
Commun Math Stat (2013) 1:37–41
DOI 10.1007/s40304-013-0004-8

O R I G I NA L A RT I C L E

Remark on the Off-Diagonal Expansion of the Bergman
Kernel on Compact Kähler Manifolds

Xiaonan Ma · George Marinescu

Received: 25 February 2013 / Accepted: 26 February 2013 / Published online: 15 March 2013
© School of Mathematical Sciences, University of Science and Technology of China and Springer-Verlag
Berlin Heidelberg 2013

Abstract In this short note, we compare our previous work on the off-diagonal ex-
pansion of the Bergman kernel and the preprint of Lu–Shiffman (arXiv:1301.2166).
In particular, we note that the vanishing of the coefficient of p−1/2 is implicitly con-
tained in Dai–Liu–Ma’s work (J. Differ. Geom. 72(1), 1–41, 2006) and was explicitly
stated in our book (Holomorphic Morse inequalities and Bergman kernels. Progress
in Math., vol. 254, 2007).
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In this short note we revisit the calculations of some coefficients of the off-diagonal
expansion of the Bergman kernel from our previous work [4, 5].

Let (X,ω) be a compact Kähler manifold of dimC X = n with Kähler form ω. Let
(L,hL) be a holomorphic Hermitian line bundle on X, and let (E,hE) be a holo-
morphic Hermitian vector bundle on X. Let ∇L, ∇E be the holomorphic Hermitian
connections on (L,hL), (E,hE) with curvatures RL = (∇L)2, RE = (∇E)2, respec-

tively. We assume that (L,hL,∇L) is a prequantum line bundle, i.e., ω =
√−1
2π

RL.
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Let Pp(x, x′) be the Bergman kernel of Lp ⊗ E with respect to hL,hE and the Rie-
mannian volume form dvX = ωn/n!. This is the integral kernel of the orthogonal pro-
jection from C ∞(X,Lp ⊗ E) to the space of holomorphic sections H 0(X,Lp ⊗ E)

(cf. [4, §4.1.1]).
We fix x0 ∈ X. We identify the ball BTx0X(0, ε) in the tangent space Tx0X to the

ball BX(x0, ε) in X by the exponential map (cf. [4, §4.1.3]). For Z ∈ BTx0X(0, ε)

we identify (LZ,hL
Z), (EZ,hE

Z) to (Lx0 , h
L
x0

), (Ex0 , h
E
x0

) by parallel transport with
respect to the connections ∇L, ∇E along the curve γZ : [0,1] � u → expX

x0
(uZ).

Then Pp(x, x′) induces a smooth section (Z,Z′) 
→ Pp,x0(Z,Z′) of π∗ End(E)

over {(Z,Z′) ∈ T X ×X T X : |Z|, |Z′| < ε}, which depends smoothly on x0, with
π : T X ×X T X → X the natural projection. If dvT X is the Riemannian volume form
on (Tx0X,gTx0 X), there exists a smooth positive function κx0 : Tx0X → R, defined by

dvX(Z) = κx0(Z)dvT X(Z), κx0(0) = 1. (1)

For Z ∈ Tx0X
∼= R

2n, we denote zj = Z2j−1 + √−1Z2j−1 its complex coordinates,
and set

P
(
Z,Z′) = exp

(

−π

2

n∑

i=1

(|zi |2 + ∣
∣z′

i

∣
∣2 − 2ziz

′
i

)
)

. (2)

The near off-diagonal asymptotic expansion of the Bergman kernel in the form
established [4, Theorem 4.1.24] is the following.

Theorem 1 Given k,m′ ∈ N, σ > 0, there exists C > 0 such that if p � 1, x0 ∈ X,
Z,Z′ ∈ Tx0X, |Z|, |Z′| � σ/

√
p,

∣∣∣
∣∣

1

pn
Pp

(
Z,Z′) −

k∑

r=0

Fr

(√
pZ,

√
pZ′)κ− 1

2 (Z)κ− 1
2
(
Z′)p− r

2

∣∣∣
∣∣
C m′

(X)

� Cp− k+1
2 .

(3)
where C m′

(X) is the C m′
-norm with respect to the parameter x0,

Fr

(
Z,Z′) = Jr

(
Z,Z′)P

(
Z,Z′), (4)

Jr(Z,Z′) ∈ End(E)x0 are polynomials in Z,Z′ with the same parity as r and
degJr(Z,Z′) � 3r , whose coefficients are polynomials in RT X (the curvature of the
Levi-Civita connection on T X), RE and their derivatives of order � r − 2.

Remark 2 For the above properties of Jr(Z,Z′) see [4, Theorem 4.1.21 and end of
§4.1.8]. They are also given in [2, Theorem 4.6, (4.107) and (4.117)]. Moreover, by
[4, (1.2.19) and (4.1.28)], κ has a Taylor expansion with coefficients the derivatives
of RT X . As in [4, (4.1.101)] or [5, Lemma 3.1 and (3.27)] we have

κ(Z)−1/2 = 1 + 1

6
Ric(z, z) + O

(|Z|3) = 1 + 1

3
R�kkqz�zq + O

(|Z|3). (5)

Note that a more powerful result than the near-off diagonal expansion from Theo-
rem 1 holds. Namely, by [2, Theorem 4.18′] and [4, Theorem 4.2.1], the full off-
diagonal expansion of the Bergman kernel holds (even for symplectic manifolds),
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i.e., an analogous result to (3) for |Z|, |Z′| � ε. This appears naturally in the proof
of the diagonal expansion of the Bergman kernel on orbifolds in [2, (5.25)] or [4,
(5.4.14), (5.4.23)].

Proposition 3 The coefficient F1 vanishes identically: F1(Z,Z′) = 0 for all Z,Z′.
Therefore the coefficient of p−1/2 in the expansion of p−nPp(p−1/2Z,p−1/2Z′) van-
ishes, so the latter converges to F0(Z,Z′) at rate p−1 as p → ∞.

Proof This is [4, Remark 4.1.26] or [5, (2.19)], see also [2, (4.107), (4.117), (5.4)]. �

When E = C with trivial metric, the vanishing of F1 was recently rediscovered
in [3, Theorem 2.1] (b1(u, v) = 0 therein). In [3] an equivalent formulation [6] of
the expansion (3) is used, based on the analysis of the Szegö kernel from [1]. In
[3, Theorem 2.1] further off-diagonal coefficients F2, F3, F4 are calculated in the
K-coordinates. From [5, (3.22)], we see that the usual normal coordinates are K-
coordinates up to order at least 3. This shows that the vanishing of F1 given by Propo-
sition 3 implies the vanishing of b1 calculated with the help of in K-coordinates. We
wish to point out that we calculated in [5] the coefficients F1, . . . ,F4 on the diag-
onal, using the off-diagonal expansion (3) and evaluating Fr for Z = Z′ = 0. Thus,
off-diagonal formulas for F1, . . . ,F4 are implicitly contained in [5]. We show below
how the coefficient F2 can be calculated in the framework of [5].

We use the notation in [5, (3.6)], then r = 8Rmqqm is the scalar curvature.

Proposition 4 The coefficient J2 in (4) is given by

J2
(
Z,Z′) = − π

12
Rkm�q

(
zkz�zmzq + 6zkz�z

′
mz′

q − 4zkz�zmz′
q

− 4zkz
′
�z

′
mz′

q + z′
kz

′
�z

′
mz′

q

)

− 1

3
Rkmqq

(
zkzm + z′

kz
′
m

) + 1

8π
r + 1

π
RE

qq

− 1

2

(
z�zq − 2z�z

′
q + z′

�z
′
q

)
RE

�q. (6)

Remark 5 Setting Z = Z′ = 0 in (6) we obtain the coefficient b1(x0) = J2(0,0) =
1

8π
r + 1

π
RE

qq of p−1 of the (diagonal) expansion of p−nPp(x0, x0), cf. [4, Theo-
rem 4.1.2].

Moreover, in order to obtain the coefficient of p−1 in the expansion (3) we mul-
tiply F2(

√
pZ,

√
pZ′) to the expansion of κ(Z)−1/2κ(Z′)−1/2 with respect to the

variable
√

pZ obtained from (5). If E = C the result is a polynomial which is the
sum of a homogeneous polynomial of order four and a constant, similar to [3].
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Proof of Proposition 4 Set

bi = −2
∂

∂zi

+ πzi, b+
i = 2

∂

∂zi

+ πzi, L =
n∑

i=1

bib
+
i ,

Õ2 = bmbq

48π
Rkm�qzkzl + bq

3π
R�kkqz� − bq

12
Rkm�qzkz�z

′
m.

(7)

By [4, (4.1.107)] or [5, (2.19)], we have

F2,x0 = −L −1P⊥O2P − PO2L
−1P⊥. (8)

By [5, (4.1a), (4.7)] we have

(
L −1P⊥O2P

)(
Z,Z′) = (

L −1 O2P
)(

Z,Z′) =
{

Õ2 + bq

4π
RE

�qz�

}
P

(
Z,Z′).

(9)
By the symmetry properties of the curvature [5, Lemma 3.1] we have

Rkm�q = R�mkq = Rkq�m = R�qkm, Rkm�q = Rmkq�,
(
RE

kq

)∗ = RE

qk
. (10)

We use throughout that [g(z, z), bj ] = 2 ∂
∂zj

g(z, z) for any polynomial g(z, z) (cf. [5,
(1.7)]). Hence from (10), we get

bqRkk�qz� = Rkk�qz�bq − 2Rkkqq,

bqRkm�qzkz� = −4Rkmqqzk + Rkm�qzkz�bq,

bmbqRkm�qzkzl = Rkm�qzkzlbmbq − 8Rkk�qz�bq + 8Rmmqq.

(11)

Thus from (7) and (11), we get

Õ2 = 1

48π
Rkm�qzkzl

(
bm − 4πz′

m

)
bq + 1

6π
Rkk�qz�bq − 1

2π
Rmmqq + 1

3
Rkmqqzkz

′
m.

(12)

Now, (biP)(Z,Z′) = 2π(zi − z′
i )P(Z,Z′), see [4, (4.1.108)] or [5, (4.2)]. There-

fore

(Õ2P)
(
Z,Z′) =

[
π

12
Rkm�qzkzl
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zm − 3z′

m

)(
zq − z′

q

) + 1

3
Rkk�qz�

(
zq − z′

q
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− 1

2π
Rmmqq + 1

3
Rkmqqzkz

′
m

]
P

(
Z,Z′)

=
[

π

12
Rkm�qzkz�

(
zm − 3z′

m

)(
zq − z′

q

) + 1

3
Rkmqqzkzm

− 1

2π
Rmmqq

]
P

(
Z,Z′). (13)
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We know that for an operator T we have T ∗(Z,Z′) = T (Z′,Z), thus

(Õ2P)∗
(
Z,Z′) =

[
π

12
Rkm�qz′

mz′
q

(
z′
k − 3zk

)(
z′
� − z�

) + 1

3
Rkmqqz′

mz′
k

− 1

2π
Rmmqq

]
P

(
Z,Z′). (14)

We have (PO2L −1P⊥)∗ = L −1P⊥O2P by [4, Theorem 4.1.8], so from (13)
and (14), we obtain the factor of Rkm�q in (6).

Let us calculate the contribution of the last term (curvature of E). We have

−
(

bq

4π
RE

�qz�P

)(
Z,Z′) =

(
1

2π
RE

qq − 1

2
z�

(
zq − z′

q

)
RE

�q

)
P

(
Z,Z′) (15)

and by (10), we also have

−
(

bq

4π
RE

�qz�P

)∗(
Z,Z′) =

(
1

2π
RE

qq − 1

2
z′
�

(
z′
q − zq

)
RE

q�

)
P

(
Z,Z′). (16)

The contribution to J2 of the term on E is thus given by the last two terms in (6). �
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