
Periodicity in representation theory of algebras

Andrzej Skowroński

Introduction

In this notes we discuss the periodicity problems in the representation theory
of finite dimensional algebras over an algebraically closed field and exhibit their
natural sources in the theory of finite groups, algebraic topology and commutative
algebra.

One of the deepest and important results of the cohomological theory of finite
groups is a complete classification of all periodic groups, that is, the finite groups
with periodic cohomology groups. The class of periodic groups contains the cyclic
groups, generalized quaternion groups as well as the binary dihedral, tetrahedral,
octahedral and icosahedral groups. The classification problem of periodic groups is
strongly related with the spherical space form problem concerning the classification
of all finite groups G acting freely on spheres Sm and the homotopical type of the
orbit (spherical) spaces Sm/G. Namely, the finite groups acting freely on spheres are
necessarily periodic. On the other hand, already in 1938–1939, P. A. Smith proved
that free action of a finite groupG on a sphere Sm forces that every abelian subgroup
of G is cyclic. This was the topological motivation for the Zassenhaus problem
concerning the classification of all finite groups with cyclic abelian subgroups. This
problem was solved completely by M. Suzuki and H. Zassenhaus in 1949–1955.
Moreover, it has been proved by E. Artin and J. Tate that the periodic groups are
exactly the finite groups solving the Zassenhaus problem. In 1957 J. Milnor proved
that there are periodic groups without free action on a sphere, and in 1960 G. Swan
clarified the picture by showing that the periodic groups are all finite groups acting
freely on finite CW -complexes homotopically equivalent to spheres.

In the representation theory of finite dimensional algebras a prominent role is
played the syzygy operator which assigns to a module M over a finite dimensional
algebra A the kernel ΩA(M) of a projective cover of M . The main objective of the
notes is to discuss the structure and homological invariants of finite dimensional
algebrasA over an algebraically closed field K for which all indecomposable nonpro-
jective finite dimensional A-modules are periodic with respect to the action of the
syzygy operator ΩA. It turns out that all such algebras are selfinjective (projective
modules are injective), and hence are Morita equivalent to the Frobenius algebras.
Classical examples of selfinjective (Frobenius) algebras are provided by the group
algebras of finite groups, or more generally the finite dimensional Hopf algebras.
It follows from the classification of periodic groups and represenation theory of fi-
nite groups that a finite group G is periodic if and only if, for any algebraically
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closed field K, all indecomposable nonprojective finite dimensional modules over
the group algebra KG are ΩKG-periodic. Moreover, the group algebras KG of
periodic groups G are symmetric algebras of tame representation type. One of the
maing results presented in these notes is a complete classification (up to Morita
equivalence) of all symmetric algebras of tame representation type with all inde-
composable nonprojective finite dimensional modules periodic, established recently
by K. Erdmann and A. Skowroński.

In the notes, the periodicity of a finite dimensional algebra A as an A-A-
bimodule (equivalently, as a module over the enveloping algebra Ae) is also dis-
cussed. In particular, important recent results in this direction by E. L. Green,
N. Snashall and Ø. Solberg, invoking the Hochschild cohomology algebras, are
presented.

In the final part of the notes we exhibit natural examples of periodic selfinjective
algebras coming from the commutative algebra. These are the stable Auslander
algebras of the hypersurface singularities of finite Cohen-Macaulay type over an
algebraically closed field. In particular, a large class of selfinjective algebras of
wild representation type with all indecomposable nonprojective finite dimensional
modules is presented.

We divide the notes into the following parts:
(1) Selfinjective algebras.
(2) Periodicity of modules and algebras.
(3) Periodicity of finite groups.
(4) Periodicity of tame symmetric algebras.
(5) Periodicity and hypersurface singularities.

1. Selfinjective algebras

In this section we introduce the classes of selfinjective algebras, Frobenius al-
gebras and symmetric algebras as well as present their classical characterizations
and examples.

Let A be a finite dimensional K-algebra and Aop its opposite algebra. We
denote by modA the category of finite dimensional (over K) right A-modules.
Then modAop is the category of finite dimensional left A-modules. Moreover, the
functor D = HomK(−,K) : modK → modK induces a duality

modA
D �� modAop

D
��

with D ◦D ∼= 1modA, D ◦D ∼= 1modAop . Let

1A =
nA∑
i=1

mA(i)∑
j=1

eij

be a decomposition of the identity 1A of A into a sum of pairwise orthogonal
primitive idempotents eij such that

eijA ∼= eij′A, for all j, j′ ∈ {1, . . . ,mA(i)},
eijA � ei′jA, for i, i′ ∈ {1, . . . , nA} with i �= i′.

We will abbreviate ei = ei1 for i ∈ {1, . . . , nA}. Hence,

Pi = eiA, 1 ≤ i ≤ nA,
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is a complete set of pairwise nonisomorphic indecomposable projective right A-
modules. Moreover,

Ii = D(Aei), 1 ≤ i ≤ nA,

is a complete set of pairwise nonisomorphic indecomposable injective right A-
modules. The algebra A is said to be basic if mA(i) = 1 for all i ∈ {1, . . . , nA}. In
general, consider the basic idempotent of A

e =
nA∑
i=1

ei1 =
nA∑
i=1

ei.

Then Ab = eAe is said to be basic algebra of A. By general theory, the pair of
functors

modA
(−)e �� modAb

−⊗
AbA

��

induces an equivalence of categories and A is said to be Morita equivalent to Ab.
We denote by projA the category of projective modules in modA and by injA

the category of injective modules in modA. Then we have the following dualities
of categories

projA
D �� injAop,
D

��

injA
D �� projAop.
D

��

Proposition 1.1. Let A be an algebra. The following statements are equivalent:
(1) AA is injective.
(2) projA = injA.
(3) projAop = injAop.
(4) AA is injective.

An algebraA is said to be selfinjective if the modules AA and AA are injective.
Therefore, for a selfinjective algebra A, e11A, e21A, . . . , en1A is a complete set

of pairwise nonisomorphic indecomposable injective right A-modules.
Hence, there exists a permutation ν of {1, . . . , nA}, called the Nakayama

permutation, such that

top ei1A ∼= soc eν(i)1A for all i ∈ {1, . . . , nA}.
The following characterization of selfinjective algebras has been established by

Nakayama in [Na2].

Theorem 1.2 (Nakayama, 1941). An algebra A is selfinjective if and only if there
exists a permutation ν of {1, . . . , nA} such that top ei1A ∼= soc eν(i)1A for all i ∈
{1, . . . , nA}.

In the representation theory of selfinjective algebras an essential role is played
by the A-A-bimoduleD(A) = HomK(A,K), with the A-A-bimodule structure given
by

(af)(b) = f(ba), (fa)(b) = f(ab), for a, b ∈ A, f ∈ D(A).
Then D(A)A is an injective cogenerator in the category modA and AD(A) is an
injective cogenerator in the category modAop.

The following theorem is a combination of results proved by Brauer and Nesbitt
[BN] and Nakayama [Na1].
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Theorem 1.3 (Brauer, Nesbitt, Nakayama, 1937–1939). Let A be an algebra. The
following statements are equivalent:

(1) There exists a nondegenerate K-bilinear form (−,−) : A × A → K such
that (a, bc) = (ab, c) for all a, b, c ∈ A.

(2) There exists a K-linear form ϕ : A → K such that kerϕ does not contain
nonzero right ideal of A.

(3) There exists an isomorphism θ : AA → D(A)A of right A-modules.
(4) There exists a K-linear form ϕ′ : A→ K such that kerϕ′ does not contain

nonzero left ideal of A.
(5) There exists an isomorphism θ′ : AA→ AD(A) of left A-modules.

Proof. (1) ⇒ (2). Let (−,−) : A × A → K be a nondegenerate associative
K-bilinear form. Define the K-linear map ϕ : A→ K by

ϕ(a) = (a, 1) = (1, a) for a ∈ A.

Let I be a right ideal of A such that ϕ(I) = 0. Take a ∈ I. Then (a,A) = (aA, 1) =
ϕ(aA) = 0 implies (a,−) = 0, and so a = 0. Hence I = 0.

(2) ⇒ (1), (3). Let ϕ : A → K be a K-linear map such that ϕ(I) �= 0 for any
nonzero right ideal I of A. Define the K-bilinear form (−,−) : A×A→ K by

(a, b) = ϕ(ab) for all a, b ∈ A.

Observe that
(a, bc) = ϕ(a(bc)) = ϕ((ab)c) = (ab, c),

for a, b, c ∈ A. Let a ∈ A. If (a,−) = 0 then ϕ(aA) = (a,A) = 0 implies a = 0.
Assume (−, a) = 0. Then (a,−) = 0, and hence a = 0. Indeed, consider a K-linear
basis a1, . . . , am of A. Then a =

∑m
i=1 λiai for some λ1, . . . , λm ∈ K, and, for any

j ∈ {1, . . . ,m}, we have 0 = (aj , a) =
∑n

i=1 λi(aj , ai), or equivalently

[(aj , ai)]

 λ1

...
λm

 = 0.

Taking the transpose, we get

[λ1, . . . , λm] [(ai, aj)] = 0,

or equivalently 0 =
∑n

i=1 λi(ai, aj) = (a, aj) for any j ∈ {1, . . . ,m}. Hence (a,−) =
0, as required. Therefore (−,−) is a nondegenerate associative K-bilinear form, and
(1) holds. For (3), define the K-linear map

θ = θϕ : A→ D(A) = HomK(A,K)

such that θ(a)(b) = ϕ(ab), for a, b ∈ A. Then θ is a homomorphism of right
A-modules. Indeed, for a, b, c ∈ A, we have θ(ab)(c) = ϕ((ab)c) = ϕ(a(bc)) =
θ(a)(bc) = (θ(a)b)(c), and hence θ(ab) = θ(a)b. Moreover, θ is a monomorphism,
because, for a ∈ A, θ(a) = 0 implies ϕ(aA) = θ(a)(A) = 0, and hence aA = 0,
and consequently a = 0, by the condition (2). Since dimK A = dimK D(A), we
conclude that θ is an isomorphism of right A-modules.

(3) ⇒ (2) Assume that θ : A → D(A) is an isomorphism of right A-modules.
Define the K-linear map ϕ = ϕθ = θ(1) ∈ D(A). Let I be a right ideal of A
such that ϕ(I) = 0. Then, for any a ∈ A, we have aA ⊆ I, and hence we obtain
0 = ϕ(aA) = θ(1)(aA) = (θ(1)a)(A) = θ(a)(A) and hence a = 0, because θ is and
isomorphism of right A-modules. Hence I = 0, and (2) holds.
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In a similar way, we prove the equivalences (1) ⇐⇒ (4) ⇐⇒ (5). �

An algebra A statisfying one of the equivalent conditions (1)–(5) is called a
Frobenius algebra. Observe that every Frobenius algebra A is selfinjective, be-
cause an isomorphism AA

∼−→ D(A)A implies that AA is injective. Conversely,
every basic, selfinjective algebra A is a Frobenius algebra.

In particular, we obtain that every selfinjective algebra A is Morita equivalent
to a Frobenius algebra, namely its basic algebra Ab.

In general, we have the following result due to Nakayama [Na1].

Theorem 1.4 (Nakayama, 1939). Let A be a selfinjective algebra. Then A is a
Frobenius algebra if and only if, for the Nakayama permutation ν = νA of A, we
have mA(i) = mA(ν(i)) for all i ∈ {1, . . . , nA}.

The following example has been exhibited already by Nakayama [Na1].

Example 1.5. Let Λ = KQ/I where Q is the quiver

1
α �� 2
β

��

I = 〈αβ, βα〉. Then Λ is a basic, connected selfinjective algebra with rad2 Λ = 0.
Moreover, Λ = e1A⊕e2Λ. Take P10 = e1A, P11 = e1A, P2 = e2A, and consider the
endomorphism algebra A = Λ(2, 1) = EndΛ(P10 ⊕ P11 ⊕ P2). Let e0, e1, e2 be the
primitive idempotents of A corresponding to the direct summands P10, P11, P2 of
P10 ⊕ P11 ⊕ P2. Further, denote by 1u0 the identity map from P10 to P11, and by
0u1 the identity map from P11 to P10. Finally, let 2α0 : P10 → P2, 2α1 : P11 → P2,
and 0β2 : P2 → P10, 1β2 : P2 → P11 be the maps given by the left multiplications
by α and β, respectively. Then we have in A the equalities

e0 = 0u1 · 1u0, e1 = 1u0 · 0u1,

2α0 = e2 · 2α0 · e0, 2α1 = e2 · 2α1 · e1,
0β2 = e0 · 0β2 · e2, 1β2 = e1 · 1β2 · e2.

Then A is a 9-dimensional selfinjective non-Frobenius algebra, isomorphic to
the matrix algebra given by the matrices of the form

a0 0b1 0µ1

1b0 a1 1µ2 0
0 0 a2

a2 2λ0 2λ1

0 0 a0 0b1
0 1b0 a1


where a0 ∈ Ke0, a1 ∈ Ke1, a2 ∈ Ke2, 0b1 ∈ K0u1, 1b0 ∈ K1u0, 0µ2 ∈ K0β2,
1µ2 ∈ K1β2, 2λ0 ∈ K2α0, 2λ1 ∈ K2α1, which is exactly the algebra presented by
Nakayama in [Na1, p.624].

We refer to [SY] for the general form of non-Frobenius selfinjective algebras.
Hence, the class of Frobenius algebras is not closed under Morita equivalences.

The class of selfinjective algebras is the smallest class of algebras containing the
Frobenius algebras and closed under Morita equivalences.

An important class of Frobenius algebras is formed by the symmetric algebras.
The following theorem is again a combination of results proved by Brauer and
Nesbitt [BN] and Nakayama [Na2].
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Theorem 1.6 (Brauer, Nesbitt, Nakayama, 1937–1941). Let A be an algebra. The
following statements are equivalent:

(1) There exists a nondegenerate symmetric associative K-bilinear form (−,−) :
A×A→ K.

(2) There exists a K-linear form ϕ : A → K such that ϕ(ab) = ϕ(ba) for all
a, b ∈ A, and kerϕ does not contain nonzero one-sided ideal of A.

(3) There exists an isomorphism θ : AAA → AD(A)A of A-A-bimodules.

Proof. This follows from the proof of the characterizations of Frobenius alge-
bras. �

An algebra A satisfying one of the equivalent conditions (1)–(3) is called a
symmetric algebra.

Let A be a Frobenius K-algebra and (−,−) : A × A → K a nondegenerate
associative K-bilinear form. Then there exists a unique K-algebra isomorphism

νA : A→ A

such that (a, b) = (b, νA(a)) for all a, b ∈ A, called the Nakayama automorphism
of A. We will see later that νA induces the Nakayama permutation of A. Moreover,
νA = idA, if A is symmetric.

The following fact has been observed by Nakayama [Na1].

Theorem 1.7 (Nakayama, 1939). Let A be a selfinjective algebra. Then soc(AA) =
soc(AA). In particular, soc(A) := soc(AA) = soc(AA) is an ideal of A.

Two selfinjective algebras A and Λ are said to be socle equivalent if the factor
algebras A/ soc(A) and Λ/ soc(Λ) are isomorphic.

Examples 1.8. (1) Let A = K[X ]/(Xn), n ≥ 1, be a truncated polynomial algebra.
Then A is a commutative local K-algebra with A ∼= D(A) as A-A-bimodules, and
hence A is a symmetric algebra. More generally, every finite dimensional
commutative selfinjective K-algebra is a symmetric algebra.

(2) Let G be a finite group, and A = KG the group algebra o G. Then

A =

∑
g∈G

λgg | λg ∈ K


and dimK A = |G|. Moreover, the map (−,−) : A×A→ K given by∑

g∈G

λgg,
∑
h∈H

µhh

 =
∑
g∈G

λgµg−1

is a symmetric, associative, nondegenerate K-bilinear form. Hence, A = KG is a
symmetric algebra.

(3) Let A be an arbitrary finite dimensional K-algebra. Consider the trivial
extension T(A) = A � D(A) of A by the A-A-bimodule D(A). That is, T(A) =
A⊕D(A) as K-vector space and the multiplication in T(A) is given by

(a, f)(a′, f ′) = (aa′, af ′ + fa′),

for a, a′ ∈ a, f, f ′ ∈ D(A). Obviously, dimK T(A) = 2 dimK A.
Further, the map (−,−) : T(A) × T(A) → K given by

((a, f), (a′, f ′)) = f(a′) + f ′(a), for a, a′ ∈ A, f, f ′ ∈ D(A),
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is a symmetric, associative, nondegenerate, K-bilinear form. Therefore, T(A) is a
symmetric algebra.

Observe thatD(A) = 0⊕D(A) is a two-sided ideal of T(A) andA = T(A)/D(A).
Hence, every algebra A is a factor algebra of a symmetric algebra.

(4) For λ ∈ K \ {0}, let Aλ = KQ/Iλ, where

Q : •������α ���� ������ β
����

,

I = 〈α2, β2, αβ − λβα〉. Then Aλ is a 4-dimensional local Frobenius algebra. But

Aλ is symmetric ⇐⇒ λ = 1.

Indeed, let a = α + Iλ, b = β + Iλ. Then 1, a, b, ab = λba is a basis of Aλ over K.
Define ϕλ : Aλ → K by

ϕλ(1) = ϕλ(a) = ϕλ(b) = 0, ϕλ(ab) = 1.

Then kerϕ does not contain nonzero right (left) ideal of Aλ, and hence Aλ is a
Frobenius algebra. For λ = 1, ϕ = ϕ1 has the property ϕ(xy) = ϕ(yx) for all
x, y ∈ A1, and hence A1 is a symmetric algebra. For λ �= 1, Aλ is not symmetric.
Indeed, assume that ψ : A→ K is a K-linear map such that ψ(xy) = ψ(yx) for all
x, y ∈ Aλ, and kerψ does not contain nonzero one-sided ideal of Aλ. Then Kab =
Kba is a nonzero ideal of Aλ, and hence 0 �= ψ(ba) = ψ(ab) = ψ(λba) = λψ(ba)
implies λ = 1.

A distinguished class of Frobenius algebras is formed by the finite dimensional
Hopf algebras.

A K-vector space A is a K-algebra if and only if there are K-linear maps

m : A⊗K A −→ A and η : K −→ A

called the multiplication and the unit, respectively, such that the following dia-
grams are commutative

A⊗K A⊗K A
1⊗m ��

m⊗1

��

A⊗K A

m

��
A⊗K A m

�� A

K ⊗K A
η⊗1 ��

∼=

������������������ A⊗K A

m

��

A⊗K K
1⊗η��

∼=

������������������

A

Dually, a K-vector space C is a K-coalgebra if there are K-linear maps

∆ : C −→ C ⊗K C and ε : C −→ K
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called the comultiplication and the counit, respectively, such that the following
diagrams are commutative

C
∆ ��

∆

��

C ⊗K C

1⊗∆

��
C ⊗K C

∆⊗1
�� C ⊗K C ⊗K C

K ⊗K C C ⊗K C
ε⊗1�� 1⊗ε �� C ⊗K K

C

∼=

������������������

∆

		

∼=



����������������

A K-vector space H is said to be a K-bialgebra if there are K-linear maps
m : H ⊗K H → H , η : K → H , ∆ : H → H ⊗K H and ε : H → K such that the
following conditions are satisfied:

(1) (H,m, η) is a K-algebra,
(2) (H,∆, ε) is a K-coalgebra,
(3) ∆, ε are homomorphisms of K-algebras.
Let H = (H,m, η,∆, ε) be a bialgebra over K. Consider the convolution

map
∗ : HomK(H,H) × HomK(H,H) −→ HomK(H,H)

which assigns to f, g ∈ HomK(H,H) the composition

f ∗ g : H ∆−→ H ⊗K H
f⊗g−→ H ⊗K H

m−→ H.

Then a bialgebra H = (H,m, η,∆, ε) over K is said to be a Hopf algebra if there
exists a K-linear map s : H → H , called the antipode, such that s ∗ idH = ηε =
idH ∗s.

We provide now few examples of finite dimensional Hopf algebras.

Examples 1.9. (1) The group algebra KG of a finite group G is a Hopf algebra
with the comultiplication ∆, the counit ε and the antipode s given by

∆(g) = g ⊗ g, ε(g) = 1, s(g) = g−1, for g ∈ G.

(2) LetH = (H,m, η,∆, ε, s) be a finite dimensional Hopf algebra overK. Then
the dual spaceH∗ = HomK(H,K) is again a Hopf algebraH∗ = (H∗,∆∗, ε∗,m∗, η∗, s∗)
with

∆∗ : H∗ ⊗K H∗ ∼−→ (H ⊗K H)∗ ∆∗
−→ H∗,

ε∗ : K = K∗ −→ H∗,

m∗ : H∗ m∗
−→ (H ⊗K H)∗ ∼−→ H∗ ⊗K H∗,
η∗ : H∗ −→ K∗ = K,

s∗ : H∗ −→ H∗.
We note that, for an antipode s of a Hopf algebra H , we have s(xy) = s(y)s(x) for
x, y ∈ H and s(1) = 1.
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The following theorem is due to Radford [Ra].

Theorem 1.10 (Radford, 1976). An antipode s of a finite dimensional Hopf algebra
H has a finite order. In particular, s is an antiisomorphism of the algebra H.

Let H = (H,m, η,∆, ε, s) be a Hopf algebra over K. Then the set∫ r

H

=
{
x ∈ H

∣∣ xh = ε(h)x for all h ∈ H
}

is called the space of right integrals of H .
The following theorem proved by Larson and Sweedler in [LaSw] shows that

every finite dimensional Hopf algebra is a Frobenius algebra.

Theorem 1.11 (Larson-Sweedler, 1969). Let H be a finite dimensional Hopf alge-
bra over K. Then the following statements hold.

(1) dimK

∫ r

H
= 1 and dimK

∫ r

H∗ = 1.
(2) For ϕ ∈

∫ r

H∗ \{0}, the K-bilinear form

(−,−) : H ×H → K

such that (a, b) = ϕ(ab) for a, b ∈ H, is nondegenerate and associative.
In particular, H is a Frobenius algebra.

Let H be a finite dimensional Hopf algebra over K. Then there exists a homo-
morphism of K-algebras ξ : H −→ K called the modular function on H , such
that hx = ξ(h)x for all h ∈ H,x ∈

∫ r

H . Consider the associated convolution map

ξ ∗ idH : H ∆−→ H ⊗K H
ξ⊗idH−→ K ⊗K H

∼−→ H.

The following result proved by Fischman, Montgomery and Schneider in [FMS]
shows that the finite dimensional Hopf algebras form a special class of Frobenius
algebras.

Theorem 1.12 (Fischman-Montgomery-Schneider, 1997). Let H be a finite dimen-
sional Hopf algebra over K. Then the following statements hold.

(1) νH = (ξ∗idH)·s−2 is the Nakayama automorphism of the Frobenius algebra
H, that is, (a, b) = (b, νH(a)) for all a, b ∈ H.

(2) νH has finite order dividing 2 dimK H.

Example 1.13. Let H = KG be the group algebra of a finite group G. Then∫ r

H
= Kt, where t =

∑
g∈G g. Moreover, ξ = ε : H → K, s2 = idH , ξ ∗ idH =

ε ∗ idH = idH , and hence νH = (ξ ∗ idH)s−2 = idH . This is correct because KG is
a symmetric algebra.

Example 1.14. Let n ≥ 2 and λ be a primitive n-th root of unity (hence charK
is not divisible by n). Let

H = Hn2(λ) = K〈g, x〉/(gn − 1, xn, xg − λgx).

Then Hn2(λ) is an n2-dimensional Hopf algebra, with K-basis {gixj | 0 ≤ i, j ≤
n− 1}, and the comultiplication ∆, counit ε and antipode s given by

∆(g) = g ⊗ g, ∆(x) = g ⊗ x+ x⊗ 1

ε(g) = 1, ε(x) = 0
s(g) = g−1, s(x) = −g−1x

The algebra Hn2(λ) is called the Taft algebra.
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Observe that the Taft algebra is neither commutative nor cocommutative. For
n = 2, H4(λ) is called the 4-dimensional Sweedler’s algebra. We compute now
the order of the Nakayama automorphism νH of H = Hn2(λ) .

Since s2(x) = λx, s2(g) = g, the antipode s has order 2n. Further,
∫ r

H = Kt,
where

t = (
n−1∑
m=0

λ−mgm)xn−1.

Moreover, the modular function ξ : H → K is given by

ξ(g) = λ, ξ(x) = 0.

Then the convolution ξ ∗ idH : H → H is given by λ idH , and hence the Nakayama
automorphism νH = (ξ ∗ idH)s−2 is given by

νH(g) = λg, νH(x) = x.

Therefore, νH has order n.
Observe also that, as an algebra, H = Hn2(λ) is isomorphic to the skew group

algebraA[G], where A = K[x]/(xn), G = (g) is cyclic of order n, and G acts on A by
g(x̄) = λ−1x̄, where x̄ is the residue class of x. Note that gx̄g = g(x̄)gg = λ−1x̄gg
implies x̄g = λgx̄. Moreover, the algebra H = Hn2(λ) is isomorphic to the bound
quiver algebra KQn/In, where Qn is the cyclic quiver of the form

1 α1

����������

n

αn
����������

2
α2



�������

n− 1

αn−1

���������
3

α3

��
n− 2

αn−2

		

4

��						

. . .

��







. . .

and the ideal In is generated by the paths αiαi+1 . . . αi+n−1, 1 ≤ i ≤ n. Hence, as
an algebra, Hn2(λ) is a selfinjective Nakayama algebra.

In the representation theory of selfinjective algebras a prominent role is played
by the Galois coverings and the selfinjective orbit algebras.

A connected K-category R is said to be locally bounded if the following
conditions are satisfied:

(1) distinct objects of R are nonisomorphic,
(2) ∀

x∈obR
R(x, x) is a local algebra,

(3) ∀
x∈obR

∑
y∈obR

(dimK R(x, y) + dimK R(y, x)) <∞.

It is known (see [BG]) that every locally bounded category R is of the form
R ∼= KQ/I, where Q is a locally finite connected quiver, and I is an admissible
ideal of the path category KQ.
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Denote by modR the category of finitely generated contravariant functors R→
modK. If R = KQ/I, then modR is equivalent to the category repK(Q, I) of K-
linear representations of the bound quiver (Q, I).

A locally bounded categoryR with finitely many objects is said to be bounded.
We may associate to a bounded category R the finite dimensional basic connected
K-algebra

⊕
R =

⊕
x,y∈obR

R(x, y).

We will identify a bounded K-category R with the associated finite
dimensional algebra ⊕R.

Let R be locally boundedK-category andG a group ofK-linear automorphisms
of R. Then the group G is said to be admissible if G acts freely on the objects
of R and has finitely many orbits. We may then consider the orbit (bounded)
category R/G defined as follows (see [Ga]).

The objects of R/G are the G-orbits of objects of R, and the morphism spaces
are given by

(R/G)(a, b) =

(fyx) ∈
∏

(x,y)∈a×b

R(x, y)
∣∣ g · fyx = fg(y),g(x) ∀

g∈G,x∈a,y∈b

 ,

for all objects a, b of R/G. Then we have the canonical Galois covering F : R→
R/G defined on the objects as follows

ob(R) � x �→ Fx = G · x ∈ ob(R/G).

For each x ∈ obR and a ∈ ob(R/G), the functor F induces K-linear isomorphisms⊕
Fy=a

R(x, y) ∼−→ (R/G)(Fx, a),

⊕
Fy=a

R(y, x) ∼−→ (R/G)(a, Fx).

The group G acts also on the category modR by

modR �M �→ gM = Mg−1 ∈ modR

We have also the push-down functor (see Bongartz-Gabriel [BG])

Fλ : modR −→ modR/G

such that (FλM)(a) =
⊕
x∈a

M(x) for M ∈ modR, a ∈ ob(R/G).

Assume G is torsion-free. Then Fλ induces an injection (see Gabriel [Ga])
G-orbits of
isoclasses of

indecomposable
modules in modR


Fλ�


isoclasses of

indecomposable
modules in
modR/G

 .

Following Dowbor and Skowroński [DS1] a locally bounded K-category R is
said to be locally support-finite if, for any x ∈ obR,⋃

M∈ind R
M(x)�=0

supp(M)

is a bounded category.
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Then we have the density theorem of Dowbor and Skowroński (see [DS1],
[DS2]): if R is a locally support-finite locally bounded K-category and G is an
admissible torsion-free group of automorphisms of R then the push-down functor
Fλ is dense. Moreover, then the Auslander-Reiten quiver ΓR/G ofR/G is isomorphic
to the orbit quiver ΓR/G of the Auslander-Reiten quiver ΓR of R with respect to
the indicated action of G.

In particular, if R is a selfinjective locally bounded K-category and G is an
admissible group of automorphisms of R then R/G is a basic connected finite di-
mensional selfinjective K-algebra.

Let B be a basic, connected, finite dimensional K-algebra and 1B = e1+· · ·+en

a decomposition of the identity 1B of B into sum of pairwise orthogonal primitive
idempotents. We associate to B a selfinjective locally bounded K-category B̂, called
the repetitive category of B (see Hughes-Waschbüsch [HW]). The objects of B̂
are em,i, m ∈ Z, 1 ≤ i ≤ n, and the morphism spaces are defined as follows

B̂(em,i, er,j) =


ejBei , r = m

D(eiBej) , r = m+ 1
0 , otherwise

.

Observe that ejBei = HomB(eiB, ejB), D(eiBej) = ejD(B)ei and⊕
(m,i)∈Z×{1,...,n}

B̂(−, er,j)(em,i) = ejB ⊕D(Bej).

Therefore, for any admissible group G of automorphisms of B̂, we obtain a
basic, connected, finite dimensional selfinjective K-algebra B̂/G. We denote by νB̂

the Nakayama automorphism of B̂ defined as follows

νB̂(em,i) = em+1,i, for all m, i ∈ Z × {1, . . . , n}.

Then, for each positive integer r, the infinite cyclic group (νr
B̂

) is an admissible

group of automorphisms of B̂, and we have the selfinjective algebra

T(B)(r) = B̂/(νr
B̂

) ∼=





b1 0 0
f2 b2 0 0
0 f3 b3

. . .
. . .

0 fr−1 br−1 0
0 f1 b1


b1, . . . , br−1 ∈ B, f1, . . . , fr−1 ∈ D(B)


,

called the r-fold trivial extension algebra of B. We note that the Nakayama
automorphism of T(B)(r) has order r. Observe also that T(B)(1) ∼= T(B) = B �
D(B).

We illustrate the above construction by the following example.

Example 1.15. Let B be the path algebra K∆n of the quiver

∆n 1 α1−→ 2 α2−→ 3 −→ · · · −→ n− 1
αn−1−→ n.

Then B̂ is the bound quiver category K∆̂n/În, where ∆̂n is the left quiver bellow
and În is generated by all compositions of n+ 1 consecutive arrows in ∆̂n. Observe
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that the Nakayama automorphism νB̂ of B̂ is given by

νB̂(r, i) = (r + 1, i), for (r, i) ∈ Z × {1, . . . , n}.

Let ϕ be a unique positive automorphism of B̂ with ϕn = νB̂. For each positive
integer m, consider the orbit algebra Nn

m = B̂/(ϕm). Then Nn
m is the bound quiver

algebra KCm/Jm,n, where Cm is the right quiver bellow and Jm,n is the ideal in
the path algebra KCm generated by all compositions of n + 1 consecutive arrows
in Cm.

∆̂n

...
��

(2, n)
α2,n��

(1, 1)
α1,1��

(1, 2)
α1,2��

...
��

(1, n− 1)
α1,n−1��

(1, n)
α1,n��

(0, 1)
α0,1��

(0, 2)
α0,2��

...
��

(0, n− 1)
α0,n−1��

(0, n)
α0,n��

(−1, 1)
α−1,1��

(−1, 2)
α−1,2��

...

m
αm �� 1

α1

��������������

m− 1

αm−1



������������

Cm

2

α2

��
m− 2

αm−2

		

3

��













. . .

��������������

. . .

It is known that the algebras Nn
m, m,n ≥ 1, exhaust (up to isomorphism) all non-

simple basic connected selfinjective Nakayama algebras. Moreover, the Nakayama
algebra Nn

m is symmetric if and only if m | n. Observe also that Nn
n = T(B), for

B = K∆n.

Recall that a finite dimensional selfinjective K-algebraA is called a Nakayama
algebra if the indecomposable projective A-modules are uniserial (the sets of
submodules are linearly ordered by inclusion). Then we have the following theorem.
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Theorem 1.16. Let A be an indecomposable finite dimensional selfinjective K-
algebra. The following statements are equivalent:

(1) A is a Nakayama algebra.
(2) The indecomposable finite dimensional A-modules are uniserial.
(3) A is Morita equivalent to Nn

m for some m,n ≥ 1.

Assume now that B is triangular (the Gabriel quiver QB of B has no oriented
cycles). Then the locally bounded K-category B̂ is also triangular. Moreover, B is
the full bounded subcategory of B̂ given by the objects e0,i, 1 ≤ i ≤ n.

Let i be a sink of QB. The reflection of B at i is the full subcategory S+
i B

of B̂ given by the objects e0,j, 1 ≤ j ≤ n, j �= i, and e1,i = νB̂(e0,i). The
associated quiver σ+

i QB = QS+
i B is also called the reflection of QB at i. Observe

that B̂ ∼= Ŝ+
i B, and hence

T(B)(r) ∼= T(S+
i B)(r), for any r ≥ 1.

A reflection sequence of sinks of QB is a sequence i1, . . . , it of vertices of QB

such that is is a sink of σ+
is−1

. . . σ+
i1
QB, for any 1 ≤ s ≤ t.

Two triangular basic, connected algebras B and C are defined to be reflection
equivalent if C ∼= S+

it
. . . S+

i1
B for a reflection sequence of sinks i1, . . . , it of QB.

Observe that, if B and C are reflection equivalent triangular algebra, then B̂ ∼= Ĉ,
T(B)(r) ∼= T(C)r for all r ≥ 1.

2. Periodicity of modules and algebras

In this section we introduce the periodic modules and the periodic algebras,
and describe their properties and characterizations.

Let A be a finite dimensional selfinjective K-algebra. Then Aop is also selfin-
jective and we have the duality between modA and Aop

modA
HomA(−,AA) �� modAop

HomAop (−,AA)
�� .

Then we have the selfequivalence functor

NA = DHomA(−, AA) : modA→ modA,

called the Nakayama functor. Moreover,

N−1
A = HomAop(−,AA)D

is the inverse of NA.

Proposition 2.1. The functors

NA,−⊗A D(A) : modA→ modA

are equivalent.

Proof. For any module M in modA, we have a natural isomorphism of right
A-modules

φM : M ⊗A D(A) → DHomA(M,A) = NA(M)
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such that φM (m ⊗ f)(g) = f(g(m)) for m ∈ M , f ∈ D(A) = HomK(A,K) and
g ∈ HomA(M,A). This induces an equivalence of functors

φ : −⊗A D(A) → NA.

�

For a K-algebra automorphism σ of A, we denote by

(−)σ : modA→ modA

the induced functor such that, for any module M in modA, Mσ is the module with
the twisted right A-module structure

m ∗ a = mσ(a), for m ∈M and a ∈ A.

Proposition 2.2. Let A be a Frobenius algebra and νA its Nakayama automor-
phism. Then the functors

NA, (−)ν−1
A

: modA→ modA

are equivalent.

Proof. Let (−,−) be a nondegenerate associative K-bilinear form defining
the Nakayama automorphism νA. Then a required equivalence

ψ : (−)ν−1
A

−→ NA

is given by the family of isomorphisms of right A-modules

ψM : Mν−1
A

−→ NA(M) = DHomA(M,A),

where M are modules in modA, such that

ψM (m)(g) = (g(m), 1) = (1, g(m)),

for all m ∈M , g ∈ HomA(M,A). �

Therefore, if A is a Frobenius algebra, and

1A =
nA∑
i=1

mA(i)∑
j=1

eij

is the standard decomposition of 1A into the sum of pairwise orthogonal primitive
idempotents, then we have isomorphisms of right A-modules

NA(eijA) ∼= (eijA)ν−1
A

∼−→ νA(eij)A = νA(eijA)

such that
(eija) ∗ b = (eija)ν−1

A (b) �→ νA(eija)b
for a, b ∈ A. Moreover, NA(eijA) = D(Aeij). Hence we obtain that

top(eijA) ∼= soc νA(eij)A.

In particular, the Nakayama automorphism νA induces a Nakayama permutation
ν = νA of {1, . . . , nA}.

For a symmetric algebra A, we have νA = idA and NA
∼= 1modA. In particular,

for a symmetric algebraA, we have topP ∼= socP for any indecomposable projective
A-module P , that is, A is a weakly symmetric algebra (the trivial permutation
of {1, . . . , nA} is a Nakayama permutation of A).
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Let A be a finite dimensional selfinjective K-algebra. We denote by modA
the stable category of modA. The objects of modA are the modules in modA
without nonzero projective direct summands, and, for any two objects M and N
in modA, the K-space HomA(M,N) of morphisms from M to N is the quotient
HomA(M,N)/P (M,N), where P (M,N) is the subspace of HomA(M,N) consisting
of all homomorphisms which factorize through a projective A-module. Then the
Nakayama functors

NA,N−1
A : modA→ modA

induce the Nakayama functors

NA,N−1
A : modA→ modA,

because NA(projA) = injA = projA.
We have also the Auslander-Reiten translation functors

τA = DTr, τ−1
A = TrD : modA→ modA.

Consider also the (Heller’s) syzygy functors [He]

ΩA,Ω−1
A : modA→ modA

defined by the exact sequences below. For a module M in modA without projective
direct summands, we have exact sequences

0 → ΩA(M) → PA(M) →M → 0,

0 → M → IA(M) → Ω−1
A (M) → 0,

where PA(M) is the projective cover of M and IA(M) is the injective envelope of
M in modA.

Proposition 2.3. Let A be a selfinjective algebra.
(1) The functors

DTr,Ω2
ANA,NAΩ2

A : modA→ modA

are isomorphic.
(2) The functors

TrD,Ω−2
A N−1

A ,N−1
A Ω−2

A : modA→ modA

are isomorphic.

Proof. (1) For a module M in modA without projective direct summands,
we have a minimal projective presentation of M in modA

0 → Ω2
A(M) → P1(M) → P0(M) →M → 0.

Applying the exact functor HomA(−, AA) we obtain the exact sequence

0 → HomA(M,AA) → HomA(P0, AA) → HomA(P1(M), AA) → TrM → 0

in modAop. Further, applying the duality functor D : modAop → modA, we
obtain the exact sequence

0 �� DTrM �� DHomA(P1, AA) �� DHomA(P0(M), AA) �� DHomA(M,AA) �� 0

NA(P1(M)) NA(P0(M)) NA(M)

,

which is a minimal projective presentation of NA(M) in modA. Hence, we obtain
isomorphisms Ω2

ANA(M) ∼= DTrM ∼= NAΩ2
A(M). �
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As a direct consequence we obtain the following facts.

Corollary 2.4. Let A be a symmetric algebra. Then
(1) The functors DTr,Ω2

A : modA→ modA are isomorphic.
(2) The functors TrD,Ω−2

A : modA→ modA are isomorphic.

By general theory, if P is an indecomposable projective-injective A-module,
then we have in modA an Auslander-Reiten sequence of the form

0 → radP → radP/ socP ⊕ P → P/ socP → 0.

For A selfinjective, we denote by Γs
A the stable Auslander-Reiten quiver of A,

obtained from the Auslander-Reiten quiver ΓA of A by removing the projective-
injective vertices and the arrows attached to them. Observe that we may recover
ΓA from Γs

A if we know the positions of radP (equivalently, P/ socP ), for all
indecomposable projective modules P , in Γs

A.
Two selfinjective algebras A and Λ are said to be stably equivalent if the

stable module categories modA and modΛ are equivalent. Clearly, if A and Λ are
stably equivalent selfinjective algebras then the stable Auslander-Reiten quivers Γs

A

and Γs
Λ are isomorphic translation quivers.

Let A be a finite dimensional K-algebra. A module M in modA is said to be
ΩA-periodic (shortly, periodic) if Ωn

A(M) ∼= M for some n ≥ 1. The following
problem occurs naturally.

PROBLEM 1. Determine the finite dimensional K-algebras A whose all
indecomposable nonprojective finite dimensional right A-modules are
periodic.

We will see later that all such algebras are selfinjective.
Similarly, a module M in modA is called DTr-periodic if (DTr)n(M) ∼= M

for some n ≥ 1. Then we have the related natural problem.

PROBLEM 2. Determine the finite dimensional K-algebras A for which
all indecomposable nonprojective finite dimensional right A-modules are
DTr-periodic.

It is clear that all such algebras are selfinjective, because the DTr-orbit of an
indecomposable injective A-module is not a finite periodic orbit, and hence consists
of one module, which is then an indecomposable projective A-module.

Let A be a selfinjective algebra. Then DTr ∼= Ω2
ANA as functors on modA.

Hence, the ΩA-periodicity in modA coincides with the DTr-periodicity in modA if
the Nakayama functor NA on modA has finite order. For example, it is the case
for all finite dimensional Hopf algebras H , because they are Frobenius algebras
with the Nakayama automorphism νH of finite order, and NH

∼= (−)ν−1
H

on modH .
Obviously, it is also the case for all symmetric algebras. Moreover, we have the
following fact.

Proposition 2.5. Let A be a finite dimensional selfinjective K-algebra of finite
representation type. Then all indecomposable nonprojective finite dimensional A-
modules are ΩA-periodic and DTr-periodic.

Proof. Let M be an indecomposable nonprojective right A-module. If M
is not ΩA-periodic (respectively, DTr-periodic) then Ωn

A(M), n ≥ 0 (respectively,
(DTr)n(M), n ≥ 0) is an infinite family of pairwise nonisomorphic indecomposable
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modules in modA, and hence A is of infinite representation type, a contradiction.
�

We will now discuss the ΩA-periodicity of A-modules.

Lemma 2.6. Let A be a basic, indecomposable, finite dimensional selfinjective K-
algebra. The following statements are equivalent:

(1) ΩA(S) is simple for any simple A-module S.
(2) A ∼= N1

m for some m ≥ 1.

Proof. (1) ⇒ (2). For any simple A-module S, we have an exact sequence

0 −→ ΩA(S) −→ P (S) −→ S −→ 0.

Hence, ΩA(S) ∼= socPA(S) = radPA(S), and consequently J(A)2 = 0, where J(A)
is the Jacobson radical of A. Then A ∼= N1

m for some m ≥ 1. For (2) ⇒ (1), note
that J(N1

m)2 = 0. �
Corollary 2.7. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:

(1) ΩA(S) ∼= S for any simple A-module S.
(2) ΩA(M) ∼= M for any indecomposable nonprojective A-module M .
(3) A ∼= N1

1 .

We note that N1
1
∼= K[x]/(x2) ∼= T(K) = K �D(K).

Theorem 2.8. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:

(1) Ω2(S) is simple for any simple A-module S.
(2) DTr(S) is simple for any simple A-module S.
(3) A ∼= Nn

m for some m,n ≥ 1.
(characterization of the Nakayama algebras)

Proof. For (1) ⇔ (2), observe that, for any simple A-module S, NA(S)
is simple, because the Nakayama functor NA = DHomA(−, A) is exact, and
DTr(S) ∼= Ω2

ANA(S).
(1) ⇒ (3). Since A is basic and indecomposable, A ∼= KQ/I for a connected

quiver Q and an admissible ideal I of KQ. For a simple A-module S, we have an
exact sequence

0 → Ω2
A(S) → PA(radPA(S)) → PA(S) → S → 0.

Then the assumption that Ω2
A(S) is simple implies that PA(radPA(S)) is indecom-

posable, and hence top(radPA(S)) is simple. Therefore, every vertex of Q is the
starting (respectively, ending) vertex of exactly one arrow. Then A ∼= Nn

m for some
m,n ≥ 1.

The implication (3) ⇒ (1) follows from the above exact sequences and the
bound quiver presentation of Nn

m. �
We obtain the following immediate consequence of the above theorem.

Corollary 2.9. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:

(1) Ω2
A(S) ∼= S for any simple A-module S.

(2) Ω2
A(M) ∼= M for any indecomposable nonprojective finite dimensional A-

module M .
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(3) A ∼= Nn
m, where n+ 1 is divisible by m.

Corollary 2.10. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:

(1) A is symmetric and Ω2
A(S) ∼= S for any simple A-module S.

(2) DTr(S) ∼= S for any simple A-module S.
(3) DTr(M) ∼= M for any indecomposable nonprojective finite dimensional

A-module M .
(4) A ∼= Nn

1
∼= K[x]/(xn+1) for some n ≥ 1.

Proof. Observe that (1) ⇔ A ∼= Nn
m with m | n, m | n+ 1 ⇔ A ∼= Nn

1 . Hence
(1) ⇔ (4).

The implications (4) ⇒ (3) ⇒ (2) are obvious. Finally, the implication (2) ⇒
(4) also follows, because, by Theorem 2.8, (2) implies A ∼= Nn

m. �
Example 2.11. Let H = Hn2(λ), n ≥ 2, be the Taft (Hopf) algebra. Then
H ∼= Nn−1

n . Hence, for any indecomposable nonprojective finite dimensional H-
module M , we have

Ω2
H(M) ∼= M and ΩH(M) � M.

On the other hand, we have

(DTr)n(M) ∼= M and (TrD)r(M) � M,

for 1 ≤ r < n, because

DTr(M) ∼= Ω2
HNH(M) ∼= NH(M) ∼= Mν−1

H
,

and the Nakayama automorphism νH has order n.

Proposition 2.12. Let H be a finite dimensional Hopf algebra over K. The fol-
lowing statements are equivalent:

(1) The trivial H-module K is ΩH-periodic.
(2) All indecomposable nonprojective finite dimensional H-modules are ΩH-

periodic.

Proof. Let H = (H,m, η,∆, ε, s). Then the counit ε : H → K induces on K
the structure of trivial right H-module by

λ ∗ h = λε(h), for λ ∈ K,h ∈ H.

Clearly, K is an indecomposable H-module. Moreover, K is projective if and only
if H is semisimple. Hence (2) ⇒ (1) holds.

For (1) ⇒ (2), we first observe that for any projective module P in modH
and any module M in modH , P ⊗K M is a projective-injective module in modH .
Indeed, the structure of right H-module on P ⊗K M is given by

(P ⊗K M) ⊗H
1⊗1⊗∆�� P ⊗K M ⊗K H ⊗K H

1⊗τ⊗1 �� (P ⊗K H) ⊗K (M ⊗K H)

α⊗β

��
P ⊗K M

where τ : M ⊗K H → H ⊗K M is the exchanging map, and α : P ⊗K H → P ,
β : M ⊗K H → M are the right H-module structure maps. Moreover, the following
well-known isomorphism of functors on modK

HomK(P ⊗K M,−) ∼−→ HomK(P,HomK(M,−))
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induces an isomorphism of functors on modH

HomH(P ⊗K M,−) ∼−→ HomH(P,HomK(M,−)).

Hence the functor

HomH(P ⊗K M,−) : modH −→ modH

is exact, and consequently P ⊗K M is a projective right H-module. Since H is a
Frobenius algebra, P ⊗K M is also injective.

Assume now that Ωn
H(K) ∼= K for some n ≥ 1. Then there exists a long exact

sequence in modH of the form

0 → Ωn
H(K) → Pn−1 → · · · → P1 → P0 → K → 0

with P0, P1, . . . , Pn−1 projective modules. Let M be an indecomposable nonprojec-
tive module in modH . Then we obtain a long exact sequence in modH

0 → Ωn
H(K)⊗K M → Pn−1⊗KM → · · · → P1⊗K M → P0⊗K M → K⊗KM → 0

with P0 ⊗K M,P1 ⊗K M, . . . , Pn−1 ⊗K M projective H-modules.
We know that Ωn

H(M) is an indecomposable nonprojective H-module. Hence

Ωn
H(K) ⊗K M ∼= Ωn

H(M) ⊕ P

for some projective H-module P . On the other hand, we have

Ωn
H(K) ⊗K M ∼= K ⊗K M ∼= M.

Hence Ωn
H(M) ∼= M , and M is ΩH -periodic. Therefore, (1) ⇒ (2) holds. �

Proposition 2.13. Let A be a finite dimensional selfinjective K-algebra, M a mod-
ule in modA, and r a positive integer. Then

(1) The functors Extr
A(M,−),HomA(Ωr

A(M),−) : modA→ modA are equiva-
lent.

(2) The functors Extr
A(−,M),HomA(−,Ω−r

A (M)) : modA→ modA are equiv-
alent.

For a finite dimensional selfinjective K-algebra A and a module M in modA,
consider the vector space

Ext∗A(M,M) =
∞⊕

r=0
Extr

A(M,M)

∼=
∞⊕

r=0
HomA(Ωr

A(M),M).

Then Ext∗A(M,M) is a graded K-algebra, called the Ext-algebra of M , and the
multiplication of

f ∈ HomA(Ωr
A(M),M), g ∈ HomA(Ωs

A(M),M)

is given by
f ∗ g = f ◦ Ωr

A(g), Ωr+s
A (M) → Ωr

A(M) →M.

Observe that, if M is ΩA-periodic of period d, then

Exti+d
A (M,N) ∼= Exti

A(M,N),
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for all i ≥ 1 and modules N in modA. Indeed, we have isomorphisms of vector
spaces

Exti+d
A (M,N) ∼= HomA(Ωi+d

A (M), N)
∼= HomA(Ωi

A(Ωd
A(M)), N)

∼= HomA(Ωi
A(M), N)

∼= Exti
A(M,N).

The following theorem was proved by Carlson [Car].

Theorem 2.14 (Carlson, 1977). Let A be a finite dimensional selfinjective K-
algebra and M be an indecomposable ΩA-periodic A-module of period d. Moreover,
let N (M) be the ideal of the algebra Ext∗A(M,M) generated by all nilpotent homo-
geneous elements. Then

Ext∗A(M,M)/N (M) ∼= K[x]

as graded K-algebras, where x is of degree d.

Proof. We identify

HomA(Ωi
A(M),M) = Exti

A(M,M) = HomA(M,Ω−i
A (M)),

for any i ≥ 1. Let f ∈ HomA(Ωs
A(M),M) be a homogeneous nilpotent element

of Ext∗A(M,M) and g ∈ HomA(Ωm
A (M),M) an arbitrary homogeneous element of

Ext∗A(M,M). We claim that

f ∗ g = fΩs
A(g) ∈ HomA(Ωm+s

A (M),M)

is again a nilpotent element of Ext∗A(M,M).
Choose r such that r(m + s) = qd, for some q ≥ 1, and consider the element

h = (fΩs
A(g))r in Ext∗A(M,M). Then

h ∈ HomA(Ωqd
A (M),M) ∼= HomA(M,M),

because Ωqd
A (M) ∼= M . Suppose h is an isomorphism. Then f : Ωs

A(M) → M is a
split epimorphism, and hence an isomorphism, since M and Ωs

A(M) are indecom-
posable. But then f is not nilpotent in Ext∗A(M,M), a contradiction. Therefore,
h belongs to the radical of the local algebra EndA(M), and hence h is nilpotent.
Then Ωid

A (h) ∈ EndA(M) are nilpotent elements for all i ≥ 0, and hence belong to
the radical of EndA(M). Since (rad EndA(M))l = 0 for some l ≥ 1, we get hl = 0.
But then f ∗ g = fΩs

A(g) is a nilpotent element in Ext∗A(M,M). Similarly, using

Exti
A(M,M) = HomA(M,Ω−i

A (M)), i ≥ 1,

we prove that g ∗ f is nilpotent in Ext∗A(M,M).
Let s �= pd, for all p ≥ 1. We show that any element f ∈ HomA(Ωs

A(M),M)
is a nilpotent element of Ext∗A(M,M). Choose r ≥ 1 such that rs = qd, for some
q ≥ 1, and take h = f r in Ext∗A(M,M). Since d is the period of M and s is
not divisible by d, we conclude that f is not an isomorphism. Then h is not an
isomorphism, hence h ∈ EndA(M) is nilpotent. Therefore, h is a nilpotent element
in Ext∗A(M,M), and so f is nilpotent in Ext∗A(M,M).

Let x ∈ Hom(Ωd
A(M),M) ∼= HomA(M,M) corresponds to the residue class of

the identity map from M to M . Observe that x is not nilpotent in Ext∗A(M,M).
We claim that xn /∈ N (M) for any n ≥ 1. Suppose that xt ∈ N (M) for some
t ≥ 1. Then xt =

∑
gi ∗ fi ∗ hi, where fi are homogeneous nilpotent elements of

Ext∗A(M,M) and gi, hi are elements of Ext∗A(M,M). We may assume that the
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elements gi, hi are also homogeneous. It follows from the first part of the proof
that gi ∗ fi ∗ hi = (gi ∗ fi) ∗ hi are nilpotent elements in Ext∗A(M,M), and hence
are nilpotent in EndA(M). But then

∑
gi ∗ fi ∗ hi are nilpotent in EndA(M),

and hence in Ext∗A(M,M). This implies that xt, and hence x, is nilpotent in
Ext∗A(M,M), a contradiction. Since EndA(M)/ rad EndA(M) ∼= K, we conclude
that Ext∗A(M,M)/N (M) ∼= K[x] as graded K-algebras, with x of degree d. �

Let A be a finite dimensional K-algebra and 1A = e1 + e2 + · · · + em, where
e1, e2, . . . , em are pairwise orthogonal primitive idempotents of A. Then

Ae = Aop ⊗K A

is called the enveloping algebra of A. The identity of Ae has the decomposition

1Ae =
∑

1≤i,j≤m

e′i ⊗ ej,

where e′1 = e1, e
′
2 = e2, . . . , e

′
m = em are primitive idempotents of Aop. Moreover,

the category modAe of finite dimensional right Ae-modules is the category of finite
dimensional A-A-bimodules. In particular, the algebra A is a right Ae-module by
a(x⊗ y) = xay, for a ∈ A, x ∈ Aop, y ∈ A.

The indecomposable projective right Ae-module (projective A-A-bimodule) as-
sociated to the idempotent e′i ⊗ ej is of the form

P (i′, j) = (e′i ⊗ ej)Ae = eiA
op ⊗K ejA = Aei ⊗K ejA.

Moreover, we have a decomposition

Ae =
⊕

1≤i,j≤m

P (i′, j)

of Ae into a direct sum of indecomposable projective right Ae-modules (projective
A-A-bimodules) such that AP (i′, j) ∼= (Aei)dimK ejA is a projective left A-module
and P (i′, j)A

∼= (ejA)dimK Aei is a projective right A-module. Hence every projec-
tive right Ae-module is a projective left A-module and a projective right A-module.

Lemma 2.15. Let A be a finite dimensional K-algebra. For each i ≥ 0, Ωi
Ae(A) is

a projective left A-module and a projective right A-module.

Proof. Consider a minimal projective resolution of A in modAe

· · · → Pi+1 → Pi → · · · → P1 → P0 → A→ 0.

For each i ≥ 0, we have an exact sequence in modAe

0 → Ωi+1
Ae (A) → Pi → Ωi

Ae(A) → 0,

which is an exact sequence in modAop and in modA. Since the projective right Ae-
modules are projective left A-modules and projective right A-modules, by induction
on i, we conclude that these sequences split in modAop and in modA, and hence
Ωi

Ae(A) are projective left A-modules and projective right A-modules. �

Lemma 2.16. Let A be a finite dimensional selfinjective algebra and M be a module
in modA without projective direct summands. Then, for each i ≥ 0, we have
Ωi

A(M) ∼= M ⊗A Ωi
Ae(A) in modA.
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Proof. We may assume that M is indecomposable. The splitting exact se-
quences (as in the above lemma)

0 → Ωi+1
Ae (A) → Pi → Ωi

Ae(A) → 0,

for i ≥ 0, induce the exact sequences

0 →M ⊗A Ωi+1
Ae (A) →M ⊗A Pi →M ⊗A Ωi

Ae(A) → 0

in modA, and hence

· · · →M ⊗A Pi+1 → M ⊗A Pi → · · · →M ⊗A P0 →M ⊗A A→ 0

is a projective resolution of M ∼= M ⊗A A in modA. Since, for each i ≥ 0, Ωi
A(M)

is an indecomposable nonprojective A-module, we conclude that

M ⊗A Ωi
Ae(A) ∼= Ωi

A(M) ⊕ P (i),

for some projective module P (i) in modA. Therefore, we obtain a required isomor-
phism

Ωi
A(M) ∼= M ⊗A Ωi

Ae(A) in modA.

�

The following lemma proved by Green, Snashall and Solberg [GSS] will be
essential for our considerations.

Lemma 2.17 (Green-Snashall-Solberg, 2003). Let A be a finite dimensional K-
algebra. Assume there exists a positive integer d and an algebra automorphism σ
of A such that Ωd

Ae(A) ∼= 1Aσ in modAe. Then A is selfinjective.

Proof. We have an isomorphism of A-A-bimodules

α : D(A) ⊗A 1Aσ −→ D(A)σ

such that α(f⊗a) = fa, for f ∈ D(A) and a ∈ 1Aσ. Consider a minimal projective
resolution

· · · → Pi+1 → Pi → · · · → P1 → P0 → A→ 0

of A in modAe. Hence we obtain an exact sequence

0 → D(A) ⊗A Ωd
Ae(A) → D(A) ⊗A Pd−1 → D(A) ⊗A Ωd−1

Ae (A) → 0

in modA. Moreover, D(A) ⊗A Pd−1 is a projective right A-module. On the other
hand, Ωd

Ae(A) ∼= 1Aσ in modAe implies that there is a monomorphism D(A)σ →
D(A) ⊗A Pd−1 in modA. Further, the automorphism σ induces an isomorphism
1Aσ−1

∼−→ σA1 of A-A-bimodules, and then the right A-modules D(A)σ = D(σA1)
and σ−1D(A) = D(1Aσ−1 ) are isomorphic. Therefore, the injective cogenerator
D(A) in modA is a direct summand of the projective module D(A) ⊗A Pd−1, and
so is projective. Clearly, then A is selfinjective. �

A finite dimensional K-algebra A is said to be periodic if A is a periodic
module in modAe, that is, Ωd

Ae(A) ∼= A in modAe, for some d ≥ 1. It follows from
the above lemma that then A is selfinjective. Moreover, we have the following fact.

Corollary 2.18. Let A be a finite dimensional periodic K-algebra. Then all inde-
composable nonprojective modules in modA are periodic.
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Proof. Assume Ωd
Ae(A) ∼= A in modA, for some d ≥ 1. Let M be an in-

decomposable nonprojective module in modA. Since A is selfinjective, invoking
Lemma 2.16, we have in modA isomorphisms

Ωd
A(M) ∼= M ⊗A Ωd

Ae(A) ∼= M ⊗A A ∼= M.

Then Ωd
A(M) ∼= M in modA, because Ωd

A(M) and M are indecomposable nonpro-
jective A-modules. �

The following problem occurs naturally.

PROBLEM 3. Determine the finite dimensional periodic algebras.

We also note the following fact.

Lemma 2.19. Let A be a finite dimensional K-algebra. Then A is selfinjective if
and only if Ae is selfinjective.

Proof. Since (Ae)b ∼= (Ab)e and the class of selfinjective algebras is closed un-
der Morita equivalences, we may assume that A is basic. Then Ae is basic. Assume
A is selfinjective. Then A is a Frobenius algebra and we obtain isomorphisms

Ae ∼= Aop ⊗K A ∼= D(Aop) ⊗K D(A) ∼= D(Aop ⊗A A) ∼= D(Ae)

in modAe, and hence Ae is selfinjective.
Conversely, if Ae is selfinjective then

Aop ⊗K A ∼= D(Aop) ⊗K D(A)

in modAe, and hence

AdimK(Aop) ∼= D(A)dimK D(Aop)

in modA. Then AA is injective, and hence A is selfinjective. �

Theorem 2.20 (Green-Snashall-Solberg, 2003). Let A be a finite dimensional in-
decomposable K-algebra. The following statements are equivalent:

(1) All simple right A-modules are ΩA-periodic.
(2) There exists a natural number d and an algebra automorphism σ of A

such that Ωd
Ae(A) ∼= 1Aσ in modAe, and σ(e)A ∼= eA for any primitive

idempotent e of A.

Proof. (1) ⇒ (2). Let d be a minimal natural number such that Ωd
A(S) ∼= S

for any simple right A-module S.
Let B = Ωd

Ae(A). We know that Ωd
Ae(A) is a projective left A-module. Hence

we have the exact functor − ⊗A B : modA → modA. Moreover, for any simple
right A-module S, we have S⊗AB = S⊗AΩd

A(A) ∼= Ωd
A(S) ∼= S. Then by induction

on the length of a module, we conclude that �(M ⊗A B) ∼= �(M) for any module
M in modA.

We prove now that P ⊗AB ∼= P for any projective module P in modA. Let P
be an indecomposable projective right A-module. Then the exact sequence

0 → PJ(A) → P → P/PJ(A) → 0,

where J(A) is the Jacobson radical of A, induces the exact sequence of right A-
modules

0 → PJ(A) ⊗A B → P ⊗A B → (P/PJ(A)) ⊗A B → 0.
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The module P ⊗A B is a projective right A-module, as a direct summand of the
projective right A-module A ⊗A B ∼= Ωd

Ae(A), and �(P ⊗A B) = �(P ). Further,
(P/PJ(A)) ⊗A B ∼= P/PJ(A), and hence P/PJ(A) is a direct summand of the
topP ⊗A B/(P ⊗A B)J(A) of P ⊗A B. Then P is a direct summand of P ⊗A B,
and consequently P ⊗A B ∼= P , because �(P ⊗A B) = �(P ). Therefore, there exists
an isomorphism A⊗AB → A of right A-modules, and hence B as a right A-module
is isomorphic to AA.

We claim now that B as a left A-module is isomorphic to AA. Let T be a
simple left A-module. Since B is isomorphic to AA in modA, we have B ⊗A T ∼=
A ⊗A T ∼= T as K-vector spaces. Further, for any simple right A-module S, we
have S ⊗A B ⊗A T ∼= S ⊗A T (from the first part of the proof) and S ⊗A T �= 0 if
and only if S = D(T ) = HomK(T,K). Then (A/J(A)) ⊗A B ⊗A T ∼= T . On the
other hand, we have in modAop the commutative diagram with exact rows

0 �� J(A) ⊗A (B ⊗A T ) ��

∼=
��

A⊗A (B ⊗A T ) ��

∼=
��

(A/J(A)) ⊗A (B ⊗A T ) ��

∼=
��

0

0 �� J(A)(B ⊗A T ) �� B ⊗A T �� B ⊗A T/J(A)(B ⊗A T ) �� 0

and hence (B⊗AT )/J(A)(B⊗AT ) ∼= T in modAop. Since dimK B⊗AT = dimK T
we obtain that B⊗A T ∼= T as left A-modules. Therefore, B⊗A T ∼= T in modAop

for all simple left A-modules T . Applying now arguments from the first part of the
proof we conclude that B as a left A-module is isomorphic to AA.

Let ψ : A → B be an isomorphism of left A-modules, and b = ψ(1). Then
ψ(a) = ab, for a ∈ A, and Ab = B. Define the map σ : A→ A by σ(a) = ψ−1(ba),
for a ∈ A. Then, for a ∈ A, we have

ba = ψ(ψ−1(ba)) = ψ(σ(a)) = ψ(σ(a)1) = σ(a)ψ(1) = σ(a)b.

Next we show that σ is a homomorphism of K-algebras. Obviously, σ is K-linear
and σ(1) = ψ−1(b) = 1. Moreover, for a, a′ ∈ A, we have

σ(aa′)b = b(aa′) = (ba)a′ = (σ(a)b)a′ = σ(a)(ba′)
= σ(a)(σ(a′)b) = (σ(a)σ(a′))b.

Hence, we obtain

ψ(σ(aa′)) = ψ(σ(aa′)1) = σ(aa′)ψ(1) = σ(aa′)b = (σ(a)σ(a′))b
= (σ(a)σ(a′))ψ(1) = ψ(σ(a)σ(a′)),

and so σ(aa′) = σ(a)σ(a′). Therefore, σ is a homomorphism of K-algebras.
We claim that σ is in fact an automorphism. It is enough to show that kerσ = 0.

Let a ∈ kerσ. Then 0 = σ(a)b = ba and hence Ba = (Ab)a = A(ba) = 0. Since
B is isomorphic to A as a right A-module, we obtain Aa = 0, and hence a = 0.
Therefore, indeed kerσ = 0.

Finally, observe that the isomorphism ψ : A → B of left A-modules is an
isomorphism ψ : 1Aσ → B of A-A-bimodules. Indeed, for x, a ∈ A, we have

ψ(xσ(a)) = (xσ(a))b = x(σ(a)b) = x(ba) = (xb)a = ψ(x)a.

Therefore, we obtain Ωd
Ae(A) ∼= 1Aσ in modAe.
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Let e be a primitive idempotent of A. Then we have isomorphisms of right
A-modules

σ(e)A/σ(e)J(A) ∼−→ Ωd
A(σ(e)A/σ(e)J(A))

∼−→ (σ(e)A/σ(e)J(A)) ⊗A 1Aσ∼−→ (σ(e)A/σ(e)J(A))σ∼−→ eA/eJ(A).

Hence, σ(e)A ∼−→ eA in modA. Therefore, the implication (1) ⇒ (2) holds.
(2) ⇒ (1). Let Ωd

Ae(A) ∼= 1Aσ for some d ≥ 1 and an automorphism σ of A such
that σ(e)A ∼= eA for any primitive idempotent e of A. We know that then A and Ae

are selfinjective. Then for any simple right A-module S, the right A-modules Ωd
A(S)

and S ⊗ Ωd
A(A) ∼= S ⊗A Aσ

∼= Sσ are isomorphic. Every simple right A-module
S is isomorphic to a module of the form eA/eJ(A) for some primitive idempotent
e of A. Since eA ∼= σ(e)A in modA, the automorphism σ induces isomorphisms
of right A-modules eA ∼−→ (eA)σ , eJ(A) ∼−→ (eJ(A))σ, and hence S ∼−→ Sσ in
modA. Therefore, Ωd

A(S) ∼= S for any simple right A-module S. �

As a direct consequence of Lemma 2.17 and Theorem 2.20 we obtain the fol-
lowing interesting fact.

Corollary 2.21. Let A be a finite dimensional K-algebra whose all simple right
A-modules are periodic. Then A is a selfinjective algebra.

Let A be a finite dimensional K-algebra. Then the vector space

HH∗(A) = Ext∗Ae(A,A) =
⊕
i≥0

Exti
Ae(A,A)

is a graded commutativeK-algebra (with the Yoneda product), called the Hochschild
cohomology algebra of A (see [CE], [Ha2], [Hoc] for more details). We note
that HH0(A) ∼= Z(A) is the center of A, and HH1(A) ∼= DerK(A,A)/Der0K(A,A),
where

DerK(A,A) =
{
δ ∈ HomK(A,A)

∣∣∣ δ(ab) = aδ(b) + δ(a)b
for all a, b ∈ A

}
is the space of derivations of A, and

Der0K(A,A) =
{
δx ∈ HomK(A,A)

∣∣∣ δx(a) = ax− xa
x, a ∈ A

}
is the space of inner derivations of A. Hence HH1(A) is the space of outer
derivations of A. We also mention that the vector spaces HHn(A), n ≥ 2, control
deformations of the algebra A (see [GePe], [Ger], for more details).

Two finite dimensional algebras A and B are said to be derived equivalent
if the derived categories Db(modA) and Db(modB) are equivalent as triangulated
categories. In [Ric1] Rickard proved his celebrated criterion: two algebras A and
B are derived equivalent if and only if B is the endomorphism algebra of a tilting
complex over A.

For selfinjective algebras we have the following implications

Morita equivalence =⇒ derived equivalence Rickard======⇒
[Ric2]

stable equivalence.

The following theorem proved by Happel [Ha2] and Rickard [Ric3] shows in-
variance of the Hochschild cohomologies on the derived equivalences.
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Theorem 2.22 (Happel, Rickard, 1989–1991). Let A and B be two derived equiv-
alent K-algebras. Then HH∗(A) ∼= HH∗(B) as graded K-algebras.

We will prove now the following important theorem by Green, Snashall and
Solberg [GSS].

Theorem 2.23 (Green-Snashall-Solberg, 2003). Let A be an indecomposable finite
dimensional K-algebra. Assume that Ωn

Ae(A) ∼= 1Aσ for a positive integer n and
an algebra automorphism σ of A. Then

HH∗(A)/N (A) ∼=
{
K, or
K[x]

where N (A) is the ideal of HH∗(A) generated by all nilpotent homogeneous ele-
ments. Moreover, HH∗(A)/N (A) ∼= K, if Ωm

Ae(A) � A for all m ≥ 1.

Proof. Since Ωn
Ae(A) ∼= 1Aσ, it follows from Lemma 2.17 that A is selfinjec-

tive. Then Ae is selfinjective, by Lemma 2.19, and we may identify

HHi(A) = Exti
Ae(A,A) = HomAe(Ωi

Ae(A), A).

If Ωm
Ae(A) ∼= A for some m ≥ 1, then, by the Carlson’s Theorem 2.14, we have

HH∗(A)/N (A) ∼= K[x], where x is of degree d (= period of A in modAe). In
particular, it is the case if σ has finite order.

Assume now that Ωm
Ae(A) � A in modAe for any m ≥ 1. Then σ has infinite

order. Let s ≥ 1 and η ∈ Hom(Ωs
Ae(A), A) = HHs(A). We claim that η is

nilpotent in HH∗(A). Assume first that s = np, for some p ≥ 1. Then, for any
i ≥ 1, we have that Ωinp

Ae (A) ∼= 1Aσip is an indecomposable right Ae-module and
the homomorphism of Ae-modules

Ω(i−1)np
Ae (η) : Ωinp

Ae (A) −→ Ω(i−1)np
Ae (A)

is not an isomorphism. Further, our assumption Ωn
Ae(A) ∼= 1Aσ implies that the

Ae-modules Ωinp
Ae (A), i ≥ 1, have bounded length (dimension). Then, applying the

Harada-Sai lemma (see [ASS, (IV.5.2)]), we conclude that there exists a natural
number t such that

ηt = Ωtnp
Ae (η) . . .Ω2np

Ae (η)Ωnp
Ae(η) = 0

in the algebraHH∗(A). Hence, η is nilpotent. Assume now that n is not divisible by
s. Then there are positive integers r and q such that rs = nq. Then ηr ∈ HHnq(A),
and hence (by the above argument) ηr is nilpotent, and consequently η is nilpotent.

We proved that every homogeneous element of HH∗(A) of positive degree is
nilpotent. Moreover, A is indecomposable, and then HH0(A) ∼= Z(A) is a commu-
tative local algebra, J(Z(A)) is nilpotent, and Z(A)/J(Z(A)) ∼= K. Therefore, we
conclude that HH∗(A)/N (A) ∼= K. �

Corollary 2.24. Let A be a finite dimensional indecomposable selfinjective K-
algebra of finite representation type. Then

HH∗(A)/N (A) ∼=
{
K, or
K[x] .

Proof. Since all indecomposable nonprojective (hence simple) modules in
modA are periodic, applying Theorems 2.20 and 2.23, we get the claim. �
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The next result of this section shows invariance of the periodicity of algebras
under the derived equivalences.

Theorem 2.25. Let A and B be two derived equivalent indecomposable finite di-
mensional selfinjective K-algebras. Then A is periodic if and only if B is periodic.

Proof. We may assume that A and B are of Loevy length at least 3 (see
[ARS2, X.1.8]). By Theorem 2.22, we conclude that HH∗(A) and HH∗(B) are
isomorphic graded K-algebras. Assume that A is periodic in modAe, say of period
d. Then, by Carlson’s Theorem 2.14, we have an isomorphism HH∗(A)/N (A) ∼=
K[x] of graded K-algebras, where x is of degree d. Hence HH∗(B)/N (B) ∼= K[x].
On the other hand, Ωd

Ae(A) ∼= A, and hence Ωd
A(M) ∼= M for any indecomposable

nonprojective moduleM in modA, by Corollary 2.18. Because of Rickard’s theorem
[Ric2], two derived equivalent selfinjective algebras are stably equivalent, there is
a stable equivalence F : modA → modB. Further, because A and B are of Loevy
length at least 3, it follows from [ARS2, X.1.12] that FΩA

∼= ΩBF as functors from
modA to modB. Therefore, we obtain that Ωd

B(N) ∼= N for any indecomposable
nonprojective module N in modB. In particular, we conclude that Ωd

B(S) ∼= S
for any simple right B-module S. Applying now Theorem 2.20, we infer that there
exists an isomorphism Ωd

Be(B) ∼= 1Bσ in modBe for an algebra automorphism σ
of B. Applying Theorem 2.23, we then infer that B is periodic in modBe, because
HH∗(B)/N (B) ∼= K[x]. In fact, we have Ωd

Be(B) ∼= B in modBe. �
We also note the following direct consequence of Theorems 2.20 and 2.23.

Corollary 2.26. Let A be a finite dimensional indecomposable selfinjective K-
algebra such that all simple A-modules are ΩA-periodic. The following statements
are equivalent:

(1) A is periodic.
(2) HH∗(A)/N (A) ∼= K[x].

In the final part of this section we discuss the relation between the boundedness
and periodicity of modules over selfinjective algebras.

Let A be a selfinjective algebra. A module M in modA is defined to be
(homologically) bounded if there is a common bound on the dimensions of
all syzygy modules, Ωi

A(M), i ≥ 0, of M . Clearly, every periodic A-module is
bounded. In [Al1] Alperin proved that, if M is a bounded indecomposable non-
projective finite dimensional module over the group algebra KG of a finite group
G, then M is periodic. The following examples show that it is not the case for
arbitrary selfinjective algebras.

Examples 2.27. (1) Let λ be a nonzero element of K which is not a root of unity.
Consider the 4-dimensional local Frobenius algebra Aλ = KQ/Iλ, where

Q : •������α
�� ������ β
��

and Iλ = 〈α2, β2, αβ − λβα〉 (see Example 1.8(4)). Then, for the cosets a = α+ Iλ
and b = β + Iλ, 1, a, b, ab = λba is a basis of Aλ over K. For each i ∈ Z, take the
element

xi = (−1)iλia+ b ∈ Aλ

and the cyclic right Aλ-module

Mi = xiAλ.
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Then Mi, i ∈ Z, is a family of pairwise nonisomorphic indecomposable Aλ-modules
of dimension 2. Moreover, for each i ∈ Z, we have a canonical exact sequence in
modAλ

0 −→Mi+1 −→ Aλ
πi−→Mi −→ 0

where πi is the canonical projection with πi(1) = xi. Hence, we obtain that
Mi+1

∼= ΩAMi, for all i ∈ Z. Therefore, Mi, i ∈ Z, are bounded but nonperi-
odic indecomposable nonprojective modules in modAλ.

(2) Following Liu and Schulz [LiSc] consider the trivial extension algebra Rλ =
Aλ � D(Aλ) of the algebra Aλ considered in (1). Then Rλ is a local symmetric
algebra of dimension 8. Moreover, the Jacobson radical of Rλ is generated by the
elements a = (a, 0) and b = (b, 0), with a = α + Iλ and b = β + Iλ as above. For
each i ∈ Z, consider the element

yi = (−1)iλia+ b ∈ Rλ

and the cyclic right Rλ-module

Ni = yiRλ.

Then Ni, i ∈ Z, is a family of pairwise nonisomorphic indecomposable right Rλ-
modules of dimension 4. Moreover, similarly as in (1), we conclude that Ni+1

∼=
ΩANi, for all i ∈ Z. Therefore, Ni, i ∈ Z, are bounded but nonperiodic indecom-
posable nonprojective modules in modRλ.

The following general criterion for the bounded modules to be periodic has
been established by Schulz [Schu].

Theorem 2.28 (Schulz, 1986). Let A be a selfinjective algebra and M be a bounded
indecomposable nonprojective A-module. The following statements are equivalent.

(i) M is periodic.
(ii) The algebra Ext∗A(M,M) is right noetherian, and the right Ext∗A(M,M)-

module Ext∗A(M,S) is noetherian, for any simple right A-module S.
(iii) For any module X in modA, the right Ext∗A(M,M)-module Ext∗A(M,X)

is noetherian.

We refer to [Schu] for examples showing that the noetherianness of the algebra
Ext∗A(M,M) is not sufficient for a bounded module M to be periodic.

We obtain also the following consequences of the above theorem.

Corollary 2.29. Let A be a selfinjective algebra and M a periodic indecomposable
finite dimensional A-module. Then the graded algebra Ext∗A(M,M) is noetherian.

Corollary 2.30. Let A be a periodic algebra. Then the graded algebra HH∗(A) is
noetherian.

3. Periodicity of finite groups

The aim of this section is to present characterizations of periodic finite groups
and exhibit their topological sources.

Let G be a finite group, Z the ring of integers and ZG the group algebra of
G over Z. We may consider the group Z as the trivial ZG-module by the action
m ∗ g = m, for any m ∈ Z and g ∈ G. For n ≥ 0 and a ZG-module M , let

Hn(G,M) = Extn
ZG(Z,M)
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be the n-th cohomology group of G with coefficients in M . In particular, we
may consider the cohomology groups of the trivial ZG-module Z

Hi(G,Z) = Exti
ZG(Z,Z), i ≥ 0,

called the cohomology groups of G.

Definition 3.1. A group G is defined to be (globally) periodic if there exists a
positive integer d such that

Hi(G,Z) ∼= Hi+d(G,Z), for all i ≥ 1.

The minimal such d is called the (cohomological) period of G.

Example 3.2. Let m ≥ 2, and G = Zm be the cyclic group of order m, say
generated by an element g. Then we have the following periodic free ZG-resolution
of the trivial ZG-module Z

· · · N−→ ZG
g−1−→ ZG

N−→ ZG
g−1−→ ZG

ε−→ Z −→ 0

where ε(g) = 1 for g ∈ G, g − 1 is the left multiplication by g − 1, and N is the
left multiplication by N = 1 + g + · · · + gm−1. Applying HomZG(−,Z) we obtain
the periodic complex whose i-th cohomology is the group Exti

ZG(Z,Z) = Hi(G,Z).
Then one obtains H0(G,Z) ∼= Z, H2i(G,Z) ∼= Z/mZ and H2i−1(G,Z) = 0 for
i ≥ 1. In particular, G = Zm is a periodic group of period 2.

In fact, the following is true (see [AM], [Br], [Sw2]).

Theorem 3.3. Let G be a finite group. Then G is periodic of period 2 if and only
if G is cyclic.

Moreover, we have also the following theorem (see [AM], [Br]).

Theorem 3.4. Let G be a periodic finite group. Then H2i−1(G,Z) = 0 for any
i ≥ 1. Hence the period of G is even.

Zassenhaus considered the following problem, motivated by some topological
problems (free group actions on spheres).

PROBLEM 4 (Zassenhaus). Describe all finite groups G whose all com-
mutative subgroups are cyclic.

Zassenhaus solved this problem in the solvable case [Za]. This was completed
by Suzuki [Su] to the general case.

Theorem 3.5 (Suzuki-Zassenhaus, 1955). A complete list of finite groups with all
commutative subgroups cyclic is given by the following table

Family Definition Conditions

I Z/a×α Z/b (a, b) = 1

II Z/a×β (Z/b×Q2i) (a, b) = (ab, 2) = 1

III Z/a×γ (Z/b × Ti) (a, b) = (ab, 6) = 1

IV Z/a×τ (Z/b ×O∗
i ) (a, b) = (ab, 6) = 1

V (Z/a×α Z/b) × SL2(Fp) (a, b) = (ab, p(p2 − 1)) = 1

V I Z/a×µ (Z/b × TL2(Fp)) (a, b) = (ab, p(p2 − 1)) = 1



PERIODICITY IN REPRESENTATION THEORY OF ALGEBRAS 31

These 6 families of groups are given as semidirect products of certain finite groups
(we refer to [AM, Chapter IV] for more details on these groups).

We will exhibit (now and later) only some natural examples of such groups.

Examples 3.6. (1) For m ≥ 1, consider the dihedral group

D2m =
{
x, y

∣∣ x2 = 1 = ym, yx = xym−1
}

of order 2m.
For m = 2r, {1, x, yr, xyr = yrx} is a noncyclic commutative subgroup of D4r.
For m odd, all commutative subgroups of D2m are cyclic.
Hence, D2m is periodic if and only if m is odd.
(2) For m ≥ 1, consider the generalized quaternion 2-group

Q2m+2 =
{
x, y

∣∣ x2m

= y2, xyx = x
}

of order 2m+2. Then every commutative subgroup of Q2m+2 is cyclic and Q2m+2 is
periodic.

(3) Let p be a prime and Fp the field with p elements, and

SL2(Fp) =
{
M ∈M2×2(Fp)

∣∣ detM = 1
}

(2 × 2 special linear group of Fp). Then

|SL2(Fp)| = p(p− 1)(p+ 1).

Moreover, all commutative subgroups of SL2(Fp) are cyclic, and hence SL2(Fp) is
periodic. We also note that for p odd the groups SL2(Fp) are not solvable.

For a prime number p, the abelian group Zr
p = Zp × · · · × Zp︸ ︷︷ ︸

r

is said to be the

elementary p-group of rank r.
For a finite group G and a prime p with p

∣∣|G|, denote by rp(G) the maximal
rank of elementary p-subgroup of G, called the p-rank of G.

The following characterizations of periodic groups show that in fact the Suzuki-
Zassenhaus theorem provides a complete classification of all periodic finite groups
(see [CE]).

Theorem 3.7 (Artin-Tate, Cartan-Eilenberg, 1956). Let G be a finite group. The
following statements are equivalent:

(1) G is periodic.
(2) Hd(G,Z) ∼= Z/|G|Z, for some d ≥ 1.
(3) Hi+d(G,M) ∼= Hi(G,M), for some d ≥ 1, all i ≥ 1 and an arbitrary

finitely generated ZG-module M .
(4) Hi+d(G,Zp) ∼= Hi(G,Zp), for some d ≥ 1, all i ≥ 1 and any prime p

dividing |G|.
(5) rp(G) ≤ 1, for any prime p dividing |G|.
(6) For any prime p dividing |G|, the p-Sylow subgroups of G are cyclic or

generalized quaternion 2-groups.
(7) Every commutative subgroup of G is cyclic.

Therefore, the subgroups of periodic groups are periodic.
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Example 3.8. For a prime p, we have

dimZp H
n(Zp × Zp,Zp) = n+ 1, for any n ≥ 0,

and hence the group Zp×Zp is not periodic (application of the Künneth formula).

Let p be a prime number. Consider the localization of Z at p

Z(p) =
{m
n

∈ Q,m, n ∈ Z, p � |n
}
.

Let G be a finite group such that p
∣∣ |G|. For each i ≥ 1, let

Hi(G,Z)(p) = Hi(G,Z) ⊗Z Z(p).

Definition 3.9. Let p be a prime number. A group G with p
∣∣ |G| is defined to be

p-periodic if there exists a positive integer d such that

Hi(G,Z)(p)
∼= Hi+d(G,Z)(p), for all i ≥ 1.

The minimal such d = dp is called the (cohomological) p-period of G.

The following theorem provides a characterization of p-periodic groups (see
[Br]).

Theorem 3.10. Let G be a finite group, p a prime number, and p
∣∣ |G|. The

following statements are equivalent:
(1) G is p-periodic.
(2) Hi+d(G,Zp) ∼= Hi(G,Zp), for some d ≥ 1 and any i ≥ 1.
(3) Exti+d

ZpG(Zp,M) ∼= Exti
ZpG(Zp,M), for some d ≥ 1, any i ≥ 1, and an

arbitrary finite dimensional ZpG-module M .
(4) Ωd

ZpG(Zp) ∼= Zp, for some d ≥ 1.
(5) rp(G) ≤ 1.
(6) Every p-Sylow subgroup of G is either cyclic or generalized quaternion 2-

group.
(7) Every commutative p-subgroup of G is cyclic.
(8) For any algebraically closed field K of characteristic p, Ωd

KG(K) ∼= K, for
some d ≥ 1.

(9) For any algebraically closed field K of characteristic p, there exists d ≥
1 such that Ωd

KG(M) ∼= M for any indecomposable nonprojective finite
dimensional KG-module M .

Observe that a finite group G is periodic if and only if G is p-periodic for any
prime p dividing |G|.

Example 3.11. Let p be an odd prime number, q = pn, n ≥ 2, Fq the field with q
elements, and G = SL2(Fq). Then |G| = q(q2 − 1). Moreover, we have

• the 2-Sylow subgroups of G are generalized quaternion 2-groups,
• for any odd prime l �= p, the l-Sylow subgroups of G are cyclic,
• the p-Sylow subgroups of G are not cyclic,

Then G is not p-periodic, and hence is not periodic. Moreover, G is l-periodic for
any prime such that l

∣∣ |G| and l �= p.

We note that there is no chance for a classification of all finite p-
periodic groups, for any fixed prime p.
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Let G be a finite group, p a prime number, and p
∣∣ |G|. Let

Hev(G,Zp) ∼=
⊕
n≥0

H2n(G,Zp)

be the even cohomology algebra of G at p. Then Hev(G,Zp) is a graded com-
mutative ring and we have the following theorem proved independently by Evans
[Ev] and Venkov [Ve].

Theorem 3.12 (Evans-Venkov, 1959-1961). Let G be a finite group, p a prime
number, and p

∣∣ |G|. Then Hev(G,Zp) is a noetherian ring.

Denote by dimHev(G,Zp) the Krull dimension of Hev(G,Zp), that is, the
length d of the maximal chain of distinct graded prime ideals

p0 ⊂ p1 ⊂ · · · ⊂ pd

of Hev(G,Zp). Then we have the following deep result proved by Quillen [Q1],
[Q2].

Theorem 3.13 (Quillen, 1971). Let G be a finite group and p a prime number
dividing |G|. Then

dimHev(G,Zp) = rp(G).

Hence the Krull dimensions of the rings Hev(G,Zp), p
∣∣ |G|, p prime, measure

the complexity of the group G.
As a direct consequence of Theorems 3.10 and 3.13, we obtain the following

characterization of p-periodic finite groups.

Corollary 3.14. Let G be a finite group and p a prime number dividing |G|. Then
G is p-periodic if and only if dimHev(G,Zp) = 1.

We describe now the representation type of the group algebras of p-periodic
group.

Let K be an algebraically closed field of characteristic p. By the well-known
Maschke’s theorem the group algebra KG of a finite group G is semisimple if
and only if p �

∣∣ |G|.
The following classical theorem proved by Higman [Hi] describes the group

algebras of finite representation type.

Theorem 3.15 (Higman, 1954). Let G be a finite group and p
∣∣ |G|. Then the

group algebra KG of G is of finite representation type if and only if the p-Sylow
subgroups of G are cyclic.

The following theorem proved by Bondarenko and Drozd [BD] gives a charac-
terization of the tame group algebras of infinite type.

Theorem 3.16 (Bondarenko-Drozd, 1975). Let G be a finite group and p
∣∣ |G|.

Then KG is tame of infinite representation type if and only if p = 2 and the 2-
Sylow subgroups of G are of one of the following types: dihedral, semidihedral, or
generalized quaternion groups.

Recall that the semidihedral 2-groups are the group of the form

Sm =
{
x, y

∣∣ x2 = y2m

= 1, yx = xy2m−1−1
}
, m ≥ 3.

The following consequence of Theorem 3.13 describes the representation type
of the group algebras of p-periodic groups.
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Corollary 3.17. Let G be a finite group, p
∣∣ |G|, and assume that G is p-periodic.

Then
(1) KG is of tame representation type.
(2) If p is odd, then KG is of finite representation type.

The following combination of results proved by Erdmann and Holm [EH] and
Erdmann and Skowroński [ES1] shows that the group algebras of p-periodic groups
are periodic as bimodules.

Theorem 3.18 (Erdmann-Holm (1999), Erdmann-Skowroński (2006)). Let G be a
finite group, p

∣∣ |G|, and A = KG. If G is p-periodic then A is periodic in modAe.

We will indicate now topological sources of periodic groups.
Let G be a finite group. We may consider G as a topological group with the

discrete topology. We say that G acts on a topological space X if there is a
group homomorphism of G into the group Homeo(X) homeomorphisms of X to X .

Assume X is a CW -complex (admits a cell decomposition) and G is a finite
group of homeomorphisms of X . We say that G acts freely on X if G acts freely
on a cell decomposition of X , that is,

g(σ) ⊆
⋃
τ 	=σ

τ

for all g ∈ G \ {1} and all cells σ of X .

Example 3.19. For any m ≥ 2, the cyclic group G = (g) of order m acts freely on
the one-dimensional sphere S1, as the following cell decomposition and the action
of G on S1 show

•
g31

g3e

��������� •
g21

g2e��

• g1
ge

���������

·

· • 1

e

����������

·

gm−4e ��������� • gm−11

gm−1e

����������

•
gm−31 gm−3e

�� •
gm−21

gm−2e

���������

The following is one of the classical problems of algebraic topology (see [AD],
[MTW1], [MTW2], [TW]).

PROBLEM 5 (Spherical space form problem). Describe the finite groups G
acting freely on spheres Sm and the orbit spaces Sm/G (spherical spaces).

The following theorem proved by Smith in [Sm1], [Sm2] was the topological
motivation for the Zassenhaus problem.

Theorem 3.20 (Smith, 1938-1939). Let G be a finite group acting freely on a
sphere Sm. Then every abelian subgroup of G is cyclic.
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Moreover, we have the following theorem describing the periods of finite groups
acting freely on spheres (see [AD]).

Theorem 3.21. Let G be a finite group acting freely on a sphere Sm. Then
(1) For m even, we have |G| ≤ 2.
(2) For m odd, we have Hm+1(G,Z) ∼= Z/|G|Z. In particular, G is periodic

with even period dividing m+ 1.

Proof. (1) An application of Lefschetz fix point theorem.
(2) Application of cohomological methods (spectral sequence of the fibration

Sm → Sm/G→ BG). �

Example 3.22. Consider the (division) algebra of quaternions

H = R ⊕ Ri⊕ Rj ⊕ Rk

with ij = −ji = k, ki = −ik = j, jk = −kj = i, i2 = j2 = k2 = −1. Then

S3 =
{
a+ bi+ cj + dk ∈ H

∣∣ a2 + b2 + c2 + d2 = 1
}
.

Hence S3 is the 3-dimensional sphere in R4 = H. There is a canonical group epimor-
phism S3 → SO(3,R) (group of rotations of R3) with the kernel {±1}. Moreover,
it is known that every noncyclic finite subgroup of S3 is conjugate in S3 (hence
isomorphic) to one of the groups:

• D∗
2n, n ≥ 2, binary dihedral group,

• T ∗ binary tetrahedral group,
• O∗ binary octahedral group,
• I∗ binary icosahedral group.

We also note that the groups D∗
2n, T ∗, O∗, I∗ admit a unique normal subgroup

Z2 = {±1} of order 2 such that
• D∗

2n/Z2 = D2n, the dihedral group,
• T ∗/Z2 = T , the tetrahedral group of rotations of tetrahedron,
• O∗/Z2 = O, the octahedral group of rotations of octahedron (equivalently,

cube),
• I∗/Z2 = I, the icosahedral group of rotations of icosahedron (equivalently,

dodecahedron).
Then we get |D∗

2n| = 4n, |T ∗| = 24, |O∗| = 48, |I∗| = 120.
Therefore, we conclude that the groups D∗

2n, T ∗, O∗, I∗ act freely on the sphere
S3, and hence are periodic groups of period 4, because only the cyclic groups may
have period 2 (see Theorem 3.3 and [Sw2]). We also note that

Q4n = D∗
2n =

〈
x, y

∣∣ xn = y2, xyx = y
〉
, n ≥ 2.

The group Q4n is called a generalized quaternion group. Hence, for n = 2m,
we get the generalized quaternion 2-group Q2m+2 considered before. Observe also
that we have the following embedding of groups

Q4n −→ S3 ⊆ H = R4

by x −→ eπi/n and y −→ j. In particular, we have Q8 = {±1,±i,±j,±k}.

Example 3.23 (Linear actions on spheres). Let V = R2n, n ≥ 1, (−,−) be the
Euclidean R-bilinear form and e1, e2, . . . , e2n the standard basis of R2n.
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Let G be a finite group of R-linear automorphisms of V . Assume G acts freely
on V \ {0}: the eigenvalues of all g ∈ G \ {1} are different from 1. Consider the
G-invariant R-bilinear form (−,−)G on R2n induced by (−,−), given by

(x, y)G =
1
|G|

∑
g∈G

(g(x), g(y)), for x, y ∈ V .

Then S = {x ∈ V |(x, x)G = 1} is an (2n− 1)-dimensional sphere and G acts freely
on S. In fact, G acts freely on a cell decomposition of S (see [Il]). Indeed, let C
be the convex hull of the finite set {±g(ei) | g ∈ G, 1 ≤ i ≤ 2n} in R2n. Then S
is the border of C and admits the induced cell decomposition. Since G acts freely
on V \ {0}, we conclude that G acts freely on this cell decomposition of S. In
particular, we obtain that G is periodic of (even) period dividing 2n. In fact, one
can construct such groups of arbitrary even period 2n.

The following question arises naturally.
Does every periodic group act freely on a sphere?
The following theorem proved by Milnor [Mi] gives negative answer.

Theorem 3.24 (Milnor, 1957). Let G be a finite group acting freely on a sphere
Sm. Then G admits at most one element of order 2, and such an element is central.

Hence, for example, if m odd, then the dihedral group D2m is periodic but does
not act freely on a sphere. In particular, this is the case for the symmetric group
S3

∼= D2·3 = D6.
On the other hand, the following theorem proved by Swan [Sw1] shows that

the periodic groups are finite groups acting freely on CW -complexes homotopically
equivalent to spheres.

Theorem 3.25 (Swan, 1960). Let G be a finite group. The following statements
are equivalent:

(1) G is periodic.
(2) There exists an odd natural number m, an m-dimensional CW -complex X

(Swan complex) homotopically equivalent to Sm such that G acts freely on
X.

The following theorem proved by Madsen, Thomas and Wall [MTW2] gives a
complete characterization of finite groups acting freely on spheres.

Theorem 3.26 (Madsen-Thomas-Wall, 1976). Let G be a finite group. The fol-
lowing statements are equivalent:

(1) G acts freely on a sphere.
(2) G admits at most one element of order 2, and such an element is central.
(3) For each prime number p, every subgroup G of order p2 or 2p is cyclic.
(4) G is periodic and has no dihedral subgroups.

Example 3.27. For each odd prime p, the group SL2(Fp) acts freely on a sphere.
Indeed, (

−1 0
0 −1

)
is the unique element of order 2 in SL2(Fp), and is central.

We note that SL2(F2) ∼= S3
∼= D6, SL2(F3) ∼= T ∗, and SL2(F5) ∼= I∗. On the

other hand, it is known that the groups SL2(Fp), p > 5, do not admit linear free
actions on spheres.
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We end this section with a theorem proved by Wolf [Wo] describing all finite
groups having linear free actions on spheres.

Theorem 3.28 (Wolf, 1967). A finite group G acts freely and linearly on some
sphere if and only if the following conditions are satisfied:

(1) For all primes p and q, the subgroups of G of orders pq are cyclic.
(2) G has no subgroup isomorphic to SL2(Fp), for a prime p > 5.

4. Periodicity of tame symmetric algebras

The aim of this section is to present a complete classification (up to Morita
equivalence) of all symmetric algebras over an algebraically closed field for which
the indecomposable nonprojective finite dimensional modules are periodic. There-
fore, we may restrict to the symmetric algebras which are nonsimple, basic and
indecomposable. The main classification theorem below proved by Erdmann and
Skowroński in [ES2] relies on results of several authors which are described below
in a new invariant algebra form.

Theorem 4.1 (Erdmann-Skowroński, 2006). Let Λ be a nonsimple, basic, indecom-
posable, finite dimensional algebra over an algebraically closed field K. Then Λ is
symmetric, tame, with all indecomposable nonprojective finite dimensional modules
periodic if and only if Λ is isomorphic to an algebra of one of the forms:

• a symmetric algebra of Dynkin type;
• a symmetric algebra of tubular type;
• an algebra of quaternion type.

The aim of the remaining part of this section is to describe the symmetric
algebras of Dynkin type, the symmetric algebras of tubular type, the algebras of
quaternion type, as well as properties of their module categories. In our description
of the symmetric algebras of Dynkin and tubular type, a prominent role will be
played by certain invariant algebras of the trivial extensions of algebras with respect
to free actions of finite groups, as described bellow.

Let B be a basic connected K-algebra and T(B) = B � D(B) be the (sym-
metric) trivial extension algebra of B by its minimal injective cogenerator D(B) =
HomK(B,K). Let G be a finite group of K-algebra automorphisms of T(B). Then
we may consider the invariant algebra

T(B)G =
{
x ∈ T(B)

∣∣∣ g(x) = x for all g ∈ G
}
.

Moreover, we say that the group G acts freely on T(B) if there is a decomposition
of the identity of T(B)

1T(B) = e1 + e2 + · · · + en,

where e1, e2, . . . , en are orthogonal primitive idempotents of T(B) such that
(1) g(ei) ∈ {e1, . . . , en}, for all g ∈ G and i ∈ {1, . . . , n},
(2) if g(ei) = ei, for some i ∈ {1, . . . , n}, then g = 1.
It is known that G acts freely on T(B) if and only if G acts freely on the

isoclasses of simple T(B)-modules, for the induced action of G on mod T(B) (see
[ARS1]).

We have the following general fact.

Proposition 4.2. Assume G acts freely on T(B). Then T(B)G is a weakly sym-
metric (hence selfinjective) algebra.
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Proof. The invariant algebra T(B)G is isomorphic to the orbit algebra T(B)/G
(in the sense of Gabriel [Ga]). Since T(B) is symmetric, T(B) is weakly symmetric,
and hence T(B)G ∼= T(B)/G is weakly symmetric. �

We note that in general T(B)G is not necessarily a symmetric algebra.
We also note that by general theory the class of tame basic indecomposable

algebras splits into two subclasses: the standard algebras, which admit simply
connected Galois coverings, and the remaining nonstandard algebras (see [Sk2] for
details).

Symmetric algebras of Dynkin type

Let ∆ ∈ {An,Dn,E6,E7,E8} be a Dynkin graph, �∆ a Dynkin quiver with
underlying graph ∆ and H = K�∆ the path algebra of �∆.

Then a module T in modH is said to be a tilting H-module if Ext1H(T, T ) = 0
and T = T1 ⊕ · · · ⊕Tn, where n = |∆0| and T1, . . . , Tn are indecomposable pairwise
nonisomorphic H-modules [HR1].

Then B = EndH(T ) is called a tilted algebra of type �∆ and has the following
properties

• gl. dimB ≤ 2;
• B is of finite type;
• The Auslander-Reiten quiver ΓB of B is of the form

Dynkin section �∆
The following important result was proved by Hughes and Waschbüsch [HW].

Theorem 4.3 (Hughes-Waschbüsch,1983). Let A be an algebra. Then T(A) is of
finite type if and only if T(A) ∼= T(B) for a tilted algebra B of Dynkin type.

Let B be a tilted of Dynkin type �∆. Then the Auslander-Reiten quiver of ΓT(B)

has the following shape

∗

∗

∗

∗

�∆
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which is the stable finite cylinder Z�∆/(τm∆) completed by |∆0|-projective-injective
modules. Moreover, if m∆ = h∆ − 1, where h∆ is the Coxeter number of ∆,
then the number of the isoclasses of indecomposable T(B)-modules is the number
|∆0|h∆ of roots of type ∆. Recall also that the Coxeter numbers are as follows
hAm = m+ 1, hDm = 2m− 2, hE6 = 12, hE7 = 18, hE8 = 30.

We also note that, if B, B′ are tilted algebras of Dynkin type, then T(B) ∼=
T(B′) ⇐⇒ B′ = S+

it
. . . S+

i1
B (finite number of reflections) (see [HW]).

The following problem occurs naturally.

PROBLEM 6. When a finite group G acts freely on the trivial extension
T(B) of a tilted algebra B of Dynkin type?

By general theory such a group G is cyclic (see [HW]).
An additional information is given by the following theorem proved by Bretscher,

Läser and Rietdmann [BLR].

Theorem 4.4 (Bretscher-Läser-Rietdmann, 1981). Let G be a finite group acting
freely on the trivial extension T(B) of a tilted algebra B of Dynkin type �∆, with
∆ ∈ {E6,E7,E8}. Then G = {1}.

There are respectively 22, 143, 598 isoclasses of the trivial extensions T(B)
of tilted algebras B of types E6, E7, E8 (Riedtmann). These are all symmetric
algebras of Dynkin types E6, E7, E8.

The tilted algebras B of Dynkin types for which T(B) admit a free action of a
nontrivial finite group G are very exceptional.

In the representation theory of group algebras of finite groups a prominent role
is played by the Brauer tree algebras (see [Al2]). Recall that a Brauer tree is
a finite connected tree T = Tm

S together with

• a circular ordering of the edges converging at each vertex,
• one exceptional vertex S with multiplicity m ≥ 1.

We associate to a Brauer tree T a Brauer quiver QT defined as follows:

• the vertices of QT are the edges of T ;
• there is an arrow i → j in QT ⇐⇒ j is the consecutive edge of i in the

circular ordering of the edges converging at a vertex of T .

Hence the quiver QT has the following structure:

• QT is a union of oriented cycles corresponding to the vertices of T ;
• Every vertex of QT belongs to exactly two cycles.

The cycles of QT are divided into two camps: α-camps and β-camps such
that two cycles of QT having nontrivial intersection belong to different camps. We
assume that the cycle of QT corresponding to the exceptional vertex S of T is an
α-cycle. Therefore, for each i vertex of QT , we have the arrow i

αi−→ α(i) in α-camp

of QT starting at i, the arrow i
βi−→ β(i) in β-camp of QT starting at i, and the
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cycles Ai = αiαα(i) . . . αα−1(i), Bi = βiββ(i) . . . ββ−1(i) around i of the form

α2(i)

���������
α(i)

αα(i)�� β(i)
ββ(i) �� β2(i)

���������

.

.

.

.

.

.

i

αi

������������

βi

������������

���������

���������

α−2(i)αα−2(i)

�� α−1(i)

αα−1(i)

������������
β−1(i)

ββ−1(i)

������������

β−2(i)
ββ−2(i)

��

We associate to a Brauer tree T = Tm
S the Brauer tree algebra A(T ) =

A(Tm
S ) = KQT m

S
/Im

S , where Im
S is the ideal in the path algebra KQT m

S
of QT m

S

generated by the elements:

• ββ−1(i)αi and αα−1(i)βi,
• Am

i −Bi, if the α-cycle passing through i is exceptional,
• Ai −Bi, if the α-cycle passing through i is not exceptional.

For the multiplicity m = 1, the Brauer tree algebras A(T ) = A(T 1
S) are exactly

the trivial extension algebras T(B) of the tilted algebras of types An.
For the multiplicity m ≥ 2, we have A(Tm

S ) ∼= T(B)Zm for an exceptional tilted
algebra B = B(Tm

S ) of type An and the cyclic group Zm acting freely on T(B).
Here, n = me, where e is the number of edges of Tm

S .

Example 4.5. Let T = Tm
S be the star

•

e−1 •
e

���������

.
.
.
.
.
.
.

•	
��
���S •1

•
2

���������

•

3
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Then the associated Brauer quiver QT = QT m
S

is of the form

e

������βe

�� αe �� 1

������β1

��

α1

�������������

e− 1������βe−1

��

αe−1

  ������������
2 ������ β2��

α2

��

		

......................
...

..
..

..

and A(Tm
S ) is a symmetric Nakayama algebra. Moreover, A(Tm

S ) ∼= A(T ′)Zm

for the star T ′ with me edges and the multiplicity 1, and A(T ′) ∼= T (B) for the
path algebra B = KQ of the equioriented quiver of type Ame

1 −→ 2 −→ . . . −→ me.

Then we have the following classical result proved independently by Dade [Da],
Janusz [Ja] and Kupisch [Ku1], [Ku2].

Theorem 4.6 (Dade-Janusz-Kupisch,1966-1969). Let B be a block of a group al-
gebra KG with cyclic defect group DB. Then B is Morita equivalent to a Brauer
tree algebra A(Tm

S ).

(Here me+ 1 = pn if | DB |= pn and B has e simple modules.)
We refer to [Fe] for a description of the Brauer tree algebras A(Tm

s ) which are
Morita equivalent to blocks of group algebras.

The following characterization of Brauer tree algebras was established by Gabriel
and Riedtmann [GR] (equivalence (1) and (2)) and Rickard [Ric2] (equivalence of
(1) and (3)).

Theorem 4.7 (Gabriel-Riedtmann (1979), Rickard (1989)). Let A be a selfinjective
algebra. The following statements are equivalent:

(1) A is Morita equivalent to a Brauer tree algebra.
(2) A is stably equivalent to a symmetric Nakayama algebra.
(3) A is derived equivalent to a symmetric Nakayama algebra.

Let T = TS be a Brauer tree with at least two edges and an extreme excep-
tional vertex S
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•

��������B3

3
•

��������B2

2

��������

.......
S

1
S′

•��������Br

r
��������

•

������� Br−1

r−1

Then the Brauer quiver QT is of the form

cycle S′

r − 1

��������QBr−1

���������
. . .

��

r

��������QBr

βr

!!�������
j + 1

��������QBj+1""������

1

β1

##�
������

������α1
$$

j

βj

%%       
&&

βj−1

!!
!!
!!
!
��������QBj

2��������QB2
��������� j − 1��������QBj+13��������QB3

��
. . .

''""""""

For each vertex i of QT , we have the cycles Ai and Bi around i. Define also the
cycles B′

j = βj . . . βrα1β1 . . . βj−1, around the vertices j ∈ S′
0, j �= 1, of the cycle

S′.
For each λ ∈ K, define the algebra

D(TS , λ) = KQT/I(TS , λ),

where I(TS , λ) is the ideal of KQT generated by the elements:
• ββ−1(i)αi and αα−1(i)βi, i ∈ (QT )0 \ {1},
• A2

1 = B1,
• Ai −Bi, i ∈ (QT )0 \ S′

0,
• Aj −B′

j , j ∈ S′
0 \ {1},
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• βrβ1 − λβrα1β1.
The following proposition describes the basic properties of the algebrasD(TS , λ)

(see Riedtmann [Rd2] and Waschbüsh [W1]).

Proposition 4.8. (1) D(TS , λ), λ ∈ K, are symmetric algebras of finite type.
(2) For λ, µ ∈ K \ {0}, D(TS , λ) ∼= D(TS, µ).
(3) D(TS , 0) ∼= D(TS , 1) ⇐⇒ charK �= 2.
(4) D(TS , 0) and D(TS, 1) are socle equivalent.
(5) D(TS , 0) = T(B)Z3 , for an exceptional tilted algebra B = B∗(TS) of Dynkin

type D3m and Z3 acting freely on T(B).
(6) For charK = 2, D(TS , 1) is nonstandard and degenerates to D(TS , 0).

Example 4.9. Let T = T 2
S be the Brauer tree of the form

S
1

S′ 2 • 3 •
Then the Brauer quiver QT = QT 2

S
is of the form

1������α1
$$

β1

�� 2
β2��

α2
�� 3

α3�� ������ β3�� ,

and the algebras D(TS , 0) and D(TS , 1) are of the form

D(TS , 0) = KQT /I(TS, 0), with
I(TS , 0) generated by

β1α2, α3β2

β3α3, α2β3

α2
1 − β1β2

α2α3 − β2α1β1

α3α2 − β3

β2β1

D(TS , 1) = KQT /I(TS, 0), with
I(TS , 1) generated by

β1α2, α3β2

β3α3, α2β3

α2
1 − β1β2

α2α3 − β2α1β1

α3α2 − β3

β2β1 − β2α1β1

Let B = KQ/I, where Q is the quiver

Q :

9

α9

((###############

7

α4

��

β7

��������������� 2

β2���������������

α2

��$$$$$$$$$$$$$$$

6

α6

((###############

4

α1

��

β4

��������������� 8

β8

���������������

3

1 5

and I is the ideal of KQ generated by the elements α4α1 −β7β8, β2β4, α9β8. Then
B is a tilted algebra of type D9 = D3·3.
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Moreover, T(B) ∼= KQ′/I ′, where Q′ is the quiver

Q′ :

3
α3��

2

α2

		

β2

��%%%%%%%%%%

1

β1
��&&&&&&&&&&

α7

))'''''''''''''''' 4
α1��

β4

��
8

β8

		

α8

��




 5

β5**&&&&&&&&&& α5

++(((((

9
α9

,,





7

β7

--%%%%%%%%%%

α4

������������������
6

α6

..(((((

and I ′ is the ideal of KQ′ generated by the elements

α4α1 − β7β8, α1α7 − β4β5, α7α4 − β1β2, β2β4, β5β7, β8β1, β1α2, α3β2,

β4α5, α6β5, β7α8, α9β8, α2α3 − β2α1β1, α5α6 − β5α4β4, α8α9 − β8α7β7.

Then the group Z3 acts freely on T(B) by the canonical rotation and we have
T(B)Z3 ∼= D(TS , 0).

The following description of the nonsimple standard symmetric algebras of
finite type follows from [BLR], [Rd1], [Rd2], [HW], [W1] and [W2].

Theorem 4.10 (Riedtmann, Waschbüsch, . . . ). Let Λ be a nonsimple standard
selfinjective algebra. The following statements are equivalent:

(1) Λ is symmetric of finite type.
(2) Λ is isomorphic to T(B)G, for a tilted algebra B of Dynkin type and a finite

group G acting freely on T(B).
(3) Λ is isomorphic to one of the algebras:

(a) T(B), for a tilted algebra B of Dynkin type.
(b) A(Tm

S ), for a Brauer tree Tm
S , with the exceptional vertex S of

multiplicity m ≥ 2.
(c) D(TS , 0), for a Brauer tree TS, and an extreme exceptional vertex

S.

The remaining (nonstandard) symmetric algebras of finite type are described by
the following theorem proved independently by Riedtmann [Rd2] and Waschbüsch
[W1].

Theorem 4.11 (Riedtmann (1983), Waschbüsch (1981)). Let Λ be a selfinjective
algebra over K. The following statements are equivalent:

(1) Λ is nonstandard of finite type.
(2) Λ is nonstandard symmetric of finite type.
(3) Λ ∼= D(TS , 1), for a Brauer tree TS, an extreme exceptional vertex S, and

charK = 2.

Definition 4.12. A symmetric algebra of Dynkin type is defined to be a sym-
metric algebra A which is socle equivalent to an invariant symmetric algebra T(B)G,
where B is a tilted algebra of Dynkin type and G is a finite group acting freely on
T(B).
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Therefore, a symmetric algebra of Dynkin type is a symmetric algebra listed in
the above Theorems 4.10 and 4.11.

Symmetric algebras of tubular type

In the description of the symmetric algebras of the symmetric algebras of tubu-
lar type a prominent role is played by the tubular algebras introduced by Ringel in
[Ri].

For a triple (p, q, r) ∈ {(3, 3, 3), (2, 4, 4), (2, 3, 6)}, we denote by C(p, q, r) the
canonical tubular algebra of type (p, q, r) given by the quiver

•
α1

//�������
•α2�� · · ·�� •�� •

αp−1��

• •β1�� •β2�� · · ·�� •�� •
βq−1�� •

αp

00�������
βq��

γr//�������

•
γ1

00�������
•

γ2
�� · · ·�� •�� •

γr−1
��

bound by the relation

αp . . . α2α1 + βq . . . β2β1 + γr . . . γ2γ1 = 0.

Further, for λ ∈ K \ {0, 1}, denote by C(2, 2, 2, 2, λ), the canonical tubular
algebra of type (2, 2, 2, 2) given by the quiver

•

α1

11													

•
β1

���������

• •

α2

��)))))))))))))
β2

���������

γ2���������

δ2

11													

•
γ1

���������

•

δ1

��)))))))))))))

bound by the relations

α2α1 + β2β1 + γ2γ1 = 0, α2α1 + λβ2β1 + δ2δ1 = 0.

Then a tubular algebra is defined to be a tilted algebra B = EndC(T ) of a
canonical tubular algebra C of one of tubular types (2, 2, 2, 2), (3, 3, 3), (2, 4, 4), or
(2, 3, 6), and with T a tilting C-module of nonnegative rank.

A tubular algebra B has the following characteristic properties:

• gl. dimB = 2;
• rkK0(B) = 6, 8, 9, or 10;
• B is tame of polynomial growth;
• The Auslander-Reiten quiver ΓB of B is of the form
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P T0

∨
q∈Q+ Tq T∞ Q

Let B be a tubular algebra. Then it follows from Nehring and Skowroński [NS]
(see also Happel-Ringel [HR2]) that T(B) is a symmetric standard tame algebra
of polynomial growth and the Auslander-Reiten quiver of T(B) is of the form

∗
∗

∗
∗ ∗

∗
∗

∗

∗
∗

∗
∗ ∗

∗

∗

T0 = Tr

∨
q∈Q

r−1
r

Tq

∨
q∈Q0

1
Tq

Tr−1 T1

∨
q∈Q

r−2
r−1

Tq
∨

q∈Q1
2
Tq

where T0, T1, . . . , Tr are P1(K)-families of quasi-tubes (stable tubes with inserted
projective-injective vertices ∗) and Tq, q ∈ Qi−1

i = Q ∩ (i − 1, i), 1 ≤ i ≤ r, are
P1(K)-families of stable tubes.

The following theorem proved by Bia�lkowski and Skowroński [BiS1] gives a
characterization of the trivial extension algebras of tubular algebras.

Theorem 4.13 (Bia�lkowski-Skowroński, 2003). Let Λ be a representation-infinite
algebra. The following statements are equivalent:

(i) Λ is tame, standard, weakly symmetric, with all indecomposable nonpro-
jective finite dimensional modules periodic, and singular Cartan matrix.

(ii) Λ is tame, standard, symmetric, with all indecomposable nonprojective
finite dimensional modules periodic, and singular Cartan matrix.

(iii) Λ ∼= T(B) for a tubular algebra B.

We also note that by a result of [NS], for tubular algebras B and B′, we have
T(B) ∼= T(B′) ⇐⇒ B′ = S+

it
. . . S+

i1
B (finite number of reflections).
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There are 4 families of nonisomorphic trivial extensions of tubular algebras
of tubular type (2, 2, 2, 2), and 38, 85, 4953 isoclasses of the trivial extensions of
tubular types (3, 3, 3), (2, 4, 4), (2, 3, 6), respectively (Bia�lkowski).

The following problem arises naturally.

PROBLEM 7. When a finite group G acts freely on the trivial extension
T(B) of a tubular algebra B?

By general theory such a group G is cyclic (see [Sk1]).
An additional information is provided by the following theorem proved by Lenz-

ing and Skowroński [LeSk].

Theorem 4.14 (Lenzing-Skowroński, 2000). Let G be a finite group acting freely
on the trivial extension T(B) of a tubular algebra B of type (2, 3, 6). Then G = {1}.

A complete answer to the problem raised above is given by the following theo-
rem proved by Bia�lkowski and Skowroński [BiS1].

Theorem 4.15 (Bia�lkowski-Skowroński, 2002). Let B be a tubular algebra such
that a nontrivial finite group G acts freely on T(B). Then T(B) ∼= T(B′) for a
tubular algebra B′ given by one of the following bound quivers:

φγα = φσβ

ψγα = λψσβ

B1(λ)
λ ∈ K \ {0, 1}

α β

γ σ

φ ψ

1

2 3

4

5 6

� �

� �

� �

ξα = ηγ, ζα = ωγ

ξσ = ηβ, ζσ = λωβ

B2(λ)
λ ∈ K \ {0, 1}

α β
γσ

η ζ
ξ ω

1 2

3 4

5 6

� �� �

� �� �

B3

1

2 3 4

5

876

� ��

� ��

���

B4

1

3

5

4

2

6

8 7

��

��

�

�

� � �

B5

1

3

5

4

7

6

2

8

�
�

�

�

�
�

�

�

B6

1

4

6

3

2

5

78

��

��

�

�

�� �

B7

3

1

2

4

5

7

6

8

��
�
�

�

��
�

B8

3

1

4

5

7

6

8

2
� �

��

�

�

�

�
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B9
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4
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7
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8

�
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2 31

6

7

4
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2
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B12

1
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8
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B13
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4

8

�
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�
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B14

1 2
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6 7
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 � 
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 �
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 � 


(where a dotted line means that the sum of paths indicated by this line is zero if
it indicates exactly three parallel paths, the commutativity of paths if it indicates
exactly two parallel paths, and the zero path if it indicates only one path).

Here, B1(λ), B2(λ) are tubular algebras of type (2, 2, 2, 2), B3, B4, B5, B6, B7,
B8 are tubular algebras of type (3, 3, 3), and B9, B10, B11, B12, B13 are tubular
algebras of type (2, 4, 4).

The following characterization of the nontrivial invariant algebras of the trivial
extensions of tubular algebras of free actions of finite groups has been established
by Bia�lkowski and Skowroński [BiS2].

Theorem 4.16 (Bia�lkowski-Skowroński, 2003). Let Λ be a representation-infinite
algebra. The following statements are equivalent:

(i) Λ is tame, standard, weakly symmetric, with all indecomposable nonprojec-
tive finite dimensional modules periodic and nonsingular Cartan matrix.

(ii) Λ ∼= T(B)G for a tubular algebra B and a nontrivial finite group G acting
freely on T(B).

(iii) Λ is isomorphic to one of the bound quiver algebras.

A1(λ) ∼= T(B1(λ))Z2

λ ∈ K \ {0, 1}

αγα = ασβ

βγα = λβσβ

γαγ = σβγ

γασ = λσβσ

α

γ

σ

β

�� ��

A2(λ) ∼= T(B2(λ))Z3

λ ∈ K \ {0, 1}

α2 = σγ

λβ2 = γσ

γα = βγ

σβ = ασ

α β
σ

γ
��

�

�

A3
∼= T(B3)Z2

βα+ δγ + εξ = 0

αβ = 0, ξε = 0

γδ = 0

α
β

δ γ

ε
ξ

� ��
�

�
�

A4
∼= T(B3)Z2

βα+ δγ + εξ = 0

αβ = 0, γε = 0

ξδ = 0

α
β

δ γ

ε
ξ

� ��
�

�
�

A5
∼= T(B4)Z4

α2 = γβ

βαγ = 0

α
γ

β

���
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A6
∼= T(B5)Z4

α3 = γβ

βγ = 0

βα2 = 0

α2γ = 0

α
γ

β

���

A7
∼= T(B4)Z2

βα = δγ

γδ = εξ

αδε = 0

ξγβ = 0

α

β

δ

γ

ε

ξ

�� �� ��

A8
∼= T(B5)Z2

αβα = σξ, ξγ = 0

βαβ = γδ, δσ = 0

ξβα = 0

δαβ = 0

βαγ = 0

αβσ = 0

α
β

σ

ξ

γ

δ�

��
�

�
�

A9
∼= T(B6)Z2

δα = εβ, γε = βσ,ασβ = 0

εγδ = 0, σγεγ = 0

α
β

σ

γε

δ�

��� �
�

A10
∼= T(B7)Z2

ξαβ = ξδγξ

αβδ = δγξδ

βα = 0, (γξδ)2γ = 0

α β

δγ
ξ

��
�

�
�

A11
∼= T(B8)Z2

γαβ = γξγ

αβξ = ξγξ

βα = 0, δγ = 0

ξζ = 0, (γξ)2 = ζδ

β

α

ξ

γ

ζ

δ

�� �� ��

A12
∼= T(B9)Z3

δβδ = αγ

γβα = 0, β(δβ)3 = 0

α

β

γ
δ

�
	��

A13
∼= T(B10)Z3

α2 = γβ, βδ = 0, γβ = 0

σγ = 0, αδ = 0, σα = 0

α3 = δσ

α
β

γ

δ

σ

�� �� �

A14
∼= T(B11)Z3

βα = δγδγ

αδγδ = 0

γδγβ = 0

αβ = 0

α

β

δ

γ
�� ��

A15
∼= T(B12)Z3

γβα = 0, α2 = δβ

βδ = 0, ασ = 0, αδ = σγ

α
β

γ
δ

σ�
	���

A16
∼= T(B13)Z3

αβγ = 0, α2 = βδ

δβ = 0, σα = 0, δα = γσ

α
β

γ
δ

σ



�
� ��

We note that all algebras presented above, except A4 for charK �= 2, are
symmetric.

The following theorem proved by Bia�lkowski and Skowroński in [BiS3] gives a
complete description of the nonstandard symmetric algebras which are socle equiv-
alent to the standard symmetric algebras described in Theorems 4.13 and 4.16.

Theorem 4.17 (Bia�lkowski-Skowroński, 2004). Let Λ be a nonstandard symmet-
ric algebra over an algebraically closed field K. Then Λ is socle equivalent to a
standard representation-infinite tame symmetric algebra A with all indecomposable
nonprojective modules periodic if and only if exactly one of the following cases holds:

(i) K is of characteristic 3 and Λ is isomorphic to one of the bound quiver
algebras
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Λ1

α2 = γβ

βαγ = βα2γ

βαγβ = 0

γβαγ = 0

α
γ

β

��
�

Λ2

α2γ = 0, βα2 = 0

γβγ = 0, βγβ = 0

βγ = βαγ

α3 = γβ

α
γ

β

��
�

(ii) K is of characteristic 2 and Λ is isomorphic to one of the bound quiver
algebras

Λ3(λ)

λ ∈ K \ {0, 1}

α4 = 0, γα2 = 0, α2σ = 0

α2 = σγ + α3, λβ2 = γσ

γα = βγ, σβ = ασ

α β
σ

γ
�� �

�

Λ4

δβδ = αγ, (βδ)3β = 0
γβαγ = 0, αγβα = 0

γβα = γβδβα

α

β

γ
δ

�
	��

Λ5

α2 = γβ, α3 = δσ, βδ = 0

σγ = 0, αδ = 0, σα = 0

γβγ = 0, βγβ = 0, βγ = βαγ

α
β

γ

δ

σ

�� �� �

Λ6

αδγδ = 0, γδγβ = 0

αβα = 0, βαβ = 0

αβ = αδγβ

βα = δγδγ

α

β

δ

γ
�� ��

Λ7

βδ = βαδ, ασ = 0, αδ = σγ

γβα = 0, α2 = δβ, γβδ = 0
βδβ = 0, δβδ = 0

α
β

γ
δ

σ�
	��

�

Λ8

δβ = δαβ, σα = 0, δα = γσ

αβγ = 0, α2 = βδ, δβγ = 0
βδβ = 0, δβδ = 0

α
β

γ
δ

σ



�
� �

�

Λ9

βα + δγ + εξ = 0
γδ = 0, ξε = 0, αβα = 0

βαβ = 0, αβ = αδγβ

α
β

δ γ

ε
ξ

� �
�

�

�
�

Λ10

µβ = 0, αη = 0, βα = δγ

ξσ = ηµ, σδ = γξ + σδσδ

δσδσ = 0, ξγξγ = 0

γ

ξ
δ
σα β

η µ
�� ��

�
�

�
�

W also note that if Λ is a nonstandard algebra Λi, i ∈ {1, . . . , 10}, then Λ de-
generates to a standard symmetric algebra Λ′ = T(B)G, for an exceptional tubular
algebra B and a nontrivial group G acting freely on T(B) (see Bia�lkowski-Holm-
Skowroński [BHS]).

Definition 4.18. A symmetric algebra of tubular type is defined to be a sym-
metric algebra A which is socle equivalent to an invariant symmetric algebra T(B)G,
where B is a tubular algebra and G is a finite group acting freely on T(B).

Therefore, a symmetric algebra of tubular type is a symmetric algebra listed in
the above Theorems 4.13, 4.16 and 4.17.

Example 4.19. The trivial extension T(B5) of the tubular algebra B5 of type
(3, 3, 3), presented in Theorem 4.15, is the bound quiver algebra KΩ/J given by
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the quiver

Ω :

6
β6

22�������

1

γ6

��*******

α7

��

3α1
��

γ8

22�������

4

β4

��*******
8

β833*******

7

γ4

���������
α5 �� 5

α3

		

γ2
33*******

2
β2

���������

and the ideal J is generated by the elements

α1α7α5 − γ8β8, α3α1α7 − γ2β2, α5α3α1 − γ4β4, α7α5α3 − γ6β6, β4γ6, β6γ8, β8γ2,

β2γ4, β6α1α7, β8α3α1, β2α5α3, β4α7α5, α1α7γ4, α7α5γ2, α5α3γ8, α3α1γ6.

Then the group Z4 acts on T(B5) by the obvious rotation and

T(B5)Z4 ∼= A6 = KQ/I,

where

Q :
� �

�1 2

α

β

γ

and the ideal I is generated by α3 − γβ, βγ, βα2, α2γ.
Consider the algebra

Λ2 = KQ/I(1), I(1) =
〈
α3 − γβ, βγ − βαγ, βα2, α2γ

〉
.

Then A6 and Λ2 are selfinjective algebras of dimension 11, and we have

• A6
∼= Λ2 ⇐⇒ charK �= 3,

• charK = 3 ⇒ Λ2 is nonstandard,
• A6/ socA6

∼= Λ2/ soc Λ2.

Consider also the family of algebras

Λ(t) = KQ/I(t), I(t) =
〈
α3 − γβ, βγ − tβαγ, βα2, α2γ

〉
, t ∈ K.

Then we have

• Λ(t) ∼= Λ(1) = Λ2, for t ∈ K \ {0},
• A6 = Λ(0) = lim

t→0
Λ(t), A6 ∈ GL11(K)Λ2.

Therefore A6 is a degeneration of Λ2 (Λ2 is a deformation of A6). Moreover,
the Auslander-Reiten quivers ΓA6 and ΓΛ2 of A6 and Λ2 coincide and are of the
form
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∗ ∗

T (1) = T (0) =
∨

λ∈P1(K)

T (0)
λ

T (q) =
∨

λ∈P1(K)

T q
λ

q ∈ Q ∩ (0, 1)

Algebras of quaternion type

The following class of algebras of quaternion type has been introduced by Erd-
mann (see [E1], [E2], [E3]).

Definition 4.20. An algebra A is said to be of quaternion type if the following
conditions are satisfied:

• A is symmetric, indecomposable, tame of infinite type;
• The indecomposable nonprojective finite dimensional A-modules are ΩA-

periodic of period dividing 4;
• The Cartan matrix of A is nonsingular.

This class of algebras includes all blocks of group algebras of finite groups with
generalized quaternion defect groups. In [E1], [E2], [E3] Erdmann proved that
any algebra of quaternion type is Morita equivalent to an algebra in 12 families
of symmetric algebras defined by quivers and relations (presented in the theorem
below). Later, Holm [Hol] has classified these algebras up to derived equivalence,
and proved (applying the Geiss degeneration theorem [Ge] and the known results
on selfinjective algebras of tubular type [Sk1]) that they are in fact tame. The
problem whether all algebras listed by Erdmann are of quaternion type has been
solved recently in the paper by Erdmann and Skowroński [ES1]. Therefore, we
have the following theorem.

Theorem 4.21. Let A be a selfinjective algebra. The following statements are
equivalent:

(i) A is of quaternion type;
(ii) A is Morita equivalent to one of the bound quiver algebras
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Qk(c):

•������α
�� ������ β
��

α2 = (βα)k−1β + c(αβ)k

β2 = (αβ)k−1α
(αβ)k = (βα)k , (αβ)kα = 0
k ≥ 2

Qk(c, d):

•������α
�� ������ β
��

charK = 2
α2 = (βα)k−1β + c(αβ)k

β2 = (αβ)k−1α+ d(αβ)k

(αβ)k = (βα)k, (αβ)kα = 0
(βα)kβ = 0
k ≥ 2, c, d ∈ K, (c, d) �= (0, 0)

Q(2A)k(c):

•������α
�� β �� •

γ
��

γβγ = (γαβ)k−1γα
βγβ = (αβγ)k−1αβ
α2 = (βγα)k−1βγ + c(βγα)k

α2β = 0
k ≥ 2, c ∈ K

Q(2B)k,s
1 (a, c):

•������α
�� β �� •

γ
�� ������ η

��

γβ = ηs−1, βη = (αβγ)k−1αβ
ηγ = (γαβ)k−1γα
α2 = a(βγα)k−1βγ + c(βγα)k

α2β = 0, γα2 = 0
k ≥ 1, s ≥ 3, a ∈ K∗, c ∈ K

Q(2B)s
2(a, c):

•������α
�� β �� •

γ
�� ������ η

��

αβ = βη, ηγ = γα, βγ = α2

γβ = η2 + aηs−1 + cηs

αs+1 = 0, ηs+1 = 0
γαs−1 = 0, αs−1β = 0
s ≥ 4, a ∈ K∗, c ∈ K

Q(2B)t
3(a, c):

•������α
�� β �� •

γ
�� ������ η

��

αβ = βη, ηγ = γα, βγ = α2

γβ = aηt−1 + cηt

α4 = 0, ηt+1 = 0, γα2 = 0
α2β = 0
t ≥ 3, a ∈ K∗, c ∈ K
(t = 3 ⇒ a �= 1, t > 3 ⇒ a = 1)

Q(3A)k,s
1 (d):

•
β �� •
γ

��
δ �� •
η

��

βδη = (βγ)k−1β
δηγ = (γβ)k−1γ
ηγβ = d(ηδ)s−1η
γβδ = d(δη)s−1δ
βδηδ = 0, ηγβγ = 0
k, s ≥ 2, d ∈ K∗

(k = s = 2 ⇒ d �= 1, else d = 1)

Q(3A)k
2 :

•
β �� •
γ

��
δ �� •
η

��

βγβ = (βδηγ)k−1βδη
γβγ = (δηγβ)k−1δηγ
ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ
βγβδ = 0, ηδηγ = 0
k ≥ 2
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Q(3B)k,s:

•������α
�� β �� •

γ
��

δ �� •
η

��

βγ = αs−1

αβ = (βδηγ)k−1βδη
γα = (δηγβ)k−1δηγ
ηδη = (ηγβδ)k−1ηγβ
δηδ = (γβδη)k−1γβδ
α2β = 0, βδηδ = 0
k ≥ 1, s ≥ 3

Q(3C)k,s:

•
β �� •
γ

��

�������
�� δ �� •

η
��

β� = 0, �γ = 0, η�2 = 0
�2δ = 0
δη − γβ = �s−1, η� = (ηδ)k−1η
�δ = (δη)k−1δ, (βγ)k−1βδ = 0
(ηδ)k−1ηγ = 0
k ≥ 2, s ≥ 3

Q(3D)k,s,t:

•������α
�� β �� •

γ
��

δ �� •
η

�� ������ ξ
��

βγ = αs−1

γα = (δηγβ)k−1δηγ
αβ = (βδηγ)k−1βδη
ηδ = ξt−1

δξ = (γβδη)k−1γβδ
ξη = (ηγβδ)k−1ηγβ
α2β = 0, δηδ = 0
k ≥ 1, s, t ≥ 3

Q(3K)a,b,c:

•
β ��

κ



���������� •
γ

��

δ

44++++++++++

•
λ

55���������

η

66+++++++++

βδ = (κλ)a−1κ
ηγ = (λκ)a−1λ
δλ = (γβ)b−1γ
κη = (βγ)b−1β
λβ = (ηδ)c−1η, γκ = (δη)c−1δ
γβδ = 0, δηγ = 0, λκη = 0
a, b, c ≥ 1 (at most one equal 1)

We have also the following consequence of the classification of the tame sym-
metric algebras with all indecomposable nonprojective finite dimensional modules
periodic [ES2].

Theorem 4.22 (Erdmann-Skowroński, 2006). Let Λ be a basic, indecomposable,
finite dimensional symmetric, tame algebra over an algebraically closed field K, with
all indecomposable nonprojective finite dimensional modules ΩΛ-periodic. Then

(1) The Cartan matrix CΛ of Λ is singular if and only if Λ is isomorphic to
the trivial extension T(B) of a tubular algebra B.

(2) If Λ is representation-infinite with nonsingular Cartan matrix CΛ then Λ
has at most 4 isoclasses of simple modules.

(3) If Λ is representation-infinite then Λ has at most 10 isoclasses of simple
modules.

5. Periodicity and hypersurface singularities

The aim of this section is to present natural examples of periodic algebras
arising in commutative algebra. For basic background on the commutative algebra
considered here we refer to the books [E] and [Yo].

Let R be a commutative noetherian local ring and m the maximal ideal of R.
Denote by dimR the Krull dimension of R, that is, the length of maximal chain
of prime ideals of R.

Let M be a right R-module. A sequence x1, . . . , xn ∈ m is said to be a regular
sequence on M if xi is not a zero-divisor of M/M(x1, . . . , xi−1), for any i ∈
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{1, . . . , n}. The maximal length of regular sequences on M is said to be depth
of M and denoted by depth(M). Then M is said to be a (maximal) Cohen-
Macaulay R-module if depth(M) = dimR. Further, R is said to be a Cohen-
Macaulay ring if RR is a Cohen-MacaulayR-module. Moreover, the ring R is said
to be regular (nonsingular) if m is generated by a regular sequence (equivalently,
gl. dimR = dimR, by the Auslander-Buchsbaum-Serre theorem). Finally, R
is said to be an isolated singularity if R is nonregular and the localization Rp is
regular (nonsingular) for any prime ideal p �= m of R.

Let K be an algebraically closed field and S = K[[x0, x1, . . . , xn]] the formal
power series K-algebra. Then S is a commutative, complete, noetherian, regular,
local K-algebra with dimS = n+1, and m = (x0, x1, . . . , xn) is the unique maximal
ideal of S. For 0 �= f ∈ m2, the quotient algebra R = S/(f) is called a hypersur-
face singularity. Then R is a commutative, complete, noetherian, local K-algebra
with dimR = n. The ideal

J (f) =
(
f,

∂f

∂x0
,
∂f

∂x1
, . . . ,

∂f

∂xn

)
of S = K[[x0, x1, . . . , xn]] is called the Jacobian ideal of f . Then it is known that
R = S/(f) is an isolated hypersurface singularity if and only if dimk S/J (f)
is finite.

It has been observed by Greuel and Kröning [GrKr] that if S = K[[x0, x1, . . . , xn]],
0 �= f ∈ m2 and R = S/(f) is an isolated hypersurface singularity then R ∼= S/(F )
for a polynomial F ∈ K[x0, x1, . . . , xn].

Let R be a hypersurface singularity. We denote by CM(R) the category of
finitely generated maximal Cohen-Macaulay R-modules. Then CM(R) is a Krull-
Schmidt category (unique decomposition of objects into direct sums of indecompos-
able objects). The hypersurface singularity R is called of finite Cohen-Macaulay
type (shortly, finite CM-type) if CM(R) has only a finite number of pairwise
nonisomorphic indecomposable objects.

The following important fact was proved by Auslander in [Au1].

Theorem 5.1 (Auslander, 1986). Let R be a hypersurface singularity of finite CM -
type. Then R is an isolated singularity.

Let R be an isolated hypersurface singularity. Then the category CM(R) has
the following properties:

• CM(R) is a Frobenius category (projective objects are injective), and R
is a unique indecomposable projective object.

• CM(R) admits Auslander-Reiten sequences (Auslander [Au2]).

Then ΓR = ΓR(CM(R)) is said to be the Aulander-Reiten quiver of R. We may
also consider the stable category CM(R) of CM(R), and the stable Aulander-
Reiten quiver Γs

R = ΓR(CM(R)) of R (obtainded from ΓR by deleting R and the
arrows attached to R). Moreover, we have the following equivalences of functors
from CM(R) to CM(R):

• Ω2
R
∼= idCM(R),

• τR ∼= idCM(R), if dimR is even,
• τR ∼= ΩR, if dimR is odd.
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Let R = S/(f) be a hypersurface singularity. Denote by c(f) the set of all
proper ideals I of S = K[[x0, x1, . . . , xn]] such that f ∈ I2. Then R is called a
simple hypersurface singularity if the set c(f) is finite.

The following important theorem is due to Arnold [Arn1] (see also [Arn2]).

Theorem 5.2 (Arnold, 1972). Let R be a hypersurface singularity of dimension d
over an algebraically closed field K of characteristic 0. Then the following state-
ments are equivalent:

(1) R is a simple hypersurface singularity.
(2) R is of finite deformation type.
(3) R ∼= K[[x0, x1, . . . , xd]]/(f (d)

∆ ), for a Dynkin graph ∆ of type An(n ≥ 1),
Dn(n ≥ 4), E6, E7, or E8, where

f
(d)
An

= x2
0 + xn+1

1 + x2
2 + · · · + x2

d,

f
(d)
Dn

= x2
0 + xn−1

1 + x2
2 + · · · + x2

d,

f
(d)
E6

= x3
0 + x4

1 + x2
2 + · · · + x2

d,

f
(d)
E7

= x3
0 + x0x

3
1 + x2

2 + · · · + x2
d,

f
(d)
E8

= x3
0 + x5

1 + x2
2 + · · · + x2

d.

Here, the finite deformation type means that R can be deformed only into
finitely many other nonisomorphic singularities (see [Arn1] for more details).

The ring K[[x0, x1, . . . , xd]]/(f (d)
∆ ) is called the Arnold’s simple hypersur-

face singularity of dimension d and Dynkin type ∆.
The following theorem proved by Buchweitz, Greuel, Schreyer [BGS] and

Knörrer [Kn2] shows importance of Arnold’s simple hypersurface singularities for
Cohen-Macaulay modules.

Theorem 5.3 (Buchweitz-Greuel-Schreyer, Knörrer, 1985-1987). Let R be a hy-
persurface singularity of dimension d over an algebraically closed field K of charac-
teristic 0. Then R is of finite Cohen-Macaulay type if and only if R is isomorphic
to K[[x0, x1, . . . , xd]]/(f (d)

∆ ), for some Dynkin graph ∆.

We will show now that the study of the categories of CM(R) for hypersurface
singularities R of finite Cohen-Macaulay type can be reduced to the dimensions 1
and 2. This is done by the Knörrer’s and Solberg’s periodicity theorems.

Let S = K[[x0, x1, . . . , xn]] and R = S/(f) be an isolated hypersurface singu-
larity. Consider the rings

S� = S[[u]] and R� = S�/(f + u2).

Then the Knörrer’s periodicity theorem [Kn2] (see also [Kn1]) is as follows.

Theorem 5.4 (Knörrer, 1987). Let R be an isolated hypersurface singularity over
an algebraically closed field K of characteristic �= 2. Then R is of finite Cohen-
Macaulay type if and only if R� is of finite Cohen-Macaulay type. Moreover, if R
is of finite Cohen-Macaulay type, then

(1) CM(R�) ∼= CM(R)[Z2] skew group category, and hence Γs
R� is a twisted

quiver of Γs
R.
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(2) CM((R�)�) ∼= CM(R), and hence the translation quivers Γs
(R�)� and Γs

R

are isomorphic.

Let S = K[[x0, x1, . . . , xn]] and R = S/(f) be an isolated hypersurface singu-
larity. Consider the ring

R∗ = S[[u, v]]/(f + uv).

Then the Solberg’s periodicity theorem [So] is as follows.

Theorem 5.5 (Solberg, 1989). Let R = S/(f) be an isolated hypersurface singu-
larity over an arbitrary algebraically closed field K. Then R is of finite Cohen-
Macaulay type if and only if R∗ is of finite Cohen-Macaulay type. Moreover, if
R is of finite Cohen-Macaulay type, then there is an equivalence of categories
CM(R) ∼−→ CM(R∗), which induces an isomorphism of the stable Auslander-
Reiten quivers Γs

R
∼−→ Γs

R∗ .

We note that, for K of characteristic �= 2, the Solberg’s periodicity is equivalent
to the Knörrer’s periodicity.

Let K be an algebraically closed field of characteristic 0. Consider the special
linear group

SL2(K) = {A ∈M2×2(K) | detA = 1} .
It is a classical result that every finite subgroup of SL2(K) is conjugate in SL2(K)
to one of the following Klein groups

• C∗
n, the cyclic group of order n, n ≥ 1,

• D∗
2n, the binary dihedral group of order 4n, n ≥ 2,

• T ∗, the binary tetrahedral group of order 24,
• O∗, the binary octahedral group of order 48,
• I∗, the binary icosahedral group of order 120.

Let G be a group of the above form. We associate to G a Dynkin graph
∆ = ∆(G) as follows:

• An = ∆(C∗
n+1), n ≥ 1,

• Dn = ∆(D∗
2(n−1)), n ≥ 4,

• E6 = ∆(T ∗),
• E7 = ∆(O∗),
• E8 = ∆(I∗).

Let G be a finite subgroup of SL2(K). Then G acts on the algebra K[[X,Y ]]

as follows: for
(
a b
c d

)
∈ SL2(K) and f(X,Y ) ∈ K[[X,Y ]],

(
a b
c d

)
f(X,Y ) = f

((
a b
c d

)−1(
X
Y

))

= f(dX − bY,−cX + aY ).

Hence, we may consider the invariant algebra

K[[X,Y ]]G =
{
f(X,Y ) ∈ K[[X,Y ]]

∣∣∣ gf(X,Y ) = f(X,Y ) for all g ∈ SL2(K)
}
.

The following theorem is the classical result proved by Klein in his famous book
on the icosahedron [Kle].
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Theorem 5.6 (Klein, 1884). Let K be an algebraically closed field of characteristic
0, and G a finite subgroup of SL2(K). Then

K[[X,Y ]]G ∼= K[[x, y, z]]/(f∆)

where ∆ = ∆(G) is the Dynkin graph of G, and

fAn = x2 + yn+1 + z2,

fDn = x2y + yn−1 + z2,

fE6 = x3 + y4 + z2,

fE7 = x3 + xy3 + z2,

fE8 = x3 + y5 + z2.

Hence, f∆ = f
(2)
∆ with x = x0, y = x1, z = x2, and K[[X,Y ]]G are the Arnold’s

simple hypersurface singularities of dimension 2. We note that, for K = C, the orbit
space C2/G is a compact Riemann surface with at most 3 singular points, and the
Dynkin graph ∆(G) describes the multiplicities of these singular points. We refer
also to [Len] for a connection with the representation theory of tame hereditary
algebras.

Therefore, we obtain the following result proved already by Artin-Verdier [ArVe],
and Esnault-Knörrer [EsKn].

Theorem 5.7 (Artin-Verdier, Esnault-Knörrer, 1985). Let R be a hypersurface
singularity of dimension 2 over an algebraically closed field K of characteristic 0.
Then R is of finite Cohen-Macaulay type if and only if R ∼= K[[X,Y ]]G, for a finite
subgroup G of SL2(K).

The following theorem proved by Auslander-Reiten [AR1], [AR2] describes
the Auslander-Reiten quivers of the simple hypersurface singularities of dimension
two in arbitrary characteristic.

Theorem 5.8 (Auslander-Reiten, 1986). Let R = K[[x, y, z]]/(f∆) be an Arnold’s
simple hypersurface singularity of dimension 2 over an algebraically closed field K
of arbitrary characteristic. Then the Auslander-Reiten quiver ΓR is of the form

∆ = An

n ≥ 1
R
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88-----------------
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::-----------------
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∆ = Dn

n ≥ 4
•

���������� R
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00��������
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∆ = E6
R

��
•

		

��
• �� •�� �� •�� ��

		

•�� �� •��

∆ = E7
•

��
R

�� •�� �� •�� �� •�� ��

		

•�� �� •�� �� •��

∆ = E8
•

��
• �� •�� �� •�� ��

		

•�� �� •�� �� •�� �� •�� ��
R��

and, in all cases, the Auslander-Reiten translation τR is the identity.

Let R = K[[x, y]]/(g∆), where ∆ is a Dynkin graph, and g∆ = f
(1)
∆ , with

x = x0, y = x1, is of the form

gAn = x2 + yn+1,

gDn = x2y + yn−1,

gE6 = x3 + y4,

gE7 = x3 + xy3,

gE8 = x3 + y5.

Then R is called a simple plane curve singularity.
The following theorem has been proved by Dieterich and Wiedemann [DW] in

characteristic �= 2 and completed by Kiyek and Steineke [KS] in characteristic 2.

Theorem 5.9 (Dieterich-Wiedemann (1986), Kiyek-Steineke (1985)). Let R =
K[[x, y]]/(g∆) be a simple plane curve singularity over an algebraically closed field
K of arbitrary characteristic. Then the Auslander-Reiten quiver ΓR is of the form

∆ = A2m

m ≥ 1
•������ �� �� •�� �� •�� �� .... �� • �� •�� ��

R��

(m+ 1 vertices, τR = ΩR = identity)

∆ = A2m−1

m ≥ 1
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�� •�� �� •�� �� .... �� • �� •�� ��

R��
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(m+ 2 vertices, τR = ΩR = reflection at the horizontal line)
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∆ = D2m

m ≥ 2
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(4m+ 1 vertices, τR = ΩR = reflection at the horizontal line
through R, a, b, c, d, with τRa = d, τRb = c, τ2

R = id)
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(4m vertices, τR = ΩR = reflection at the horizontal line
through R and a)

∆ = E6
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(7 vertices, τR = ΩR = reflection at the horizontal line through
R, a and b)
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(15 vertices, τR = ΩR = reflection at the horizontal line
through R, a and b, with τRa = b, τRb = a)
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(17 vertices, τR = ΩR = reflection at the horizontal line
through R, a and b, with τRa = b, τRb = a)
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Greuel and Kröning introduced in [GrKr] the concept of finite deforma-
tion type of hypersurface singularities for algebraically closed fields of positive
characteristic and proved the theorem of the form.

Theorem 5.10 (Greuel-Kröning, 1990). Let R be a hypersurface singularity. The
following statements are equivalent:

(1) R is a simple hypersurface singularity.
(2) R is of finite deformation type.
(3) R is of finite CM -type.

We note that in characteristic �= 2, 3, 5, the Arnold’s simple hypersurface sin-
gularities are all simple hypersurface singularities.

The normal forms of simple hypersurface singularities of dimension 1 were
classified by Kiyek and Steineke [KS].

The normal forms of simple hypersurface singularities of dimension 2 were
classified by Artin [Art1], [Art2].

The normal forms of simple hypersurface singularities of dimensions ≥ 3 can be
obtained from the normal forms of dimensions 1 and 2 by the Solberg’s periodicity
theorem (see [So] and [GrKr]).

The following theorem is a combination of results proved by Solberg in [So]
and Greuel and Kröning in [GrKr].

Theorem 5.11 (Solberg (1989), Greuel-Kröning (1990)). Let R be a hypersur-
face singularity of finite CM -type over an algebraically closed field K of arbitrary
characteristic. Then the Auslander-Reiten quiver ΓR of R is isomorphic to the
Auslander-Reiten quiver of an Arnold’s simple hypersurface singularity of dimen-
sion 1 or 2 (simple plane curve singularity or Kleinian singularity).

Let R be a hypersurface singularity of finite CM -type over an algebraically
closed field K of arbitrary characteristic. Then CM(R) is a Frobenius category
of finite type. Let M1,M2, . . . ,Mn be a complete set of pairwise nonisomorphic
indecomposable nonprojective objects in CM(R) and

M = M1 ⊕M2 ⊕ · · · ⊕Mn.

Then the endomorphism algebra

A(R) = EndCM(R)(M)

of M = M in the stable category CM(R), and called the stable Auslander
algebra of R. For a Dynkin graph ∆, denote

P (∆) = A(K[[x, y, z]])/(f∆)),

P (∆)∗ = A(K[[x, y]])/(g∆)).

The following theorem describes the basic properties of the algebras P (∆) and
P (∆)∗.

Theorem 5.12. Let ∆ be a Dynkin graph. The following statements hold:
(1) P (∆) is a basic finite dimensional selfinjective K-algebra. Moreover, the

Nakayama permutation ν of P (∆) is the identity for ∆ = A1, Dn (n even),
E7, E8, and of order 2 for ∆ = An (n ≥ 2), Dn (n odd), E6.

(2) P (∆)∗ is a basic finite dimensional, symmetric K-algebra.
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It follows from the above remarks, that the stable Auslander algebra A of any
hypersurface singularity R of finite CM -type of even dimension (respectively, odd
dimension) is isomorphic to P (∆) (respectively, P (∆)∗), for some Dynkin graph ∆.

The algebra P (∆) is called the preprojective algebra of Dynkin type ∆,
and was introduced by Gelfand and Ponomarev in [GePo].

The algebra P (∆)∗ is called the twisted preprojective algebra of Dynkin
type ∆.

For K of characteristic �= 2, we have the Morita equivalences of

P (∆)∗ and P (∆)[Z2] (skew group algebra),

P (∆) and P (∆)∗[Z2] (skew group algebra),
for the corresponding actions of Z2 on the algebras P (∆) and P (∆)∗.

We also note that, with few exceptions, the algebras P (∆) and P (∆)∗ are of
wild representation type (see [ES1]).

We will show now that P (∆) and P (∆)∗ are periodic algebras.
LetK be an algebraically closed field. Moreover, let B be a K-categoryCM(R),

for an isolated hypersurface singularity R over K. Then B is a Frobenius category
with Auslander-Reiten sequences. Denote by C = modB = (Bop,Ab) the category
of finitely presented contravariant functors from the stable category B of B to the
category Ab of abelian groups.

The following theorem due to Auslander and Reiten [AR3] describes the basic
properties of the category C .

Theorem 5.13 (Auslander-Reiten). The following statements hold:
(1) C is a Frobenius abelian K-category whose projective objects are the repre-

sentable functors HomB(−, B), B objects of B.
(2) C admits Auslander-Reiten sequences.

Moreover, denote by NB, τB, ΩB (respectively, NC , τC , ΩC ) the Nakayama,
Auslander-Reiten and syzygy functors on B (respectively, on C ). Then we have the
following two theorems proved by Auslander and Reiten in [AR3].

Theorem 5.14 (Auslander-Reiten, 1996). In the above notation, the following
statements hold:

(1) NC (HomB(−, B)) = HomB(−,Ω−1
B τB(B)) for any object B of B.

(2) The functors τC ,Ω2
CNC ,NC Ω2

C : C → C are equivalent.
(3) If the functor Ω−1

B τB : B → B has order s and the functor Ω2
B : B → B has

order t, and r = lcm(s, 3t), then τr
C

∼−→ idC .

Theorem 5.15 (Auslander-Reiten, 1996). Let C = modCM(R) for an isolated
hypersurface singularity R over K. The following statements hold:

(1) If R has even dimension, then each indecomposable object of C is τC -
periodic of period dividing 6.

(2) If R has odd dimension, then each indecomposable object of C is τC -periodic
of period dividing 3.

Proof. We have Ω2
R

∼−→ idCM(R).

(1) If dimR is even then τR
∼−→ idCM(R). Hence Ω−1

R τR = Ω−1
R has order 2,

and so r = lcm(2, 3 · 1) = 6.
(2) If dimR is odd then τR

∼−→ ΩR. Hence Ω−1
R τR = idCM(R), and so r =

lcm(1, 3 · 1) = 3.
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�

Assume that R is a hypersurface singularity over K of finite CM -type. Then
CM(R) has only a finite number of indecomposable objects, and hence we have an
equivalence

modCM(R) ∼−→ modA(R)

which commutes with the Auslander-Reiten translations τR on modCM(R) and
τA(R) = DTr on A(R). Recall that τA(R) = Ω2

A(R)NA(R). We also note that the
algebra P (∆) (respectively, P (∆)∗) is semisimple if and only if ∆ = A1.

Therefore, we obtain we obtain the following periodicity theorem proved by
Auslander and Reiten in [AR3].

Theorem 5.16 (Auslander-Reiten, 1996). Let ∆ be a Dynkin graph �= A1. The
following statements hold:

(1) τ6
P (∆)

∼= 1modP (∆), Ω3
P (∆)

∼= N−1
P (∆) and Ω6

P (∆)
∼= 1modP (∆) as functors on

modP (∆).
(2) τ3

P (∆)∗
∼= 1modP (∆)∗ and Ω6

P (∆)∗
∼= 1modP (∆)∗ as functors on modP (∆)∗.

In fact, we have the following theorem proved by Schofield [Scho] and Erdmann
and Snashall [ESn].

Theorem 5.17 (Schofield (1990), Erdmann-Snashall (1998)). Let ∆ be a Dynkin
graph �= A1. Then Ω6

P (∆)eP (∆) ∼= P (∆) in modP (∆)e.

Moreover, we have the following recent result proved by Bia�lkowski, Erdmann
and Skowroński [BES1], [BES2].

Theorem 5.18 (Bia�lkowski-Erdmann-Skowroński (2006)). Let ∆ be a Dynkin graph
�= A1. Then Ω6

(P (∆)∗)eP (∆)∗ ∼= P (∆)∗ in mod(P (∆)∗)e.
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