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ABSTRACT. An elliptic genus is defined and studied for a general orbifold. The
main result is the rigidity property of the genus.

1. Introduction

The elliptic genus was derived as a partition function in quantum field theory
[27]. Mathematically it is a beautiful combination of topology of manifolds, index
theory and modular forms (cf. [15], [10]). The elliptic genus for smooth manifolds
has been well-studied. Recently, Borisov and Libgober ([3], [4]) proposed some def-
initions of elliptic genus for certain singular spaces, especially for a complex orbifold
which is a global quotient M /G, where the finite group G acts holomorphically on
complex variety M. Similar definitions were introduced by string theorists in the
80s, in the study of orbifold string theory. One of their guiding principles is mod-
ular invariance. More recently orbifold string theory has attracted the attention of
geometers and topologists. For example Chen and Ruan (cf. [7], [23]) have defined
orbifold cohomology and orbifold quantum cohomology groups.

One of most important properties of the elliptic genus is its rigidity property
under compact connected Lie group actions. For smooth manifolds, the rigidity and
its generalizations have been well studied. Since the orbifold elliptic genus is the
partition function of an orbifold string theory, it is natural to expect the rigidity
property for the orbifold elliptic genus. Although the global quotients form a very
important class of orbifolds, many interesting orbifolds are not global quotients.
For example, most of the Calabi-Yau hypersurfaces of weighted projective spaces
are not global quotients. In this paper we define an elliptic genus for a general
orbifold which generalizes the definition of Borisov and Libgober, and prove their
rigidity property. We actually introduce a more general elliptic genus involving
twisted bundles and proved its rigidity. The idea of considering the weights in the
definition of orbifold elliptic genus comes from [3] and our proof of the K-theory
version of Witten’s rigidity theorems [21, §4], [22, §4]. The proof of rigidity is again
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88 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA

a combination of modular invariance and index theory, but now more complicated
combinatorics are involved in the definition and proof.

This paper is organized as follows: In Sections 1 and 2 we review the equivariant
index theorem on orbifolds. We define an orbifold elliptic genus and prove its
rigidity for almost complex orbifolds in Section 3. Finally in Section 4 we introduce
an orbifold elliptic genus for spin orbifolds; we will study its rigidity property on a
later occasion.

The authors would like to than Jian Zhou for many interesting discussions
regarding orbifold elliptic genus.

2. Equivariant index theorem for spin orbifolds

In this section and the next we recall notations for orbifolds, and explain the
equivariant index theorem for orbifolds (cf. [8, Chap. 14], [26]).

We first recall the definition of orbifolds !, which are called V-manifolds in [11],
(24].

We consider the pair (G,V), where V is a connected smooth manifold, G is
a finite group acting smoothly and effectively on V. A morphism @ : (G,V) —
(G', V") is a family of open embeddings ¢ : V — V' satisfying:

i) For each ¢ € ®, there is an injective group homomorphism X\, : G — G’
such that ¢ is A,-equivariant.

ii) For g € G', o € @, we define gp : V. — V' by (9¢)(z) = gp(z) for z € V. If
(99)(V) N p(V) # 6, then g € A,(G).

iii) For ¢ € ®, we have ® = {gp, g € G'}. This means G’ acts transitively on ®.

The morphism ® induces a unique open embedding i¢ : V/G — V'/G’ of orbit
spaces.

DEFINITION 2.1. An orbifold (X,U) is a paracompact Hausdorff space X to-
gether with a covering U of X consisting of connected open subsets such that

i) For U € U, V(U) = ((Gy,U) 5 U) is a ramified covering U — U giving an
identification U ~ U/Gy.

ii) For U,V € U,U C V, there is a morphism ¢y : (Gy,U) — (GV,V) that
covers the inclusion U C V.

iii) For U,V,W € U,U C V C W, we have pwu = pwv © pvu.

In the above definition, we can replace (G, V) by a category of manifolds with
an additional structure such as orientation, Riemannian metric or complex struc-
ture. We understand that the morphisms (and the groups) preserve the specified
structure. So we can define oriented, Riemannian or complex orbifolds.

REMARK 2.2. ([13, p143-144]) Let G be a compact Lie group (need not be
connected) and M a smooth manifold with a smooth G-action. We assume that
the action of G is effective and infinitesimally free. Then the quotient space M /G is
an orbifold. Reciprocally, any orbifold X can be presented this way. For example,

1The definition of orbifold in this paper is the reduced orbifold in the sense of Chen-Ruan
[7]. Let X be an orbifold in the sense of Chen-Ruan [7], let X;eq be the corrresponding reduced
orbifold. Then the elliptic operators and the charateristic classes on X will be reduced to the
corresponding ones on Xyeq (cf. Definition 2.7). This means to work on index theory, we only
need work on X eq.-
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ON ORBIFOLD ELLIPTIC GENUS 89

let O(X) be the total space of the associated tangential orthonormal frame bundle.
We know that O(X) is a smooth manifold and the action of the orthogonal group
O(n) (n = dim X) is infinitesimally free on O(X). The X is identified canonically
with the orbifold O(X)/O(n).

Let X be an oriented orbifold, with singular set ¥X. For z € X, there exists
a small neighbourhood (G, U,) 5 U, such that = 7, !(z) € U, is a fixed point
of G;. Such G; is unique up to isomorphisms for each z € X [24, p468]. Let (1),
(hL),---, (k&) be all the conjugacy classes in G. Let Zg, (h) be the centralizer

of hJ in G,. One also denotes by U+ the fixed points of ki in U,. There is a
natural bijection

(2.1) {(, (W)ly € Uz, j =1, ,py}
~ 110z, U5 | Ze, ().
So we can define globally [11, p77],

(2.2) X ={(z,(B))|lz € X,Ga £ 1L,j =1, ,ps}.

Then £X has a natural orbifold structure defined by

(2.3) {(Zo. ()KL, 085 = U2 )26, (D)} .
(z,Uz,3)

Here K is the kernel of the representation Zg, (hi) — Diffeo ((7,’5z JE). The number
m = |K}| is called the multiplicity of TX in X at (z,h%). Since the multiplicity
is locally constant on EX we may assign the multiplicity m; to each connected
component X; of TX. In a sense £X is a resolution of singularities of X.2

DEFINITION 2.3. A mapping 7 from an orbifold X to an orbifold X’ E called
smooth if for z € X,y = 7(x), there exist orbifold charts (G, U,), (Gy,U"y) to-
gether with a smooth mapping ¢ : U, — U 'y and a homomorphism p : G, — G,

such that ¢ is p-equivariant and ’7' o¢$ = moT1,. Thus we have the followmg
commutative diagram :

not oo,
'l x "'/l/
v, —» Uy

DEFINITION 2.4. An orbifold vector bundle £ over an orbifold (X U) is defined
as follows: £ is an orbifold and for U € U, (GU, pviéy —»U ) is a GU-equlvarlant
vector bundle and (G%,,&y) (resp. (G /Ku,U), KU = Ker(G€ — Diffeo(U))) is
the orbifold structure of ¢ (resp. X). In general GU does not act effectively on U
ie. Ky #{1}. If Gg acts effectively on U for U € U, we say £ is a proper orbifold
vector bundle.

REMARK 2.5. ([13, pl44] Let G be a compact Lie group acting effectively and
infinitesimally freely on M. Then each G-equivariant bundle E — M defines a
proper orbifold vector bundle E/G — M/G, and vice versa.

21t has nothing to do with of singularities by birational morphisms studied in algebraic
geometry.
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In the following, we will always denote by (G, Uy) (z € X) the orbifold chart as
above. For h € G, we have the following h-equivariant decomposition of TU, ®r C
as a real vector bundle on U},

(24) TU,®rC= @ NawPTU:@rC.

AeQN)0,1[
Here Ny () is the complex vector bundle over (73? with h acting by e*™* on it.
The complex conjugation provides a C anti-linear isomorphism between Ny ) and
N@1-x)(n)- If the order of h is even, this produces a real structure on N 1(h)> SO this
bundle is the complexification of a real vector bundle NR 1(n) on U k. Thus, TU is

isomorphic, as a real vector bundle, to

(2.5) TU,~ @ Naw N P10

AeQN]o, 1|
Note that Ny (resp. N f“(h)) extends to a complex (resp. real) vector bundle on
2

£ X. We will still denote them by Nx(n), N?(h).

Assume that a compact Lie group H acts differentiably on X. If v € H, let
X7 = {z € X,yz = z}. In the index theorem, we will use the following orbifold as
fixed point set of v which is a resolution of smgularltles of X7 [8, p180]. For z € X7,

then on local chart (Gg, U ), Vg acts on U, as a linear map. The compatlblhty
condition for v; means that there exists an automorphism « of G, such that for

each g € Gy, 7509 0751 = a(g). For h € Gy, let (h), = {gha(g)™!;9 € G,} be
the v conjugacy class in G,. Let

(26) TP ={(y,h) € Uz x Gal (b1 095)(v) = y, h1 € (), }.
Let Uy U2 be the fixed point set of h oy in (7,, then (71‘ 0 is connected, and

x € Ug groe,
For g € G, g acts on Ug,(;h)7 by the transformation

(y,h) = (9(y),gohoa(g)™).

Indeed, if (hovy)(y) =y, as a(g) " ovg = 15097 oz oy = 15 097", we know
(2.7) (ghoa(g) g o 9(y) = gho vy (y) = g(v).

Let Z) o = {9 € G, ghoa(g)™' = b}, K} 5 = Ker{Z] 5 — Diffeo(TUz""7)}.
Then
(2.8) (Z} 6. KR 6, Us?) = U220 o = UM /G,

defines an orbifold. We denote it by X7. Clearly, m(X7) = |K » ¢, | is local constant
on X.

DEFINITION 2.6. The oriented orbifold X is spin if there exists 2-sheeted cov-
ering of SO(X) (SO(X) is the oriented orthonormal frame bundle of TX), such
that for U € U, there exists a principal Spin(n) bundle Spin(U) on U, such that

Spin(X);y — SO(X)y is induced by Spin(U) — SO(U), and Spin(U) also verifies
the corresponding compatible condition.
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ON ORBIFOLD ELLIPTIC GENUS 91

Then spin(X) is clearly a smooth manifold.

Assume that orbifold X is spin. Let ATX be a metric on TX and S(TX) =
STHTX)® S~ (TX) the corresponding orbifold spinor bundle on X. Let ¢(-) be the
Clifford action of TX on S(TX). Let V5(TX) be the connection on S(T'X) induced
by the Levi-Civita connection VIX on TX. Let W be a complex orbifold vector
bundle on X. Let V" be a connection on W. Then VSTX)8W — y5(TX)g141®
VWY is a connection on S(TX)®W. Let T'(S*(TX)® W) be the set of C™ sections
of S¥(TX)®W on X. Let DX ® W be the Dirac operator on I'(ST(TX) ® W) to
(S~ (TX)®W), defined by

dim X
HTX)eW
(2.9) DXeW =Y c(e)Vs T
i=1

Here {e;} is an orthonormal basis of TX.

Let H be a compact Lie group. If ¥ € H acts on X and lifts to Spin(X) and
W, then V5(TX) is ~ invariant and we can always find a 7 invariant connection
VW on W. Note that DX ® W is a + invariant elliptic operator on X. For z € X,
let K¥ =Ker(G¥ 5 G;). On U™~ let N be the normal bundle of U**"7 in Uj,.

Let W0 be the subbundle of W on U, which is K" -invariant. Then W° extends
to a proper orbifold vector bundle on X. We have the following decompositions:

(2.10) N= P Noo Ny,

o<f<m

where Ny, Wy (resp. Ny) are complex (resp. real) vector bundles on which h o v
acts as multiplication by e®. Then VTX induces connection V¢ on Nj, and
VTX — gVNe g VTX" . Let R¥,R"" RNe RTX” be the curvatures of VW, VW°,
VMo, yTX" (YW° is the connection on W0 induced by V%).

DEFINITION 2.7. For h € G;,g=ho~g, 0 <0 <, set

(2.11) chy(W,V¥) =

1 _RW _RW°

E 3 | exe( )] = Tr[g ex(
h1€GY ,r(h1)=h

)],

- - iRT[‘jg
A(TT9, VT = det1/2("—)

sinh(= RTU?)
1 Ng —_ 'ldimNg 1/2 _ i Ng -1
Ag(No, Vv )_[n det (1 gexp(;-R ))] ,
AN, VY = T As(Ng, V).

0<O<m

If we denote by {z;,—z;} ( = 1,---,l) the Chern roots of Ny, TU9 (where
we consider Ny as a real vector bundle) such that Ilz; defines the orientation of Ny
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and Tﬁg,then
2. A9, v70) =TT 2/ sinh(Z
(212) (107,977 = [ 3 /ssb(F).
1 e%(“"j‘*‘io)
Ap(Ng, VNo) = 27 = —
(No, Hsmh (zj +10) jlllle’”i“"—-l

Recall that for v € H, the Lefschetz number Ind, (DX ® W), which is the index
of DX @ W if v = 1, is defined by

(213)  Ind, (DX ® W) = Try|[KerDX @ W — Try|CokerDX @ W .
By using the heat kernel, as in [8, Th. 14.1], we get

THEOREM 2.8. For v € H, we have the following equality:

(2.14) Ind,(DX@W) =) Fn%F) /F ar,

FeX~

where ar is the characteristic class
A\(Tﬁho"f!, VTﬁho’yﬂ )H0<9S1rzzfg (Ng, v e )Chhm, (VV, VW)
on Uy Tpadls

Let S! act differentiably on X. Let X5' ={z € X,v(z) = x,forally € S1}.
Let V be the canonical basis of Lie(S') = R. For z € X, let Vx be the smooth
vector field on (G, U,) corresponding to V. Then Vy is G-invariant [8, p181].
We still denote by Vx the corresponding smooth vector field on X. We have X -
{z € X,Vx(z) = 0}.

For z € X, let (1),---(hi),--- be the conjugacy classes of G,. Let Xs' =
{(z, (R)))|z € XS" hi € G,}. Then X5' has a natural orbifold structure defined
by

(2.15) {Zo, (/K2 Ok} — (0% )2, (h), (b))

where ﬁv =0 N {y € U,|Vx(y)=0} and K3V is the kernel of the natural map
Zg,(hl) — lefeo{UV }. ~
We have the following decomposition of smooth vector bundles on Up :
(2.16) Nany = ©;Nx ;)
N%(h) =®;>0Ny ; @ N?,o’

Tﬁh = @j>0N0,j ® Tﬁ";;,
wo = @)‘,jW)(\)j.

Note that N ;, N1 ;, No,; and Wf\) extend to complex vector bundles on X5 nd
v = e?™ ¢ S! acts on them as multiplication by e, Also, , and TUV

extend to real vector bundles on X Sl, and S! acts trivially on them. In fact,

TUR = T(:v/'";i ®vx0 No,w,r, Where Ny, r denotes the underling real bundle of the
complex vector bundle N, on which g € S! acts by multiplying by g¥. Since we can
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ON ORBIFOLD ELLIPTIC GENUS 93

choose either N, or N, as the complex vector bundle for Ny R, in what follows, we
always assume N 1) Ny,; are zero if j < 0.

By (2.16), for given a € C, the eigenspace of h o v with eigenvalue a is equal
to the sum of the above elements N} ; such that

(2.17) 2 +td) = ¢

Let A C R consist of a € R such that there exists € X Sl, such that more than

one non-zero N, ; on (73]’ is in the eigenspace of h o v with eigenvalue emia  As
X is compact, A is a discrete set of R.

If y = e2™t t € R\ A, then X” = X5 by the construction. An immediate
consequence of Theorem 2.8 is the following.

THEOREM 2.9. Under the condition of Theorem 2.8, fort € R\ A, v = e*"%,
we have

1
(2.18) d,(DX W)= 3 o [ an,
poyy m(F) Jr
FeXSs
where ar is the characteristic class
AT, VTR 5, ; EmOHD Wy, v7°)

0, ;i3 4im Mas det?/2 (1 _ e2mi(Atts) exp(%RNA,j))

on Uk.
3. Equivariant index theorem for almost complex orbifolds

If X is an almost complex orbifold, then on the orbifold chart (G, (7,) for
z € X, we have the following h-equivariant decomposition of TU, as a complex
vector bundle on U

(3.1) Tﬁz ~ @ N)‘(h).
AeQN(o,1]

Here Nj(x) are complex vector bundles over U':,’} with h acting by e2™** on it, and

Nony is Tﬁ'f; Again Ny () extends to a complex vector bundle on TX. We will
still denote it by Ny)-

Let W be an orbifold complex vector bundle on X. Let DX ® W be the Spin®
Dirac operator on A(T*(®Y) X) ® W [16, Appendix D].

Let H be a compact Lie group acting on X. We assume that the action H
on X lifts on W, and preserves the complex structures of TX and W. Now for
v € H, the decomposition (2.10) on ﬁa(ch) " also preserves the complex structure of
the normal bundle N. We denote by RN the curvature of V¥ as complex vector
bundle. Then

(3.2) N= @ N,
0<f<2m

wo= P We.
0<0<2w

Here Ny, Wy are complex vector bundles on which h o v acts as multiplication by
e*®. The following theorem is proved in [8, Th. 14.1].
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THEOREM 3.1. Let

~ rrhovyr - TU""0 3
Td(TT", vTT" U)=det< il [2in )

1- exp(—RTf"ho-y‘7 /2im)
be the Chern-Weil Todd form of TU"Yo. Then we have
1
(3.3) Ind,(DX@W)= Y —— / aF.
m(F) Jr
FeX~
Here on (7’”75, arp 1s the characteristic class

TAd(TT 5, VT0""7 )ehyon (W, VW)
det(1 — (h o) exp(3= RN))

If H=S', on 17{} as in (2.15), we have the following decomposition of complex
vector bundles,

Ny = ®;Nan),;
TU" = &Ny ; & TU.

Here Nj(n),j, No,; extend to complex vector bundles on XS and vy = e?it ¢ §1
acts on them as multiplication by e2"%*, By Theorem 3.1, we get

THEOREM 3.2. Under the condition of Theorem 8.1, fort € R\ A, v = 2™,

we have
1
Ind, (DX @ W) = ——/ap.
A ) ZSI ) e
FeX

Here on (7"}, ar 18 the characteristic class
TA(TTE, VTOV) S, | e2mi+tideh (WP, vW°)
H,\Jdet(l — e2mi(A+tj) exp(é‘;_rRNA,j))

Note that we can also get Theorems 2.9 and 3.2 from [26, Theorem 1].

4. Elliptic genus for almost complex orbifolds

In this section, we define an elliptic genus for a general almost complex orbifold
and prove its rigidity property. We are using the setting of Section 2.
For 7€ H= {r € C;ImT >0}, ¢ = €27, t € C, let

(4.1) 6(t,7) = c(q)g"/®2sin(mt) [[oe; (1 — g*e? ) [Tre, (1 — gke2").
be the classical Jacobi theta function [6], where c(q) = [[re, (1 — ¢¥). Set

80(» T) |
ot
Recall the following transformation formulas for the theta-functions [6]:

(4.3) 0t +1,7) = —6(¢, 1), 0t+7,7)= —q_1/2e-2’r“9(t,7'),

t 1 1 T mit? i
9(;’_;)__\/;8 = 0(t,7), O, T+1)=e<6(t,T).

i

(4.2) 6'(0,7) =
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ON ORBIFOLD ELLIPTIC GENUS 95

For a complex or real vector bundle F' on a manifold X, let

(4.4) Sym,(F) =1+ gF + ¢°Sym*F + -+ -,
Ay(F)=1+qF + @N*F +---,

be the symmetric and the exterior power operations on F', respectively.

Let X be an almost complex orbifold, and dimc X = [. In this Section, all
vector bundles are complex.

Under the notation of (3.1), let F(x,h) = >, Adimg Nj) be the fermionic

shift, then F' : X U £X - Q is locally constant. For a connected component
X; C XUZX , we define F(X;) to be the values of F on Xj.

Let W be a proper orbifold complex vector bundle on X with dimcW =
m; then WO in (3.2) is W. Now for the vector bundle W, the fermionic shift
F(X;,W) =), Adim W) is well defined on each connected component X; C X U

XX. Forz e X,y = €2™2 we use the orbifold chart (Gg,U,). For h € G, by
(3.1), we define on U?,

(4.5)

OremnTX)= @ (@ (Acy-rg-r00 Ny @A_ygmrnNaw) )
AeQn[o,1] k=1

oo
® (® (Squk—l-f-)\(h)N;(h) ® S}’mqk—k(h) N)\(h)))
A€QN]0,1[ k=1

é (Squk Ng ® Sym g« No),

k=1

o
eg’z,(h) (TXIW) = ® (® (A_y—1qk—1+,\(h) W)T(h) ® A__qu—)\(h)WA(h)))
A€QN[0,1[ k=1

oo
® (® (Squk—1+z\(h)N;(h) ® Squk—»\(h)N)‘(h)))
A€QN]0,1[ k=1
oo

X (squkNg ® squkNo).
k=1
One verifies that each coefficient of ¢* (a € Q) in ©] _ ,)(T'X) and O] _ ,,(TX|W)

defines an orbifold vector bundle on £X. We denote the restrictions of e; 2,(h) (TX)

and ©F ) (T X|W) to the connected component X; of X UZX by ©; x,(TX) and
©; x,(TX|W) respectively. Note that ©] x (TX) is the usual Witten element on
X; (see [10] and [27]). Also if X is a manifold the elliptic genus defined here is the
Witten element on X :

(46) ©I(TX)=

é (Ayrgmr T"X @ A_yu TX) é (SympT* X ® SymyTX).
k=1 k=1
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96 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA
DEFINITION 4.1. The orbifold elliptic genus of X is defined to be

(4.7) Fy,q)=y* Yy F&IImd(DX @ 67 x, (TX)).
XiCXUE,)\X

More generally, we define the orbifold elliptic genus associated to W as

(48) F(y,q,W)=y% Yy FEWnd(DX g ez x (TX|W)).
X;CXUEX

If X is a global quotient M /G where the action of a finite group G on an almost
complex manifold M preserves its complex structure, the equation (4.7) coincides
with 3, Definition 4.1].

We next prove that the orbifold elliptic genus is rigid for an S* action on X.

Let S! act on X, preserving the complex structure on T'X, and lifting to W.
We define the Lefschetz number for v € S,

49) Fy(y,q,W)=y% Y  y F&Wd,(D¥ @6y, (TX|W)).
X;CXUSX

Let P be a compact manifold with an infinitesimally free action by a compact
Lie group G (need not be connected), with X = P/G the corresponding orbifold.
We still denote by W the corresponding vector bundle on P for W. Then Kx =
det(T(l’O)X ) and Ky = det W are naturally induced by complex line bundles on P,
which we will still denote by Kx, Ky. We may also consider Kx, Ky as orbifold
line bundles on X.

We will assume that S* acts on P and commutes with the G-action such that it
induces the S action on X (For example, S* acts naturally on SO(X), the oriented
orthonormal frame bundle of TX, and induces the S! action on X.).

Recall that the equivariant cohomology group Hg, (P, Z) of P is defined by

(4.10) H% (P,Z) = H*(P xs1 ES',Z).

where ES! is the universal S'-principal bundle over the classifying space BS® of
S'. So H (P, Z) is a module over H*(BS',Z) induced by the projection 7 :
P xg1 ES' — BS'. Let py(W)s1,p1(TX)s1 € H%, (P, Z) be the equivariant first
Pontrjagin classes of W and T'X respectively. Also recall that

(4.11) H*(BS',Z) = Z[u]

with u a generator of degree 2.
Recall from [17, Theorem B] that for smooth manifold X one needs the condi-
tions

(4.12) pl(W—TX)Sl =0, C](W—TX)SI =0.

for the rigidity theorem. .
Note that if the connected component X; of XUY.X is defined by (Uk, Zg,(h)),
for g € Zg, (h), set Up? = {b € Uy|hb = gb = b, Vx(b) = 0}. Then the connected

component X; of X7" is defined by (U"}’g v Zzs,(h)(9)). We have the following
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ON ORBIFOLD ELLIPTIC GENUS 97

decomposition of complex vector bundles on U"}’g ,

(4.13) TU, = >, Nx(h) A(g),v:
A(h),A\(g)€EQNI0,1[,v€Z
W= Z Win),A(g),0-

A(h),A(9)€QN[0,1[,veZ

where g,h € G, (resp. v = €™ € S') act on Ny, A(9),vs Wah) A(g),v 88 multi-
plication by e27A(9) 2miA(h) (resp, e27it). Let 2mx)‘(h),/\(g)’v, 2w (1) A(g)w DO
the formal Chern roots of Ny a(g),vs Wa(n),A(g),v TesPectively. To simplif}; the
notation, we will omit the superscript j.

Then Ny (n),x(g),v> Wa(h),\(g),v €Xtend to orbifold vector bundles on X;x. Now
the natural generalization of (4.12) for orbifolds is the following: there exists n € N,

such that on each connected component X;; of Xf '

(4.14) 3 [(wi(h)y)‘(g)’u + Mg) — TA(R) + vu)?
A(h),A(9),v,5

— (@ + A9) = TAR) + v0)?| = n7u? € H' (Xar, Q)

(415) D (W T M)~ TAR) +ou)
AR),A(9),0]
= Y @mage A = TAR) +vu) =0 € H* (X, Q)1 ul.
A(h),A(9),v,3

THEOREM 4.2. Assume that S acts on P inducing the S*-action on X, and
lifts to W, and c;(W) =0 in H*(P,Z). Also assume that there exists n € Z such
that equations (4.14) and (4.15) hold. Then we have

i) If n =0, then F,(y,q, W) is constant on vy € S.

i) If n <0, then F,(y,q, W) =0.

Note that, in case W = T'X, the conditions (4.14), (4.15) are automatic, and
as a consequence we get the rigidity and vanishing theorems for the usual orbifold
elliptic genus F(y,q). In particular we know that for a Calabi-Yau almost complex
orbifold manifold X, F(y, q) is rigid for any y.

Proof: To prove Theorem 3.1, we only need prove for any N € N, N > 1,
i) and ii) holds for any N-th root of unity y = €****. From now on, we assume
that y is an N-th root of unity. Using Theorem 3.2, for v = €2 t € R\ A4,
y= 27r1,z ,q= e21ri1', we get

m 1

(416)  Fy(y,q,W)=y% Y yFxW My / ar,

puyiy m(F) F
X;CXUrX FCX:?

Recall that Vx is the smooth vector field generated by .S Laction on X. For z € X,
take the orbifold chart (G, Us). If X; C X U X is represented by U"/Zg, (k) on
U, as in (2.3), the normal bundle Nx,gv = NU‘;;,g/U,, of Uy, 9 in U,’; extends to

an orbifold vector bundle on )~(f *. By Theorem 3.2, the contribution of the chart
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98 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA

(Gq, Us) for Ind, (DX ® ©Z x (TX|W)) is

wr 1 / Td(TUy*)chgor (€5 ;. o (TXIW))
1Ze. (M) i e, Jute  det(1—(gov)e 7R Moy
Let
(4.18) Ny, = Z Ni(hy,\(9),00
A(h),A(9)€QN[0,1]
W, = Z W), A(g),0-

A(h),A(9)€QN[0,1]

As the vector ﬁeld~VX commutes with the action of G, N, and W, extend to
vector bundles on X5
For a holomorphic function f(x) we denote by

f@)Mamr@.0) = [T 1@ ) r000)
J

the symmetric polynomial which gives characteristic class of Ny(x), a(g),» €tc. Let

FA,(y,q,W)Iﬁz be the contribution of the chart (G, U,) for F,(y,q,W). Then by
(4.17) we have

(4.19)

F’Y(yaqa I/V)“"jz =

S yEEEw) /
Uys

z| gh=hg;g,h€G,

Td(TUy?)chgoy©7 , 1y (TX|W)
det(1 — (goy)e~miR X0V

_ —F(X,W) (2miz)(No(h),0(9),0)
= Z y? :
G| gh=hg;g,h€G. vle [g)0(1 — E2mEFMNOF) (Noh) 5(g) )

y—lqk— 1+A(h) e27ri(——w——)\(g)-—t‘u))

+00 (1 _
x H H H ( (1 = g TR gZri—z—A(g)—))

k=1 A(g),v A(h)>0
(1 _ qu—)\(h)621ri(w+>\(g)+tv))(W)‘(h) A9) v)
(]_ _ qk—-)\(h)e21ri(z+)\(g)+t'u))(N/\(h)’)‘(g)’v) )

(1_y qk 1 27!'7-(_10 A(g) t’U))( que2wi(w+)\(g)+tv))(Wo(h)v)‘(g)vv)
(1 — gke2mi(—==A(9)~t)) (1 — gke2mi(a+A(0)+t)) (Ny(y r(g).0)

X

_ (i_lc(q)ql/S)l—m |C,} Z / (2miz)(No(h),0(g),0)

gh hg;g,h€G

g H (0w + A(g) — TA(R) + z + tv, 7)™ 2m=A M) (Wy () A(o), v)
O(m + )\( ) - T)\(h) + tv T)(N/\(h ):A(g),v )

A(h),A(g),v

Here we have used (4.1), (4.15) to get the last equality of (4.19).
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ON ORBIFOLD ELLIPTIC GENUS 99

If we consider F,(y,q, W) as a function of (¢, z,7), we can extend it to a mero-
morphic function on C x H x C. From now on, we denote

m— 10(0 T)

(7 ela)a)" G2 F w0, W)
by F(t,T,z). Set
00,7
(4200 F(t,7,2)5, = (" e(q)g/®)™ (( )zn Fy(y,9,W) g,
Now, the equation (4.14) implies the equalities
(4.21) Y. Wmawe— D Bwawe =0
A(h),A(g),v A(h),A(g),v
Y. vuama@e— D, Y EamA@w =0,
A(h),A(9) A(h),A(9)
Z A(R)A(g) (dim Wiy, ag) — dim Na(ny ag)) =0,
A(h),A(9)
Y ARy (dimWag),a(g),0 — dim Nagy,ag),e) =0
A(h),A(g),v
Y M (dimWimy,agg),e — dim Nany ag)) =0,
A(h),A(g),v
Z )\(g)z(dim W)\(g) d dim N)\(g)) = 0,
Xg)

sz(dim W, —dim N,) = n.

By (4.1), for a,b € 2Z, k € N,
(4.22)  O(z+k(t+ar +b),7) = e'_7ri(2ka1:+2k2at+k2a2r)9(1 + kt, 7).
As ¢;(Kw) =0 in H*(P,Z), by the same argument as [10, §8] or {22, Lemma 2.1,
Remark 2.6], ), vdim W, is constant on each connected component of X.
By (4.19), (4.21), (4.22), we know for a,b € 2Z,
(4.23) F(t+ar +b,7,z2) = e~ 2mza X, vdimW, e“"""(“2r+2“t)F(t, T, 2).
Especially, for a,b € 2NZ,

F(t+ar+b,1,2) = e_”"(“z"”“t)F(t, T, 2).

For A = ( Z 2 ) € SLy(Z), we define its modular transformation on C x H by

t at+b
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100 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA

a b

By (4.19), under the action A = < c d ) € SLy(Z), we have

o e
( ( )) e—wictz/(CT+d)0(07T)
AL Tt i)

For g, h € G, by looking at the degree 2dimc U"}’g part, that is the dimc U"}’g -
th homogeneous terms of the polynomials in z,w’s, on both sides of the following
equation, we get

e2miczw(er+d) gy (er 4 d) + M(g)(eT + d)
4.26 / z) (N, [
( ) UC’Q( )Non),0(9).0) A(h}'/;[(g),v O(z(cr +d) + (er + d)A(9)

—(ar + BIA(R) + z(cT + d) + tv, T)(Wx(h),x(g),v)]
—(a7 + b)A(h) + tv, T)(Na(h),A(9),0)

e2miezv g (yw + \(g)(er + d)
= ) (N,
/U‘r;,g( ) (No),0(9).0) )‘(h)]-:\-[(g), [ 6(z + (cm + d)A(g)

—(at + b)A(h) + 2(cT + d) + tv, ) (Wi(n),(9), v)]
—(at + b)A(h) + tv, T)(Nx(n),r(g)v)

By (4.3), (4.19), (4.21), (4.25) and (4.26), we easily derive the following identity:

o 1 l ﬂicntz/(cr+d)___._0.@_’_’r)l—
(427) F(AQt,7),2)5, = 1Gal (cr +d)e 0(z(ct +d), 7)™
3 / (2miz) (No(h),0(9),0)
gh=hg;g,h€G
« H { (e2mcz((w+()\(9)‘ZTTI?’\(h)))(cr+d)+w)e—zﬂz}‘(h)) (W)\(h),)\(g),v)

A(h),A(g),v
O(w + (e + d)A(g) — (at + b)A(R) + z(cT + d) + tv, 7)(Wan),A(9),v) }
0(z + (cm + d)A(g) — (a7 + b)A(R) + tv, T)(Nan),A(g) ) '
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ON ORBIFOLD ELLIPTIC GENUS 101

By (4.3), (4.15), (4.21), (4.22), (4.27), we have

J(er+a) 0(z(cT +d), 7)™
0'(0,7)¢

X /U";'g(%iw)(No(h)’o(g)’O)
gh=nhg;g, x

[ eZ'lricz(d)\(g)—b)\(h)+'r(c/\(g)—a)\(h.))) e21ricz(w+tv)

(4.28) (cr +d) "t mient F(A(t,7),2) 5,

1
|G|

A(R),A(g)v

x e—-21riz(c)\(g)——az\(h)+)\(g_°h°))(c'r+d)e—27riz)\(h)) (W)\(h),)\(g),'u)

0(z + A(g?h°) — TA(g=°h®) + tv, T)(Na(n),A(g),v)
1 .
=G /Us’g(zﬂzx)(NO(h),O(g),O)
H [ e27ricz(w+tv)e—21riz(c‘r+d))\(g“°h“))
A(h),A(g),v
O(w + A(g?h=%) — TA(g7°h%) + z(cT + d) + tv, T)(W)\(h),,\(g),v):l

o 0(’(1) + /\(gdh_b) - T)\(g_cha) + Z(CT + d) + tv, T)(W,\(h),)‘(g),v):l

gh=hg;g9,h€G4

(W) A9),0)

0(z + A(g¢h=°) — TA(g=°h®) + tv, 7) (Nx(h),A(g),0)

Recall that c;(Kw) = 0; this implies that ), vdim W, is constant on each con-

nected component of X.

Now, observe that if A = ( (cl 2

pairs of commuting elements in G, the elements g~°h®, g%h~? run through all pairs
of commuting elements in G, as well. Then by (4.28),

) € SLy(Z), then as g,h run through all

(4.29) F(A(t,T),2) = e2™icz Lo vdimWo (o7 o d)le”cmz/("“Ld)F(t, 7, (cr + d)z).

The following lemma implies that the index theory comes in to cancel part of
the poles of the functions F'.

LEMMA 4.3. For z € C, the function F(t,T,z) is holomorphic in (t,7) for
(t,7) e R x H.

The proof of the above Lemma is the same as the proof of [17, Lemma 1.3] or
[19, Lemma 2.3]. To be complete, we include a proof here.

Proof of Lemma 4.3 : Let z = €*™ and M; = maxn,xo|v|, set My =
infej0,1[,Nagmy#0 {A 1 — A} under the notation of (4.13), and max, inf should also
consider for all the component of the fixe set of S'. Set M = M;/M,. Denote by
Dy C C? the domain

(4.30) g™ < |z| < |g|7M,0 < |q| < 1.

By (4.4), (4.19), we know that in Dys, F(t,7,2) has a convergent Laurent series
expansion of the form

(4.31) SN by "

i j=0
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102 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA

where L € N, the subscript ¢ means the sum on X;, each component of X U ZT)?,
L € N, and {b;;j(z)} are rational functions of z with possible poles on the unit
circle.

Now considered as a formal power series of g,

o0
y7 FEWIQ, % (TXIW) =) ai; (y)Vijd' /"

j=0
with V;; are S equivariant vector bundle on X;, and a;;(y) are polynomial on
y'/L. Note that the terms in the above two sums correspond to each other. Now,
we apply the Atiyah-Bott-Segal-Singer Lefschetz fixed point formula to each VA

fort e R\ A, we get e
(432) bij () = ai;(y)Ind, (DX @ V).
This implies that for t € R\ A,z = 2™,
N(3)
(4.33) bij(x)= > afz*.
I==N @)

for N(ij) some positive integer depending on 4, j and afj € C. Since both sides are
analytic functions of z, this equality holds for any z € C.

On the other hand, multiplying F(¢,7,2) by f(2) = [, ,4o(1 — 27 €™ @)W
(I = dim X) wih « running over all the connected component of S! fixed point set
of XU Ef(, we get holomorphic functions which have a convergent power series
expansion of the form Z;io cj(z)g?/L, with {c;j(z)} polynomial functions in Djy.
Comparing the above two expansions, one gets

(4.34) cj(z) = f() Z bi; (z)

for each j. So by the Weierstrass preparation theorem, we get F(t, T, z) is holomor-
phic in Dyy. O

Now, we return to the proof of Theorem 4.2. Note that the possible polar
divisors of F' in C x H are of the form ¢t = f(cr + d) with k,c,d,j integers and

(¢,d) = 1. Then there are integers a, b such that ad—bc = 1. Set A = ( ic _ab ) €
SL2(Z). We have
F(t,7,(—cr +a)2) = e~ 2micz Ly vdimWo (_ oy a)_’e”“"tz/(‘CT*“)F(A(t, ), z).

Now, if t = ?(c'r + d) is a polar divisor of F(t, T, z), then one polar divisor of
F(t,r,(—ct + a)z) is given by
(4.35) ! =E(c dr — b +d),

—cT+a jJ\ —cT+a

which exactly gives t = k/j. This contradicts Lemma 4.3.

This means F(t, T, z) is holomorphic function on C x H.

For fixed 7 € H, if F(-,7,2) isn’t identically zero, we let § be the contour
20+2s,20+2+2s7, 20+2+2(1—3)7, 20+2(1—35)7 (s € [0,1]), such that F(-, 7, 2)
does not have any zero on 6. Then by (4.23),

1 1 0
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ON ORBIFOLD ELLIPTIC GENUS 103

This means that F(t,7,2) has exactly 4n zeros inside §. Therefore, if n < 0,
F(t,7,z) must be identically zero. If n = 0, F(t,7,2) is a double periodic holo-
morphic function, it must be independent of ¢t. Thus we completes the proof of
Theorem 4.2. O

5. Elliptic genus for spin orbifolds

We are following the setting of Section 1.
For 7 € H = {r € C;Im7 > 0}, ¢ = ¥, let

oo oo
(5.1) 05(v, ) = c(q) H(l + gk—1/2e2mivy H(l 4 gb1/2g-2miv),

be the other three classical Jacobi theta-functions [6], where c(q) = I, (1 — ¢¥).

Let X be a compact orbifold, dimg X = 2n. We assume that X and X are
spin in the sense of Definition 2.6. For z € X, take the orbifold chart (G, (72) By
(2.5), for h € G, we define on (7;}

(5.2) @;,w’(h) (TX) = ® (® ( gk 1+>\(h)N:(h) ® Aqk—-)\(h)N)‘(h))
A€QN]0,1

e o]
® (Squk—l-}-)\(h)N:(h) ® Squk—m)N,\(h)))

k=1
oo oo
i@ (Aqk_% N?(h) ® Squk_%N?(h)) ® @ a* (TUh ) ® Sym (TUh))
=1 —

It is easy to verify that each coefficient of ¢* (a € Q) in @;’x’(h) (T'X) defines an

orbifold vector bundle on X UXX. We denote it by ©g.x,(TX) on the connected

component X; of X UEX. Especially, O, x(TX) is the usual Witten element

(5.3) 0L(TX) = @, ( +(TX) ® Symye (TX)).

on X. We propose the following definition for the elliptic genus of a spin orbifold:
DEFINITION 5.1. The orbifold elliptic genus of X is

(54)F(@)= 5 Ind (DX" ® (SHTX:) ® S~ (TX,) ® 6, x, (TX)).

X:CXUEX

Let S* act on X and preserve the spin structure of X U £X. We define the
Lefschetz number for v € S?

(55) Fop(a)= > Tndy (D% @ (SH(TX:) @ S™(TX:)) ® Oy x,(TX))
X:iCXUEX

On local chart (G, ﬁx), for h,g € G, gh = hg, so as in (2.5), on (7;;, we have

T R
(5.6) TU: =No® €D Naw ®Nijn)
A(h)€lo, 3
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104 CHONGYING DONG, KEFENG LIU, AND XIAONAN MA

here h acts on the real vector bundles Ny = Tﬁa’}, N f( ny 38 multiplication by 1, ™,
2

27 (

and h acts on complex vector bundles Ny;) as multiplication by e h). Now on

(73’5"9, the fixed point set of g on f/'f, we have the following decomposition

1
(5.7) N)\(h) = @ N,\(h),)\(g) ® @ N)\(h),l—)\(g) for 0< )\(h) < >
Ag)€l0,3] A(9)€]0,3(
No= P Noxg),
A9)€[0, 3]
R _
NEw= @D Niwaw:
Mg)€[0,3]

Here Ny(n),x(9) (A(R), A(g) € {0, 3}) are real vector bundles on U9, and Nah),A(9)
(for (A(h) or A(g) not in {0, 3})) are complex vector bundles on UM9. The elements
h,g act on Ny x(g) @s multiplication by e2™A(h) ¢2miA(9) respectively. Again
Ni(h),A(g) extends to a vector bundle on )?151

For a holomorphic function p(z) we denote by

p(z)(Nah),A(g)) = HP(GE]S(h),A(g))
J

the symmetric polynomial which gives characteristic class of Ny(s),x(g)- Then the
contribution of the chart (G, U,) for Fy,(q) is

i . 01(zo(n),009)>T)
9 Futn =iy 3 [, (e SR (o)
H 01($+)\(g)_T)‘(h)a7-)(N )
6(z + A(g) — TA(h),7) = WA

A(h)€{0,5},0SA(9)< %

(A(R),A(9))#(0,0)

01(xz + M(g) — 7A(h), T
I [ I 01((1‘ :-r /\((gg))—TA((h)),T))(N)‘(h)>)\(Q))

0<A(R)<} 0<A(9)<}

H 01(]; — )‘(g) — T)‘(h)’T) (N)\(h) 1-X( ))]
— — A

sori<y 0@ =Alg) = TA(R), )

We plan to return to the study of their rigidity and vanishing properties on a later

occasion.
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