in Theorem 6.1. In Section 6, we review the main

result of [24], the fonctoriality of analytic torsion forms with respect to the composition

of two submersions. In Section 7, we discuss briefly Lott’s secondary index.

In the whole note, if the space V = V + ⊕ V − is Z2 graded, and A ∈ End(V ), then

we denote

��
s[A] =

��
A|V + −

��
A|V − .(1.1)

2. Ray-Singer analytic torsion

Let Z ba a compact C
∞ maniflods. Let (F ,∇F ) be a flat complex vector bundle on Z ,

i.e.∇F is a connection on F such that its curvature is zero. Let gT Z ,hF be smooth metrics

on T Z ,F .

R 2.1. — i) (F ,∇F ) is flat iff there is a representation of the fundamental group

of Z to GL(m,C) (m = dimC F ), ρ : π1(Z) → GL(m,C), such that F is the corresponding

associated bundle F = Z̃ ×π1(Z) C
m, here Z̃ is the universal covering of Z .

ii) hF is flat iff F can be obtained through a representation of π1(Z) into U (m), and

hF is the metric on F induced by this representation.

Let Ω(Z ,F ) = ⊕dim Z
i=0 Ωi(Z ,F ) be the vector space of smooth sections over Z of

Λ(T ∗Z)⊗ F = ⊕dim Z
i=0 Λi(T ∗Z)⊗ F . Let d F denote the obvious action of∇F onΩ(Z ,F ).



Flat vector bundles and analytic torsion forms 27

Then

(d F
)

2
= 0.(2.1)

By the de Rham theorem, the cohomology groups of the complex (Ω(Z ,F ),d F ) are

canonically isomorphic to H •(Z ,F ) the cohomology of the sheaf of locally flat sections

of F .

Let d vZ be the Riemannian volume form on Z associated to the metric gT Z . Let 〈 〉F

and 〈 〉Λ(T ∗Z)⊗F be the corresponding scalar products on F and Λ(T ∗M ) ⊗ F . Let ∗ be

the Hodge operator associated to gT Z acting on Λ(T ∗Z). The operator ∗ also acts on

Λ(T ∗Z) ⊗ F . If α,α′ ∈ Ω(Z ,F ), set

〈
α,α′

〉
=

�
Z

〈
α ∧ ∗α′

〉
F

=

�
Z

〈
α,α′

〉
Λ(T ∗Z)⊗F

d vZ .(2.2)

Let d F∗ be the formal adjoint of d F with respect to the scalar product 〈,〉. Set

DZ
= d F

+ d F∗,

K •(Z ,F ) = KerDZ .
(2.3)

Then DZ ,2
= d F d F∗

+ d F∗d F : Ωq(Z ,F ) → Ωq(Z ,F ) preserves the Z-graded ofΩ(Z ,F ).

By Hodge theory,

K •
(Z ,F ) ' H •

(Z ,F ).(2.4)

Clearly K •(Z ,F ) inherits a metric from the scalar product 〈 〉. Let hH (Z ,F ) be the corres-

ponding metric on H •(Z ,F ).

Let P be the orthogonal projection operator fromΩ(Z ,F ) on K •(Z ,F ) with respect

to the Hermitian product (2.2). Set P⊥ = 1−P . Let NZ be the number operator ofΩ(Z ,F ),

i.e. NZ acts by multiplication by q onΩq(Z ,F ).

D 2.1. — For s ∈ C,Re (s) > 1
2

dim Z , set

θ
F
(s) = −

��
s[NZ (D

Z ,2
)
−s P⊥] = �

q

(−1)qq
��
[(DZ ,2

|Ωq(Z ,F ))
−s P⊥].(2.5)

By a result of Seeley, θF (s) extends to a meromorphic function of s ∈ C which is holo-

morphic at s = 0.

D 2.2. — The Ray-Singer torsion T (Z ,hF ) of the complex (Ω(Z ,F ),d F ) is

defined by

T (Z ,hF
) = exp

(1

2

∂θF

∂s
(0)
)

.(2.6)



28 X. MA

Let λ(F ) be the determinant of the cohomology of F to be the following complex

line

λ(F ) = det H •
(Z ,F ) = ⊗dim Z

i=0 (det H i
(Z ,F ))(−1)i

.

Let | |RS
λ(F ) be the L2 metric on λ(F ) induced by hH (Z ,F ).

D 2.3. — Let ‖ ‖RS
λ(F ) be the Ray-Singer metric on the complex line

λ(F ) = det H •(Z ,F )

‖ ‖RS
λ(F ) = | |RS

λ(F ) exp
{1

2

∂θF

∂s
(0)
}

.(2.7)

T 2.1. — (Cheeger-Müller [9], [26]) Assume that hF is a flat metric on F . Then

‖ ‖R,K
λ(F ) = ‖ ‖RS

λ(F ).(2.8)

3. Characteristic class of a flat vector bundle

We use the same assumptions and notation of Section 2.

By the definition of flat vector bundles, the usual Chern class of a flat vector bunlde

is zero as the curvature of∇F is zero. But we still can define odd characteristic classes for

a flat vector bundle.

LetΩ(Z) denote the space of smooth sections ofΛ(T ∗Z). Letϕ : Ω(Z) → Ω(Z) be

the linear map such that for all homogeneousω ∈ Ω(Z)

ϕω = (2πi)−(degω)/2
ω.(3.1)

D 3.1. — Letω(F ,hF ) be the 1-form on Z taking values in self-adjoint en-

domorphisms of F ,

ω(F ,hF
) = (hF

)
−1∇F hF .(3.2)

R 3.1. — hF is flat iffω(F ,hF ) = 0.

For a ∈ C, put

f (a) = a exp(a2
),(3.3)

We have

f ′(a) = (1 + 2a2
) exp(a2

).(3.4)

Put

f (∇F ,hF
) = (2iπ)1/2

ϕ
��
[ f (ω(F ,hF

))] ∈ Ω(Z).(3.5)

T 3.1 ([6], Theorem 1.11). — f (∇F ,hF ) is a real, closed odd form and its de

Rham cohomology class is independent of hF . We will denote it as f (F ) ∈ H �
��
(Z ,R).
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For a flat vector bundle F , the characteristic class f (F ) will play the same role as the

Chern character for complex vector bundles on Z .

Let
��

: so(m) → R denote the Pfaffian. Set

e(T Z ,∇T Z
) =

��[RT Z

2π

]
.(3.6)

Let o(T Z) be the orientation bundle of T Z , a flat real line bundle on Z . Then e(T Z ,∇T Z )

is an o(T Z) value closed n-form on Z which represents the Euler class e(T Z) of T Z ,

lying in H dim Z (Z ,o(T Z)) [7, (3.17)]. Of course, e(T Z ,∇T Z ) = 0, if dim Z is odd.

Let p : T Z → Z be the natural projection. Let δZ be the current of integration on

Z . In [7, Theorem 3.7], Bismut and Zhang constructed a currentψ(T Z ,∇T Z ) on T Z with

valus in o(T Z) such that

ψ(T Z ,∇T Z
) = p∗e(T Z ,∇T Z

) − δZ .(3.7)

The restriction ofψ(T Z ,∇T Z ) to the sphere bundle of T Z is the Mathai-Quillen form.

Let h : Z → R be a Morse function on Z . Let X be the gradient vector field of h

with respect to gT Z on Z . We assume that X verifies the Smale tranversality conditions.

Then we can define the Milnor metric ‖ ‖M ,X
λ(F ) on λ(F ), which is equal to the Reidmeister

metric on λ(F )when hF is flat. Remark that if hF isn’t flat, it isn’t a topological invariant.

The following theorem was established by Bismut and Zhang [7, Theorem 0.2],

T 3.2. — The following identity holds

log


[‖ ‖

RS
λ(F )

‖ ‖M ,X
λ(F )

]2


 = −

�
Z

��
[ω(F ,hF

)] X ∗
ψ(T Z ,∇T Z

).(3.8)

4. Analytic torsion forms

In this Section, we explain the construction of the analytic torsion form of Bismut-

Lott. We use the notation of Section 3.

4.1. Riemann-Roch-Grothendieck type theorem for flat vector bundles

From now on, let π : W → S be a fibration of C
∞ manifolds with compact fibre Z .

Let T Z be the vertical tangent bundle of the fiber bundle, and let T ∗Z be its dual bundle.

Let F be a flat complex vector bundle on W and let∇F denote its flat connection.

Let H •(Z ,F|Z ) = ⊕dim Z
i=0 H i(Z ,F|Z) be the Z-graded vector bundle over S whose fiber

over s ∈ S is the cohomology H (Zs ,F|Zs ) of the sheaf of locally flat sections of F on

Zs . By [6, §3 (f)], ∇F induces a canonical flat connection ∇H (Z ,F|Z ) on H •(Z ,F|Z) which

preserves the Z-grading.
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The following Theorem is an analog of the Riemann-Roch-Grothendieck theorem

for holomorhpic submersions, in which a holomorphic submersion becomes a smooth

fiber bundle, ∂-flat (i.e. holomorphic) bundles become d-flat bundles, the direct image

of F becomes � dim Z
q=0 (−1)qH q(Z ,F |Z ), the Chern character becomes the f class and

the Todd class becomes the Euler class.

T 4.1. — The following identity holds in H∗(S,R).

dim Z

�
p=0

(−1)p f (H p
(Z ,F |Z )) =

�
Z

e(T Z) f (F )(4.1)

Actually, Bismut and Lott proved it in analytic way. More precisely, equipped the fi-

ber bundle with a horizontal distribution T H W and a vertical Riemannian metric gT Z ,

and the flat vector bundle F with a Hermitain metric hF . In [6, Theorem 3.23], they

constructed an even and real form T (T H W ,gT Z ,hF ) such that

d T (T H W ,gT Z ,hF
) =

�
Z

e(T Z ,∇T Z
) f (∇F ,hF

) − f (∇H (Z ,F|Z ),hH (Z ,F|Z )).(4.2)

On the right hand side of (4.2), the first term is local, and the second term is global

along the fibres Z . So T (T H W ,gT Z ,hF ) must be global along the fibres Z . Actually, let

T
(0)(T H W ,gT Z ,hF ) be the zero degree part of T (T H W ,gT Z ,hF ) in Λ(T ∗S), let θF (s)

be the function on S defined by (2.5) for each fibre Z . Then

T
(0)
(T H W ,gT Z ,hF

) = log T (Z ,hF
) =

1

2

∂θF

∂s
(0).(4.3)

Remark that if we take the cohomology class of each side for (4.2), we get (4.1). Thus

(4.2) refines (4.1) on the differential form level. In the next subsection, we will explain the

construction of the analytic torion form T (T H W ,gT Z ,hF ) in details.

4.2. Construction of the analytic torsion form

We use the notation in Section 4.1.

Let T H W be a sub-bundle of T W such that

T W = T H W ⊕ T Z .(4.4)

Let PT Z denote the projection from T W to T Z . If U ∈ T S, let U H be the lift of U in

T H W , so thatπ∗U H
= U .

Let E = ⊕dim Z
i=0 E i be the smooth infinite-dimensional Z-graded vector bundle over

S whose fiber over s ∈ S is C
∞(Zs ,(Λ(T ∗Z) ⊗ F )Zs ). That is

C
∞
(S; E i

) = C
∞
(W ,Λi

(T ∗Z) ⊗ F ).(4.5)
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For s ∈ C
∞(S; E ) and U a vector field on S, then the Lie differential LU H acts on

C
∞(S,E ). Set

∇E
U s = LU H s.(4.6)

Then∇E is a connection on E which preserves the Z-grading.

If U1,U2 are vector fields on S, put

T (U1,U2) = −PT Z
[U H

1 ,U H
2 ] ∈ C

∞
(W ,T Z).(4.7)

We denote iT ∈ Ω2(S,Hom(E •,E •−1))be the 2-form on S which, to vector fields U1,U2 on

S, assigns the operation of interior multiplication by T (U1,U2) on E . Let d Z be exterior

differentiation along fibers. We consider d Z to be an element of C
∞(S; Hom(E •,E •+1)).

By [6, Proposition 3.4], we have

dW
= d Z

+∇E
+ iT .(4.8)

So dW is a flat superconnection of total degree 1 on E . We have

(d Z
)

2
= 0, [∇E ,d Z

] = 0.(4.9)

Let gT Z be a metric on T Z . Let hF be a Hermitian metric on F . Let hE be the metric

on E defined by (2.2).

Let (∇E )∗, d Z∗, (dW )∗ be the formal adjoint of ∇E , d Z , dW with respect to the

scalar product 〈,〉hE . Set

DZ
= d Z

+ d Z∗, ∇E ,u
=

1
2
(∇E

+ (∇E )∗).(4.10)

Let NZ be the number operator of E , i.e. acts by multiplication by k on the space

C
∞(W ,Λk(T ∗Z) ⊗ F ). For u > 0, set

C ′
u = uNZ /2dW u−NZ /2, C ′′

u = u−NZ /2
(dW

)
∗uNZ /2,

Cu =
1

2
(C ′

u + C ′′
u ), Du =

1

2
(C ′′

u − C ′
u).

(4.11)

then C ′′
u is the adjoint of C ′

u with respect to hE . Cu is a superconnection and Du is an odd

element ofΩ(S,End(E )), and

C 2
u = −D2

u.(4.12)

For X ∈ T Z , let X ∗ ∈ T ∗Z correspond to X by the metric gT Z . Set c(X ) = X ∗ ∧ −iX .

By [6, Proposition 3.9], we get

Cu =

√
u

2
DZ

+∇E ,u −
1

2
√

u
c(T ).(4.13)

In fact, Cu is essentially the same as the Bismut superconnection Au/4 associated to the

vertical signature operator (cf. [6, (3.46)]).
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Let gT S be a Riemannian metric on S then gT W
= gT Z ⊕ π∗gT S is a Rieman-

nian metric on W . Let ∇T W denote the corresponding Levi-Civita connection on W .

Put ∇T Z
= PT Z∇T W , a connection on T Z . As shown in [2, Theorem 1.9], ∇T Z is inde-

pendent of the choice of gT S .

By [6, §3(f)], the flat superconnection dW induces a canonical flat connection

∇H (Z ,F|Z ) on H (Z ,F|Z). Let hH (Z ,F|Z ) be the Hermitian metric on H (Z ,F|Z) as in Section

2. Let P be the orthonormal projection from E on Ker(DZ )with respect to the Hermitian

product (2.2). Then by [6, Proposition 3.14], we have

∇H (Z ,F|Z )
= P∇E .(4.14)

Put

f (∇H (Z ,F|Z ),hH (Z ,F|Z )) =

dim Z

�
q=0

(−1)q f (∇H q(Z ,F|Z ),hH (Z ,F|Z )).(4.15)

For any u > 0, the operator Du is a fiberwise-elliptic differential operator. Then

f (Du) is a fiberwise trace class operator. For u > 0, put

f (C ′
u,hE

) = (2iπ)1/2
ϕ
��

s[ f (Du)],(4.16)

f ∧(C ′
u,hE

) = ϕ
��

s

[NZ

2
f ′(Du)

]
.

The following results are proved in [6, Theorem 3.16],

T 4.2. — For any u > 0, the form f (C ′
u,hE ) is real, odd, and closed. Its de

Rham cohomology class is independent of u, T H W ,gT Z and hF . As u → 0,

f (C ′
u,hE

) =




�
Z

e(T Z ,∇T Z
) f (∇F ,hF

) + O(u) if dim Z is even,

O(
√

u) if dim Z is odd.

(4.17)

As u → +∞

f (C ′
u,hE

) = f (∇H (Z ,F|Z ),hH (Z ,F|Z )) + O(
1
√

u
).(4.18)

Put

χ(Z) =

dim Z

�
i=0

(−1)i�� H i
(Z ,R),(4.19)

χ
′
(Z ,F ) =

dim Z

�
i=0

(−1)i i
��

H i
(Z ,F|Z).

Then χ(Z) is the Euler characteristic number of T Z . And χ(Z), χ′(Z ,F ) are locally cons-

tant functions on S.
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The following results are proved in [6, Theorems 3.20 and 3.21],

T 4.3. — For any u > 0, the form f ∧(C ′
u,hE ) is real and even. Moreover,

∂

∂u
f (C ′

u,hE
) =

1

u
d f ∧(C ′

u ,hE
).(4.20)

As u → 0,

f ∧(C ′
u,hE

) =




1

4
dim Z rk(F )χ(Z) + O(u) �

�
dim Z is even,

O(
√

u) if dim Z is odd.
(4.21)

As u → +∞

f ∧(C ′
u,hE

) =
1

2
χ
′
(Z ,F ) + O(

1
√

u
).(4.22)

D 4.1. — The analytic torsion form T (T H W ,gT Z ,hF ) is a form on S which

is given by

T (T H W ,gT Z ,hF
) = −

�
+∞

0

[
f ∧(C ′

u,hE
) −

1

2
χ
′
(Z ,F ) f ′(0)(4.23)

−
(1

4
dim Z

��
(F )χ(Z) −

1

2
χ
′
(Z ,F )

)
f ′
( i
√

u

2

)]d u

u
.

The following results are proved in [6, Theorem 3.23],

T 4.4. — The form T (T H W ,gT Z ,hF ) is even and real. Moreover,

d T (T H W ,gT Z ,hF
) =

�
Z

e(T Z ,∇T Z
) f (∇F ,hF

) − f (∇H (Z ,F|Z ),hH (Z ,F|Z )).(4.24)

From [6, Theorem 3.24], we know how T (T H W ,gT Z ,hF ) depends on its arguments.

Remark that if dim Z is odd or if hF is flat, then, T (T H W ,gT Z ,hF ) in QS/QS,0 is inde-

pendent of T H W . If dim Z is odd and H (Z ,F|Z) = 0 then T (T H W ,gT Z ,hF ) is a closed

form whose de Rham cohomology class is independent of T H W ,gT Z , and hF .

Now, one of the important problems is to understand the analytic torison form

T (T H W , gT Z , hF ). More precisely, how to generalize Cheeger-Müller Theorem, or more

generally, Bismut-Zhang Theorem to the family case. If the fibration has a fiberwise

Morse function, Bismut and Goette [4] confirmed it. For the topological side of this pro-

blem, we refer [12], [16], [17].

4.3. Torsion form of a flat complex

Let W be a C
∞ manifold. Let

(E ,v) : 0 → E 0 v→ E 1 v→ · · · v→ E n → 0.(4.25)
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be a flat complex of complex vector bundles on W . That is∇E
= ⊕n

i=0∇E i
is a flat connec-

tion on E = ⊕n
i=0E i and v is a flat chain map, meaning by

(∇E
)

2
= 0,v2

= 0,∇E v = 0.(4.26)

Then v + ∇E is a flat superconnection of total degree 1. By [6, §2(a)], the cohomology

H (E ,v) of the complex is a vector bundle on W , and let ∇H (E ,v) be the flat connection

on H (E ,v) induced by∇E . Let

d(E ) =

n

�
i=0

(−1)ii
��

E i ,(4.27)

d(H (E ,v)) =

n

�
i=0

(−1)ii
��

H i
(E ,v).

Let hE
= ⊕hEi be a metric on E = ⊕Ei . Let v∗ be the formal adjoint of v with respect

to hE . Let N be the number operator on E , i.e. N acts by multiplication by i on E i . As in

(4.15), set

f (∇E ,hE
) =

n

�
i=0

(−1)i f (∇E i

,hE i

),(4.28)

f (∇H (E ,v),hH (E ,v)
) =

n

�
i=0

(−1)i f (∇H i(E ,v),hH (E ,v)
)

For u > 0, let

Du =
1

2

√
u(v∗ − v) +

1

2
ω(E ,hE

).(4.29)

By [6, Theorems 2.9, 2.13],

∂

∂u

��
s[ f (Du)] =

1

u
d
��

s[
1

2
N f ′(Du)].(4.30)

As u → +∞,

(2πi)1/2
ϕ
��

s[ f (Du)] = f (∇H (E ,v),hH (E ,v)
) + O(

1
√

u
),(4.31)

ϕ
��

s[
1

2
N f ′(Du)] =

1

2
d(H (E ,v)) + O(

1
√

u
).

In the same principle of Section 4.2, the following Theorem [6, Theorem 2.22] provides a

finite dimensional version of Theorem 4.4,

T 4.5. — The following integral is well defined

(4.32) T f (v +∇E ,hE
) = −

�
+∞

0

[
ϕ
��

s[
1

2
N f ′(Du)] −

1

2
d(H (E ,v))

− [d(E ) − d(H (E ,v))] f ′
( i
√

u

2

)]d u

u
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Moreover T f (v +∇E ,hE ) is an even and real form, and

d T f (v +∇E ,hE
) = f (∇E ,hE

) − f (∇H (E ,v),hH (E ,v)
).(4.33)

Let (F ,∇F ) be a flat complex vector bundle on W . Let 0 ⊂ F 0 ⊂ · · · ⊂ F n
= F be a

filtration of F such that∇F
. (F

i) ⊂ F i . Let Gri F = F i/F i−1, then we have a flat complex

of complex vector bundles:

Gi : 0 → F i v→ F i+1 v→ Gri+1F → 0.(4.34)

Let hE , h
��

F
= ⊕i h

��i F be Hermitian metrics on F ,
� �

F = ⊕iGri F . Let hF i
be the metric

on F i induced by hF . Let hGi = hF i−1⊕hF i⊕h
��i F be the metric on Gi = F i−1⊕F i⊕

� �i F .

Let T (v +∇Gi ,hGi ) be the form on W defined by (4.32) associated to (4.34).

D 4.2. — The torsion form of the filtered flat complex vector bundle F is

defined by

T (F ,
� �

F ,hF ,h
��

F
) =

n−1

�
i=0

T (v +∇Gi ,hGi ).(4.35)

5. Leray spectral sequence

Let π1 : Z → Y be a fibration of compact manifolds with compact fibre X . Let F be

a flat complex vector bundle on Z . Let

Λ(T ∗Z) = F 0
(Λ(T ∗Z)) ⊃ F 1

(Λ(T ∗Z)) ⊃ · · · ⊃ F dimY +1
(Λ(T ∗Z)) = {0}.(5.1)

be the standard filtration of Λ(T ∗Z). In fact F pΛq(T ∗Z) are the forms which can be

written as a finite sum of forms of the shapeω∧π∗η forω ∈ Λq−k(T ∗Z), η ∈ Λk(T ∗Y )

for some k � p. The filtration (5.1) induces a corresponding filtration of the complex

(Ω(Z ,F ),d F ) such that F pΩ(Z ,F ) = C
∞(Z ,F pΛ(T ∗Z) ⊗ F ). We also get a correspon-

ding filtration on H •(Z ,F ). Set

GrpH •
(Z ,F ) =

F pH •(Z ,F )

F p+1H •(Z ,F )
,

Gr•H •(Z ,F ) = ⊕dim Y
p=0 GrpH •(Z ,F ).

(5.2)

Let (Er ,dr) be the spectral sequence associated to the filtration (5.1) on the filtered

complex (Ω(Z ,F ),d F ) [14, §3.5]. Then, we get

(E •,•
0 ,d0) = (Ω

•
(Y ,Ω•(X ,F|X )),d

F
|X ),(5.3)

(E •,•
1 ,d1) = (Ω

•
(Y ,H (X ,F|X )),d

H (X ,F|X )

|Y ),

E
p,q

2 = H p
(Y ,H q

(X ,F|X )).
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And E2 is a finite dimensional Z-graded vector space. More generally, for any r � 0, Er+1

is the cohomology of the complex (Er ,dr). And for r > dim Z ,

(E •,•
r ,dr) = (Gr•H •(Z ,F ),0).(5.4)

By [15, Theorem 3.7.3], there is a functor of Leray spectral sequence associated to

the fibration π1 : Z → Y . By [24, Theorem 2.1], (Er ,dr) (r � 2) calculates the Leray

spectral sequence.

6. Functoriality of analytic torsion form

Let W ,V ,S be smooth manifolds. Letπ1 : W → V ,π2 : V → S be smooth fibrations

of manifolds with compact fibre X ,Y . Then π3 = π2 ◦ π1 : W → S is a smooth fibration

with compact fibre Z with dim Z = n. Let (F ,∇F ) be a flat complex vector bundle over

W . Then we have the diagram of smooth fibrations:

π

π2

3 

π π11

Z W

Y V S

X

Let H •(X ,F|X ) = ⊕dim X
i=0 H i(X ,F|X ), H •(Z ,F|Z), H •(Y ,H •(X ,F|X )) be the Z-graded

vector bundles over V , S,S whose fiber over a ∈ V , s ∈ S are the cohomologies

H •(Xa ,F|Xa ), H •(Zs ,F|Zs ), H •(Ys ,H •(X ,F|X )) of the sheaf of locally flat sections of F , F ,

H (X ,F|X ) on Xa , Zs , Ys .

Let QS be the vector space of real even forms on S. Let QS,0 be the vector space of

real exact even forms on S.

Let T H
1 W ,T H

2 V ,T H
3 W be sub-bundles of T W ,T V ,T W with respect to π1,π2,π3 as

in (4.4). Let E be the smooth infinite-dimensional Z-graded vector bundle over S whose

fiber over s ∈ S is C
∞(Zs ,(Λ(T ∗Z)⊗ F )Zs ). For s ∈ S, let (Er,s ,dr,s) be the Leray spectral

sequence with respect toπ1 : Zs → Ys ,F .

P 6.1. — [24, Proposition 3.2] There are flat complex vector bundles E
p,q

r

(r � 2,p,q ∈ N), and dr : E
p,q

r → E
p−r,q+1−r

r such that the fiber of complex (Er =

⊕p,qE
p,q

r ,dr) over s ∈ S is the Leray spectral sequence (Er,s = ⊕p,qE
p,q

r,s ,dr).

By [6, §2(a)], there is also a canonical connection∇Er = ⊕p,q∇E
p,q

r on Er = ⊕p,qE
p,q

r

induced by dW .

Let gT Z ,gT X ,gT Y be metrics on T Z ,T X ,T Y . Let hF be a Hermitian metric on F .
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Let hH (X ,F|X ), hH (Z ,F|Z ), hH (Y ,H (X ,F|X )) be the L2-metrics on H •(X ,F|X ), H •(Z ,F|Z),

H •(Y ,H •(X ,F|X )) with respect to gT X ,hF ; gT Z ,hF and gT Y ,hH (X ,F|X ) defined in Section

1.2.

Let ∇T X ,∇T Y ,∇T Z be the connections on (T X ,gT X ), (T Y ,gT Y ), (T Z ,gT Z ) defi-

ned in Section 4.2. Let T H Z = T H
1 W ∩ T Z . Let π∗1 ∇T Y be the connection on T H Z

induced by ∇T Y . Then 0∇T Z
= π∗1 ∇T Y ⊕ ∇T X is a connection on T Z = T H Z ⊕ T X .

Let ẽ(T Z ,∇T Z ,0∇T Z
) be the Chern-Simons n − 1 forms on Z with values in o(T Z) such

that

d ẽ(T Z ,∇T Z ,0∇T Z
) = e(T Z ,0∇T Z

) − e(T Z ,∇T Z
).(6.1)

Let T (T H
1 W ,gT X ,hF ),T (T H

2 V ,gT Y ,hH (X ,F|X )), T (T H
3 W ,gT Z ,hF ) be the analytic

torsion forms corresponding to π1,π2,π3. Let hE2 be the metric on E2 induced by

hH (Y ,H (X ,F|X )). Let hEr (r � 3) be the L2 metric on Er as in Section 4.3. Set

(6.2) T (H (Z ,F|Z),E∞,hH (Z ,F|Z ),hE∞)

=

dim Z

�
k=0

(−1)k T (H k
(Z ,F|Z), ⊕p+q=k E p,q

∞ ,hH (Z ,F|Z ),hE∞).

By (4.9), dr +∇Er is a flat superconnection of total degree 1 on Er .

D 6.1. — Set

(6.3) T (E2,H (Z ,F|Z),h
E2 ,hH (Z ,F|Z )) =

∞

�
r=2

T (dr +∇Er ,hEr ,hEr+1)

− T (H (Z ,F|Z),E∞,hH (Z ,F|Z ),hE∞).

In fact, by [6, Theorem 2.24], T (.,.) ∈ QS/QS,0 doesn’t depend on the choice of hEr (r �
2) on Er .

T 6.1. — [24, Theorem 0.1] The following identity holds in QS/QS,0,

(6.4) T (T H
3 W ,gT Z ,hF

) =

�
Y

e(T Y ,∇T Y
)T (T H

1 W ,gT X ,hF
)

+ T (T H
2 V ,gT Y ,hH (X ,F|X )) + T (E2,H (Z ,F|Z),h

E2 ,hH (Z ,F|Z ))

−
�

Z

ẽ(T Z ,∇T Z ,0∇T Z
) f (∇F ,hF

).

Assume now that S is a point. Then we have a submersionπ1 : Z → Y with fibre X .

Let

λ(F ) = ⊗dim Z
i=0 (det H i

(Z ,F ))(−1)i

,(6.5)

λ(H •
(X ,F|X )) = ⊗dim Z

i, j =0 (det H i
(Y ,H j

(X ,F|X )))
(−1)i+ j

.



38 X. MA

be the determinant of the cohomologies of F , H •(X ,F|X ). By [18], we have a canonical

nonzero section σ ∈ λ−1(H (X ,F|X )) ⊗ λ(F ).

Let ‖ ‖λ(H (X ,F|X )), ‖ ‖λ(F ) be the Ray-Singer metrics on λ(H (X ,F|X )), λ(F ) asso-

ciated to the metrics gT Y ,hH (X ,F|X ), and gT Z ,hF . Let ‖ ‖λ−1(H (X ,F|X ))⊗λ(F )
be the corres-

ponding Ray-Singer metric on λ−1(H (X ,F|X )) ⊗ λ(F ). Let T (X ,hF ) be the Ray-Singer

analytic torsion on the fibre X associated to the metrics gT X ,hF .

By [6, Theorems 2.25 and 3.29], and (3.5), we can reformulate Theorem 6.1

(6.6) log(‖σ‖λ−1(H (X ,F|X ))⊗λ(F )
) =

�
Y

e(T Y ,∇T Y
) log T (X ,hF

)

−
1

2

�
Z

ẽ(T Z ,∇T Z ,0∇T Z
)
��
[(hF

)
−1∇F hF

].

If Z is oriented, odd dimensional, and hF is a flat metric, let gT Z
ε = ε2gT Z

+π∗gT Y .

Let Tε(Z ,hF ) be the Ray-Singer analytic torsion associated to gT Z
ε

. In [10], [11], Dai and

Melrose have calculated the asymptotics of Tε(Z ,hF ) as ε → 0. In [21], Lück, Schick and

Thielmann have generalized it to the case that F is unimodular, and that Z is odd or even.

In fact, by using [7, Theorems 0.1, 0.2], [27], they show their main result [21, Theorem

0.2] follows from the corresponding result on Reidemeister torsion which is essentially a

problem of finite dimensional linear algebra.

So the equation (6.6) extends the results of [11], [21], to the general case, where F is

not necessary unimodular.

7. Lott’s secondary index

Trying to understand the analytic torsion form in algebraical way, in [20], Lott defi-

ned a secondary K -group for flat complex Hermitian vector bundles on a C
∞ manifold.

Lott defined also the direct image (secondary index) in his secondary K -group for a C
∞

fibration with compact fibre, and the real analytic torsion form is one part of his secon-

dary index. We can consider it as a C
∞ analogue of Gillet-Soulé’s arithmetic K -Theory in

Arakelov goemetry.

Let W be a C
∞ manifold. The abelian group K̂ 0(W ) is generated by triples (F ,hF ,η),

where (F ,∇F ) is a flat complex vector bundle on W , hF is a Hermitian metric on F , and

η ∈ Ωev(W )/�����(d), subject to the following relations : If

C : 0 → F1 → F2 → F3 → 0(7.1)

is an exact sequence of flat complex vector bundles on W , hFi are hermitian metrics,

ηi ∈ Ωev(W )/��(d), and we form Ei := (Fi,h
Fi ,ηi), then E2 ∼ E1 + E3 if

η2 = η1 + η3 + T (C ,hC
) ,(7.2)

where T (C ,hC ) is the torsion form of Theorem 4.4 associated to (7.1) equipped with the

metric hC induced by hFi .
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Lott shows that

(F ,hF ,η) , f (∇F ,hF
) − dη

extends to a map c′ : K̂ 0(W ) → Ω�
��
(W ), and he defines

K̄ 0
(W ) := ker(c′) .(7.3)

The assignment W , K̄ 0(W ) yields a homotopy invariant contravariant functor from

the category of manifolds to abelian groups.

We now consider a smooth fibre bundle π3 : W → S with compact fibre Z . We

further choose a horizontal distribution T H W . Lott defines the push-forward (π3)! :

K̄ 0(W ) → K̄ 0(S) by the assignment:

(7.4) (F ,hF ,η) ,�
q

(−1)q
(H q

(Z ,F|Z),h
H q(Z ,F|Z ),0)

+ (0,0,

�
Z

e(T Z ,∇T Z
) ∧ η − T (T H W ,gT Z ,hF

)) .

Lott proves well-definedness and independence of T H W and gT Z .

In [8], Bunke shows that Theorem 6.1 actually implies the functoriality of Lott’s se-

condary indices [20]. More precisely,

T 7.1. — Let π1 : W → V , π2 : V → S be smooth fibrations of manifolds

with compact fibre X ,Y . We have (π3)! = (π2)! ◦ (π1)! as maps from K̄ 0(W ) to K̄ 0(S).

R 7.1. — Let R be a commutative ring with unitary element. Lott also defined

K̄ 0
R (W ) for the tripes (F ,hFC ,η), where

1. F is a local system of finitely generated right-R-modules,

2. hFC is a hermitean metric of the corresponding flat complex vector bundle (FC,∇FC),

and

3. η ∈ Ωev(M )/�����(d),

By the same proof, Theorem 7.1 still holds.

References

[1] B N., G E. and V M., Heat kernels and the Dirac operator, Grundl. Math. Wiss. 298,
Springer, Berlin-Heidelberg-New York 1992.

[2] B J.-M., The index Theorem for families of Dirac operators: two heat equation proofs,
Invent.Math.,83 (1986), 91-151.

[3] B J.-M., Families of immersions, and higher analytic torsion, Astérisque 244, 1997.

[4] B J.-M. and G S., Families torsion and Morse functions, Astérisque 275, 2001.

[5] B J.-M. and L G., Complex immersions and Quillen metrics, Publ. Math. IHES., Vol. 74, 1991,
1-297.



40 X. MA

[6] B J.-M. and L J., Flat vector bundles, direct images and higher real analytic torsion, J.A.M.S.

8(1995), 291-363.

[7] B J.-M. and ZW., An extension of a Theorem by Cheeger and Müller, Astérisque 205, 1992.

[8] BU., On the functoriality of Lott’s secondary analytic index, math.DG/0003171.

[9] C J., Analytic torsion and the Heat Equation, Ann of Math, 109 (1979), 259-322.

[10] D X., Geometric Invariants and Their Adiabatic Limits, Proc. Symposia Pure Math. 54 (1993), part II,
145-156.

[11] D X., Melrose R.B., Adiabatic limit of the analytic torsion, Preprint.

[12] DW., WM., W B., A Parametrized Index Theorem for the Algebraic K-Theory Euler Class,
http://www.math.uiuc.edu/K-theory/0086/index.html.

[13] FW., Uber die Torsion einer überdeckrung, J. Reine Angew. Math. 173 (1935), 245-254.

[14] G P., H J., Principles of Algebraic Geometry, New-York,Wiley 1978.

[15] G A., Sur quelques points d’algèbre homologique, Tôhoku Math. J. 9, 1957, 119-221.

[16] I K., Parametrized Morse theory and its applications. Proceedings of the International Congress of
Mathematicians, Vol. I, II (Kyoto, 1990), 643–651, Math. Soc. Japan, Tokyo, 1991

[17] K J., Higher Franz-Reidemeister torsion: low-dimensional applications. Mapping class groups and
moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), 195–204, Contemp. Math., 150,
Amer. Math. Soc., Providence, RI, 1993.

[18] K P.F., MD., The projectivity of the moduli space of stable curves. I, Preliminaries on “det”
and “div”, Math. Scand. 39 (1976), 19-55.

[19] K K., Equivariant Reidemeister torsion on symmetric spaces, Math. Ann. 307 (1997), 57-69.

[20] L J., Secondary analytic indices, Regulars in analysis, Geometry and Number Theory. N.Schappacher,
A Reznikov(ed), Progress in Math. 171. Birkhäuse 2000.

[21] LW., S T., and T T., Torsion and fibrations, J. Reine Angew. Math, 498 (1998), 1-33.

[22] M X., Formes de torsion analytique et familles de submersions I, Bull.Soc.Math. France, 127 (1999), 541-
621.

[23] M X., Formes de torsion analytique et familles de submersions II, Asian J of Math, 4 (2000), 633-668.

[24] M X., Functoriality of real analytic torsion forms. Israel J of Math, to appear.

[25] M J., Whitehead torsion. Bull. Amer. Math. Soc. 72 1966 358–426.

[26] MW., Analytic torsion and R-torsion of Riemannian manifolds. Adv. in Math. 28 (1978), 233–305.

[27] MW., Analytic torsion and R-torsion for unimodular representations, J.A.M.S, 6 (1993), 721-753.

[28] R D.B., Singer I.M., R-torsion and the Laplacian on Riemannian Manifolds, Adv. in Math, 7 (1971),
145-210.

[29] R K., Homotopieringe und Linsenraüm, Hamburger Abhandl, 11 (1935), 102-109.

[30]  R G., Complexes à automorphismes et homéomorphie différentiable. Ann. Inst. Fourier Grenoble

2 (1950), 51–67 (1951).

Xiaonan MA
Institut für Mathematik
Humboldt-Universität zu Berlin
Rudower Chaussee 25
12489 Berlin (Germany)
� �������� ���	� �� �
 ��� �	���� ��	

Address after Dec 15, 2001
Centre de Mathématiques
École polytechnique
91128 Palaiseau Cedex (France)


