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ORBIFOLDS AND ANALYTIC TORSIONS

XIAONAN MA

Abstract. In this paper, we calculate the behavior of the Quillen metric
by orbifold immersions. We thus extend a formula of Bismut-Lebeau to the
orbifold case.

Résumé. Dans cet article, on calcule le comportement de métrique de Quillen
par immersions d’orbifold. On étend ainsi une formule de Bismut-Lebeau au
cas d’orbifold.

0. Introduction

Let ξ be a Hermitian vector bundle on a compact Hermitian complex manifold
X . Let λ(ξ) =

⊗
i(detHi(X, ξ))(−1)i+1

be the inverse of the determinant of the
cohomology of ξ. Quillen [28] first defined a metric on λ(ξ) in the case where X is
a Riemann surface. Quillen metric is the product of the L2 metric on λ(ξ) by the
Ray-Singer analytic torsion of the Dolbeault complex. The logarithm of the Ray-
Singer analytic torsion [29] is a linear combination of derivatives at zero of the zeta
function of the Hodge Laplacians acting on smooth forms of various degrees. In
[10], Bismut, Gillet, and Soulé have extended it to complex manifolds. They have
established the anomaly formulas for Quillen metrics, which tell us the variation
of Quillen metrics on the metrics on ξ and TX by using some Bott-Chern classes.
Later, Bismut and Köhler [12] (cf. also [9], [18]) have extended the analytic torsion
of Ray-Singer to the analytic torsion forms T for a holomorphic submersion. In
particular, the equation on ∂∂

2iπT gives a refinement of the Grothendieck-Riemann-
Roch Theorem to the level of differential forms. They have also established the
corresponding anomaly formulas.

Let i : Y → X be an immersion of compact complex manifolds. Let η be a
holomorphic vector bundle on Y , and let (ξ, v) be a complex of holomorphic vector
bundles which provides a resolution of i∗η. Then by [23], the line λ−1(η)⊗λ(ξ) has
a nonzero canonical section σ. In [13], Bismut and Lebeau have given a formula
for the Quillen norm of σ in terms of Bott-Chern currents on X and of a genus R
introduced by Gillet and Soulé [18]. In [19], the result of [13] was used by Gillet and
Soulé to obtain an arithmetic Riemann-Roch Theorem in Arakelov geometry. More
recently, in [24] and their later works, Köhler and Roessler proved a Lefschetz fixed
point formula in Arakelov geometry, and the results on the equivariant analytic
torsion (forms) in [7], [14] play also an important role in their proof.

In this paper, we extend some results on analytic torsions to the orbifold case.
Historically, orbifold first appeared as V -manifolds in Satake’s extension [30] of
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the Gauss-Bonnet-Chern Theorem in 1957 and in Kawasaki’s extension [21] of the
Riemann-Roch Theorem in 1978. It turns out that orbifolds appear naturally in
mathematics and physics; for example, the symplectic reduction, the problems on
moduli spaces, and the orbifold string theory. In recent years, orbifolds became
a popular subject. We can find many interesting results and various aspects on
orbifolds in the recent work [1]. The Kawasaki-Riemann-Roch Theorem has also
found many applications, thus it is a natural pursuit to understand “secondary”
spectral invariants such as analytic torsions and η-invariants on orbifolds.

We will use the heat kernel methods to solve our problem. Thanks to finite
propagation speed of solutions of hyperbolic equations, we can localize the problem.
Since, locally, we have to meet G-manifolds, to generalize the results to the orbifold
case, we must well understand the situations of G-equivariant complex manifold
cases which were done in [6] and [27]. After localized, we can apply the techniques
of [6] and [27] to our case. We also hope our results have corresponding versions in
Arakelov geometry. In this direction, we establish the analytic part of “arithmetic
Kawasaki-Riemann-Roch Theorem”.

Now we explain our results in more detail. Let ξ be a holomorphic orbifold
vector bundle on a complex orbifold X . Let ΣX be the strata of X which has a
natural orbifold structure. Let mi be the multiplicity of connected component Xi

of X ∪ ΣX (cf. (1.2)).
In all the following formulas, we must consider the differential forms on X∪ΣX ,

not on X . For example, TdΣ(TX, gTX) is the Chern-Weil Todd form on X ∪ ΣX
associated to the holomorphic Hermitian connection on (TX, gTX), which appears
in Kawasaki’s formulas [21]. Other Chern-Weil forms will be denoted in a similar
way. In particular, the forms chΣ(ξ, hξ) on X ∪ΣX are the Chern character forms
of the maximum proper orbifold sub-bundle of (ξ, hξ) (cf. Section 1.2).

At first, we establish the anomaly formula for Quillen metrics on λ(ξ). Let
g′TX , h

′ξ be another couple of metrics on TX, ξ. Let || ||λ(ξ) (resp. || ||′λ(ξ))

be the Quillen metric on λ(ξ) associated to gTX , hξ (resp. g′TX , h
′ξ). In Section

1.2, we construct the Bott-Chern classes T̃d
Σ
(TX, gTX , g′TX) and c̃hΣ(ξ, hξ, h

′ξ)
on X ∪ ΣX .

The following result extends the anomaly formulas of [10, Theorem 1.23] to
orbifolds.

Theorem 0.1. Assume that the metrics gTX and g′TX are Kähler. Then

log
( || ||′2λ(ξ)

|| ||2λ(ξ)

)
=

∑
i

( 1
mi

∫
Xi

T̃d
Σ
(TX, gTX, g′TX)chΣ(ξ, hξ)(0.1)

+
1
mi

∫
Xi

TdΣ(TX, g′TX)c̃hΣ(ξ, hξ, h′ξ)
)
.

Let i : Y → X be an orbifold embedding of compact complex orbifolds. (Locally,
if π : U → V is a G-equivariant holomorphic map of complex manifolds with a
finite group G, then we say π : U/G → V/G is an immersion if π : U → V is an
immersion.) Let η be a holomorphic orbifold vector bundle on Y and let

(ξ, v) : 0 → ξm → · · · → ξ0 → 0(0.2)

be a holomorphic chain complex of orbifold vector bundles on X which, together
with a restriction map, r : ξ0|Y → η, provides a orbifold resolution of the sheaf
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i∗OY (η). Set λ(ξ) =
⊗m

i=0 λ(ξi)(−1)i

. Let σ be the canonical nonzero element of
the line λ−1(η) ⊗ λ(ξ).

Assume that TX, TY, ξ0, · · · , ξm, η are equipped with Hermitian metrics. Our
first assumption is that the metric gTX on TX is Kähler and that the metric gTY

on TY is induced by the metric gTX . Let N be the normal orbifold bundle to Y
in X , and let gN be the metric induced by gTX on N . We assume in addition
that assumption (A) in Bismut [3, Definition 1.5], is verified. i.e. that the metric
hξ0 , · · · , hξm on ξ0, · · · , ξm are in some sense compatible with the metrics gN , hη

on N, η.
In Section 4, we construct a sub-orbifold Y ′ of ΣX from the immersion i : Y →

X . Remark that, in general, Y ′ �= ΣY , and ΣY is not a sub-orbifold of ΣX . Let
TΣ(ξ, hξ) be the Bott-Chern current on X ∪ΣX constructed in (4.4), associated to
the complex (ξ, v), such that

(0.3)
∂∂

2iπ
TΣ(ξ, hξ) = (TdΣ)−1(N, gN )chΣ(η, hη)δY ∪Y ′ − chΣ(ξ, hξ).

Let T̃d
Σ
(TY, TX |Y , gTX) be the Bott-Chern class on Y ∪ Y ′ constructed as in

[8, §1f)], associated to the complex 0 → TY → TX |Y → N → 0, such that
(0.4)

∂∂

2iπ
T̃d

Σ
(TY, TX |Y , gTX) = TdΣ(TX, gTX) − TdΣ(TY, gTY )TdΣ(N, gN ).

Finally, let R(θ, x) be the power series introduced by [5]. We identify RΣ with
the corresponding additive genus as in (5.8).

Let mi,X be the multiplicity of connected components Xi of X ∪ ΣX . For
any connected component Y ′

j of Y ∪ Y ′, let mXi,Y ′
j

be the relative multiplicity of
Y ′

j ⊂ Xi (cf. Definition 1.6). In Section 6, we establish the following extension of
[13, Theorem 0.1].

Theorem 0.2. The following identity holds:

log
(
‖σ‖2

λ−1(η)⊗λ(ξ)

)
=

∑
i

1
mi,X

[
−

∫
Xi

TdΣ(TX, gTX)TΣ(ξ, hξ)

+
∑

j

1
mXi,Y ′

j

∫
Y ′

j

(Td−1)Σ(N, gN )T̃d
Σ
(TY |Y ′

j
, TX |Y ′

j
, gTX)chΣ(η, hη)

−
∑

j

1
mXi,Y ′

j

∫
Y ′

j

TdΣ(TX)RΣ(N)chΣ(η)
]
.

(0.5)

Needless to say, Theorems 0.1, 0.2 are direct consequences of [6, Theorems 2.5,
0.1] for quotients of manifolds by finite group actions. More precisely, let G be
a finite group and let ξ̃ be a holomorphic vector bundle on a compact complex
manifold X̃. If G acts holomorphically on X̃ and its action lifts on ξ̃, then ξ = ξ̃/G

is an orbifold vector bundle on X = X̃/G. Let G1 = Ker{G → Diffeo(X̃)}. Then
the group G/G1 acts effectively on X̃ and the G1-invariant part of ξ̃ forms a vector
bundle ξ̃G1 on X̃. Now C∞(X,Λ(T ∗(0,1)X) ⊗ ξ) is the G-invariant C∞ sections of
Λ(T ∗(0,1)X̃) ⊗ ξ̃ on X̃, i.e. the G/G1-invariant C∞ sections of Λ(T ∗(0,1)X̃) ⊗ ξ̃G1
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on X̃. Thus by [6, (2.11)]

(0.6) log
( || ||′2λ(ξ)

|| ||2λ(ξ)

)
=

1
|G|

∑
g∈G

log
( || ||′2

λ(ξ̃)

|| ||2
λ(ξ̃)

)
(g)

=
1

|G/G1|
∑

h∈G/G1

log
( || ||′2

λ(ξ̃G1 )

|| ||2
λ(ξ̃G1 )

)
(h).

Now by [6, Theorem 2.5] and (0.6), we get Theorem 0.1 when X = X̃/G, and
explain that only the maximum proper sub-bundle of ξ plays a role in our formulas
(0.1), (0.5).

This paper is organized as follows. In Section 1, we recall some general facts on
orbifolds. In Section 2, we construct the Quillen metrics for an orbifold, and prove
their anomaly formulas. The last four sections are concerned with the extension of
the result of [13] to an orbifold case. In Section 3, we describe the geometric setting
of the immersion problem. Also, we extend a result of [13, Theorem 2.1]. In Section
4, by using [11], we construct the Bott-Chern current TΣ(ξ, hξ). In Section 5, by
using the results of [5], we establish the corresponding results on the analytic torsion
forms associated to a short exact sequence of holomorphic Hermitian orbifold vector
bundles. In Section 6, we extend the result of [13] to an orbifold case, i.e. we prove
Theorem 0.2.

In the entire paper we use the superconnection formalism as in [5], [8]. In
particular, Trs is our notation of the supertrace.

1. Orbifolds and characteristic classes

This section is organized as follows. In Section 1.1, we recall the definition of an
orbifold [20]. In Section 1.2, we explain some characteristic classes on orbifolds.

1.1. Definition of an orbifold ([20]). We define a category Ms as follows: The
objects of Ms are the class of pairs (G,M) whereM is a connected smooth manifold
and G is a finite group acting effectively on M . Let (G,M) and (G′,M ′) be two
objects, then a morphism Φ : (G,M) → (G′,M ′) is a family of open embedding
ϕ : M →M ′ satisfying:

i) For each ϕ ∈ Φ, there is an injective group homomorphism λϕ : G→ G′ that
makes ϕ be λϕ-equivariant.

ii) For g ∈ G′, ϕ ∈ Φ, we define gϕ : M →M ′ by (gϕ)(x) = gϕ(x) for x ∈M . If
(gϕ)(M) ∩ ϕ(M) �= ∅, then g ∈ λϕ(G).

iii) For ϕ ∈ Φ, we have Φ = {gϕ, g ∈ G′}.
Definition 1.1. Let X be a paracompact Hausdorff space and let U be a covering
of X consisting of connected open subsets. We assume U satisfies the condition:

(1.1) For any x ∈ U ∩U ′, U, U ′ ∈ U , there is U ′′ ∈ U such that x ∈ U ′′ ⊂ U ∩U ′.

Then an orbifold structure V on X is the following:
i) For U ∈ U , V(U) = ((GU , Ũ) τ→ U) is a ramified covering Ũ → U giving an

identification U 
 Ũ/GU .
ii) For U, V ∈ U , U ⊂ V , there is a morphism ϕV U : (GU , Ũ) → (GV , Ṽ ) that

covers the inclusion U ⊂ V .
iii) For U, V,W ∈ U , U ⊂ V ⊂W , we have ϕWU = ϕWV ◦ ϕV U .
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If U ′ is a refinement of U satisfying (1.1), then there is an orbifold structure V ′

such that V ∪ V ′ is an orbifold structure. We consider V and V ′ to be equivalent.
Such an equivalence class is called an orbifold structure over X . So we may choose
U arbitrarily fine.

In the above definition, we can replace Ms by a category of manifolds with
an additional structure such as orientation, Riemannian metric or complex struc-
ture. We understand that the morphisms (and the groups) preserve the specified
structure. So we can define oriented, Riemannian or complex orbifolds.

Remark 1.2. Let P be a smooth manifold, and let H be a compact Lie group acting
on P . We assume that the action of H is locally free. Then the quotient space
P/H is an orbifold. Reciprocally, any orbifold X can be presented by this way,
with H = O(n)(n = dim X) [20, p. 76], [22, p. 144].

Let (X,V) be an orbifold. For each x ∈ X , we can choose a small neighborhood
(Gx, Ũx) → Ux such that x ∈ Ũx is a fixed point of Gx. (Such Gx is unique up
to isomorphisms for each x ∈ X [30, p. 468]). Let (1), (h1

x), · · · , (hρx
x ) be all the

conjugacy classes in Gx. Let ZGx(hj
x) be the centralizer of hj

x in Gx. One also

denotes by Ũhj
x

x the fixed points of hj
x over Ũx. Then we have a natural bijection

{(y, (hj
y))|y ∈ Ux, j = 1, · · · , ρy} 


ρx∐
j=1

Ũ
hj

x
x /ZGx(hj

x).(1.2)

So we can globally define

ΣX = {(x, (hj
x))|x ∈ X,Gx �= 1, j = 1, · · · , ρx}.(1.3)

Then ΣX has a natural orbifold structure defined by{
(ZGx(hj

x)/Kj
x, Ũ

hj
x

x ) → Ũ
hj

x
x /ZGx(hj

x)
}

(x,Ux,j)
.(1.4)

Here Kj
x is the kernel of the representation ZGx(hj

x) → Diffeo (Ũhj
x

x ). The number
m = |Kj

x| is called the multiplicity of ΣX in X at (x, hj
x). Since the multiplicity

is locally constant on ΣX , we may assign the multiplicity mi to each connected
component Xi of X ∪ ΣX .

Definition 1.3. An orbifold vector bundle ξ over an orbifold (X,V) is defined as
follows: ξ is an orbifold and for U ∈ U , (Gξ

U , p̃U : ξ̃U → Ũ) is a Gξ
U -equivariant vec-

tor bundle and (Gξ
U , ξ̃U ) (resp. (GU = Gξ

U/K
ξ
U , Ũ),Kξ

U = Ker(Gξ
U → Diffeo(Ũ)))

is the orbifold structure of ξ (resp. X). If Gξ
U acts effectively on Ũ for U ∈ U , i.e.

Kξ
U = {1}, we call ξ a proper orbifold vector bundle.

Remark 1.4. Let ξ be an orbifold vector bundle on (X,V). For U ∈ U , let ξ̃pr
U

be the maximum Kξ
U -invariant sub-bundle of ξ̃U on Ũ . Then (GU , ξ̃

pr
U ) defines a

proper orbifold vector bundle on (X,V); we denote it by ξpr.

Example. The (proper) orbifold tangent bundle TX on an orbifold X is defined
by (GU , T Ũ → Ũ), for U ∈ U .

Let ξ → X be an orbifold bundle. A section s : X → ξ is called C∞ (or Ck) if for
each U ∈ U , s|U is covered by a Gξ

U -invariant smooth (or Ck) section s̃U : Ũ → ξ̃U .
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If X is oriented, we define the integral
∫

X
ω for a form ω over X (i.e. a section

of Λ(T ∗X) over X) by: if supp ω ⊂ U ∈ U , then∫
X

ω =
1

|GU |
∫

Ũ

ω̃U .(1.5)

Definition 1.5. A Kähler form on a complex orbifold X with its complex structure
J is a real closed (1, 1)-form ω on X such that ω(J ·, ·) defines an orbifold metric
on TX .

In the following, if G does not act effectively on the connected manifold M ,
we will identify the couple (G,M) as an element (G/K,M) in Ms, where K =
Ker(G→ Diffeo(M)).

Definition 1.6. Let X,Y be two orbifolds. The map i : Y → X is said to define
an orbifold embedding, if i is injective and there exists U , U ′ open coverings of Y ,
X such that (GU , Ũ)U∈U , (GV , Ṽ )V ∈V are the orbifold structures of Y , X . For
U ∈ U , there is V ∈ V such that U = V ∩ Y and ĩ : Ũ → Ṽ is a GV -equivariant
embedding of Ũ into Ṽ that covers i : U → V , (GV , Ũ) = (GU , Ũ) in Ms. If
U1 ⊂ U2, U1, U2 ∈ U , there exist Vi ∈ V , Ui = Vi ∩ Y (i = 1, 2), and V1 ⊂ V2. We
will call Y a sub-orbifold of X , and the normal (orbifold) bundle N to Y in X

is well defined. Let KU = Ker{GV → Diffeo(Ũ)}. Then mX,Y = |KU | is locally
constant on Y ; we call mX,Y the relative multiplicity on Y .

In particular, if G is a finite group and ĩ : Ỹ → X̃ is an G-equivariant embedding
of complex manifolds, then i : Ỹ /G→ X̃/G is an orbifold embedding.

Definition 1.7. Let M,B be two orbifolds. The map π : M → B is said to define
an orbifold submersion if there exists U , U ′ open coverings of M , B, such that
π(U) ⊂ U ′, and (GU , Ũ)U∈U , (GV , Ṽ )V ∈V are the orbifold structures of M , B. For
U ∈ U , there is π̃ : Ũ → Ṽ an GU -equivariant submersion of Ũ onto Ṽ that covers
π : U → V = π(U), and (GU , Ṽ ) = (GV , Ṽ ) in Ms. If U1 ⊂ U2, U1, U2 ∈ U , then
Φπ(U2)π(U1) is induced by ΦU2U1 .

Remark 1.8. If π̃ : M̃ → B̃ is an G-equivariant submersion with compact fiber X̃
(here G is a finite group), then π : M̃/G → B̃/G is an orbifold submersion. More
generally, if π : M → B is a proper orbifold submersion from M onto B, then
for each b ∈ B, there exists a small neighborhood (Gb, Ṽb) → Vb, M̃b an orbifold,
such that π is induced by a Gb-equivariant orbifold submersion π̃b : M̃b → Ṽb with
compact fiber X .

1.2. Characteristic classes. If A is a (q, q) matrix, set

Td(A) = det(
A

1 − e−A
),

e(A) = det(A), ch(A) = Tr[exp(A)].

Definition 1.9. Let PX be the vector space of smooth forms on a complex orbifold
X , which are sums of forms of type (p, p). Let PX,0 be the vector space of the forms
α ∈ PX such that there exist smooth forms β, γ on X for which α = ∂β + ∂γ.

Let ξ be a holomorphic orbifold vector bundle on a complex orbifold X . Let
hξ be a Hermitian metric on ξ. Then on each local chart, (Gξ

U , p̃U : ξ̃U → Ũ) in
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Definition 1.3, hξ lifts to a Gξ
U -invariant Hermitian metric hξ̃ on ξ̃U . This uniquely

defines a holomorphic Hermitian connection ∇ξ̃ with curvature Rξ̃, thus there exists
a unique holomorphic Hermitian connection ∇ξ on (ξ, hξ) with curvature Rξ. The
form chΣ(ξ, hξ) is defined as follows: If Xi, a connected component of X ∪ ΣX , is
represented by Ũh (h ∈ GU ) over Ũ , then chΣ(ξ, hξ) over Ũh/ZGU (h) is defined by

1

|Kξ
U |

∑
g∈τ−1(h)

Tr
[
g exp(− Rξ̃

2πi
)
]
.

Here τ : Gξ
U → GU = Gξ

U/K
ξ
U is the natural projection.

The above definition was justified by the discussions after Theorem 0.2 and (1.6).
In fact hξ induces a Hermitian metric hξpr

on the maximum proper orbifold sub-
bundle ξpr of ξ. Let ∇ξpr

be the holomorphic Hermitian connection on (ξpr, hξpr
)

with curvature Rξpr
. Then on Ũh/ZGU (h),

chΣ(ξ, hξ) = Tr
[
h exp(−R

ξ̃pr

2πi
)
]

= chh(ξ̃pr, hξ̃pr
).(1.6)

If ξ is proper, we also define TdΣ(ξ, hξ), Td′Σ(ξ, hξ) on X ∪ ΣX as follows. Let
1, eiθ1, · · · , eiθq (0 < θj < 2π) be the locally constant distinct eigenvalues of h ∈ GU

acting on ξ̃ on Ũh, and let {ξ̃θi}q
i=0(θ0 = 0) be the corresponding eigenbundles.

Then on Ũh, ξ̃ splits holomorphically as an orthogonal sum ξ̃ =
⊕q

i=0 ξ̃
θi , thus

Rξ̃ =
⊕q

i=0R
ξ̃θi . We define TdΣ(ξ, hξ), Td′Σ(ξ, hξ) on Ũh/ZGU (h) by

TdΣ(ξ, hξ) := Tdh(ξ̃, hξ̃) = Td(
−Rξ̃θ0

2iπ
)

q∏
j=1

Td
e

(
−Rξ̃θj

2iπ
+ iθj),

(1.7)

Td′Σ(ξ, hξ) := Td′
h(ξ̃, hξ̃) =

∂

∂b

[
Td(

−Rξ̃θ0

2iπ
+ b)

q∏
j=1

Td
e

(
−Rξ̃θj

2iπ
+ iθj + b)

]
b=0

.

Then chΣ(ξ, hξ),TdΣ(ξ, hξ), Td′Σ(ξ, hξ) ∈ PX∪ΣX are closed on X ∪ΣX and their
cohomology classes do not depend on hξ, and we denote their cohomology classes
by chΣ(ξ), TdΣ(ξ), Td′Σ(ξ) ∈ H(X ∪ ΣX,C).

Let h′ξ be another couple of metrics on ξ. Observe that the construction in [8,
Remark 1.28, Theorem 1.29] is local and universal, thus we can at first work on each

Ũh, then glue together to get the unique classes T̃d
Σ
(ξ, hξ, h′ξ) and c̃hΣ(ξ, hξ, h′ξ)

in PX∪ΣX/PX∪ΣX,0 such that

∂∂

2iπ
T̃d

Σ
(ξ, hξ, h′ξ) = TdΣ(ξ, h′ξ) − TdΣ(ξ, hξ),(1.8)

∂∂

2iπ
c̃hΣ(ξ, hξ, h′ξ) = chΣ(ξ, h′ξ) − chΣ(ξ, hξ).

Let ξi(0 ≤ i ≤ m) be complex orbifold vector bundles. We assume there is a
covering U satisfying (1.1), such that for U ∈ U

i) (Gξ
U ,

⊕
i ξ̃

i
U ) → Ũ defines an orbifold vector bundle structure (ξ,V);

ii) Gξ
U (ξ̃i

U ) = ξ̃i
U , and (Gξ

U , ξ̃
i
U ) induces the orbifold structure of ξi.
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Definition 1.10. We call v : ξi+1 → ξi is a morphism of orbifold vector bundles if
there is a Gξ

U -equivariant morphism ṽ : ξ̃i+1
U → ξ̃i inducing the map v : ξi+1 → ξi

on U , for each U ∈ U . We call (ξi, v) a complex of orbifold bundles if for each i,
v : ξi+1 → ξi is a morphism of orbifold vector bundles and v2 = 0. If for each
U ∈ U , (ξ̃i

U , ṽ) is acyclic over Ũ , we call the complex (ξi, v) acyclic.

Let hξi

be Hermitian metrics on ξi. Then hξ =
⊕
hξi

is a Hermitian metric on
ξ.

If (ξ, v) is an acyclic complex of orbifold bundles, observe that the construction
in [8, (1.58), Corollary 1,30] is local and universal. Thus we can first work on each
Ũh to get c̃hh(ξ, hξ), which verifies

∂∂

2iπ
c̃hh(ξ, hξ) =

1

|Kξ
U |

∑
g∈τ−1(h)

(−1)iTr
[
g exp(−R

ξ̃i

2πi
)
]
.(1.9)

Then glue together to get a Bott-Chern form c̃hΣ(ξ, hξ) ∈ PX∪ΣX such that

∂∂

2iπ
c̃hΣ(ξ, hξ) =

k∑
i=0

(−1)ichΣ(ξi, hξi

).(1.10)

2. Quillen metrics and their anomaly formulas

In this section, we construct the Quillen metrics on the inverse of the deter-
minant of the cohomology of a holomorphic orbifold vector bundle, and establish
corresponding anomaly formulas. We extend some results of [10] to complex orb-
ifolds.

This section is organized as follows. In Section 2.1, we indicate some properties
of elliptic operators over an orbifold. In Section 2.2, by [10], we construct the
Quillen metrics. In Section 2.3, we prove our anomaly formulas.

In this section, we use the notation of Section 1.1.

2.1. Elliptic operator over an orbifold. Let (X,V) be a compact oriented Rie-
mannian orbifold of real dimension n. For x, y ∈ X , put

dX(x, y) = Infγ
{∑

i

∫ ti

ti−1
| ∂
∂t γ̃i(t)|dt

∣∣∣γ : [0, 1] → X, γ(0) = x, γ(1) = y, such that
there exist t0 = 0 < t1 < · · · < tk = 1, Ui ∈ U , γ([ti−1, ti]) ⊂ Ui,

and a C∞ map γ̃i : [ti−1, ti] → Ũi that covers γ|[ti−1,ti]

}
.

Then (X, dX) is a metric space.
Let (ξ, hξ), (η, hη) be (complex) Hermitian orbifold vector bundles over X and

for U ∈ U , let (GU , Ũ) τ→ U , (Gξ
U , p̃U : ξ̃U → Ũ), (Gη

U , p̃U : η̃U → Ũ) be defined in
Definition 1.3. We assume that for U ∈ U , Gξ

U = Gη
U . Let

Kξ
U = Ker(Gξ

U → Diffeo(Ũ)).

We denote by d̃(·, ·) the distance on Ũ with respect to gTX .
Let dvX be the Riemannian volume element on X with respect to the metric

gTX . Let pr1 and pr2 be the projections fromX×X onto the first and second factor
X , respectively. We denote by Ck(X, ξ) (k ∈ N) the Ck sections of ξ on X . A Ck-
section K(x, y) of pr∗1η⊗pr∗2ξ

∗ on X×X gives an operator T : C0(X, ξ) → Ck(X, η)
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defined by

Tσ(x) =
∫

X

K(x, y)σ(y)dvX (y).(2.1)

We call K the kernel of the operator T and we call T a smoothing operator if
k = +∞.

Let D : C∞(X, ξ) → C∞(X, η) be a linear map. We call D a differential operator
of order m if for each U ∈ U , D is presented by a Gξ

U -invariant differential operator
D̃U : C∞(Ũ , ξ̃) → C∞(Ũ , η̃) of order m. We call D a pseudo-differential operator
of order m if for each U ∈ U , there is a Gξ

U -invariant pseudo-differential operator
D̃U : C∞(Ũ , ξ̃) → C∞(Ũ , η̃) of order m such that: For any smooth partition of
unity {ϕU} subordinate to U and a family {ψU} of smooth functions satisfying
ϕUψU = ϕU and supp{ψU} ∈ U , the difference D − ΣUϕU D̃UψU is a smoothing
operator. If each D̃U is elliptic, we call D elliptic. For an elliptic pseudo-differential
operator, we can construct a parametrix [20, p. 82]. If D is also positive and ξ = η,
we can construct Pt(x, y) ∈ C∞(X ×X, pr∗1ξ ⊗ pr∗2ξ

∗) (t > 0) as the kernel of the
heat operator e−tD : C∞(X, ξ) → C∞(X, ξ) with respect to dvX as in [25, §3.6].

Before we state the asymptotic expansion of the heat kernel as t→ 0, we indicate
if D is a pseudo-differential operator of order m (m < −n − k, k ∈ N). Then the
operator D has a Ck-kernel. In fact, if D̃U has a Ck-kernel Q̃U (x̃1, x̃2) over Ũ × Ũ ,
then for x1, x2 ∈ U ,

QU (x1, x2) =
1

|Kξ
U |

∑
g∈Gξ

U

(g, 1)Q̃U (g−1x̃1, x̃2)(2.2)

is the kernel of the operator DU : C∞(U, ξ|U ) → C∞(U, η|U ), with τ(x̃i) = xi (i =
1, 2). Indeed, for s ∈ C∞(U, ξ|U ) with compact support, by definition,

(QUs)(x1) = (Q̃U s̃)(x̃1) =
∫

Ũ

Q̃U (x̃1, x̃2)s̃(x̃2)dvŨ (x̃2)

=
1

|Gξ
U |

∑
g∈Gξ

U

∫
Ũ

(g, 1)Q̃U (g−1x̃1, x̃2)s̃(x̃2)dvŨ (x̃2).

Proposition 2.1. Let H be a second order differential operator on ξ such that
σ2(H)(x, u) = |u|2 (u ∈ T ∗X). Let Pt(x, y) be the kernel of the heat operator
e−tH with respect to dvX . Then for each U ∈ U , there exists a smooth section
Φi ∈ C∞(Ũ × Ũ , pr∗1 ξ̃ ⊗ pr∗2ξ̃∗) such that for every k > n, x, y ∈ U , as t→ 0
(2.3)

Pt(x, y) = (4πt)−n/2 1

|Kξ
U |

∑
g∈Gξ

U

k∑
i=0

(g, 1)e
−d̃(g−1 x̃,ỹ)2

4t tiΦi(g−1x̃, ỹ) +O(tk−n/2).

On {(x, y) ∈ X ×X, d(x, y) > c > 0}, as t→ 0, we have Pt(x, y) = O(e−c2/4t).

Proof. By proceeding as in [2, §2.4, §2.5] or proceeding as in [31, II §7.13], and
using (2.2), we have Proposition 2.1. �
2.2. Quillen metrics. Let X be a compact complex orbifold of complex dimension
l. Let ξ be a holomorphic orbifold vector bundle on X .

Let OX be the sheaf over X of local GU -invariant holomorphic functions over
Ũ , for U ∈ U . Then by [15], (X,OX) is an analytic space. The local Gξ

U -invariant
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holomorphic sections of ξ̃ → Ũ also define a coherent analytic sheaf OX(ξ) over X
and as in (1.6),

OX(ξ) = OX(ξpr).(2.4)

Let Dp(ξ) be the sheaf of C∞ sections of Λp(T ∗(0,1)X)⊗ ξ over X . Then we have
the Dolbeault operator ∂

X
: Dp(ξ) → Dp+1(ξ) and an exact sequence of OX -sheaves

0 → OX(ξ) → D1(ξ) ∂
X

→ · · · ∂
X

→ Dl(ξ) → 0.(2.5)

Put
Ωp(X, ξ) = Γ(X,Dp(ξ)), Ω•(X, ξ) =

⊕
p

Ωp(X, ξ).

Then we have (Ω•(X, ξ), ∂
X

), the Dolbeault complex of C∞ sections of Λ(T ∗(0,1)X)
⊗ ξ over X :

0 → Ω0(X, ξ) ∂
X

→ · · · ∂
X

→ Ωl(X, ξ) → 0.(2.6)

The sheaves Dp(ξ) are fine [21], so their higher cohomology groups vanish. Thus

H(Ω•(X, ξ), ∂
X

) 
 H(X,OX(ξ)).(2.7)

In what follows, we also denote H(X,OX(ξ)) by H(X, ξ).
Let gTX , hξ be Hermitian metrics on TX, ξ. Let dvX be the Riemannian volume

form on X associated to gTX . Let 〈 〉Λ(T∗(0,1)X)⊗ξ be the Hermitian product
induced by gTX , hξ on Λ(T ∗(0,1)X) ⊗ ξ. The Hermitian product 〈 〉 on Ω•(X, ξ)
is defined by: If s, s′ ∈ Ω•(X, ξ), set

〈s, s′〉 =
( 1

2π

)dim X
∫

X

〈s, s′〉Λ(T∗(0,1)X)⊗ξ (x)dvX (x).(2.8)

Let ∂
X∗

be the formal adjoint of ∂
X

with respect to the Hermitian product (2.8)
associated to gTX , hξ. Set

DX = ∂
X

+ ∂
X∗
, K•(X, ξ) = KerDX .(2.9)

Then DX,2 = ∂
X
∂

X∗
+ ∂

X∗
∂

X
preserves Z-grading of Ω(X, ξ).

Proposition 2.2 (The Hodge Decomposition Theorem). There is an L2-orthogonal
direct sum decomposition of the ξ-value (0, p)-forms

Ωp(X, ξ) = K•(X, ξ) ⊕ Im∂
X ⊕ Im∂

X∗
.(2.10)

Proof. On each local chart U ∈ U , the lifting of D̃X
U on Ũ is elliptic and Gξ

U -

invariant, and σ(D̃X
U

2

)(u) = |u|2. Thus DX is a self-adjoint elliptic operator. By
[20, p. 82], we can construct a parametrix for DX . Now, we can proceed as
in [25, Theorems 3.5.5-3.5.7], and we know that there is an L2-orthogonal direct
decomposition

Ω(X, ξ) = KerDX,2 ⊕ ImDX,2.(2.11)

In fact KerDX = KerDX,2, so KerDX,2, Im∂
X
, Im∂

X∗
are orthogonal. Clearly,

ImDX,2 ⊂ Im∂
X

+ Im∂
X∗

. Using (2.11), we have Proposition 2.2. �
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From (2.7), (2.10), and (2.11), there is a canonical identification

K•(X, ξ) 
 H•(X, ξ).(2.12)

Let hH(X,ξ) be the corresponding metric on H(X, ξ) induced by the restriction of
the L2-metric (2.8) to K(X, ξ) via the canonical isomorphism (2.12).

Let λ(ξ) be the inverse of the determinant of the cohomology of ξ on X ,

(2.13) detH(X, ξ) =
dim X⊗
i=0

(detHi(X, ξ))(−1)i

, λ(ξ) = (detH(X, ξ))−1.

Let | |λ(ξ) be the metric on λ(ξ) induced by hH(X,ξ) . The metric | |λ(ξ) will be
called the L2-metric on λ(ξ).

Let P be the orthogonal projection operator from Ω•(X, ξ) on K(X, ξ) with
respect to the Hermitian product (2.8). Set P⊥ = 1 − P . Let N be the number
operator defining the Z-grading of Ω•(X, ξ), i.e. N acts by multiplication by k on
Ωk(X, ξ). For s ∈ C,Re(s) > dimX , set

θξ(s) = −Trs[N(DX,2)−sP⊥] =
−1
Γ(s)

∫ +∞

0

ts−1Trs

[
Nexp(−tDX,2)P⊥

]
dt.(2.14)

From (2.3), (2.14), θξ(s) extends to a meromorphic function of s ∈ C which is
holomorphic at s = 0.

Following [28], [10], we now define the Quillen metric on the line λ(ξ).

Definition 2.3. Let || ||λ(ξ) be the Quillen metric on the line λ(ξ),

|| ||λ(ξ) = | |λ(ξ) exp
(
− 1

2
∂θξ

∂s
(0)

)
.(2.15)

2.3. Anomaly formulas for Quillen metrics. Let g′TX , h′ξ be another couple
of metrics on TX, ξ. We denote with a ’ the objects attached to g′TX , h′ξ. Let

T̃d
Σ
(TX, gTX , g′TX) and c̃hΣ(ξ, hξ, h′ξ) in PX∪ΣX/PX∪ΣX,0 be defined as in (1.8).

Let mi be the multiplicity of each connected component Xi of X ∪ ΣX .

Proof of Theorem 0.1. From (1.6), (2.4), (2.6), we only need to prove Theorem
0.1 for a proper orbifold vector bundle. Assume now that ξ is a proper orbifold
vector bundle. Let c ∈ [0, 1] → (gTX

c , hξ
c) be a smooth family of Hermitian met-

rics on TX, ξ such that for any c, gTX
c is Kähler and also (gTX

0 , hξ
0) = (gTX , hξ),

(gTX
1 , hξ

1) = (g′TX , h′ξ). Let || ||λ(ξ),c be the corresponding Quillen metric on
λ(ξ).

Let ∂
X∗
c be the adjoint of ∂

X
with respect to (gTX

c , hξ
c). Set DX

c = ∂
X

+ ∂
X∗
c .

Let ∗c be the Hodge star operator attached to gTX
c . Set

Qc = − ∗−1
c

∂∗c

∂c
− (hξ

c)
−1 ∂h

ξ
c

∂c
.(2.16)

Using (2.3), as t→ 0, we have an asymptotic expansion

Trs[Qc exp(−tDX,2
c )] =

0∑
j=−l

Mj,ct
j +O(t).(2.17)
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By proceeding formally as in [10, Theorem 1.18], we get

∂

∂c
log

( || ||2λ(ξ),c

|| ||2λ(ξ)

)
= M0,c.(2.18)

Assume first that hξ
c = hξ = h

′ξ. Let da, da be two odd Grassmann variables.
In particular, da, da anticommute with the operator DX . Set

Lt = −tDX,2 −
√
t

2
daDX −

√
t

2
da[DX , Q] + dadaQ.(2.19)

If α ∈ C(da, da), let [α]da da ∈ C be the coefficient of da da in the expansion of α.
Proceeding formally as in [10, Theorem 1.20], when t→ 0, we get

Trs[exp(Lt)]dada = M0 +O(t).(2.20)

Let Pt(x, x′)(x, x′ ∈ X) be the smooth kernel associated to exp(Lt) with respect
to dvX/(2π)dim X . Then

Trs[exp(Lt)] =
∫

X

Trs[Pt(x, x)]dvX/(2π)dim X .(2.21)

By Section 1.1, for each x ∈ X , we choose a small neighborhood (Gx, Ũx) → Ux,
such that x̃ = τ−1(x) is a fixed point of Gx. For α > 0, we denote B(x̃, α) ⊂ Ũx

as the ball with the center x̃ and radius α. For α small enough, there exist xi ∈ X

(i ∈ I = {1, · · · , k}) such that B(x̃i, α) ⊂ Ũxi and (Gxi , B(x̃i, α/2)) is a covering
of X . Let ρxi be a partition of unity subordinate to this covering.

Now, near xi ∈ X , we replace X by Cl/Gxi , with 0 ∈ TxiX̃ representing x̃i,
and the extended fibrations over Cl coincide with given fibration on B(0, α/2).
Let dv

Txi
X̃

(y) be the Riemannian volume form on (TR,xiX̃, h
TR,xi

X̃) 
 R2l. For

y ∈ Cl, |y| < α/2, set

dv
X̃

(y) = k(y)dv
Txi

X̃
(y).

Let P̃u(x, y) (x, y ∈ TRX̃ = Cn) be the kernel of exp(Lt) with respect to dv
Txi

X̃
(y)/

(2π)dim X . By (2.2), and using finite propagation speed as in [7, §11b)] (cf. (6.34)),
we get

(2.22) lim
u→0

∫
X

ρxiTrs[Pu(y, y)]dvX(y)/(2π)dim X

= lim
u→0

∫
Ũxi

ρxi

1
|Gxi |

∑
g∈Gxi

Trs[gP̃u(g−1y, y)]k(y)dvTxi
X̃(y)/(2π)dim X .

Let 1, eiθ1 , · · · , eiθq (0 < θj < 2π) be the locally constant distinct eigenvalues of
g acting on T X̃ over TxiX̃

g. Let Ñθj be the corresponding eigenbundles. Let
RTX̃g

, RÑθj be their curvatures as in Section 1.2. By [27, (2.56)] or [6, (2.63)], we
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have

(2.23) lim
u→0

∫
X

ρxiTrs[Pu(y, y)]dadadvX(y)/(2π)dim X

=
1

|Gxi |
∑

g∈Gxi

∫
Ũg

xi

ρxi

∂

∂b

[
Td

(−RTX̃g

2iπ
− b(hTX̃)−1 ∂h

TX̃

∂c

)

×
q∏

j=1

Td
e

(−RÑθj

2iπ
− b(hÑθj )−1 ∂h

Ñθj

∂c
+ iθj

)]
b=0

chg(ξ, hξ).

By using Section 1.2, we finish the proof of Theorem 0.1.
Assume now that gTX

c = gTX = g′TX . Then since gTX is Kähler, we may use
the local index technique as above, and find that we have the analogue of [6, (2.41),
(2.42)], so we get (0.1). �

Let ωX be the Kähler form on X associated to gTX as in Definition 1.5. Set

C−1 =
∑

i

1
mi

∫
Xi

ωX

2π
TdΣ(TX, gTX)chΣ(ξ, hξ),(2.24)

C0 =
∑

i

1
mi

∫
Xi

(
− Td

′Σ(TX, gTX) + dimX TdΣ(TX, gTX)
)
chΣ(ξ, hξ).

Theorem 2.4. As u→ 0,

Trs[N exp(−uDX,2)] =
1
u
C−1 + C0 + O(u).(2.25)

Proof. For c > 0, set gTX
c = gTX/c, hξ

c = hξ in the proof of Theorem 0.1. Let
∗c be the star operators associated to the metrics gTX

c . Clearly, when acting on
Λ(T ∗(0,1)X) ⊗ ξ, ∗c = c− dim X ∗1 c

N , and so

(∗c)−1 ∂∗c

∂c
= (N − dimX)/c.(2.26)

Now, by [6, (2.44)], (2.23) and (2.26) for c = 1, we get (2.25). �

3. Complex orbifold immersion, orbifold resolution

and Quillen metrics

In this section, we introduce our basic setting. This section extends [13, §1]
to the orbifold case.

This section is organized as follows. In Section 3.1, we introduce our basic
geometric setting. In Section 3.2, we construct a Quillen metric on an intermediate
object λ̃(ξ). In Section 3.3, we state an extension of [13, Theorem 2.1]. In Section
3.4, we make various assumptions on the metrics on TX, ξ, TY, η.

3.1. Complex orbifold immersions and resolutions. Let (X,V) be a compact
connected complex orbifold of complex dimension l. Let (Y,U) =

⋃d
j=1 Y

j be a
finite union of compact connected sub-orbifolds of X such that for 1 ≤ j < j′ ≤
d, Y j ∩ Y j′ = ∅. Let i be the embedding Y → X . For 1 ≤ j ≤ d, let l′j be the
complex dimension of Y j .
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Let η be a holomorphic orbifold vector bundle on Y . For 1 ≤ j ≤ d, let ηj be
the restriction of η to Y j . Let

(ξ, v) : 0 → ξm → · · · → ξ0 → 0(3.1)

be a holomorphic chain complex of orbifold vector bundles on X (cf. Section 1.2).
In what follows, we identify ξ with

⊕m
k=0 ξk. Let r be a holomorphic orbifold

restriction map ξ0|Y → η.

Definition 3.1. The complex (ξ, v) is said to be an orbifold resolution of the sheaf
i∗OY (η), if for each U ∈ U , there exists V ∈ V such that U = V ∩ Y and over Ṽ ,
we have a Gξ

V -equivariant exact sequence of sheaves

0 → OṼ (ξ̃m) v→ · · · v→ OṼ (ξ̃0)
r→ i∗OŨ (η̃) → 0.(3.2)

Let (ξ, v) be an orbifold resolution of the sheaf i∗OY (η). Let H(X, ξ) be the
hypercohomology of (OX(ξ), v). Set (cf. (2.13))

λ(ξi) = (detH(X, ξi))−1, λ(ξ) = ⊗m
i=0(λ(ξi))(−1)i

,(3.3)

λ̃(ξ) = (detH(X, ξ))−1, λ(η) = (detH(Y, η))−1.

Now, we recall the construction of the canonical nonzero section of the line
λ−1(η) ⊗ λ(ξ) [23]. Let F (·) = Γ(X, ·) be the global section functor over OX -
sheaves on X . From [17, pp. 146-147], we can construct two derived spectral
functors of F on the category of complexes of OX -sheaves on X .

Let K = (Ki, v) be a bounded complex of OX -sheaves on X . Let Hi(K) be the
ith cohomology group of (K, v). Let H(X,K) be the hypercohomology of K. The
two spectral sequence functors ′Er(K) and ′′Er(K) (r ≥ 2) associated to K abuts
to H(X,K) (associated to filtration of H(X,K)), and

′Ep,q
2 (K) = Hp(Hq(X,K.), v), ′′Ep,q

2 (K) = Hp(X,Hq(K)).(3.4)

Definition 3.2 ([16, Chap. XVII]). An (injective) resolution of a complex K =
(Ki, v) is a double complex L = (Lp,q) defined in degrees ≥ 0, together with
a morphism ε : K → L•,0, such that Lp,q is an (injective) OX -sheave for each
p, q ≥ 0, and for p fixed, if we take the cycles Zp,q (resp. boundaries Bp,q, resp.
cohomologies Hp,q) of Lp,∗ with respect to the first differential operator, we find
(injective) resolution of the cycle (resp. boundary, resp. cohomology) in Kp.

Let L = (Lp,q) be an injective resolution of K. Then the first (resp. second)
spectral sequence of the double complex F (L) calculates the spectral sequence
′Er(K) (resp. ′′Er(K)) (r ≥ 2). By [17, p. 147], to calculate the spectral sequence
′Er(K) (resp. ′′Er(K)) (r ≥ 2), we can take Lp,q such that Zp,q, Bp,q, Hp,q are
F∗-acyclic.

Let K = (Ki, v)0≤i≤m be a complex of coherent OX -sheaves on X . Set

λ(Ki) = (detH(X,Ki))−1, λ(K) =
m⊗

i=0

(λ(Ki))(−1)i

,(3.5)

λ̃(K) = (detH(X,K))−1,

λ(H(K)) =
m⊗

i=0

(detH(X,Hi(K))(−1)i+1
.
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By [23, p. 46], the spectral sequence ′Er(K) (resp. ′′Er(K)) induces the canonical
functorial isomorphism:

λ(K) 
 λ̃(K) (resp. λ(H(K)) 
 λ̃(K)).(3.6)

In our situation, ξ = (ξi, v) is an orbifold resolution of the sheaf i∗OY (η).
Let D•

X be the sheaf of Dolbeault complex on X . For each p ≥ 0, Dp
X is the

sheaf of C∞ sections of the vector bundle Λ(T ∗(0,1)X). The differential operator
∂

X
is OX -linear. By using arguments as in [10, §3a)], [26, II §2a)], we find that the

double complex D•
X(ξ) = (OX(ξ)⊗OX D•

X , ∂
X
, v) is an F∗-acyclic resolution of the

complex (OX(ξ), v).
Let NH be the number operator of ξ, i.e. NH acts on ξk by multiplication by k.

Let NX
V ,N

Y
V be the operators defining the Z-grading on Λ(T ∗(0,1)X), Λ(T ∗(0,1)Y ).

Definition 3.3. Let E (resp. F ) be the set of smooth sections of Λ(T ∗(0,1)X)⊗̂ξ
on X (resp. Λ(T ∗(0,1)Y ) ⊗ η on Y ). E is Z-graded by the operator NX

V − NH , and
F is Z-graded by the operator NY

V . We also denote E = E+ ⊕ E−, F = F+ ⊕ F−
as the corresponding Z2-gradings of E, F .

If α ∈ Λ(T ∗(0,1)X)|Y , f ∈ ξk|Y , set

r(α⊗̂f) =
{

0 if k �= 0,
i∗α⊗ rf if k = 0.(3.7)

In this case.
′′Ep,q

1 (ξ) = 0 if q > 0; ′′Ep,0
1 (ξ) = Ωp(X, η).(3.8)

So ′′Er(ξ) degenerates for r = 2, and ′′E2(ξ) is isomorphic to the hypercohomology
of (OX(ξ), v). By (3.8), we have

′′Ep,0
2 (ξ) = Hp(X, η).(3.9)

Thus we extend a result of [13, Theorem 1.7] to the orbifold case.

Theorem 3.4. The map r : (E, ∂
X

+ v) → (F, ∂
Y

) is a quasi-isomorphism of
Z-graded complexes. It induces the canonical identification H(X, ξ) 
 H(Y, η).

Let ρ, τ be the canonical nonzero sections of the lines λ−1(η) ⊗ λ̃(ξ), λ̃−1(ξ) ⊗
λ(ξ) associated with the canonical isomorphism (3.6). Then the canonical nonzero
section σ of the line λ−1(η) ⊗ λ(ξ) constructed as in [23, p. 46] is

σ = ρ⊗ τ.(3.10)

3.2. A Quillen metric on λ̃(ξ). Let gTX , hξ =
⊕
hξi be smooth Hermitian met-

rics on TX, ξ =
⊕
ξi. Let gTY , hη be metrics on TY, η. By Section 2.2, these

metrics induce Quillen metrics || ||λ(ξi), || ||λ(η) on λ(ξi), λ(η).

Let v∗ be the adjoint of v with respect to hξ. Let ∂
X∗

be the formal adjoint of
∂

X
with respect to the Hermitian product 〈 〉 on E (2.8). Set

DX = ∂
X

+ ∂
X∗
, V = v + v∗,

K = {e ∈ E, (DX + V )e = 0}.(3.11)

By Hodge theory, we have a canonical identification of Z-graded vector spaces
K 
 H(E, ∂

X
+ v). Let | |λ̃(ξ) be the metric on λ̃(ξ) induced by the restriction
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of the L2 metric 〈 〉 on K 
 H(E, ∂
X

+ v). Let P be the orthogonal projection
operator from E on K. Set P⊥ = 1 − P . For s ∈ C,Re(s) > dimX , set

θ̃X
ξ (s) = −Trs[(NX

V − NH)((DX + V )2)−sP⊥].(3.12)

By (2.3), θ̃X
ξ (s) extends to a meromorphic function of s ∈ C, which is holomorphic

near s = 0. Set

log || ||2
λ̃(ξ)

= log | |2
λ̃(ξ)

− ∂θ̃X
ξ

∂s
(0).(3.13)

Tautologically, by (3.10), we get

||σ||λ−1(η)⊗λ(ξ) = ||ρ||λ−1(η)⊗λ̃(ξ)||τ ||λ̃−1(ξ)⊗λ(ξ).(3.14)

By Theorem 0.1, to get a formula for (3.14) for arbitrary metrics gTX , hξ0 , · · · ,
hξm , gTY , hη, with gTX , gTY Kähler, it is enough to calculate (3.14) for one choice
of metrics.

3.3. The norm of the section τ .

Theorem 3.5. The following identity holds:

log ||τ ||2
λ̃−1(ξ)⊗λ(ξ)

= 0.(3.15)

Proof. The proof of (3.15) follows the same lines as the proof of [13, Theorem
2.1]. �

3.4. Assumption on the metrics on TX, TY, ξ, η. Our first basic assumption is
that the metric gTX is Kähler. Also we assume that gTY is the metric induced by
gTX on TY . Let ωX , ωY be the Kähler forms of (X, gTX), (Y, gTY ). Let N be the
normal bundle to Y in X .

In the following, we assume that the metrics hξ0 , · · · , hξm verify assumption (A)
of [3, §1b)], with respect to gN , hη. We describe this assumption in more detail.

On Y , we have the exact sequence of holomorphic orbifold vector bundles

0 → TY → TX |Y → N → 0.(3.16)

We identify N to the orthogonal orbifold bundle to TY in TX |Y . Let gN be the
metric induced by gTX|Y on N .

By the argument as in [7, §3d)], [3, §1b)], we have:
For y ∈ Y , letHy(ξ, v) be the homology of the complex (ξ, v)y. If y ∈ Y, u ∈ TyX ,

let ∂uv(y) be the derivative of v at y in the direction u in any given holomorphic
trivialization of (ξ, v) near y. Then

a) The Hy(ξ, v) are the fibers of a holomorphic Z-graded vector orbifold
bundle H(ξ, v) on Y . The map ∂uv(y) acts on H(ξ, v)y as a chain map. This
action does not depend on the trivialization of (ξ, v), but only depends on the
image z of u in Ny. From now on, we will write ∂zv(y) instead of ∂uv(y).

b) Let π be the projection N → Y . Then over N , we have a canonical
identification of Z-graded chain complexes of orbifold bundles

(π∗H(ξ, v), ∂zv(y)) 
 (π∗(Λ(N∗) ⊗ η),
√−1iz).(3.17)

By finite dimensional Hodge theory, we know that for V ∈ V , V ⊂ X , there is a
canonical isomorphism of Z-graded vector spaces over Ṽ

H̃(ξ, v) 
 {f ∈ ξ̃, vf = 0, v∗f = 0}.(3.18)
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Let hH(ξ,v) be the induced metric on H(ξ, v) by the identification (3.18).
Let hΛ(N∗)⊗η be the metric induced by gN and hη on Λ(N∗) ⊗ η.

Definition 3.6. We say that the metrics hξ0 , · · · , hξm verify assumption (A) with
respect to gN , hη, if the identification (3.17) also identifies the metrics.

Proposition 3.7. There exist metrics hξ0 , · · · , hξm on ξ0, · · · , ξm which verify as-
sumption (A) with respect to gN , hη.

Proof. We first choose arbitrary smooth Hermitian metrics h′ξi |Y on ξi|Y . Then
on each local chart (Gξ

U , Ũ), we will choose a Gξ
U -invariant metric in the procedure

of the proof of [3, Proposition 1.6]. Lastly, we get the result. �

4. A singular Bott-Chern current

In this section, we construct Bott-Chern currents associated to the Hermitian
chain complex ((ξ, v), hξ). We extend [11] to the orbifold setting.

In this section, we use the same assumption and the same notation as in Section
3.4.

Let U ⊂ Y, V ⊂ X , U = V ∩Y , be open subsets as in Definition 1.6. For g ∈ GV ,
let KṼ g = Ker{ZGV (g) → Diffeo(Ṽ g)}, KŨg = Ker{ZGV (g) → Diffeo(Ũg)}.

Let δY be the current on X defined by: If ϕ is a form on X , suppϕ ⊂ V , then∫
X

δY ϕ =
1

|GV |
∫

Ũ

ϕ|Ũ =
1

|GV /KU |
∫

Y

ϕ|Y .(4.1)

Let Xi be a connected component of ΣX . If Xi is represented by Ṽ g(g ∈ GV )
over Ṽ , then

(ZGV (g)/KŨg , Ũ
g) π→ Ũg/ZGV (g)

also defines an orbifold structure. We denote it by Y ′. Then Y ∪Y ′ is a sub-orbifold
of X ∪ ΣX . Set

mX,Y = |KŨg |/|KṼ g |.(4.2)

Then mX,Y is a local constant on Y ∪ Y ′. The number mX,Y is the relative multi-
plicity of Y ∪ Y ′ in X ∪ ΣX in Definition 1.6.

Let ∇ξ =
⊕m

i=0 ∇ξi be the holomorphic Hermitian connection on (ξ, hξ) =⊕m
i=0(ξi, h

ξi). Clearly V = v + v∗ is a self-adjoint section of Endodd(ξ). For u > 0,
set

Cu = ∇ξ +
√
uV.(4.3)

Then Cu is a GV -invariant superconnection on the Z2- graded vector bundle ξ on
Ṽ .

Let Φ be the homomorphism of Λeven(T ∗
RX) into itself: α→ (2iπ)−degα/2α.

We define the forms chΣ(η, hη), (TdΣ)−1(N, gN ) over Y ∪ Y ′ by chg(η, hη),
(Tdg)−1(N, gN ) on Ũg/ZGV (g). Then we construct forms ΦTrΣs [exp(−C2

u)],
ΦTrΣs [NH exp(−C2

u)] and TΣ(ξ, hξ) on X ∪ ΣX : over Ṽ g/ZGV (g), they are de-
fined by ΦTrs[g exp(−C2

u)], ΦTrs[NHg exp(−C2
u)] and Tg(ξ, hξ) (cf. [6, Definition

6.6]). Then by [6, Theorem 6.7], TΣ(ξ, hξ) ∈ PX∪ΣX such that

(4.4)
∂∂

2iπ
TΣ(ξ, hξ) = (TdΣ)−1(N, gN )chΣ(η, hη)δY ∪Y ′ − chΣ(ξ, hξ).
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5. The analytic torsion forms of a short exact orbifold bundle

In this section, using the construction in [5] of analytic torsion forms, we
extend the construction of [4] to an orbifold situation.

This section is organized as follows. In Section 5.1, we extend the analytic torsion
forms in [5, §6] to orbifolds. In Section 5.2, using the result of [5], we evaluate these
forms in terms of Bott-Chern classes.

In this section, we use the notation of Section 1.1.

5.1. Generalized analytic torsion forms. Let (B,U) be a compact complex
orbifold. Let

E : 0 → L→M → N → 0(5.1)

be a short exact sequence of holomorphic orbifold vector bundles on B (cf. Defini-
tion 1.10). Let hM be a Hermitian metric on M . Let hL, hN be the induced metrics
on L,N .

For a local chart (GU , Ũ) → U , let γU : GE
U → GU = GE

U/K
E
U be the natural

map. In the sequence, we will work on Ũ , and we will omit the subscript U .
Let dv

M̃
, dv

Ñ
be the Riemannian volume forms on the fibers M̃R, ÑR. The

smooth kernels on the fibers of M̃R will be calculated with respect to dv
M̃
/(2π)dim M.

Let B2
u be the differential operator on M̃U , defined by [4, Theorem 3.10], [6,

Definition 7.4]. For y ∈ Ũ , u > 0, let Qy
u(z, z′)(z, z′ ∈ M̃R,y) be the smooth kernel

associated to exp(−B2
u). For the existence and the uniqueness of Qy

u(z, z′), we refer
to [4, §4a)].

Tautologically for each g ∈ GE
U , g is an isometric of M̃ on Ũg, which is parallel

with respect to ∇M̃ . Let eiθ1,g , · · · , eiθq,g (0 ≤ θj,g < 2π) be the locally constant
distinct eigenvalues of g ∈ GE

U acting on L̃, M̃ , Ñ on Ũg. Then Ẽ splits holomor-
phically as an orthogonal sum of complexes

Eθj,g : 0 → L̃θj,g → M̃θj,g → Ñθj,g → 0,(5.2)

and g acts on Eθj,g by multiplication by eiθj,g . Set L̃0,⊥,g =
⊕

θj,g 
=0 L̃
θj,g , etc.

Clearly g acts on Λ(L̃
0,⊥,g,∗

)⊗̂Λ(Ñ
∗
)⊗̂Λ(Ñ∗) and so g acts on

Λ(T ∗
RB̃)⊗̂Λ(L̃

0,⊥,g,∗
)⊗̂Λ(Ñ

∗
)⊗̂Λ(Ñ∗).

Also Qy
u(z, z′) acts on the same bundle (it acts trivially on Λ(L̃

0,⊥,g,∗
)). Therefore

gQy
u(g−1z, z′) ∈

(
Λ(T ∗

RB̃)⊗̂End
(
Λ(L̃

0,⊥,g,∗
)⊗̂Λ(Ñ

∗
)⊗̂Λ(Ñ∗)

))even

.

Let Trs[gQy
u (g−1z, z)] ∈ Λ(T ∗

RB̃) denote the corresponding supertrace. Let NH be

the number operator of Λ(N∗). Then NH acts like 1⊗̂NH on Λ(T ∗
RB̃)⊗̂ Λ(L̃

0,⊥,g,∗
)

⊗̂ Λ(Ñ
∗
)⊗̂Λ(Ñ∗).

Let B′ be the orbifold defined by: for g ∈ GE
U , the local chart is (ZGE

U
(g), Ũg) →

Ũg/ZGE
U
(g).
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Definition 5.1. For u > 0, g ∈ GE
U , over Ũg/ZGE

U
(g), set

TrΣs
[
exp(−B2

u)
]

=
∫

M̃0,⊥,g
R ⊕Ñ0,g

R

Trs[gQy
u(g−1z, z)]

dv
M̃0,⊥,g⊕Ñ0,g (z)

(2π)dimM0,⊥,g+dim N0,g ,

TrΣs
[
NH exp(−B2

u)
]

=
∫

M̃0,⊥,g
R ⊕Ñ0,g

R

Trs[NHgQ
y
u(g−1z, z)]

dv
M̃0,⊥,g⊕Ñ0,g (z)

(2π)dim M0,⊥,g+dim N0,g .

(5.3)

The objects constructed in (5.3) are smooth forms on B ∪B′.
Now we reproduce the construction given in [5, §6] of analytic torsion forms.

Definition 5.2. For s ∈ C, 0 < Re(s) < 1
2 , let A(s) be the form on B ∪B′,

(5.4) A(s) =
1

Γ(s)

∫ +∞

0

us−1
{

ΦTrΣs
[
NH exp(−B2

u)
]
− dimN

2
TdΣ(L, hL)

}
du.

By [6, Theorem 7.6], one verifies that s → A(s) extends to a function which is
holomorphic near s = 0. Set

B(L,M, hM ) =
∂A

∂s
(0).(5.5)

As in Section 1.2, we define the form TdΣ, chΣ on B ∪B′. By proceeding as in
[5, Theorem 6.3], we have

Theorem 5.3. The form B(L,M, hM ) lies in PB∪B′
. Moreover

∂∂

2iπ
B(L,M, hM ) = TdΣ(L, hL) − TdΣ(M,hM )

TdΣ(N, hN )
.(5.6)

5.2. Evaluation of the generalized analytic torsion forms. Recall that the
Hirzebruch polynomial Â(x) is given by Â(x) = x/2

sinh(x/2) . Set

α(θ, x) =

{
Â(x) if θ ∈ 2πZ,
Â(x+iθ)

x+iθ if θ ∈ R − 2πZ.
(5.7)

Let D(θ, x) (θ ∈ R, and x ∈ C) be the function defined in [5, Definition 6.5]. For
θ ∈ R, we identify D(θ, x) with the corresponding additive genus. Let DΣ(N, hN )
be the form on B ∪B′ associated to Dg in [5, Definition 6.7].

Definition 5.4. For θ ∈ R, x ∈ C, |x| < 2π if θ ∈ 2πZ; |x| < infk∈Z |θ + 2kπ| if
θ ∈ R − 2πZ, set

R(θ, x) = D(θ, x) − Γ′(1)
∂α/∂x

α
(θ, x).(5.8)

As above, we denote by RΣ the corresponding additive genus.

Let T̃d
Σ
(L,M, hM ) ∈ PB∪B′

/PB∪B′,0 be the Bott-Chern class constructed as
in Section 1.2, [8, §1f)], such that

(5.9) ∂∂

2iπ
T̃d

Σ
(L,M, hM ) = TdΣ(M,hM ) − TdΣ(L, hL)TdΣ(N, hN ).

Now the computation in [5, Theorem 6.8] is local and universal, thus we can
work on each Ũ and we get the following extension of [5, Theorem 6.8].
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Theorem 5.5. The following identity holds in PB∪B′
/PB∪B′,0:

(5.10)

B(L,M, hM ) = −(TdΣ)−1(N, hN )T̃d
Σ
(L,M, hM ) + TdΣ(L, hL)DΣ(N, hN ).

6. Immersions and Quillen metrics

In this section, we prove Theorem 0.2 which calculates the Quillen norm of
the canonical section σ of λ−1(η) ⊗ λ(ξ). This extends the result of [13, Theorem
0.1] to the orbifold case. Let Y ′ be the sub-orbifold of ΣX constructed as in Section
4. If we compare it with the formula [13, (6.2)], we guess naturally that Theorem
0.2 will contain some integral on Y ∪ ΣY . In fact, we use the integral over Y ∪ Y ′.

This section is organized as follows. In Section 6.1, we introduce a closed 1-form.
In Section 6.2, we state seven intermediate results which we need for the proof of
Theorem 0.2, whose proofs are delayed to Sections 6.4-6.8. In Section 6.3, we prove
Theorem 0.2. In Section 6.4, we prove Theorems 6.3, 6.4. In Section 6.5, we prove
Theorem 6.8. In Section 6.6, we prove Theorem 6.5. In Section 6.7, we prove
Theorem 6.6. In Section 6.8, we prove Theorem 6.7.

In this section, we use the same assumption as in Section 3. We use also the
notation of Sections 1, 3-5.

6.1. A closed 1-form on R∗
+ × R∗

+. Let i : Y → X be a holomorphic orbifold
immersion of compact complex orbifolds. Let η be a holomorphic orbifold vector
bundle on Y . Let (ξ, v) be an orbifold resolution of holomorphic vector bundles of
the sheaf i∗OY (η). By (3.10), there is a nonzero canonical section σ of λ−1(η)⊗λ(ξ).
The operators DX , V were defined in (3.11). For u > 0, T > 0, set

Bu,T = u(DX + TV ), AT = DX + TV.(6.1)

By proceeding as in [13, Theorem 3.5], we have

Theorem 6.1. Let βu,T be the 1-form on R∗
+ × R∗

+,

(6.2) βu,T =
du

u
Trs

[
(NX

V − NH) exp(−B2
u,T )

]
− dT

T
Trs

[
NH exp(−B2

u,T )
]
.

Then βu,T is closed.

Take ε, A, T (0 < ε ≤ 1 ≤ A < +∞, 1 ≤ T0 < +∞). Let Γ =
⋃4

i=1 Γi be the
oriented contour in R∗

+ × R∗
+:

Γ

Γ

Γ

Γ
1

2

3

ε

A

4

1 T
0

0

u

T

∆
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For 1 ≤ k ≤ 4, set I0
k =

∫
Γk
βu,T . From Theorem 6.1, we get

4∑
k=1

I0
k = 0.(6.3)

6.2. Seven intermediate results. Let ∂
Y ∗

be the formal adjoint of ∂
Y

. Set
DY = ∂

Y
+ ∂

Y ∗
.

Let Y ′ be the sub-orbifold of ΣX constructed in Section 4. Let mi,X be the
multiplicity of the connected component Xi of X ∪ ΣX . The relative multiplicity
mXi,Y ′

j
on Y ′

j ⊂ Xi is defined by (4.2); then mXi,Y ′
j

is constant on Y ′
j .

Recall that ωX , ωY are the Kähler forms of X,Y . Since these forms are closed,
they can be paired with characteristic classes of vector bundles on ΣX,ΣY , respec-
tively.

Let ml,Y j be the multiplicity of the connected component Y j
l of Y j ∪ ΣY j . For

0 ≤ i ≤ m, 1 ≤ j ≤ d, let χ(ξi), χ(ηj) be the Euler characteristics of ξi, ηj . By
Kawasaki-Riemann-Roch Theorem [21],

χ(ξi) =
∑

j

1
mj,X

∫
Xj

TdΣ(TX)chΣ(ξi),(6.4)

χ(ηj) =
∑

l

1
ml,Y j

∫
Y j

l

TdΣ(TY )chΣ(η).

In what follows, we will often use the notation

chΣ(ξ) =
m∑

i=0

(−1)ichΣ(ξi), ch′Σ(ξ) =
m∑

i=0

(−1)ii chΣ(ξi),(6.5)

dimNχ(η) =
∑

j

dimNjχ(ηj).

We now state seven intermediate results contained in Theorems 6.2 -6.8.

Theorem 6.2. As u→ 0,

Trs[(NX
V − NH) exp(−u(DX + V )2)] =

∑
i

1
umi,X

∫
Xi

ωX

2π
TdΣ(TX)chΣ(ξ)

+
∑

i

1
mi,X

∫
Xi

[(
dimXTdΣ(TX) − Td′Σ(TX)

)
chΣ(ξ)

−TdΣ(TX)ch′Σ(ξ)
]

+O(u),

Trs[NY
V exp(−uDY,2)] =

∑
l,j

1
ml,Y j

[ 1
u

∫
Y j

l

ωY

2π
TdΣ(TY j)chΣ(ηj)

+
∫

Y j
l

(
dimY jTdΣ(TY j) − Td′Σ(TY j)

)
chΣ(ηj)

]
+O(u).

(6.6)

Proof. We get the second identity from (2.25). The proof of the first identity follows
the same line. �
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Theorem 6.3. For any u0 > 0, there exists C > 0 such that for u ≥ u0, T ≥ 1,∣∣∣Trs

[
(NX

V − NH) exp(−u(DX + TV )2)
]
− Trs[NY

V exp(−uDY,2)]
∣∣∣ ≤ C√

T
,∣∣∣Trs

[
NH exp(−u(DX + TV )2)

]
− 1

2
dimNχ(η)

∣∣∣ ≤ C√
T
.

(6.7)

Theorem 6.4. There exist c > 0, C > 0 such that for u ≥ 1, T ≥ 1,∣∣∣Trs

[
(NX

V − NH) exp(−u(DX + TV )2)
]
− Trs[(NX

V − NH)P̃T ]
∣∣∣ ≤ ce−Cu.(6.8)

Here P̃T is the orthogonal projection form E on Ker(DX +TV ) with respect to the
Hermitian product on E induced by gTX , hξ (cf. (2.8)).

Theorem 6.5. There exist C > 0, γ ∈]0, 1] such that for u ∈]0, 1], 0 ≤ T ≤ 1/u,

(6.9)
∣∣∣Trs

[
NH exp

(
− (uDX + TV )2

)]
−

∑
i

1
mi,X

∫
Xi

TdΣ(TX, gTX)ΦTrΣs [NH exp(−C2
T 2)]

∣∣∣ ≤ C(u(1 + T ))γ .

There exists C′ > 0 such that for u ∈]0, 1], 0 ≤ T ≤ 1,

(6.10)
∣∣∣Trs

[
NH exp(−(uDX + TV )2)

]
− Trs

[
NH exp(−(uDX)2)

]∣∣∣ ≤ C′T.

In the following, we use the notation of Section 5 applied to the exact sequence of
holomorphic Hermitian orbifold vector bundles on Y : 0 → TY → TX |Y → N → 0.
In particular, for u > 0, we consider the operator B2

u in Section 5.1.

Theorem 6.6. For any T > 0, the following identity holds:

limu→0 Trs

[
NH exp(−(uDX + T

u V )2)
]

=
∑

i,j;Y ′
j ⊂Xi

1
mi,XmXi,Y ′

j

∫
Y ′

j

ΦTrΣs [NH exp(−B2
T 2)]chΣ(η, hη).(6.11)

Theorem 6.7. There exist C > 0, δ ∈ [0, 1], such that for u ∈]0, 1], T ≥ 1,∣∣∣Trs

[
NH exp(−(uDX +

T

u
V )2)

]
− 1

2
dimNχ(η)

∣∣∣ ≤ C

T δ
.(6.12)

Let | |2
λ̃(ξ),T

be the metric on λ̃(ξ) inherited from the metrics gTX , ⊕m
i=0T

−2ihξi

as in Section 3.2.

Theorem 6.8. As T → +∞,

(6.13) log
( | |2

λ̃(ξ),T

| |2
λ̃(ξ)

)
= dimNχ(η) log T − log

(
|ρ|2

λ−1(η)⊗λ̃(ξ)

)
+O(

1
T

).

6.3. Proof of Theorem 0.2. At a formal level, Theorems 6.2-6.8 can be obtained
from [13, Theorems 6.3-6.9], [6, Theorems 8.3-8.9]. This permits us to transfer the
discussion in [13, §6] to our situation. Using Theorem 3.5, as in [13, §6], we get
Theorem 0.2. �
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Remark 6.9. By (4.1) and (4.4),

(6.14)
∑

i,j;Y ′
j ⊂Xi

1
mi,XmXi,Y ′

j

∫
Y ′

j

TdΣ(TX)
(
RΣ(N) +RΣ(TY )

)
chΣ(η)

=
∑

i

1
mi,X

∫
Xi

TdΣ(TX)RΣ(TX)chΣ(ξ).

Thus we have a similar formula as in [13, (6.1’)].

6.4. Proof of Theorems 6.3 and 6.4. In this part, we give a proof of Theorems
6.3 and 6.4. This proof relies essentially on the results of [13, §8 and §9], where the
corresponding results were established when X,Y are manifolds. We will use the
same notation as in [13, §8 and §9].

Recall that the orbifold normal bundle N on Y is identified with the orthogonal
bundle to TY in TX |Y . We have the identification of C∞ orbifold vector bundles
on Y , TX |Y = TY ⊕ N . Thus we deduce the identification of C∞ orbifold vector
bundles on Y

Λ(T ∗(0,1)X)|Y = Λ(T ∗(0,1)Y )⊗̂Λ(N
∗
).(6.15)

By (3.17) and (6.15), we find that Λ(N
∗
)⊗̂Λ(N∗) ⊗ η is now an orbifold vector

sub-bundle of (Λ(T ∗(0,1)X)⊗̂ξ)|Y .
For y ∈ Y , let θy denote the Kähler form of the fiber NR,y; then θ ∈ Λ1(N

∗
)⊗̂

Λ1(N∗). Let ϕ denote the linear map

ϕ : a ∈ Λ(T ∗(0,1)Y ) ⊗ η → a exp(θ)
2(dim N)/2

∈ (Λ(T ∗(0,1)X)⊗̂ξ)|Y .(6.16)

As in [13, (7.14)], we find that ϕ is norm preserving. Let q be the orthogonal
projection from (Λ(T ∗(0,1)X)⊗̂ξ)|Y on the image of ϕ.

By Definition 1.6, over every local coordinate system (GV , Ṽ ) τV→ V ⊂ X ,
(GV , Ũ) → U ⊂ Y , U = V ∩ Y , if ỹ ∈ Ũ , Z ∈ NŨ/Ṽ ,R, let t ∈ R → xt =

expX
ỹ (tZ̃) ∈ Ṽ be the geodesic in Ṽ which is such that x0 = ỹ, dx/dt|t=0 = Z̃.

Then for g ∈ GV ,

g expX
ỹ (tZ̃) = expX

gỹ(tgZ̃).(6.17)

So if (y, Z) ∈ NR and |Z| is very small, the map (y, Z) ∈ NR → expX
y (Z) ∈ X is

well defined. For 0 < ε < +∞, set Bε = {Z ∈ NR; |Z| < ε}. Since X and Y are
compact, there exists ε0 > 0 such that for 0 < ε < ε0, the map (y, Z) ∈ NR →
expX

y (Z) ∈ X is a diffeomorphism from Bε on a tubular neighborhood Uε of Y
in X . From now on, we will identify Bε with Uε. Also we will use the notation
x = (y, Z) instead of expX

y (Z). Finally, we identify y ∈ Y with (y, 0) ∈ NR. Let
κ(y, Z) be the smooth positive function defined on Bε by the equation

dvX(y, Z) = κ(y, Z)dvY (y)dvNy (Z).(6.18)

For y ∈ Y , we denote ỹ ∈ Ṽ corresponding to y ∈ V ⊂ Y . Let µ(y) be the
smallest nonzero eigenvalue of the self-adjoint nonnegative operator V 2(ỹ). Since
KerV is a smooth vector bundle on Y , the function y ∈ Y → µ(y) ∈ R∗

+ is
continuous. Since Y is compact, the function µ has a positive lower bound 2b on
Y . We may and will assume that ε0 > 0 is small enough so that if x ∈ Uε0 , b is not
an eigenvalue of V 2(x̃) (x̃ ∈ τ−1

V (x)).
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For 0 ≤ k ≤ m, x ∈ Uε0 , ξ
−
k,x̃ (resp. ξ+k,x̃) denotes the direct sum of the

eigenspaces of the restriction of V 2(x̃) to ξk,x̃ corresponding to eigenvalues which
are smaller (resp. larger) than b. Then ξ−k,x̃, ξ+k,x̃ define orbifold vector bundles
ξ−k,x, ξ

+
k,x on Uε0 .

If x = (y, Z) ∈ Uε0 , (Λ(T ∗(0,1)X)⊗̂ξ)x is identified with (Λ(T ∗(0,1)X)⊗̂ξ)y as in
[13, §8g)], and this identification preserves the metrics and the Z-gradings associ-
ated to the operators NX

V and NH .
Let E±,E be the set of smooth sections of

π̃∗(Λ(T ∗(0,1)X)⊗̂ξ±)|Y , π̃∗(Λ(T ∗(0,1)X)⊗̂ξ)|Y
on the total space of NR. Let Eµ (resp. Eµ, Fµ) be the set of sections of
Λ(T ∗(0,1)X)⊗̂ξ (resp. of π̃∗((Λ(T ∗(0,1)X)⊗̂ξ)|Y ) on the total space of NR, of
Λ(T ∗(0,1)Y ) ⊗ η over Y ), which lie in the µth Sobolev space.

If y ∈ Y, Z ∈ NR,y, set

βy = exp
(
θy − |Z|2

2

)
.(6.19)

Let ψ be the linear map ψ : σ ∈ F 0 → σβ ∈ E0. Let E
′,0 be the image of F 0 by

ψ in E0. Then E
′,0 ⊂ E−,0. Let p be the orthogonal projection operator from E0

on E
′,0. One then easily finds that if s ∈ E0,

(6.20) ps(y, Z) =
mX,Y

πdim N
exp(−|Z|2

2
)q

∫
NR,y

exp(−|Z ′|2
2

)s(y, Z ′)dvN (Z ′).

Here the integral
∫

NR,y
= 1

mX,Y

∫
ÑR,ỹ

is considered in the sense of the integral on
orbifolds.

We now take ε ∈]0, ε0/2]. In the following the constants in our estimates will
depend on ε. Let γ be a smooth function on R with values in [0, 1] such that
γ(a) = 1 for |a| ≤ 1

2 , γ(a) = 0 for |a| ≥ 1. If Z ∈ NR, set

ρ(Z) = γ(
|Z|
ε

).(6.21)

For T > 0, y ∈ Y , set

αT (y) =
∫

NR,y

exp(−T |Z|2)ρ2(Z)
dvN (Z)

(2π)dim N
.(6.22)

Clearly, for 1 ≤ j ≤ d, αT takes the constant value αT,j on Y j . For µ ≥ 0, T > 0,
let IT be the linear map

(6.23) σ ∈ Fµ → ITσ(y, Z) = (αT 2dim N )−1/2ρ(Z) exp(θ − T |Z|2
2

)σ ∈ Eµ.

Set JT = κ−1/2IT . For µ ≥ 0, T > 0, let Eµ
T (resp. Eµ

T ) be the image of Fµ in Eµ

by IT (resp. Eµ by JT ). Let pT be the orthogonal projection operators from E0

on E0
T .
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Proposition 6.10. If s ∈ E0, and if y ∈ Y, Z ∈ NR,y, then

(6.24) (pT s)(y, Z) =
ρ(Z)
αT

exp(−T |Z|
2

2
)

× q

∫
NR,y

ρ(Z ′) exp(−T |Z
′|2

2
)s(y, Z ′)

dvN (Z ′)
(2π)dim N

.

Proof. The proof is elementary and is left to the reader. �

Thus we have extended all constructions of [13, §8,9] in our case. By proceeding
as in [13, §8,9], we get Theorems 6.3, 6.4.

6.5. Proof of Theorem 6.8. We use the notation in [13, §10]. Let Sp(DY ), Sp(AT )
be the spectrum of DY , AT . Let c2 ∈]0, 1] be a constant fixed once and for all such
that

Sp(DY ) ∩ {λ ∈ R, |λ| ≤ 2c2} ⊂ {0}.(6.25)

Theorem 6.11. There exists T0 ≥ 1 such that for T ≥ T0,

Sp(AT ) ∩ {|λ| ≤ c2} ⊂ {0}.(6.26)

Proof. By using Theorem 3.4 and proceeding as in the proof of [13, Theorem 9.25],
we have Theorem 6.11. �

As in Section 6.4, we identify Bj,ε0/2 = {Z ∈ NR,j ; |Z| < ε0/2} with a tubular
neighborhood Uj,ε0/2 of Y j in X . Since Uε0 is a tubular neighborhood of Y =⋃d

j=1 Y
j in X , we deduce that if j �= j′, then Uj,ε0/2 ∩ Uj′,ε0/2 = ∅.

Let Q be the orthogonal projection operator from F 0 on Ker(DY ). We fix
ε ∈]0, ε0/4].

To prove Theorem 6.8, from the proof of [13, Theorem 10.1], the crucial point
is to show that for any σ ∈ Ker(DY j

), λ ∈ C, |λ| = c2/2,m ∈ N, there exists
sm(λ, T ) ∈ E1 such that (cf. [13, (10.8)])

sm(λ, T ) = 0 on X\Uj,ε0/2,(6.27) ∥∥∥(λ−AT )sm(λ, T ) − JTσ
∥∥∥ = O(T−m).

To prove (6.27), we will treat in the local card (GV , Ṽ ) → V ⊂ X . We easily ver-
ify that on Ṽ , the construction of sm(λ, T ) in [13, (10.9)-(10.15)] is GV -equivariant.
Thus we have constructed sm(λ, T ) in our case.

By proceeding as in [13, §10], we have Theorem 6.8. �

6.6. Proof of Theorem 6.5.

Proposition 6.12. Let T0 ∈ [0,+∞[. There exists C > 0 such that for u ∈
]0, 1], T ∈ [0, T0],∣∣∣Trs

[
NH exp(−(uDX + TV )2)

]
−

∑
i

1
mi,X

∫
Xi

TdΣ(TX, gTX)ΦTrΣs
[
NH exp(−C2

T 2)
]∣∣∣ ≤ Cu,∣∣∣Trs

[
NH exp(−(uDX + TV )2)

]
− Trs

[
NH exp(−u2DX,2)

]∣∣∣ ≤ CT.

(6.28)
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Proof. By proceeding as in [13, Proof of Proposition 11.1] and Section 2.3, we easily
find that for T ≥ 0, as u→ 0

(6.29) Trs

[
NH exp(−(uDX + TV )2)

]
=

∑
i

1
mi,X

∫
Xi

TdΣ(TX, gTX)ΦTrΣs
[
NH exp(−C2

T 2)
]

+O(u).

Since T only plays the role of a parameter, one obtains the existence of C > 0
such that the first inequality in (6.28) holds. By [13, (11.13)] and the technique of
Section 2, one finds that the second inequality in (6.28) follows. �

In the following, α is a positive constant and the precise value of α should be
determinate as in [13, §13e)]. Let f be a smooth even function defined on R with
values in [0, 1], such that f(a) = 1 for |a| ≤ α/2, and f(a) = 0 for |a| ≥ α. Set
g(t) = 1 − f(t).

Definition 6.13. For u ∈]0, 1], a ∈ C, set

Fu(a) =
∫ +∞

−∞
exp(ita

√
2) exp(

−t2
2

)f(ut)
dt√
2π
,(6.30)

Gu(a) =
∫ +∞

−∞
exp(ita

√
2) exp(

−t2
2

)g(ut)
dt√
2π
,

Hu(a) =
∫ +∞

−∞
exp(ita

√
2) exp(

−t2
2u2

)g(t)
dt

u
√

2π
.

Clearly

Gu(a) = Hu(
a

u
),(6.31)

Fu(uDX + uTV ) +Gu(uDX + uTV ) = exp(−u2(DX + TV )2).

Theorem 6.14. There exist c > 0, C > 0 such that for u ∈]0, 1], T ≥ 0,∣∣∣Trs

[
NHGu(uDX + uTV )

]∣∣∣ ≤ c exp
(−C
u2

)
.(6.32)

Proof. Let ∆′ be the contour in C: From +∞ + i to −1 + i, then from −1 + i to
−1 − i, and then from −1 − i to +∞− i.

Let H̃u,p (p ∈ N) be the function defined in [13, (11.22)] which verifies that for
anym ∈ N, there exist cm, Cm > 0 such that supa∈∆′ |a|m|H̃u,p(a)|≤cm exp(−Cm

u2 ),
and

Hu(AT ) =
1

2πi

∫
∆′

H̃u,p(λ)
(λ−A2

T )p
dλ.(6.33)

Now in our case, [7, Theorems 9.14, 9.17] still holds. Then by proceeding as in the
proof of [13, (9.114)], we get (6.32). �

From the proof of the finite propagation speed of solutions of hyperbolic equa-
tions on smooth manifolds [31, I §2.8], we know the proof can be extended to
orbifolds. Thus the wave operator exp(it

√
2|uDX + uTV |) is well defined on X .

Now by (6.30),

(6.34) Fu(uDX + uTV ) =
∫ α/u

−α/u

exp(it
√

2|uDX + uTV |) exp(
−t2
2

)f(ut)
dt√
2π
.
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Let Fu(uDX + uTV )(x, x′)(x, x′ ∈ X) be the smooth kernel of Fu(uDX + uTV )
with respect to dvX(x′)/(2π)dim X . Then
(6.35)

Trs

[
NHFu(uDX + uTV )

]
=

∫
X

Trs

[
NHFu(uDX + uTV )(x, x)

] dvX(x)
(2π)dim X

.

Using (6.34), we see that if x ∈ X , Fu(uDX+uTV )(x, x′) vanishes for dX(x, x′) > α
and only depends on the restriction of DX + TV to BX(x, α). By Theorem 6.14,
we find that the proof of Theorem 6.5 has been reduced to a local problem on X .

Let (Gxi , Ṽxi)i∈I (here Ṽx is a neighborhood of 0 ∈ Cm and Gx acts linearly on
Cm) be a covering of X such that (Gxi ,

1
2 Ṽxi)i∈I is also a covering of X . Let ρi be

a partition of unity subordinate to (Gxi ,
1
2 Ṽxi)i∈I , the covering of X . Let k(x̃) be

such that for |x̃| ≤ ε
2 ,

dvṼxi
(x̃) = k(x̃)dvTx̃i

Ṽxi
.(6.36)

We replace X by T X̃/Gxi = Cn/Gxi (n = dimX), such that 0 ∈ (T X̃)xi

representing x̃i, and that the extended fibration over Cn coincides with the given
fibration over B(0, ε) ⊂ Cn.

Let
Fu(uDX + uTV )(x̃, x̃′) (x̃, x̃′ ∈ T Ṽxi)

be the smooth kernel of Fu(uDX +uTV ) with respect to dvTṼxi
(x̃′)/(2π)dim X . By

(2.2) and the above discussion, for x ∈ B(xi,
ε
2 ), we get

(6.37) Fu(uDX + uTV )(x, x) =
1

|Kξ
U |

∑
g∈Gξ

xi

gFu(uDX + uTV )(g−1x̃, x̃)k(x̃).

By [6, Theorem 11.7], Section 4, (6.35), (6.37), we get Theorem 6.5. �

6.7. Proof of Theorem 6.6. By (6.31), (6.32), we know that to establish Theorem
6.6, we just need to show that as u→ 0,

(6.38) Trs

[
NHFu(uDX +

T

u
V )

]
=

∑
i,j;Y ′

j ⊂Xi

1
mi,XmXi,Y ′

j

∫
Y ′

j

ΦTrΣs [NH exp(−B2
T 2)]chΣ(η, hη).

By the argument in Section 6.5, the proof of Theorem 6.6 has been reduced to a
local problem on X , and we replace X by T X̃/Gxi = Cn/Gxi as in Section 6.6.
By (6.37), for x ∈ B(xi,

ε
2 ), we get

(6.39) Fu(DX +
T

u
V )(x, x) =

1

|Kξ
U |

∑
g∈Gξ

xi

gFu(DX +
T

u
V )(g−1x̃, x̃)k(x̃).

By [6, Theorem 12.3], (4.4), (6.35), (6.39), we get (6.11). �

6.8. Proof of Theorem 6.7. We use the notation of Section 6.5.

Theorem 6.15. There exist c > 0, C > 0, such that for u ∈]0, 1], T ≥ 1,

(6.40)
∣∣∣Trs

[
NHGu(uDX +

T

u
V )

]
− 1

2
dimNχ(η)Gu(0)

∣∣∣ ≤ c√
T

exp(
−C
u2

).



2232 XIAONAN MA

Proof. The proof of our theorem is essentially the same as the proof of [13, Theorem
13.4], [6, Theorem 13.4]. Of course, we use the argument of Section 6.5. In fact,
we find that

(6.41)
∣∣∣Trs

[
NHGu(uDX +

T

u
V )

]
− Trs

[
Nθ

HGu(uDY )
]∣∣∣ ≤ cu√

T
exp(

−C
u2

).

By [13, Proposition 8.4], Nθ
H = 1

2 dimN . Recall that Gu(a) is a holomorphic
function of a2. By an analogue of the Mckean-Singer formula, we find that for
1 ≤ j ≤ d,

Trs[Gu(uDY
j )] = χ(ηj)Gu(0).(6.42)

Using (6.41), (6.42), we get (6.40). �

In view of Theorem 6.7 and (6.31), we see that to prove Theorem 6.7, we only
need to show there exist C > 0, δ ∈]0, 1] such that for u ∈]0, 1], T ≥ 1,∣∣∣Trs[NHFu(uDX +

T

u
V )] − 1

2
dimNχ(η)Fu(0)

∣∣∣ ≤ C

T δ
.(6.43)

As in Section 6.5, we replace X by T X̃/Gxi = Cn/Gxi (n = dimX). By [6,
Theorem 13.6, Remark 13.7], (6.35) and (6.39), we have (6.43).

By (6.41), (6.43), we get Theorem 6.7. �
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MR1623496 (2000b:58057)
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