Periodicity in representation theory of algebras

Andrzej Skowronski

Introduction

In this notes we discuss the periodicity problems in the representation theory
of finite dimensional algebras over an algebraically closed field and exhibit their
natural sources in the theory of finite groups, algebraic topology and commutative
algebra.

One of the deepest and important results of the cohomological theory of finite
groups is a complete classification of all periodic groups, that is, the finite groups
with periodic cohomology groups. The class of periodic groups contains the cyclic
groups, generalized quaternion groups as well as the binary dihedral, tetrahedral,
octahedral and icosahedral groups. The classification problem of periodic groups is
strongly related with the spherical space form problem concerning the classification
of all finite groups G acting freely on spheres S” and the homotopical type of the
orbit (spherical) spaces S /G. Namely, the finite groups acting freely on spheres are
necessarily periodic. On the other hand, already in 1938-1939, P. A. Smith proved
that free action of a finite group G on a sphere S™ forces that every abelian subgroup
of G is cyclic. This was the topological motivation for the Zassenhaus problem
concerning the classification of all finite groups with cyclic abelian subgroups. This
problem was solved completely by M. Suzuki and H. Zassenhaus in 1949-1955.
Moreover, it has been proved by E. Artin and J. Tate that the periodic groups are
exactly the finite groups solving the Zassenhaus problem. In 1957 J. Milnor proved
that there are periodic groups without free action on a sphere, and in 1960 G. Swan
clarified the picture by showing that the periodic groups are all finite groups acting
freely on finite C'W-complexes homotopically equivalent to spheres.

In the representation theory of finite dimensional algebras a prominent role is
played the syzygy operator which assigns to a module M over a finite dimensional
algebra A the kernel Q4 (M) of a projective cover of M. The main objective of the
notes is to discuss the structure and homological invariants of finite dimensional
algebras A over an algebraically closed field K for which all indecomposable nonpro-
jective finite dimensional A-modules are periodic with respect to the action of the
syzygy operator 4. It turns out that all such algebras are selfinjective (projective
modules are injective), and hence are Morita equivalent to the Frobenius algebras.
Classical examples of selfinjective (Frobenius) algebras are provided by the group
algebras of finite groups, or more generally the finite dimensional Hopf algebras.
It follows from the classification of periodic groups and represenation theory of fi-
nite groups that a finite group G is periodic if and only if, for any algebraically
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closed field K, all indecomposable nonprojective finite dimensional modules over
the group algebra KG are Qga-periodic. Moreover, the group algebras KG of
periodic groups G are symmetric algebras of tame representation type. One of the
maing results presented in these notes is a complete classification (up to Morita
equivalence) of all symmetric algebras of tame representation type with all inde-
composable nonprojective finite dimensional modules periodic, established recently
by K. Erdmann and A. Skowronski.

In the notes, the periodicity of a finite dimensional algebra A as an A-A-
bimodule (equivalently, as a module over the enveloping algebra A¢) is also dis-
cussed. In particular, important recent results in this direction by E. L. Green,
N. Snashall and @. Solberg, invoking the Hochschild cohomology algebras, are
presented.

In the final part of the notes we exhibit natural examples of periodic selfinjective
algebras coming from the commutative algebra. These are the stable Auslander
algebras of the hypersurface singularities of finite Cohen-Macaulay type over an
algebraically closed field. In particular, a large class of selfinjective algebras of
wild representation type with all indecomposable nonprojective finite dimensional
modules is presented.

We divide the notes into the following parts:

(1) Selfinjective algebras.

(2) Periodicity of modules and algebras.

(3) Periodicity of finite groups.

(4) Periodicity of tame symmetric algebras.
(5) Periodicity and hypersurface singularities.

1. Selfinjective algebras

In this section we introduce the classes of selfinjective algebras, Frobenius al-
gebras and symmetric algebras as well as present their classical characterizations
and examples.

Let A be a finite dimensional K-algebra and A°P its opposite algebra. We
denote by mod A the category of finite dimensional (over K) right A-modules.
Then mod A°P is the category of finite dimensional left A-modules. Moreover, the
functor D = Homg (—, K) : mod K — mod K induces a duality

mod A <—T> mod A°P

with Do D 2 1044, Do D 2 1104 Acp. Let

na mal(i)

La=>. > ey

i=1 j=1

be a decomposition of the identity 14 of A into a sum of pairwise orthogonal
primitive idempotents e;; such that

BijA = Bij/A, for all j,j/ S {1, N .,mA(i)},
eijAZ ey A fori i’ € {l,...,na} with i #7.
We will abbreviate e; = e;; for i € {1,...,n4}. Hence,

Pi=e;A,1<i<ny,
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is a complete set of pairwise nonisomorphic indecomposable projective right A-
modules. Moreover,

Ii = D(Ael), 1 S 7 S na,
is a complete set of pairwise nonisomorphic indecomposable injective right A-
modules. The algebra A is said to be basic if m4(i) =1 for alli € {1,...,n4}. In
general, consider the basic idempotent of A

nA nA
e = E €;1 — E €;.
i=1 i=1

Then AP = eAe is said to be basic algebra of A. By general theory, the pair of
functors
(—)e
mod A =—= mod A"
—® A

induces an equivalence of categories and A is said to be Morita equivalent to AP.

We denote by proj A the category of projective modules in mod A and by inj A
the category of injective modules in mod A. Then we have the following dualities
of categories

D
proj A =———= inj A°P,
D
.. D .
injA == proj A°P.
D

Proposition 1.1. Let A be an algebra. The following statements are equivalent:
(1) Aga is injective.
(2) proj A =inj A.
(3) proj A°P = inj A°P.
(4) aA is injective.

An algebra A is said to be selfinjective if the modules A4 and 4 A are injective.

Therefore, for a selfinjective algebra A, e114,e214,...,e,1A is a complete set
of pairwise nonisomorphic indecomposable injective right A-modules.
Hence, there exists a permutation v of {1,...,n4}, called the Nakayama

permutation, such that
topej1 A = soce,;y1 A foralli € {1,...,n4}.

The following characterization of selfinjective algebras has been established by
Nakayama in [Na2].

Theorem 1.2 (Nakayama, 1941). An algebra A is selfinjective if and only if there
exists a permutation v of {1,...,na} such that topenA = soce, ;1A for all i €
{1, ey nA}.

In the representation theory of selfinjective algebras an essential role is played
by the A-A-bimodule D(A) = Homg (A, K), with the A- A-bimodule structure given
by

(af)(d) = f(ba), (fa)(b) = f(ab), for a,be€ A, fe€ D(A).
Then D(A)4 is an injective cogenerator in the category mod A and 4D(A) is an
injective cogenerator in the category mod A°P.

The following theorem is a combination of results proved by Brauer and Nesbitt
[BN] and Nakayama [Nal].
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Theorem 1.3 (Brauer, Nesbitt, Nakayama, 1937-1939). Let A be an algebra. The
following statements are equivalent:
(1) There exists a nondegenerate K-bilinear form (—,—) : Ax A — K such
that (a,bc) = (ab, c) for all a,b,c € A.
(2) There exists a K-linear form ¢ : A — K such that ker ¢ does not contain
nonzero right ideal of A.
(3) There exists an isomorphism 0 : Ay — D(A)a of right A-modules.
(4) There exists a K-linear form ¢’ : A — K such that ker ¢’ does not contain
nonzero left ideal of A.
(5) There exists an isomorphism 0" : 4A — 4D(A) of left A-modules.

PROOF. (1) = (2). Let (—,—) : A x A — K be a nondegenerate associative

K-bilinear form. Define the K-linear map ¢ : A — K by
o(a) = (a,1) = (1,a) for a € A.

Let I be a right ideal of A such that ¢(I) = 0. Take a € I. Then (a, A) = (a4, 1) =
v(aA) =0 implies (a,—) =0, and so a = 0. Hence I = 0.

(2) = (1),(3). Let ¢ : A — K be a K-linear map such that o(I) # 0 for any
nonzero right ideal T of A. Define the K-bilinear form (—,—): A x A — K by

(a,b) = p(ab) for all a,b € A.
Observe that
(a,b¢) = p(a(be)) = p((ab)e) = (abd, ¢),

for a,b,c € A. Let a € A. If (a ,f)—Othenga(aA) (a, A) = 0 implies a = 0.

Assume (—,a) = 0. Then (a,—) = 0, and hence a = 0. Indeed, consider a K-linear
basis a1,...,a, of A. Then a = ZZ 1 Aia; for some Aq,..., A\, € K, and, for any
jed{l,.. .,m}, we have 0 = (a;,a) = > i, \i(aj,a;), or equivalently
>\1
[(aj,a)] | = | =0.
Am

Taking the transpose, we get

[)‘1’ .- 'a)‘ ] [(aiaaj)] = O
or equivalently 0 = >"" | A\i(a;, ;) = (a,a;) for any j € {1,...,m}. Hence (a,—) =
0, as required. Therefore (—, —) is a nondegenerate assomatlve K-bilinear form, and
(1) holds. For (3), define the K-linear map

0=0,:A— D(A) =Homg (A, K)

such that 0(a)(b) = ¢(ab), for a,b € A. Then 6 is a homomorphism of right
A-modules. Indeed, for a,b,c € A, we have 0(ab)(c) = ¢((ab)c) = p(a(be)) =
6(a)(bc) = (6(a)b)(c), and hence 8(ab) = 6(a)b. Moreover, 6 is a monomorphism,
because, for a € A, 6(a) = 0 implies p(ad) = 0(a)(A) = 0, and hence aA = 0,
and consequently a = 0, by the condition (2). Since dimg A = dimg D(A), we
conclude that 6 is an isomorphism of right A-modules.

(3) = (2) Assume that § : A — D(A) is an isomorphism of right A-modules.
Define the K-linear map ¢ = @y = 0(1) € D(A). Let I be a right ideal of A
such that ¢(I) = 0. Then, for any a € A, we have aA C I, and hence we obtain

= p(aA) = 6(1)(aA) = (6(1)a)(A) = 8(a)(A) and hence a = 0, because 6 is and
isomorphism of right A-modules. Hence I = 0, and (2) holds.
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In a similar way, we prove the equivalences (1) <= (4) < (5). O

An algebra A statisfying one of the equivalent conditions (1)—(5) is called a
Frobenius algebra. Observe that every Frobenius algebra A is selfinjective, be-
cause an isomorphism As —— D(A)4 implies that A4 is injective. Conversely,
every basic, selfinjective algebra A is a Frobenius algebra.

In particular, we obtain that every selfinjective algebra A is Morita equivalent
to a Frobenius algebra, namely its basic algebra AP.

In general, we have the following result due to Nakayama [Nal].

Theorem 1.4 (Nakayama, 1939). Let A be a selfinjective algebra. Then A is a
Frobenius algebra if and only if, for the Nakayama permutation v = va of A, we
have ma(i) = ma(v(i)) for alli e {1,...,na}.

The following example has been exhibited already by Nakayama [Nal].
Example 1.5. Let A = KQ/I where @ is the quiver

1l=——==2
B

I = (af,Ba). Then A is a basic, connected selfinjective algebra with rad? A = 0.
Moreover, A = e A@ esA. Take Pig = e1 A, P11 = e1 A, P» = es A, and consider the
endomorphism algebra A = A(2,1) = Endp (Pio ® P11 ® P»). Let eq, €1, e be the
primitive idempotents of A corresponding to the direct summands Pyg, P11, P2 of
Pig ® P11 ® P». Further, denote by jug the identity map from Pig to Pi1, and by
ou1 the identity map from P11 to PlO- Finally, let 20y P10 — Pg, 20¢1 P11 — P2,
and 02 : P, — Py, 1082 : P» — Pi; be the maps given by the left multiplications
by « and (3, respectively. Then we have in A the equalities

€p = oU1 * 1UQ, €1 = 1Ug " oU1,

2Qg = €2 - 2(0 " €p, 201 = €220 " €1,

02 =e€o-0B2-€2, 102=-e1-102"ea.
Then A is a 9-dimensional selfinjective non-Frobenius algebra, isomorphic to
the matrix algebra given by the matrices of the form

ap  ob1 op1
1tbo a1 1pe 0
0 0 a9
az 2X0 21
0 0 ap Obl
0 1bo a1

where ag € K@o, a; € Kel, as € K€2, ob1 € Koul, 1bg € Kluo, o2 € Koﬁg,
12 € K102, 2o € Koap, 2A1 € Kooy, which is exactly the algebra presented by
Nakayama in [Nal, p.624].

We refer to [SY] for the general form of non-Frobenius selfinjective algebras.

Hence, the class of Frobenius algebras is not closed under Morita equivalences.
The class of selfinjective algebras is the smallest class of algebras containing the
Frobenius algebras and closed under Morita equivalences.

An important class of Frobenius algebras is formed by the symmetric algebras.
The following theorem is again a combination of results proved by Brauer and
Nesbitt [BN] and Nakayama [NaZ2].
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Theorem 1.6 (Brauer, Nesbitt, Nakayama, 1937-1941). Let A be an algebra. The
following statements are equivalent:
(1) There exists a nondegenerate symmetric associative K -bilinear form (—, —) :
AxA— K.
(2) There exists a K-linear form ¢ : A — K such that ¢(ab) = p(ba) for all
a,b € A, and ker ¢ does not contain nonzero one-sided ideal of A.
(3) There exists an isomorphism 0 : 4Aa — aAD(A)a of A-A-bimodules.

PRrROOF. This follows from the proof of the characterizations of Frobenius alge-
bras. 0

An algebra A satisfying one of the equivalent conditions (1)—(3) is called a
symmetric algebra.

Let A be a Frobenius K-algebra and (—,—) : A X A — K a nondegenerate
associative K-bilinear form. Then there exists a unique K-algebra isomorphism

vp:A— A

such that (a,b) = (b,va(a)) for all a,b € A, called the Nakayama automorphism
of A. We will see later that v4 induces the Nakayama permutation of A. Moreover,
v4q =1idg, if A is symmetric.

The following fact has been observed by Nakayama [Nal].

Theorem 1.7 (Nakayama, 1939). Let A be a selfinjective algebra. Then soc(4A) =
soc(A4). In particular, soc(A) :=soc(4A) =soc(Aa) is an ideal of A.

Two selfinjective algebras A and A are said to be socle equivalent if the factor
algebras A/ soc(A) and A/soc(A) are isomorphic.

Examples 1.8. (1) Let A = K[X]/(X™),n > 1, be a truncated polynomial algebra.
Then A is a commutative local K-algebra with A = D(A) as A-A-bimodules, and
hence A is a symmetric algebra. More generally, every finite dimensional
commutative selfinjective K-algebra is a symmetric algebra.

(2) Let G be a finite group, and A = KG the group algebra o G. Then

A=S>"Ng | MER
geG

and dimg A = |G|. Moreover, the map (—,—) : A x A — K given by

Z )\gg, Z prh | = Z )‘g,ug*1

geG heH geaG

is a symmetric, associative, nondegenerate K-bilinear form. Hence, A = KG is a
symmetric algebra.

(3) Let A be an arbitrary finite dimensional K-algebra. Consider the trivial
extension T(A) = A x D(A) of A by the A-A-bimodule D(A). That is, T(A) =
A @ D(A) as K-vector space and the multiplication in T(A) is given by

(a, f)(a’, ') = (ad’,af" + fd'),
for a,a’ € a, f, f' € D(A). Obviously, dimg T(A) = 2dimg A.
Further, the map (—,—) : T(A) x T(A) — K given by

((a, f), (@', f) = f(a') + ['(a), for a,a" € A, f, f" € D(A),
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is a symmetric, associative, nondegenerate, K-bilinear form. Therefore, T(A) is a
symmetric algebra.

Observe that D(A) = 06 D(A) is a two-sided ideal of T(A) and A = T(A)/D(A).
Hence, every algebra A is a factor algebra of a symmetric algebra.

(4) For A € K\ {0}, let Ay = KQ/I, where

o: (Vs
I ={(a?,p% aB — A\3a). Then Ay is a 4-dimensional local Frobenius algebra. But
Ay is symmetric < A\ = 1.
Indeed, let a = a+ Iy, b = 3+ I. Then 1,a,b,ab = Aba is a basis of Ay over K.
Define ) : Ay — K by
ea(1) = pala) = oa(b) =0, @a(ad) = 1.

Then ker ¢ does not contain nonzero right (left) ideal of Ay, and hence A, is a
Frobenius algebra. For A = 1, ¢ = ¢1 has the property o(zy) = ¢(yz) for all
x,y € Ay, and hence A; is a symmetric algebra. For A # 1, A, is not symmetric.
Indeed, assume that ¢ : A — K is a K-linear map such that ¢ (zy) = ¢ (yz) for all
xz,y € Ay, and ker ¢ does not contain nonzero one-sided ideal of Ay. Then Kab =
Kba is a nonzero ideal of Ay, and hence 0 # (ba) = ¥(ab) = (Aba) = Ap(ba)
implies A = 1.

A distinguished class of Frobenius algebras is formed by the finite dimensional
Hopf algebras.
A K-vector space A is a K-algebra if and only if there are K-linear maps

m: AQg A— A and n: K — A

called the multiplication and the unit, respectively, such that the following dia-
grams are commutative

A®KA®KA$A®KA

m®1 m

Ak A A

Ko A—"2 s Aor A<—2" Ao K

1R

A

Dually, a K-vector space C' is a K-coalgebra if there are K-linear maps

A:C—CQgC and e¢:C — K
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called the comultiplication and the counit, respectively, such that the following
diagrams are commutative

c A CoxC

C@KOTC@KC@KC

KorC<21 Ccoxc—%.CorK

1R
IR

A K-vector space H is said to be a K-bialgebra if there are K-linear maps
m: Hg H— H,n: K—H, A: H— H®kg H and € : H — K such that the
following conditions are satisfied:

(1) (H,m,n) is a K-algebra,

(2) (H,A,¢) is a K-coalgebra,

(3) A, e are homomorphisms of K-algebras.

Let H = (H,m,n,A,e) be a bialgebra over K. Consider the convolution
map

* : Homg (H, H) x Homg (H, H) — Homg (H, H)
which assigns to f, g € Homg (H, H) the composition

frg:H X HorH® HoxH ™ H.

Then a bialgebra H = (H, m,n, A, ) over K is said to be a Hopf algebra if there
exists a K-linear map s : H — H, called the antipode, such that s xidyg = ne =
We provide now few examples of finite dimensional Hopf algebras.

Examples 1.9. (1) The group algebra KG of a finite group G is a Hopf algebra
with the comultiplication A, the counit € and the antipode s given by
Alg)=g®g, e(g) =1, s(g) =g, for g € G.
(2) Let H = (H, m,n, A, ¢, s) be a finite dimensional Hopf algebra over K. Then
the dual space H* = Homg (H, K) is again a Hopf algebra H* = (H*, A*, e*, m*,n*, s*)
with
A H @x H =5 (Heg H) 25 H,
e K=K"— H*,
m*  H ™ (H®x H)" — H* @k H*,
n:H" — K*=K,
s*:H* — H*.
We note that, for an antipode s of a Hopf algebra H, we have s(zy) = s(y)s(x) for
x,y € H and s(1) = 1.
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The following theorem is due to Radford [Ra].

Theorem 1.10 (Radford, 1976). An antipode s of a finite dimensional Hopf algebra
H has a finite order. In particular, s is an antiisomorphism of the algebra H.

Let H = (H,m,n,A,e,s) be a Hopf algebra over K. Then the set

/ :{xEH’:z:h:s(h)xforalthH}
0

is called the space of right integrals of H.
The following theorem proved by Larson and Sweedler in [LaSw] shows that
every finite dimensional Hopf algebra is a Frobenius algebra.

Theorem 1.11 (Larson-Sweedler, 1969). Let H be a finite dimensional Hopf alge-
bra over K. Then the following statements hold.
(1) dimg [;; =1 and dimg [;,. = 1.
(2) For ¢ € [;;. \{0}, the K-bilinear form
(—,—):HxH—-K
such that (a,b) = p(ab) for a,b € H, is nondegenerate and associative.
In particular, H s a Frobenius algebra.

Let H be a finite dimensional Hopf algebra over K. Then there exists a homo-
morphism of K-algebras £ : H — K called the modular function on H, such
that he = {(h)x for all h € H,z € f;l Consider the associated convolution map

Exidy : H > Hox HEY Ko H - H.
The following result proved by Fischman, Montgomery and Schueider in [FMS]
shows that the finite dimensional Hopf algebras form a special class of Frobenius
algebras.

Theorem 1.12 (Fischman-Montgomery-Schneider, 1997). Let H be a finite dimen-
sional Hopf algebra over K. Then the following statements hold.
(1) vy = (€xidy)-s~2 is the Nakayama automorphism of the Frobenius algebra
H, that is, (a,b) = (b,vg(a)) for all a,b € H.
(2) vy has finite order dividing 2 dimg H.

Example 1.13. Let H = KG be the group algebra of a finite group G. Then
f; = Kt, where t = decg. Moreover, £ = ¢ : H — K, s> = idy, € xidy =
e xidyg = idy, and hence vy = (£ * idH)s_2 = idgy. This is correct because KG is

a symmetric algebra.
Example 1.14. Let n > 2 and X be a primitive n-th root of unity (hence char K
is not divisible by n). Let
H = H,»(A) = K{g,2)/(¢" — 1,2", 29 — Agx).
Then H,2()\) is an n?-dimensional Hopf algebra, with K-basis {g‘a’ | 0 < i, <
n — 1}, and the comultiplication A, counit £ and antipode s given by
Alg)=9®yg, Alz)=g@r+r®1
e(g)=1, e(@)=0

s(g)=9g7", sla)=—g'x

The algebra H,2()) is called the Taft algebra.
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Observe that the Taft algebra is neither commutative nor cocommutative. For
n =2, Hy(\) is called the 4-dimensional Sweedler’s algebra. We compute now
the order of the Nakayama automorphism vy of H = H,,2(\) .

Since s%(z) = Az, s*(g) = g, the antipode s has order 2n. Further, [;, = Kt,
where

Moreover, the modular function £ : H — K is given by

£lg)=A, &) =0

Then the convolution & xidy : H — H is given by Aidy, and hence the Nakayama
automorphism vy = (£ * idg)s~2 is given by

v(g) =N, vu(x)==x.

Therefore, vy has order n.

Observe also that, as an algebra, H = H,,2(\) is isomorphic to the skew group
algebra A[G], where A = K[z]/(z™), G = (g) is cyclic of order n, and G acts on A by
g(z) = A1z, where Z is the residue class of x. Note that gzg = g(Z)gg = A\~ 'Zgg
implies Zg = AgZ. Moreover, the algebra H = H,,2(\) is isomorphic to the bound
quiver algebra K@, /I,, where @, is the cyclic quiver of the form

1
n/ \2
an/ \12
n—1 3
QRQT las
n—2 4

and the ideal I, is generated by the paths a1 ... 4n—1, 1 <7 < n. Hence, as
an algebra, H,2()) is a selfinjective Nakayama algebra.
In the representation theory of selfinjective algebras a prominent role is played
by the Galois coverings and the selfinjective orbit algebras.
A connected K-category R is said to be locally bounded if the following
conditions are satisfied:
(1) distinct objects of R are nonisomorphic,
(2) vaR(:E,:E) is a local algebra,
TEOo
3) v Y (dimg R(x,y)+dimg R(y,z)) < co.
TE0bR ycobR
It is known (see [BG]) that every locally bounded category R is of the form
R = KQ/I, where @Q is a locally finite connected quiver, and I is an admissible
ideal of the path category KQ.
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Denote by mod R the category of finitely generated contravariant functors R —
mod K. If R = KQ/I, then mod R is equivalent to the category rep,(Q,I) of K-
linear representations of the bound quiver (Q, I).

A locally bounded category R with finitely many objects is said to be bounded.
We may associate to a bounded category R the finite dimensional basic connected
K-algebra @ R= € R(z,y).

z,ycobR

We will identiyi'y a bounded K-category R with the associated finite
dimensional algebra ©R.

Let R be locally bounded K-category and G a group of K-linear automorphisms
of R. Then the group G is said to be admissible if G acts freely on the objects
of R and has finitely many orbits. We may then consider the orbit (bounded)
category R/G defined as follows (see [Ga]).

The objects of R/G are the G-orbits of objects of R, and the morphism spaces
are given by

(R/G)(a,b) =< (fyz) € H R(z,y) ’9 “fyz = Fo(y).9(x) v ’

G, JYED
(z,y)€axb get,reaye

for all objects a,b of R/G. Then we have the canonical Galois covering F : R —
R/G defined on the objects as follows

ob(R) > x— Fz =G -z € ob(R/QG).
For each © € 0bR and a € ob(R/G), the functor F' induces K-linear isomorphisms

P R(z,y) = (R/G)(Fz,a),

Fy=a

D R(y,2) = (R/G)(a, Fa).
Fy=a
The group G acts also on the category mod R by
modR> M — gM =Mg~' €modR
We have also the push-down functor (see Bongartz-Gabriel [BG])
Fy :mod R — mod R/G
such that (FxM)(a) = @ M(z) for M € mod R,a € 0b(R/G).

reEa
Assume G is torsion-free. Then F) induces an injection (see Gabriel [Gal)

G-orbits of isoclasses of
isoclasses of F indecomposable
. — .
indecomposable modules in
modules in mod R mod R/G

Following Dowbor and Skowroniski [DS1] a locally bounded K-category R is
said to be locally support-finite if, for any = € obR,

| | supp(M)
Megind R
M (z)#0

is a bounded category.
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Then we have the density theorem of Dowbor and Skowroniski (see [DS1],
[DS2]): if R is a locally support-finite locally bounded K-category and G is an
admissible torsion-free group of automorphisms of R then the push-down functor
F is dense. Moreover, then the Auslander-Reiten quiver I'g ¢ of R/G is isomorphic
to the orbit quiver I'p /G of the Auslander-Reiten quiver I'p of R with respect to
the indicated action of G.

In particular, if R is a selfinjective locally bounded K-category and G is an
admissible group of automorphisms of R then R/G is a basic connected finite di-
mensional selfinjective K-algebra.

Let B be a basic, connected, finite dimensional K-algebraand 1 = e1+---+e,
a decomposition of the identity 15 of B into sum of pairwise orthogonal primitive
idempotents. We associate to B a selfinjective locally bounded K-category E, called
the repetitive category of B (see Hughes-Waschbiisch [HW]). The objects of B
are e, i, m € Z, 1 <4 <n, and the morphism spaces are defined as follows

R e;Be; ,r=m
B(em,i,erj) =14 D(e;Bej) , r=m+1
0 , otherwise

Observe that e;Be; = Homp(e; B, e;B), D(e;Bej) = e; D(B)e; and

. B(—,er;)(emi) = ¢;B ® D(Be;).
(m,i)eZx{1,...,n}

Therefore, for any admissible group G of automorphisms of B , we obtain a
basic, connected, finite dimensional selfinjective K-algebra B/G. We denote by vp

the Nakayama automorphism of B defined as follows
vg(em,i) = emy1,, forallm,i € Z x {1,...,n}.
Then, for each positive integer r, the infinite cyclic group (u]%) is an admissible

group of automorphisms of B , and we have the selfinjective algebra

(60 0 0
fa b2 0O 0
0 fs b3
T(B)™) = B/(v}) =
0 frfl brfl 0
L 0 Ji b
bi,..., b1 GB,fl,...,fr—l ED(B)

called the r-fold trivial extension algebra of B. We note that the Nakayama
automorphism of T(B)(") has order r. Observe also that T(B)(!) = T(B) = B x
D(B).

We illustrate the above construction by the following example.

Example 1.15. Let B be the path algebra KA, of the quiver

n—1

[0} (0% [e3
152-253—...—n—-1">n.

A,

Then B is the bound quiver category K ﬁn / fn, where An is the left quiver bellow
and I, is generated by all compositions of n+ 1 consecutive arrows in A,,. Observe
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that the Nakayama automorphism v of B is given by
va(r,i) = (r+1,i), for (r,i) € Zx{1,...,n}.

Let ¢ be a unique positive automorphism of B with " = vg. For each positive
integer m, consider the orbit algebra N = B/(¢™). Then N is the bound quiver
algebra KC,,/Jm n, where Cy, is the right quiver bellow and J,, ., is the ideal in
the path algebra K, generated by all compositions of n 4+ 1 consecutive arrows
in Cy,.

\ll Qg — 1 (5]

(1I,n) m—1 2

A, Oy o Cn &

(0,n—1)
\11@0,7171
(0,n)
\l,ao,n
(_1’ 1)
¢,a,1,1
(7172)

Yo1s

It is known that the algebras N}, m,n > 1, exhaust (up to isomorphism) all non-
simple basic connected selfinjective Nakayama algebras. Moreover, the Nakayama
algebra N is symmetric if and only if m | n. Observe also that N» = T(B), for
B =KA,.

Recall that a finite dimensional selfinjective K-algebra A is called a Nakayama
algebra if the indecomposable projective A-modules are uniserial (the sets of
submodules are linearly ordered by inclusion). Then we have the following theorem.
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Theorem 1.16. Let A be an indecomposable finite dimensional selfinjective K-
algebra. The following statements are equivalent:

(1) A is a Nakayama algebra.

(2) The indecomposable finite dimensional A-modules are uniserial.

(3) A is Morita equivalent to N7 for some m,n > 1.

Assume now that B is triangular (the Gabriel quiver Qg of B has no oriented
cycles). Then the locally bounded K-category B is also triangular. Moreover, B is
the full bounded subcategory of B given by the objects eg;, 1 <i < n.

Let i be a sink of Q5. The reflection of B at i is the full subcategory S;" B
of B given by the objects ep;, 1 < j < n, j # i, and e1; = vg(eo:). The
associated quiver o Qp = Q S+B is also called the reflection of Qp at i. Observe

that B = S B, and hence
T(B)™) = T(S} B)™), for any r > 1.

A reflection sequence of sinks of (Jp is a sequence i1, ...,i; of vertices of @Qp
such that 7 is a sink of cri'*;1 ...O’ZQB, forany 1 < s <t.

Two triangular basic, connected algebras B and C' are defined to be reflection
equivalent if C' = SZ e SZT:B for a reflection sequence of sinks i1,...,4; of @p.

Observe that, if B and C are reflection equivalent triangular algebra, then B~C ,
T(B)™ = T(C)" for all r > 1.
2. Periodicity of modules and algebras

In this section we introduce the periodic modules and the periodic algebras,
and describe their properties and characterizations.

Let A be a finite dimensional selfinjective K-algebra. Then A°P is also selfin-
jective and we have the duality between mod A and A°P

Then we have the selfequivalence functor
N4 = DHomy(—,Ay) : mod A — mod A,
called the Nakayama functor. Moreover,
N3t = Homaer (—, 4A)D

is the inverse of NVj4.

Proposition 2.1. The functors
Na,— ®4 D(A) : mod A — mod A
are equivalent.

PROOF. For any module M in mod A, we have a natural isomorphism of right
A-modules

érr s M @4 D(A) — DHomu(M, A) = Na(M)
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such that ¢ér(m @ f)(g) = f(g(m)) for m € M, f € D(A) = Homg (A, K) and
g € Hom 4 (M, A). This induces an equivalence of functors

¢:— 4 D(A) — Na.

For a K-algebra automorphism ¢ of A, we denote by
(=)o : mod A — mod A

the induced functor such that, for any module M in mod A, M, is the module with
the twisted right A-module structure

m*a =mo(a), form e M and a € A.

Proposition 2.2. Let A be a Frobenius algebra and v its Nakayama automor-
phism. Then the functors

Ny, <_)U;1 :mod A — mod A

are equivalent.

PROOF. Let (—,—) be a nondegenerate associative K-bilinear form defining
the Nakayama automorphism v4. Then a required equivalence
w : (_)Vgl - NA

is given by the family of isomorphisms of right A-modules
wM : MVZI —>NA(M) = DHOIIlA(]\f7 A),
where M are modules in mod A, such that

Ya(m)(g) = (g(m),1) = (1,9(m)),

for all m € M, g € Homy4 (M, A). O
Therefore, if A is a Frobenius algebra, and
na ma(i)
L=
i=1 j=1

is the standard decomposition of 14 into the sum of pairwise orthogonal primitive
idempotents, then we have isomorphisms of right A-modules

Na(eijA) = (eijA), -1 — valei)A = va(ei; A)

such that
(eija) b = (egja)vy (b) = va(eia)b
for a,b € A. Moreover, Na(e;;A) = D(Ae;j). Hence we obtain that
top(e;; A) = socva(e;;)A.

In particular, the Nakayama automorphism r4 induces a Nakayama permutation
v=vgof {l,...,n4}.

For a symmetric algebra A, we have v4 = idg and Ng = 1,04 4. In particular,
for a symmetric algebra A, we have top P = soc P for any indecomposable projective

A-module P, that is, A is a weakly symmetric algebra (the trivial permutation
of {1,...,n4} is a Nakayama permutation of A).
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Let A be a finite dimensional selfinjective K-algebra. We denote by modA
the stable category of mod A. The objects of modA are the modules in mod A
without nonzero projective direct summands, and, for any two objects M and N
in modA, the K-space Hom 4(M, N) of morphisms from M to N is the quotient
Homu (M, N)/P(M,N), where P(M, N) is the subspace of Hom 4 (M, N) consisting
of all homomorphisms which factorize through a projective A-module. Then the
Nakayama functors

Na,N;':mod A — mod A

induce the Nakayama functors
Na, N : modA — modA,

because A (proj A) = inj A = proj A.
We have also the Auslander-Reiten translation functors

74 = DTr, Tgl =TrD : modA — modA.
Consider also the (Heller’s) syzygy functors [He]
Qa, Qzl : modA — modA

defined by the exact sequences below. For a module M in mod A without projective
direct summands, we have exact sequences

0— Qa(M)— Py(M)— M — 0,
0— M — Is(M) — Q (M) — 0,

where P4(M) is the projective cover of M and I4(M) is the injective envelope of
M in mod A.

Proposition 2.3. Let A be a selfinjective algebra.
(1) The functors

D Tr, Q3 Na, NaQ?% : modA — modA

are isomorphic.

(2) The functors
Tr D, Q2N Y N 1052 - modA — modA
are isomorphic.

PRrROOF. (1) For a module M in mod A without projective direct summands,
we have a minimal projective presentation of M in mod A
0— Q4(M) — Py(M) — Py(M) — M — 0.
Applying the exact functor Hom4(—, A4) we obtain the exact sequence
0 — Homa (M, Aa) — Homa(Po, Aa) — Homa (P (M), As) > Tr M — 0
in mod A°P. Further, applying the duality functor D : mod A°® — mod A, we

obtain the exact sequence

0>DTrM > DHomu(P,As) > DHomu(Py(M),As) > DHoma(M,As) >0,
| | |
Na(PL(M)) Na(Po(M)) Na(M)

which is a minimal projective presentation of A4(M) in mod A. Hence, we obtain
isomorphisms Q3N 4 (M) = D Tr M 2 NAQ2 (M). O
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As a direct consequence we obtain the following facts.

Corollary 2.4. Let A be a symmetric algebra. Then
(1) The functors D Tr, Q% : modA — modA are isomorphic.
(2) The functors Tr D, Q;‘Q : modA — modA are isomorphic.

By general theory, if P is an indecomposable projective-injective A-module,
then we have in mod A an Auslander-Reiten sequence of the form

0 —>rad P —rad P/socP® P — P/socP — 0.

For A selfinjective, we denote by I'% the stable Auslander-Reiten quiver of A,
obtained from the Auslander-Reiten quiver I'4 of A by removing the projective-
injective vertices and the arrows attached to them. Observe that we may recover
I's from I'y if we know the positions of rad P (equivalently, P/socP), for all
indecomposable projective modules P, in I'}.

Two selfinjective algebras A and A are said to be stably equivalent if the
stable module categories modA and modA are equivalent. Clearly, if A and A are
stably equivalent selfinjective algebras then the stable Auslander-Reiten quivers I'$
and I'} are isomorphic translation quivers.

Let A be a finite dimensional K-algebra. A module M in mod A is said to be
Q4-periodic (shortly, periodic) if Q% (M) = M for some n > 1. The following
problem occurs naturally.

PROBLEM 1. Determine the finite dimensional K-algebras A whose all
indecomposable nonprojective finite dimensional right A-modules are
periodic.

We will see later that all such algebras are selfinjective.
Similarly, a module M in mod A is called D Tr-periodic if (D Tr)"(M) = M
for some n > 1. Then we have the related natural problem.

PROBLEM 2. Determine the finite dimensional K-algebras A for which
all indecomposable nonprojective finite dimensional right A-modules are
D Tr-periodic.

It is clear that all such algebras are selfinjective, because the D Tr-orbit of an
indecomposable injective A-module is not a finite periodic orbit, and hence consists
of one module, which is then an indecomposable projective A-module.

Let A be a selfinjective algebra. Then DTr = Q4 N, as functors on modA.
Hence, the Q 4-periodicity in modA coincides with the D Tr-periodicity in modA if
the Nakayama functor A4 on modA has finite order. For example, it is the case
for all finite dimensional Hopf algebras H, because they are Frobenius algebras
with the Nakayama automorphism vz of finite order, and Ny = <—)U;11 on modH.
Obviously, it is also the case for all symmetric algebras. Moreover, we have the
following fact.

Proposition 2.5. Let A be a finite dimensional selfinjective K-algebra of finite
representation type. Then all indecomposable nonprojective finite dimensional A-
modules are Q2 a-periodic and D Tr-periodic.

PROOF. Let M be an indecomposable nonprojective right A-module. If M
is not Q4-periodic (respectively, D Tr-periodic) then Q7% (M), n > 0 (respectively,
(DTr)"(M), n > 0) is an infinite family of pairwise nonisomorphic indecomposable
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modules in mod A, and hence A is of infinite representation type, a contradiction.
d

We will now discuss the Q4-periodicity of A-modules.

Lemma 2.6. Let A be a basic, indecomposable, finite dimensional selfinjective K -
algebra. The following statements are equivalent:

(1) Qa(S) is simple for any simple A-module S.

(2) A= N}L for some m > 1.

PROOF. (1) = (2). For any simple A-module S, we have an exact sequence
0— Qa(S) — P(S)— S —0.

Hence, Q4(S) = soc P4(S) = rad P4(S), and consequently J(A4)? = 0, where J(A)
is the Jacobson radical of A. Then A = N} for some m > 1. For (2) = (1), note
that J(NL)? = 0. U

Corollary 2.7. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:

(1) Qa(S) =S for any simple A-module S.

(2) Qa(M) = M for any indecomposable nonprojective A-module M .

(3) A= N},

We note that Ni = K[z]/(2?) 2 T(K) = K x D(K).

Theorem 2.8. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:

(1) Q*(S) is simple for any simple A-module S.

(2) DTr(S) is simple for any simple A-module S.

(3) A2 N for some m,n > 1.
(characterization of the Nakayama algebras)

PRrROOF. For (1) & (2), observe that, for any simple A-module S, N4(S)
is simple, because the Nakayama functor Ny = DHomu(—, A) is exact, and
DTr(S) =2 Q4Na(9).

(1) = (3). Since A is basic and indecomposable, A =2 KQ/I for a connected
quiver @ and an admissible ideal I of K@Q. For a simple A-module S, we have an
exact sequence

0 — Q%(S) — Pa(rad Pa(S)) — Pa(S) — S — 0.

Then the assumption that Q% (S) is simple implies that P4 (rad P4(S)) is indecom-
posable, and hence top(rad P4(5)) is simple. Therefore, every vertex of @ is the
starting (respectively, ending) vertex of exactly one arrow. Then A = N for some
m,n > 1.

The implication (3) = (1) follows from the above exact sequences and the
bound quiver presentation of N;.. O

We obtain the following immediate consequence of the above theorem.

Corollary 2.9. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:
(1) Q%(S) 2 S for any simple A-module S.
(2) Q%4 (M) = M for any indecomposable nonprojective finite dimensional A-
module M.
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(3) A N where n+ 1 is divisible by m.

m’

Corollary 2.10. Let A be a basic, indecomposable, finite dimensional selfinjective
K-algebra. The following statements are equivalent:
(1) A is symmetric and Q3 (S) =2 S for any simple A-module S.
(2) DTr(S) =S for any simple A-module S.
(3) DTx(M) = M for any indecomposable nonprojective finite dimensional
A-module M.
(4) A= NP = Klx]/(z"tY) for somen > 1.

PROOF. Observe that (1) & A = N/} with m | n, m |n+1< A= NJ'. Hence
(1) < (4).

The implications (4) = (3) = (2) are obvious. Finally, the implication (2) =
(4) also follows, because, by Theorem 2.8, (2) implies A = N/. O

Example 2.11. Let H = H,2(\), n > 2, be the Taft (Hopf) algebra. Then
H = N"~! Hence, for any indecomposable nonprojective finite dimensional H-
module M, we have
Q% (M)=M and Qy(M) 2% M.
On the other hand, we have
(DTr)" (M) =2 M and (Tr D)" (M) 22 M,
for 1 < r < n, because
DTr(M) = Q4Ng (M) =2 Ng(M) = M, 1,

Y
and the Nakayama automorphism vy has order n.

Proposition 2.12. Let H be a finite dimensional Hopf algebra over K. The fol-
lowing statements are equivalent:
(1) The trivial H-module K is Qg -periodic.
(2) All indecomposable nonprojective finite dimensional H-modules are Qp-
periodic.

PrOOF. Let H = (H, m,n,A,¢,s). Then the counit ¢ : H — K induces on K
the structure of trivial right H-module by

Axh=Xe(h), for A\ € K,h € H.

Clearly, K is an indecomposable H-module. Moreover, K is projective if and only
if H is semisimple. Hence (2) = (1) holds.

For (1) = (2), we first observe that for any projective module P in mod H
and any module M in mod H, P @i M is a projective-injective module in mod H.
Indeed, the structure of right H-module on P ® ¢ M is given by

A T
(PoxM)® H 222 p o Mox Hox H-2% (P ox H) @k (M @k H)

la®ﬁ

P M

where 7 : M ®x H — H Qg M is the exchanging map, and o : P ®x H — P,
B : M®kg H— M are the right H-module structure maps. Moreover, the following
well-known isomorphism of functors on mod K

Hompg (P @k M, —) — Homg (P, Homg (M, —))
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induces an isomorphism of functors on mod H
Hompg (P ®x M, —) - Hompg (P, Homg (M, —)).
Hence the functor
Hompy (P ®x M,—) : mod H — mod H

is exact, and consequently P ® ¢ M is a projective right H-module. Since H is a
Frobenius algebra, P @ x M is also injective.

Assume now that Q7% (K) = K for some n > 1. Then there exists a long exact
sequence in mod H of the form

0—-Qy(K)—-P,y—-—P—>FP—-K—0

with Py, P, ..., P,_1 projective modules. Let M be an indecomposable nonprojec-
tive module in mod H. Then we obtain a long exact sequence in mod H

0—-Qy(K)@x M - P,_1®@xkM — -+ > PL®g M — Phb@x M - KQg M — 0
with Py @ M, Py @ M, ..., P,_1 ®x M projective H-modules.

We know that Q% (M) is an indecomposable nonprojective H-module. Hence
Qp(K)@x M 2 QY (M) e P
for some projective H-module P. On the other hand, we have
O (K)@x M 2K Qg M = M.

Hence Q% (M) = M, and M is Qg-periodic. Therefore, (1) = (2) holds. O
Proposition 2.13. Let A be a finite dimensional selfinjective K -algebra, M a mod-
ule in mod A, and r a positive integer. Then

(1) The functors Ext’y (M, —), Hom 4 (2 (M), —) : modA — modA are equiva-

lent.

(2) The functors Ext’y(—, M),Hom 4 (—,Q,"(M)) : modA — modA are equiv-
alent.

For a finite dimensional selfinjective K-algebra A and a module M in mod A,
consider the vector space

Ext’y,(M, M) = @ Ext’,(M, M)
r=0

= éEOHO_mfx(QZx(M)vM)'

Then Ext’ (M, M) is a graded K-algebra, called the Ext-algebra of M, and the
multiplication of

J € Hom (€ (M), M), g € Hom , (€23 (M), M)
is given by
frg=[foQulyg), QTA+S(M) - QLW (M) — M.
Observe that, if M is Q s-periodic of period d, then
Ext}, (M, N) = Ext’y (M, N),
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for all ¢ > 1 and modules N in mod A. Indeed, we have isomorphisms of vector
spaces
Eth:rd(M’ N) = HO—mA<ijd<M)’ N)
= Hom, (€2, (24 (M), )
= HO_mA<Qf4(M)7N)
=~ Ext’y (M, N).
The following theorem was proved by Carlson [Car].

Theorem 2.14 (Carlson, 1977). Let A be a finite dimensional selfinjective K-
algebra and M be an indecomposable Q 4-periodic A-module of period d. Moreover,
let N(M) be the ideal of the algebra Ext’y (M, M) generated by all nilpotent homo-
geneous elements. Then

Exty (M, M)/N (M) = K|[z]
as graded K -algebras, where x is of degree d.

PrOOF. We identify
Hom 4 (% (M), M) = Ext}y (M, M) = Hom 4 (M, Q3" (M)),

for any ¢ > 1. Let f € Hom,(Q% (M), M) be a homogeneous nilpotent element
of Ext’y(M, M) and g € Hom 4 (2} (M), M) an arbitrary homogeneous element of
Ext’ (M, M). We claim that

[ g=f(g) € Hom , (4 F*(M), M)

is again a nilpotent element of Ext’ (M, M).
Choose r such that r(m + s) = ¢d, for some ¢ > 1, and consider the element
h=(f%(g))" in Ext}y (M, M). Then

h € Hom , (Q%' (M), M) = Hom 4 (M, M),

because led(M) =~ M. Suppose h is an isomorphism. Then f: Q% (M) — M is a
split epimorphism, and hence an isomorphism, since M and Q% (M) are indecom-
posable. But then f is not nilpotent in Ext’ (M, M), a contradiction. Therefore,
h belongs to the radical of the local algebra End A(M), and hence h is nilpotent.
Then Q% (h) € End 4(M) are nilpotent elements for all i > 0, and hence belong to
the radical of End 4 (M). Since (rad End 4(M))! = 0 for some [ > 1, we get h' = 0.
But then f* g = fQ%(g) is a nilpotent element in Ext’ (M, M). Similarly, using

Exty (M, M) = Hom 4 (M, Q' (M)),i > 1,

we prove that g % f is nilpotent in Ext’ (M, M).

Let s # pd, for all p > 1. We show that any element f € Hom 4, (2% (M), M)
is a nilpotent element of Ext’ (M, M). Choose r > 1 such that rs = qd, for some
g > 1, and take h = f" in Ext} (M, M). Since d is the period of M and s is
not divisible by d, we conclude that f is not an isomorphism. Then A is not an
isomorphism, hence h € End , (M) is nilpotent. Therefore, h is a nilpotent element
in Ext’y(M, M), and so f is nilpotent in Ext} (M, M).

Let € Hom(Q% (M), M) = Hom 4, (M, M) corresponds to the residue class of
the identity map from M to M. Observe that x is not nilpotent in Ext’ (M, M).
We claim that ™ ¢ N(M) for any n > 1. Suppose that z* € N (M) for some
t > 1. Then zt = 3 g; * f; * h;, where f; are homogeneous nilpotent elements of
Exty (M, M) and g;, h; are elements of Ext’ (M, M). We may assume that the
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elements g;, h; are also homogeneous. It follows from the first part of the proof
that g; % f; x h; = (g; * f;) * h; are nilpotent elements in Ext’ (M, M), and hence
are nilpotent in End 4(M). But then ) g; * f; * h; are nilpotent in End 4 (M),
and hence in Ext’ (M, M). This implies that x!, and hence z, is nilpotent in
Ext (M, M), a contradiction. Since End 4(M)/radEnd (M) = K, we conclude
that Ext’y (M, M)/N (M) = K[x] as graded K-algebras, with z of degree d. O

Let A be a finite dimensional K-algebra and 14 = e; + e3 + -+ - + €,,, Where
€1,€a,...,e, are pairwise orthogonal primitive idempotents of A. Then

A= AP Kk A
is called the enveloping algebra of A. The identity of A°¢ has the decomposition
1ge = Z e; ®ej,
1<i,j<m

where €] = e1,¢e5 = ea,..., €, = e, are primitive idempotents of A°P. Moreover,
the category mod A€ of finite dimensional right A°-modules is the category of finite
dimensional A-A-bimodules. In particular, the algebra A is a right A°-module by
a(x ®y) = xay, fora € A, x € AP, y € A.

The indecomposable projective right A¢-module (projective A-A-bimodule) as-

sociated to the idempotent e} ® e; is of the form
P(i',j) = (e, @ ej)A® = ¢, AP QK ;A = Ae; @k e; A.
Moreover, we have a decomposition
A= P Py
1<i,j<m

of A into a direct sum of indecomposable projective right A°-modules (projective
A-A-bimodules) such that 4 P(i’,j) = (Ae;)4mx ¢4 is a projective left A-module
and P(i',j)a = (e;A)dimx A€ s a projective right A-module. Hence every projec-
tive right A°-module is a projective left A-module and a projective right A-module.

Lemma 2.15. Let A be a finite dimensional K -algebra. For eachi >0, Q.(A) is
a projective left A-module and a projective right A-module.

PRrROOF. Consider a minimal projective resolution of A in mod A¢
=Py —P—--—> P —-P—A—0.
For each ¢ > 0, we have an exact sequence in mod A°
0— QENA) - P — Q4. (A) — 0,

which is an exact sequence in mod A°P? and in mod A. Since the projective right A°-
modules are projective left A-modules and projective right A-modules, by induction
on i, we conclude that these sequences split in mod A°P and in mod A, and hence
Q. (A) are projective left A-modules and projective right A-modules. O

Lemma 2.16. Let A be a finite dimensional selfinjective algebra and M be a module
in mod A without projective direct summands. Then, for each i > 0, we have

Qi (M) = M ®4 Q4. (A) in modA.
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Proor. We may assume that M is indecomposable. The splitting exact se-
quences (as in the above lemma)

0— Q4N A) - P — Q4. (4) — 0,
for i > 0, induce the exact sequences
0— M@s Q4 (A) = M®A P, — M®s Q4 (A) =0
in mod A, and hence
o MOAP o MAP— - > MRaFPh > M®4A—-0

is a projective resolution of M = M ®4 A in mod A. Since, for each i > 0, Q4 (M)
is an indecomposable nonprojective A-module, we conclude that

M ®4 QY (A) = QY (M) © P(i),
for some projective module P(i) in mod A. Therefore, we obtain a required isomor-
phism
QY (M) =2 M ®4 Q4. (A) in modA.
d

The following lemma proved by Green, Snashall and Solberg [GSS] will be
essential for our considerations.

Lemma 2.17 (Green-Snashall-Solberg, 2003). Let A be a finite dimensional K-
algebra. Assume there exists a positive integer d and an algebra automorphism o

of A such that Q%.(A) = 1A, in mod A®. Then A is selfinjective.
PROOF. We have an isomorphism of A-A-bimodules
a:D(A)®s414, — D(A),
such that a(f ®a) = fa, for f € D(A) and a € 1 A,. Consider a minimal projective
resolution
=Py —-P—--—>P—>P—-A—>0
of A in mod A°. Hence we obtain an exact sequence
0 — D(A) ®4 Q%:(A) — D(A) @4 Pi—1 — D(A) @4 Q% (A) — 0
in mod A. Moreover, D(A) ® 4 Py—1 is a projective right A-module. On the other
hand, Q%.(A) 2 ; A, in mod A® implies that there is a monomorphism D(A), —
D(A) ® 4 Py—1 in mod A. Further, the automorphism o induces an isomorphism
14,1 — 5 Ay of A-A-bimodules, and then the right A-modules D(A), = D(,A;)
and ,—1D(A) = D(1A,-1) are isomorphic. Therefore, the injective cogenerator

D(A) in mod A is a direct summand of the projective module D(A) ® 4 P;—1, and
so is projective. Clearly, then A is selfinjective. O

A finite dimensional K-algebra A is said to be periodic if A is a periodic
module in mod A¢, that is, Q4. (A) = A in mod A, for some d > 1. It follows from
the above lemma that then A is selfinjective. Moreover, we have the following fact.

Corollary 2.18. Let A be a finite dimensional periodic K-algebra. Then all inde-
composable nonprojective modules in mod A are periodic.
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PROOF. Assume Q4. (A) = A in mod A4, for some d > 1. Let M be an in-
decomposable nonprojective module in mod A. Since A is selfinjective, invoking
Lemma 2.16, we have in modA isomorphisms

QLMY= M @4Q%(A) =M o4 A M.

Then Q% (M) = M in mod A, because Q% (M) and M are indecomposable nonpro-
jective A-modules. O

The following problem occurs naturally.
PROBLEM 3. Determine the finite dimensional periodic algebras.
We also note the following fact.

Lemma 2.19. Let A be a finite dimensional K-algebra. Then A is selfinjective if
and only if A¢ is selfinjective.

PROOF. Since (A°)P = (AP)¢ and the class of selfinjective algebras is closed un-
der Morita equivalences, we may assume that A is basic. Then A€ is basic. Assume
A is selfinjective. Then A is a Frobenius algebra and we obtain isomorphisms

A2 AP @ A D(AP) @K D(A) 2 D(A°®? @4 A) = D(A®)

in mod A€, and hence A€ is selfinjective.
Conversely, if A€ is selfinjective then

AP g A D(A®) @K D(A)
in mod A¢, and hence

AdimK(AUP) o~ D(A)dimK D(A°P)
in mod A. Then Ay is injective, and hence A is selfinjective. O

Theorem 2.20 (Green-Snashall-Solberg, 2003). Let A be a finite dimensional in-
decomposable K -algebra. The following statements are equivalent:
(1) All simple right A-modules are Q 4-periodic.
(2) There exists a natural number d and an algebra automorphism o of A
such that Q%.(A) = 14, in mod A%, and o(e)A = eA for any primitive
idempotent e of A.

PROOF. (1) = (2). Let d be a minimal natural number such that Q%(S) = S
for any simple right A-module S.

Let B = Q%.(A). We know that Q%.(A) is a projective left A-module. Hence
we have the exact functor — ® 4 B : mod A — mod A. Moreover, for any simple
right A-module S, we have S® 4B = S®40%(A) = Q% (S) = S. Then by induction
on the length of a module, we conclude that /(M ®4 B) = ¢(M) for any module
M in mod A.

We prove now that P ®4 B = P for any projective module P in mod A. Let P
be an indecomposable projective right A-module. Then the exact sequence

0— PJ(A) - P— P/PJ(A) — 0,

where J(A) is the Jacobson radical of A, induces the exact sequence of right A-
modules

0— PJ(A)®aB— P®aB— (P/PJ(A)) ®4 B — 0.
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The module P ® 4 B is a projective right A-module, as a direct summand of the
projective right A-module A ®4 B = Q%.(A), and {(P ®4 B) = {(P). Further,
(P/PJ(A)) ®4 B = P/PJ(A), and hence P/PJ(A) is a direct summand of the
topP ®4 B/(P ®4 B)J(A) of P®4 B. Then P is a direct summand of P ® 4 B,
and consequently P ® 4 B = P, because (P ® 4 B) = £(P). Therefore, there exists
an isomorphism A® 4 B — A of right A-modules, and hence B as a right A-module
is isomorphic to A 4.

We claim now that B as a left A-module is isomorphic to 4A. Let T be a
simple left A-module. Since B is isomorphic to A4 in mod A, we have B ® 4 T =
A®asT =2 T as K-vector spaces. Further, for any simple right A-module S, we
have S @4 B®4 T = S ®4 T (from the first part of the proof) and S ®4 T # 0 if
and only if S = D(T) = Homg (T, K). Then (A/J(A)) ®4 B®@a T 2 T. On the
other hand, we have in mod A°P the commutative diagram with exact rows

0—J(A) @A (BoAT)—>A@4s (BRaT)—(A/J(A) ®a(B2aAT)—0

lu lu lu

0—=JA)(B®@4T) ——BsT —>BRAT/J(A)(B@4T)—>0

and hence (B®aT)/J(A)(B®aT) = T in mod A°P. Since dimg BT = dimg T
we obtain that B®4 T = T as left A-modules. Therefore, B® 4T = T in mod A°P
for all simple left A-modules T'. Applying now arguments from the first part of the
proof we conclude that B as a left A-module is isomorphic to 4 A.

Let ¢ : A — B be an isomorphism of left A-modules, and b = ¢(1). Then
(a) = ab, for a € A, and Ab = B. Define the map o : A — A by o(a) = ¢~1(ba),
for a € A. Then, for a € A, we have

ba = (¥~ (ba)) = ¢(o(a)) = ¢(o(a)l) = o(a)i(1) = o(a)b.
Next we show that o is a homomorphism of K-algebras. Obviously, ¢ is K-linear
and (1) = 1 ~1(b) = 1. Moreover, for a,a’ € A, we have
o(aa")b = b(aa’) = (ba)a’ = (c(a)b)a’ = o(a)(ba’)
a(a)(o(a")b) = (o(a)a(a’))b.

Hence, we obtain

P(o(aa’)) = ¢(o(aa’)l) = o(aa’)ib(1) = o(aa’)b = (o(a)o(a’))b
= (o(a)o(a))y(1) = P(o(a)o(a’)),

and so o(aa’) = o(a)o(a’). Therefore, o is a homomorphism of K-algebras.

We claim that o is in fact an automorphism. It is enough to show that ker o = 0.
Let a € kero. Then 0 = o(a)b = ba and hence Ba = (Ab)a = A(ba) = 0. Since
B is isomorphic to A as a right A-module, we obtain Aa = 0, and hence a = 0.
Therefore, indeed ker o = 0.

Finally, observe that the isomorphism v : A — B of left A-modules is an
isomorphism v : 1A, — B of A-A-bimodules. Indeed, for z,a € A, we have

$(wo(a) = (zo(a))b = (o(a)b) = 2(ba) = (zb)a = P(x)a.

Therefore, we obtain Q4. (A) = 14, in mod A°.
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Let e be a primitive idempotent of A. Then we have isomorphisms of right
A-modules
a(e)A/o(e)J(A) — Q4(o(e)A/a(e) I (A))
— (o(e)A/o(e)J(A)) ®a 14,
— (o(e)A/o(e) J(A))s
s eA/eJ(A).

Hence, o(e)A — eA in mod A. Therefore, the implication (1) = (2) holds.

(2) = (1). Let Q%.(A) = 1 A, for some d > 1 and an automorphism o of A such
that o(e)A = eA for any primitive idempotent e of A. We know that then A and A®
are selfinjective. Then for any simple right A-module S, the right A-modules Q¢ (S)
and S ® Q4(A) 2 S®a A, = S, are isomorphic. Every simple right A-module
S is isomorphic to a module of the form eA/eJ(A) for some primitive idempotent
e of A. Since eA = o(e)A in mod A, the automorphism o induces isomorphisms
of right A-modules eA — (eA),, eJ(A) — (eJ(A)),, and hence S — S, in
mod A. Therefore, Q4 (S) = S for any simple right A-module S. O

As a direct consequence of Lemma 2.17 and Theorem 2.20 we obtain the fol-
lowing interesting fact.

Corollary 2.21. Let A be a finite dimensional K -algebra whose all simple right
A-modules are periodic. Then A is a selfinjective algebra.

Let A be a finite dimensional K-algebra. Then the vector space
HH*(A) = Ext}y. (A, A) = (D Ext)y. (4, A)
i>0
is a graded commutative K-algebra (with the Yoneda product), called the Hochschild
cohomology algebra of A (see [CE], [Ha2|, [Hoc] for more details). We note

that HH?(A) = Z(A) is the center of A, and HH'(A) = Derg (A, A)/ Der'l (A, A),
where

Derg (A, A) = {(5 € HOmK(A,A)’ 0(ab) = ad(b) + 5(a)b}

forall a,be A

is the space of derivations of A, and

Der (A, A) = {5I € Homg (A, A)

5.(a) = az — xa}

z,a € A

is the space of inner derivations of A. Hence HH'(A) is the space of outer
derivations of A. We also mention that the vector spaces HH™(A), n > 2, control
deformations of the algebra A (see [GePe], [Ger], for more details).

Two finite dimensional algebras A and B are said to be derived equivalent
if the derived categories D”(mod A) and DP(mod B) are equivalent as triangulated
categories. In [Ric1] Rickard proved his celebrated criterion: two algebras A and
B are derived equivalent if and only if B is the endomorphism algebra of a tilting
complex over A.

For selfinjective algebras we have the following implications

. . . . Rickard .
Morita equivalence = derived equivalence % stable equivalence.

[Ric2]

The following theorem proved by Happel [Ha2] and Rickard [Ric3] shows in-
variance of the Hochschild cohomologies on the derived equivalences.
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Theorem 2.22 (Happel, Rickard, 1989-1991). Let A and B be two derived equiv-
alent K -algebras. Then HH*(A) 2 HH*(B) as graded K -algebras.

We will prove now the following important theorem by Green, Snashall and
Solberg [GSS].

Theorem 2.23 (Green-Snashall-Solberg, 2003). Let A be an indecomposable finite
dimensional K-algebra. Assume that Q%.(A) = 1A, for a positive integer n and
an algebra automorphism o of A. Then

K, or
Kz

where N'(A) is the ideal of HH*(A) generated by all nilpotent homogeneous ele-
ments. Moreover, HH*(A)/N(A) 2 K, if O} (A) 2 A for allm > 1.

HH (A)/N(A) = {

PROOF. Since Q%.(A) = 1A,, it follows from Lemma 2.17 that A is selfinjec-
tive. Then A€ is selfinjective, by Lemma 2.19, and we may identify

HH(A) = Ext’y. (4, A) = Hom 4. (Q4. (A), A).

If Q%.(A) =2 A for some m > 1, then, by the Carlson’s Theorem 2.14, we have
HH*(A)/N(A) & K|z|, where z is of degree d (= period of A in mod A¢). In
particular, it is the case if o has finite order.

Assume now that Q7. (A) 2 A in mod A° for any m > 1. Then ¢ has infinite
order. Let s > 1 and n € Hom(Q%.(A),4) = HH?*(A). We claim that 7 is
nilpotent in HH*(A). Assume first that s = np, for some p > 1. Then, for any
1 > 1, we have that QZZP (A) = 1A, is an indecomposable right A¢-module and
the homomorphism of A¢-modules

QD™ (m) : Q57 (4) — Q4T (A)

is not an isomorphism. Further, our assumption Q%.(A) = 1A, implies that the
A¢-modules QZ? (A), @ > 1, have bounded length (dimension). Then, applying the
Harada-Sai lemma (see [ASS, (IV.5.2)]), we conclude that there exists a natural
number ¢ such that
0’ = Q) QG ()L () = 0

in the algebra H H*(A). Hence, 7 is nilpotent. Assume now that n is not divisible by
s. Then there are positive integers r and ¢ such that rs = ng. Then 1" € HH"™(A),
and hence (by the above argument) n" is nilpotent, and Consequentg 7 is nilpotent.

We proved that every homogeneous element of HH *(A) of positive degree is
nilpotent. Moreover, A is indecomposable, and then HH%(A) = Z(A) is a commu-
tative local algebra, J(Z(A)) is nilpotent, and Z(A)/J(Z(A)) = K. Therefore, we
conclude that HH*(A)/N(A) £ K. O

Corollary 2.24. Let A be a finite dimensional indecomposable selfinjective K-
algebra of finite representation type. Then

K, or

HH*(A)/N(A) = { ek

PROOF. Since all indecomposable nonprojective (hence simple) modules in
mod A are periodic, applying Theorems 2.20 and 2.23, we get the claim. U
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The next result of this section shows invariance of the periodicity of algebras
under the derived equivalences.

Theorem 2.25. Let A and B be two derived equivalent indecomposable finite di-
mensional selfinjective K -algebras. Then A is periodic if and only if B is periodic.

PROOF. We may assume that A and B are of Loevy length at least 3 (see
[ARS2, X.1.8]). By Theorem 2.22, we conclude that HH*(A) and HH*(B) are
isomorphic graded K-algebras. Assume that A is periodic in mod A€, say of period
d. Then, by Carlson’s Theorem 2.14, we have an isomorphism HH*(A)/N(A) &
K|[z] of graded K-algebras, where z is of degree d. Hence HH*(B)/N(B) = K|z].
On the other hand, Q4. (A) = A, and hence Q4% (M) = M for any indecomposable
nonprojective module M in mod A, by Corollary 2.18. Because of Rickard’s theorem
[Ric2], two derived equivalent selfinjective algebras are stably equivalent, there is
a stable equivalence F' : modA — modB. Further, because A and B are of Loevy
length at least 3, it follows from [ARS2, X.1.12] that FQ4 = QpF as functors from
modA to modB. Therefore, we obtain that Q%(N) = N for any indecomposable
nonprojective module N in mod B. In particular, we conclude that Q%(S) = S
for any simple right B-module S. Applying now Theorem 2.20, we infer that there
exists an isomorphism Q%.(B) = B, in mod B¢ for an algebra automorphism o
of B. Applying Theorem 2.23, we then infer that B is periodic in mod B¢, because
HH*(B)/N(B) & K[z]. In fact, we have Q%. (B) & B in mod B°. O

We also note the following direct consequence of Theorems 2.20 and 2.23.

Corollary 2.26. Let A be a finite dimensional indecomposable selfinjective K-
algebra such that all simple A-modules are Q z-periodic. The following statements
are equivalent:

(1) A is periodic.

(2) HH*(A)/N(A) 2 K|x].

In the final part of this section we discuss the relation between the boundedness
and periodicity of modules over selfinjective algebras.

Let A be a selfinjective algebra. A module M in mod A is defined to be
(homologically) bounded if there is a common bound on the dimensions of
all syzygy modules, QY (M), i > 0, of M. Clearly, every periodic A-module is
bounded. In [Al1l] Alperin proved that, if M is a bounded indecomposable non-
projective finite dimensional module over the group algebra KG of a finite group
G, then M is periodic. The following examples show that it is not the case for
arbitrary selfinjective algebras.

Examples 2.27. (1) Let A be a nonzero element of K which is not a root of unity.
Consider the 4-dimensional local Frobenius algebra Ay = KQ/I\, where

(D
and I, = (a?, 3%, a8 — \Ba) (see Example 1.8(4)). Then, for the cosets a = o+ I
and b=+ 1y, 1, a, b, ab = A\ba is a basis of Ay over K. For each i € Z, take the
element o
x;=(=1)'Na+be Ay
and the cyclic right Ay-module
Mi = ,’BiA,\.
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Then M;, i € Z, is a family of pairwise nonisomorphic indecomposable A)-modules
of dimension 2. Moreover, for each i € Z, we have a canonical exact sequence in
mod A)\

0— My, — Ay =5 M; — 0

where m; is the canonical projection with m;(1) = ;. Hence, we obtain that
M1 = QaM;, for all ¢ € Z. Therefore, M;, ¢« € Z, are bounded but nonperi-
odic indecomposable nonprojective modules in mod Ay.

(2) Following Liu and Schulz [LiSc] consider the trivial extension algebra Ry =
Ayx x D(Ay) of the algebra Ay considered in (1). Then Ry is a local symmetric
algebra of dimension 8. Moreover, the Jacobson radical of R is generated by the
elements ¢ = (a,0) and b = (b,0), with a = ao + I, and b = 3 + I, as above. For
each ¢ € Z, consider the element

yi = (—1)'N'a+b € Ry
and the cyclic right Ry-module
Ni =yiRy.

Then N;, i € Z, is a family of pairwise nonisomorphic indecomposable right Ry-
modules of dimension 4. Moreover, similarly as in (1), we conclude that N;y; =
QaN;, for all ¢ € Z. Therefore, N;, i € Z, are bounded but nonperiodic indecom-
posable nonprojective modules in mod R .

The following general criterion for the bounded modules to be periodic has
been established by Schulz [Schul].

Theorem 2.28 (Schulz, 1986). Let A be a selfinjective algebra and M be a bounded
indecomposable nonprojective A-module. The following statements are equivalent.
(i) M 1is periodic.
(ii) The algebra Ext’y (M, M) is right noetherian, and the right Ext’ (M, M)-
module Ext’y (M, S) is noetherian, for any simple right A-module S.
(iii) For any module X in mod A, the right Ext’y (M, M)-module Ext’ (M, X)

18 noetherian.

We refer to [Schu] for examples showing that the noetherianness of the algebra
Ext% (M, M) is not sufficient for a bounded module M to be periodic.
We obtain also the following consequences of the above theorem.

Corollary 2.29. Let A be a selfinjective algebra and M a periodic indecomposable
finite dimensional A-module. Then the graded algebra Ext’y (M, M) is noetherian.

Corollary 2.30. Let A be a periodic algebra. Then the graded algebra HH*(A) is
noetherian.

3. Periodicity of finite groups

The aim of this section is to present characterizations of periodic finite groups
and exhibit their topological sources.

Let G be a finite group, Z the ring of integers and ZG the group algebra of
G over Z. We may consider the group Z as the trivial ZG-module by the action
m*g=m, for any m € Z and g € G. For n > 0 and a ZG-module M, let

H™(G, M) = Ext}o(Z, M)
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be the n-th cohomology group of G with coefficients in M. In particular, we
may consider the cohomology groups of the trivial ZG-module Z
HY(G,Z) = Exth(Z,7), i >0,
called the cohomology groups of G.
Definition 3.1. A group G is defined to be (globally) periodic if there exists a

positive integer d such that
HY(G,Z) = H*YYG,Z), for alli>1.
The minimal such d is called the (cohomological) period of G.

Example 3.2. Let m > 2, and G = Z,, be the cyclic group of order m, say
generated by an element g. Then we have the following periodic free ZG-resolution
of the trivial ZG-module Z

Norei e Mre i ug =7 —0

where e(g) = 1 for g € G, g — 1 is the left multiplication by g — 1, and N is the
left multiplication by N =1+ g+ --- 4+ ¢™~!. Applying Homzg(—,Z) we obtain
the periodic complex whose i-th cohomology is the group Ext},(Z,Z) = H' (G, 7).
Then one obtains H*(G,Z) = Z, H*(G,Z) = Z/mZ and H*~1(G,Z) = 0 for
i > 1. In particular, G = Z,, is a periodic group of period 2.

In fact, the following is true (see [AM], [Br], [Sw2]).

Theorem 3.3. Let G be a finite group. Then G is periodic of period 2 if and only
if G is cyclic.

Moreover, we have also the following theorem (see [AM], [Br]).

Theorem 3.4. Let G be a periodic finite group. Then H*~Y(G,Z) = 0 for any
i > 1. Hence the period of G is even.

Zassenhaus considered the following problem, motivated by some topological
problems (free group actions on spheres).

PROBLEM 4 (Zassenhaus). Describe all finite groups G whose all com-
mutative subgroups are cyclic.

Zassenhaus solved this problem in the solvable case [Za]. This was completed
by Suzuki [Su] to the general case.

Theorem 3.5 (Suzuki-Zassenhaus, 1955). A complete list of finite groups with all
commutative subgroups cyclic is given by the following table

‘ Family ‘ Definition ‘ Conditions
I Zja xoZ]b (a,b) =1
I Z]a %3 (Z/b x Qai) (a,b) = (ab,2) =1
111 Zja xy (Z/bxT;) (a,b) = (ab,6) =1
v Z/a % (Z)b x OF) (a,b) = (ab,6) =1
1% (Z]a xq ZJb) x SLa(F,,) | (a,b) = (ab,p(p* — 1)) =1
VI | Zjax, (/b x TLy(F,)) | (a,b) = (b p(p* — 1)) = 1
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These 6 families of groups are given as semidirect products of certain finite groups
(we refer to [AM, Chapter IV] for more details on these groups).

We will exhibit (now and later) only some natural examples of such groups.
Examples 3.6. (1) For m > 1, consider the dihedral group
Do ={z,y|a®=1=y" yz=ay™ '}

of order 2m.
For m = 2r, {1, z,y", xy” = y"x} is a noncyclic commutative subgroup of Dy;..
For m odd, all commutative subgroups of Ds,, are cyclic.
Hence, Do, is periodic if and only if m is odd.
(2) For m > 1, consider the generalized quaternion 2-group

Qom+2 = {x,y { 22" = y? xyr = x}

of order 2*2, Then every commutative subgroup of Qom+2 is cyclic and Qqm+2 is
periodic.
(3) Let p be a prime and F,, the field with p elements, and

SLa(Fp) = {M € Max2(Fp) | det M =1}
(2 x 2 special linear group of F,). Then

ISL2(Fp)[ = p(p — )(p + 1).

Moreover, all commutative subgroups of SLy(F,) are cyclic, and hence SLo(F,) is
periodic. We also note that for p odd the groups SLo(FF,) are not solvable.

For a prime number p, the abelian group Z; = Z, x --- x Z,;, is said to be the
kA
elementary p-group of rank r.
For a finite group G and a prime p with p ||G |, denote by r,(G) the maximal
rank of elementary p-subgroup of G, called the p-rank of G.
The following characterizations of periodic groups show that in fact the Suzuki-

Zassenhaus theorem provides a complete classification of all periodic finite groups
(see [CE]).

Theorem 3.7 (Artin-Tate, Cartan-Eilenberg, 1956). Let G be a finite group. The
following statements are equivalent:
(1) G is periodic.
(2) HYG,Z) =2 Z/|G|Z, for some d > 1.
(3) H*Y(G,M) = H'(G,M), for some d > 1, all i > 1 and an arbitrary
finitely generated ZG-module M.
(4) H*YG,Z,) = H(G,Z,), for some d > 1, all i > 1 and any prime p
dividing |G|.
(5) mp(G) <1, for any prime p dividing |G|.
(6) For any prime p dividing |G|, the p-Sylow subgroups of G are cyclic or
generalized quaternion 2-groups.
(7) Every commutative subgroup of G is cyclic.

Therefore, the subgroups of periodic groups are periodic.
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Example 3.8. For a prime p, we have
dimg, H"(Zy X Zp,Zy) = n+ 1, for any n > 0,
and hence the group Z, X Z,, is not periodic (application of the Kiinneth formula).

Let p be a prime number. Consider the localization of Z at p
Lpy = {% eQ,m,neZ,p /fn} )

Let G be a finite group such that p | |G|. For each i > 1, let
HY(G,Z) ) = H(G,Z) ®z L.

Definition 3.9. Let p be a prime number. A group G with p | |G| is defined to be
p-periodic if there exists a positive integer d such that

HYG,Z) ) = HG,Z) ), for alli>1.
The minimal such d = dj, is called the (cohomological) p-period of G.

The following theorem provides a characterization of p-periodic groups (see
[Br]).

Theorem 3.10. Let G be a finite group, p a prime number, and p ||G| The
following statements are equivalent:
(1) G is p-periodic.
(2) HHY4(G,Z,) = H (G, Zy), for some d > 1 and any i > 1.
(3) EthdG(Zp,M) = Ext%pG(Zp,M), for some d > 1, any i > 1, and an
arbitrary finite dimensional Z,G-module M.
4) Q%pG(ZP) & Zp, for some d > 1.
(5) p(G) < 1.
6) Every p-Sylow subgroup of G is either cyclic or generalized quaternion 2-
group.
) Every commutative p-subgroup of G is cyclic.
(8) For any algebraically closed field K of characteristic p, Q%o (K) = K, for
some d > 1.
(9) For any algebraically closed field K of characteristic p, there exists d >
1 such that Q%G(M) = M for any indecomposable monprojective finite
dimensional KG-module M.

Observe that a finite group G is periodic if and only if G is p-periodic for any
prime p dividing |G]|.

Example 3.11. Let p be an odd prime number, ¢ = p", n > 2, F, the field with ¢
elements, and G = SLy(F,). Then |G| = ¢(¢*> — 1). Moreover, we have

e the 2-Sylow subgroups of G are generalized quaternion 2-groups,
e for any odd prime [ # p, the [-Sylow subgroups of G are cyclic,
e the p-Sylow subgroups of G are not cyclic,

Then G is not p-periodic, and hence is not periodic. Moreover, G is [-periodic for
any prime such that [ | |G| and I # p.

We note that there is no chance for a classification of all finite p-
periodic groups, for any fixed prime p.
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Let G be a finite group, p a prime number, and p ’ |G|. Let

H*(G,Z,) = @ H*"(G,Zy)
n>0
be the even cohomology algebra of G at p. Then H®(G,Z,) is a graded com-

mutative ring and we have the following theorem proved independently by Evans
[Ev] and Venkov [Ve].

Theorem 3.12 (Evans-Venkov, 1959-1961). Let G be a finite group, p a prime
number, and p ||G|. Then H®(G,Zy) is a noetherian ring.

Denote by dim H®(G,Z,) the Krull dimension of H®(G,Z,), that is, the
length d of the maximal chain of distinct graded prime ideals

PoCp1 C---Chy
of H*(G,Zy,). Then we have the following deep result proved by Quillen [Q1],
[Q2].
Theorem 3.13 (Quillen, 1971). Let G be a finite group and p a prime number
dividing |G|. Then
dim H*(G, Zp) = rp(G).

Hence the Krull dimensions of the rings H*(G,Zy), p | |G|, p prime, measure
the complexity of the group G.

As a direct consequence of Theorems 3.10 and 3.13, we obtain the following
characterization of p-periodic finite groups.

Corollary 3.14. Let G be a finite group and p a prime number dividing |G|. Then
G is p-periodic if and only if dim H*" (G, Z,) = 1.

We describe now the representation type of the group algebras of p-periodic
group.

Let K be an algebraically closed field of characteristic p. By the well-known
Maschke’s theorem the group algebra KG of a finite group G is semisimple if
and only if p X|G|

The following classical theorem proved by Higman [Hi] describes the group
algebras of finite representation type.

Theorem 3.15 (Higman, 1954). Let G be a finite group and p ’|G| Then the
group algebra KG of G s of finite representation type if and only if the p-Sylow
subgroups of G are cyclic.

The following theorem proved by Bondarenko and Drozd [BD] gives a charac-
terization of the tame group algebras of infinite type.

Theorem 3.16 (Bondarenko-Drozd, 1975). Let G be a finite group and p ||G|.
Then KG is tame of infinite representation type if and only if p = 2 and the 2-
Sylow subgroups of G are of one of the following types: dihedral, semidihedral, or
generalized quaternion groups.

Recall that the semidihedral 2-groups are the group of the form
Sm = {I,y | z? = y2m =lLyzr= ny””flfl} ,m > 3.

The following consequence of Theorem 3.13 describes the representation type
of the group algebras of p-periodic groups.
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Corollary 3.17. Let G be a finite group, p | |G|, and assume that G is p-periodic.
Then

(1) KG is of tame representation type.

(2) If p is odd, then KG is of finite representation type.

The following combination of results proved by Erdmann and Holm [EH] and
Erdmann and Skowroriski [ES1] shows that the group algebras of p-periodic groups
are periodic as bimodules.

Theorem 3.18 (Erdmann-Holm (1999), Erdmann-Skowronski (2006)). Let G be a
finite group, p | |G|, and A = KG. If G is p-periodic then A is periodic in mod A°.

We will indicate now topological sources of periodic groups.

Let G be a finite group. We may consider G as a topological group with the
discrete topology. We say that G acts on a topological space X if there is a
group homomorphism of G into the group Homeo(X ) homeomorphisms of X to X.

Assume X is a CW-complex (admits a cell decomposition) and G is a finite
group of homeomorphisms of X. We say that G acts freely on X if G acts freely
on a cell decomposition of X, that is,

go)cUr
T#Oo
for all g € G\ {1} and all cells o of X.
Example 3.19. For any m > 2, the cyclic group G = (g) of order m acts freely on

the one-dimensional sphere S!, as the following cell decomposition and the action
of G on S' show

2

g°1 g°1
.é.

936 ge
/ \ gl
[ ]

) gmfll
gk*. . 4:
gm—31 9m73€ gm—21

The following is one of the classical problems of algebraic topology (see [AD],
MTW1|, MTW2], [TW]).

PROBLEM 5 (Spherical space form problem). Describe the finite groups G
acting freely on spheres S™ and the orbit spaces S™ /G (spherical spaces).

The following theorem proved by Smith in [Sm1], [Sm2] was the topological
motivation for the Zassenhaus problem.

Theorem 3.20 (Smith, 1938-1939). Let G be a finite group acting freely on a
sphere S™. Then every abelian subgroup of G is cyclic.
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Moreover, we have the following theorem describing the periods of finite groups
acting freely on spheres (see [AD]).

Theorem 3.21. Let G be a finite group acting freely on a sphere S™. Then
(1) For m even, we have |G| < 2.
(2) For m odd, we have H""(G,Z) = Z/|G|Z. In particular, G is periodic
with even period dividing m + 1.

PROOF. (1) An application of Lefschetz fix point theorem.

(2) Application of cohomological methods (spectral sequence of the fibration
Sm™ — S™/G — BG). O
Example 3.22. Consider the (division) algebra of quaternions

H=ReRi®RjdREk
with ij = —ji = k, ki = —ik = j, jk = —kj =1, i* = j2 = k> = —1. Then
S*={a+bi+cj+dkeH|a®+b"+*+d =1}.
Hence S? is the 3-dimensional sphere in R* = H. There is a canonical group epimor-
phism S* — SO(3,R) (group of rotations of R?) with the kernel {41}. Moreover,
it is known that every noncyclic finite subgroup of S? is conjugate in S* (hence
isomorphic) to one of the groups:
e D3 . n > 2, binary dihedral group,

7* binary tetrahedral group,

O* binary octahedral group,
7* binary icosahedral group.

We also note that the groups D3,, 7%, O, I* admit a unique normal subgroup
Zo = {£1} of order 2 such that

D3, /Zo = Ds,,, the dihedral group,

T*/Zs =T, the tetrahedral group of rotations of tetrahedron,

O* /Zs = O, the octahedral group of rotations of octahedron (equivalently,

cube),
e 7* /7o = T, the icosahedral group of rotations of icosahedron (equivalently,
dodecahedron).

Then we get |D5, | = 4n, |T*| = 24, |O*| = 48, |T*| = 120.
Therefore, we conclude that the groups D3, 7%, O*, T* act freely on the sphere

2n»
S?, and hence are periodic groups of period 4, because only the cyclic groups may

have period 2 (see Theorem 3.3 and [Sw2]). We also note that
Qun =D3, = <:1c,y | " =y?, zyr = y>, n > 2.

The group Qg4 is called a generalized quaternion group. Hence, for n = 2™,
we get the generalized quaternion 2-group QQom+2 considered before. Observe also
that we have the following embedding of groups

Qi — S CH=R*
by 2 — €™/™ and y — j. In particular, we have Qg = {#1, &, =7, +k}.

Example 3.23 (Linear actions on spheres). Let V = R?*" n > 1, (—,—) be the
Euclidean R-bilinear form and ey, es, .. ., ea, the standard basis of R?".
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Let G be a finite group of R-linear automorphisms of V. Assume G acts freely
on V' \ {0}: the eigenvalues of all g € G\ {1} are different from 1. Consider the
G-invariant R-bilinear form (—, —)g on R?" induced by (—, —), given by

(2, 9)c = ﬁ S (9(e), 9(w)), for 7,y € V.
geG

Then S = {z € V|(x,x)g = 1} is an (2n — 1)-dimensional sphere and G acts freely
on S. In fact, G acts freely on a cell decomposition of S (see [I1]). Indeed, let C
be the convex hull of the finite set {+g(e;) | ¢ € G,1 < i < 2n} in R*". Then S
is the border of C' and admits the induced cell decomposition. Since G acts freely
on V \ {0}, we conclude that G acts freely on this cell decomposition of S. In
particular, we obtain that G is periodic of (even) period dividing 2n. In fact, one
can construct such groups of arbitrary even period 2n.

The following question arises naturally.
Does every periodic group act freely on a sphere?
The following theorem proved by Milnor [Mi] gives negative answer.

Theorem 3.24 (Milnor, 1957). Let G be a finite group acting freely on a sphere
S™. Then G admits at most one element of order 2, and such an element is central.

Hence, for example, if m odd, then the dihedral group Ds,, is periodic but does
not act freely on a sphere. In particular, this is the case for the symmetric group
53 = D2.3 = D6.

On the other hand, the following theorem proved by Swan [Sw1] shows that
the periodic groups are finite groups acting freely on CW-complexes homotopically
equivalent to spheres.

Theorem 3.25 (Swan, 1960). Let G be a finite group. The following statements
are equivalent:
(1) G is periodic.
(2) There exists an odd natural number m, an m-dimensional CW -complex X
(Swan complex) homotopically equivalent to S™ such that G acts freely on

X.

The following theorem proved by Madsen, Thomas and Wall [MTW?2] gives a
complete characterization of finite groups acting freely on spheres.

Theorem 3.26 (Madsen-Thomas-Wall, 1976). Let G be a finite group. The fol-
lowing statements are equivalent:

(1) G acts freely on a sphere.

(2) G admits at most one element of order 2, and such an element is central.

(3) For each prime number p, every subgroup G of order p* or 2p is cyclic.
(4) G is periodic and has no dihedral subgroups.

Example 3.27. For each odd prime p, the group SLs(FF,) acts freely on a sphere.

Indeed,
-1 0
0o -1

is the unique element of order 2 in SLy(F),), and is central.

We note that SLy(Fg) 22 S5 = Dg, SLy(F3) = 7%, and SLy(F5) =2 Z*. On the
other hand, it is known that the groups SLy(F,), p > 5, do not admit linear free
actions on spheres.
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We end this section with a theorem proved by Wolf [Wo] describing all finite
groups having linear free actions on spheres.

Theorem 3.28 (Wolf, 1967). A finite group G acts freely and linearly on some
sphere if and only if the following conditions are satisfied:

(1) For all primes p and q, the subgroups of G of orders pq are cyclic.

(2) G has no subgroup isomorphic to SLa(F,), for a prime p > 5.

4. Periodicity of tame symmetric algebras

The aim of this section is to present a complete classification (up to Morita
equivalence) of all symmetric algebras over an algebraically closed field for which
the indecomposable nonprojective finite dimensional modules are periodic. There-
fore, we may restrict to the symmetric algebras which are nonsimple, basic and
indecomposable. The main classification theorem below proved by Erdmann and
Skowronski in [ES2] relies on results of several authors which are described below
in a new invariant algebra form.

Theorem 4.1 (Erdmann-Skowroniski, 2006). Let A be a nonsimple, basic, indecom-
posable, finite dimensional algebra over an algebraically closed field K. Then A is
symmetric, tame, with all indecomposable nonprojective finite dimensional modules
periodic if and only if A is isomorphic to an algebra of one of the forms:

e a symmetric algebra of Dynkin type;

e a symmetric algebra of tubular type;

e an algebra of quaternion type.

The aim of the remaining part of this section is to describe the symmetric
algebras of Dynkin type, the symmetric algebras of tubular type, the algebras of
quaternion type, as well as properties of their module categories. In our description
of the symmetric algebras of Dynkin and tubular type, a prominent role will be
played by certain invariant algebras of the trivial extensions of algebras with respect
to free actions of finite groups, as described bellow.

Let B be a basic connected K-algebra and T(B) = B x D(B) be the (sym-
metric) trivial extension algebra of B by its minimal injective cogenerator D(B) =
Hompg (B, K). Let G be a finite group of K-algebra automorphisms of T(B). Then
we may consider the invariant algebra

T(B)Y = {CE € T(B) ’ glx)=x forall g € G} .

Moreover, we say that the group G acts freely on T(B) if there is a decomposition
of the identity of T(B)

lrpy=e€e1+ex+ - +ep,
where e, e, ..., e, are orthogonal primitive idempotents of T(B) such that

(1) g(e;) € {e1,...,en}, forall g e Gand i € {1,...,n},

(2) if g(e;) = e, for some i € {1,...,n}, then g = 1.

It is known that G acts freely on T(B) if and only if G acts freely on the
isoclasses of simple T(B)-modules, for the induced action of G on mod T(B) (see
[ARS1)).

We have the following general fact.

Proposition 4.2. Assume G acts freely on T(B). Then T(B)Y is a weakly sym-
metric (hence selfinjective) algebra.
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PROOF. The invariant algebra T(B) is isomorphic to the orbit algebra T(B)/G
(in the sense of Gabriel [Ga]). Since T(B) is symmetric, T(B) is weakly symmetric,
and hence T(B)¢ = T(B)/G is weakly symmetric. O

We note that in general T(B)Y is not necessarily a symmetric algebra.

We also note that by general theory the class of tame basic indecomposable
algebras splits into two subclasses: the standard algebras, which admit simply
connected Galois coverings, and the remaining nonstandard algebras (see [Sk2] for
details).

Symmetric algebras of Dynkin type

Let A € {A,,D,,Eq,E7,Es} be a Dynkin graph, A a Dynkin quiver with
underlying graph A and H = K A the path algebra of A.

Then a module T in mod H is said to be a tilting H-module if Ext}, (T,T) = 0
and T =T1®---&T,, where n = |Ag| and T4, ..., T, are indecomposable pairwise
nonisomorphic H-modules [HR1].

Then B = Endg (T) is called a tilted algebra of type A and has the following
properties

o gl.dimB < 2;
e B is of finite type;
e The Auslander-Reiten quiver I'p of B is of the form

Dynkin section A
The following important result was proved by Hughes and Waschbiisch [HW].

Theorem 4.3 (Hughes-Waschbiisch,1983). Let A be an algebra. Then T(A) is of
finite type if and only if T(A) = T(B) for a tilted algebra B of Dynkin type.

Let B be a tilted of Dynkin type A. Then the Auslander-Reiten quiver of I'p(p,)
has the following shape
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which is the stable finite cylinder ZA /(7™2) completed by |Ag|-projective-injective
modules. Moreover, if ma = ha — 1, where ha is the Coxeter number of A,
then the number of the isoclasses of indecomposable T(B)-modules is the number
|Aglha of roots of type A. Recall also that the Coxeter numbers are as follows
hAm =m—+1, th =2m — 2, h]];ﬁ =12, h]E7 =18, h]Eg = 30.

We also note that, if B, B’ are tilted algebras of Dynkin type, then T(B) 2
T(B') «<— B' = S;: ...S;" B (finite number of reflections) (see [HW]).

The following problem occurs naturally.

PROBLEM 6. When a finite group G acts freely on the trivial extension
T(B) of a tilted algebra B of Dynkin type?

By general theory such a group G is cyclic (see [HW]).
An additional information is given by the following theorem proved by Bretscher,
Léser and Rietdmann [BLRY].

Theorem 4.4 (Bretscher-Liser-Rietdmann, 1981). Let G be a finite group acting

freely on the trivial extension T(B) of a tilted algebra B of Dynkin type &, with
A€ {EG,E7,E8}. Then G = {1}

There are respectively 22, 143, 598 isoclasses of the trivial extensions T(B)
of tilted algebras B of types Eg, E7, Es (Riedtmann). These are all symmetric
algebras of Dynkin types Eg, E7, Esg.

The tilted algebras B of Dynkin types for which T(B) admit a free action of a
nontrivial finite group G are very exceptional.

In the representation theory of group algebras of finite groups a prominent role
is played by the Brauer tree algebras (see [Al2]). Recall that a Brauer tree is
a finite connected tree T'= T§" together with

e a circular ordering of the edges converging at each vertex,
e one exceptional vertex S with multiplicity m > 1.

We associate to a Brauer tree T' a Brauer quiver @ defined as follows:

e the vertices of Qp are the edges of T
e there is an arrow ¢ — j in Qp <= j is the consecutive edge of ¢ in the
circular ordering of the edges converging at a vertex of T'.

Hence the quiver Q1 has the following structure:

e (7 is a union of oriented cycles corresponding to the vertices of T
e Every vertex of Qr belongs to exactly two cycles.

The cycles of Q1 are divided into two camps: a-camps and [G-camps such
that two cycles of @ having nontrivial intersection belong to different camps. We
assume that the cycle of Qr corresponding to the exceptional vertex S of T' is an
a-cycle. Therefore, for each i vertex of Qr, we have the arrow i % a/(i) in a-camp

of Qr starting at i, the arrow i B, B(i) in B-camp of Qr starting at ¢, and the
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cycles A; = g (i) - - - Qa-1(3i), Bi = BiBai) - - - Ba-1(;) around i of the form

Qa(i) ~ Bse)

a?(i) 32(i)

< a(i i) >

. a/ ‘Ylm .

\ /
a (i) 07—

02(0) > 7670

We associate to a Brauer tree T = T¢" the Brauer tree algebra A(T)
A(Tg) = KQrp /I35, where Ig' is the ideal in the path algebra KQrp of Qrm

generated by the elements:

® Bg-1ia; and ag-1(4)Bi,
o A7 — B, if the a-cycle passing through ¢ is exceptional,
e A; — By, if the a-cycle passing through i is not exceptional.

For the multiplicity m = 1, the Brauer tree algebras A(T) = A(T%) are exactly

the trivial extension algebras T(B) of the tilted algebras of types A,,.

For the multiplicity m > 2, we have A(TZ") = T(B)% for an exceptional tilted
algebra B = B(TY") of type A, and the cyclic group Z,, acting freely on T(B).

Here, n = me, where e is the number of edges of Tg".

Example 4.5. Let T' = T§" be the star
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Then the associated Brauer quiver Q7 = Qrz is of the form

(3. (3

1
e—> 1

Qe—1 [e %1

and A(TF) is a symmetric Nakayama algebra. Moreover, A(T3) & A(T")%m
for the star T with me edges and the multiplicity 1, and A(T") = T(B) for the
path algebra B = K@ of the equioriented quiver of type A,

1—2—...— me.

Then we have the following classical result proved independently by Dade [Da],
Janusz [Ja] and Kupisch [Kul], [Ku2].

Theorem 4.6 (Dade-Janusz-Kupisch,1966-1969). Let B be a block of a group al-
gebra KG with cyclic defect group Dg. Then B is Morita equivalent to a Brauer
tree algebra A(TS").

(Here me+ 1 =p™ if | D |=p™ and B has e simple modules.)

We refer to [Fe] for a description of the Brauer tree algebras A(T7) which are
Morita equivalent to blocks of group algebras.

The following characterization of Brauer tree algebras was established by Gabriel
and Riedtmann [GR] (equivalence (1) and (2)) and Rickard [Ric2] (equivalence of
(1) and (3)).

Theorem 4.7 (Gabriel-Riedtmann (1979), Rickard (1989)). Let A be a selfinjective
algebra. The following statements are equivalent:

(1) A is Morita equivalent to a Brauer tree algebra.

(2) A is stably equivalent to a symmetric Nakayama algebra.

(3) A is derived equivalent to a symmetric Nakayama algebra.

Let T'= Tg be a Brauer tree with at least two edges and an extreme excep-
tional vertex S
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i ;
o1 Cl cycle S’ | @B,
¥

! Bi—1
2 j-1
QB \
2 / as,,.,
3—— .-
QB3

For each vertex i of @1, we have the cycles A; and B; around i. Define also the
cycles B;- = fB;...0ra1f1 ... Bj—1, around the vertices j € Sj, j # 1, of the cycle
S’

For each A € K, define the algebra

D(Ts,\) = KQr/I(Ts, ),

where I(Tg, A) is the ideal of K@Q7 generated by the elements:
ﬁﬁ—l(i)ai and aafl(i)ﬁi, 1€ (QT)O \ {1},
A? = By,
Ai - Bi7 (S (QT)O \ Séa
Aj _B;'a ] € Sé \ {1}a
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® 3rf1 — ABraafr.

The following proposition describes the basic properties of the algebras D(Ts, A)
(see Riedtmann [Rd2] and Waschbiish [W1]).
Proposition 4.8. (1) D(Ts,\), A € K, are symmetric algebras of finite type.

(2) For A ju € K\ {0}, D(Ts, \) = D(Ts, ).

(3) D(Ts,0) 2 D(Ts,1) <= char K # 2.

(4) D(Ts,0) and D(Ts,1) are socle equivalent.

(5) D(Ts,0) = T(B)%2, for an exceptional tilted algebra B = B*(Ts) of Dynkin

type D3, and Zs acting freely on T(B).
(6) For char K =2, D(Ts,1) is nonstandard and degenerates to D(Tg,0).

Example 4.9. Let T'= T2 be the Brauer tree of the form

S L g2 o3 o

Then the Brauer quiver Qr = QT§ is of the form

B2 as
a0 2 3@53 :
B1 a2

and the algebras D(Ts,0) and D(Ts, 1) are of the form

D(Ts,0) = KQr/I(Ts,0), with | D(Ts,1) = KQr/I(Ts,0), with
I(Ts,0) generated by I(Ts, 1) generated by
Braz, azfa Braz, azfa
Baas, a3 Bsas, a3
04% — B1B2 a% — B152
a3 — P01 By agaz — Bean By
azaz — (3 azaz — (3

B251 B2f1 — a1 By

Let B = KQ/I, where Q is the quiver

9
7 ﬁ? 2 [875)
[P >< 6
a2
B2 ag
4 8
Q: Ba
o Bs 3
1 5

and [ is the ideal of K@ generated by the elements aya; — 57 0s, 8204, agfBs. Then
B is a tilted algebra of type Dg = D3.3.
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Moreover, T(B) = KQ'/I’, where Q' is the quiver
3

042

Q' : \ /
\ / as
and I’ is the ideal of K@Q' generated by the elements
agay — B70s, arar — BafBs, aray — 152, P24, BsP7, BsPr, Brae, azfa,

Baas, aefs, Pras, agfs, aeas — Baon B, asas — Bsaafa, agag — BsarBr.
Then the group Zs acts freely on T(B) by the canonical rotation and we have
T(B)% = D(Ts,0).
The following description of the nonsimple standard symmetric algebras of
finite type follows from [BLR], [Rd1], [Rd2], [HW], [W1] and [W2].

Theorem 4.10 (Riedtmann, Waschbiisch, ...). Let A be a nonsimple standard
selfinjective algebra. The following statements are equivalent:
(1) A is symmetric of finite type.
(2) A is isomorphic to T(B)C, for a tilted algebra B of Dynkin type and a finite
group G acting freely on T(B).
(3) A is isomorphic to one of the algebras:
(a) T(B), for a tilted algebra B of Dynkin type.
(b) A(Tg"), for a Brauer tree TE', with the exceptional vertex S of
multiplicity m > 2.
(¢) D(Ts,0), for a Brauer tree Ts, and an extreme exceptional vertex

S.

The remaining (nonstandard) symmetric algebras of finite type are described by
the following theorem proved independently by Riedtmann [Rd2] and Waschbiisch
[W1].

Theorem 4.11 (Riedtmann (1983), Waschbiisch (1981)). Let A be a selfinjective
algebra over K. The following statements are equivalent:

(1) A is nonstandard of finite type.

(2) A is nonstandard symmetric of finite type.

(3) A= D(Ts,1), for a Brauer tree Ts, an extreme exceptional vertex S, and

char K = 2.

Definition 4.12. A symmetric algebra of Dynkin type is defined to be a sym-
metric algebra A which is socle equivalent to an invariant symmetric algebra T(B)Y,
where B is a tilted algebra of Dynkin type and G is a finite group acting freely on
T(B).
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Therefore, a symmetric algebra of Dynkin type is a symmetric algebra listed in
the above Theorems 4.10 and 4.11.

Symmetric algebras of tubular type

In the description of the symmetric algebras of the symmetric algebras of tubu-
lar type a prominent role is played by the tubular algebras introduced by Ringel in
[Ri].

For a triple (p,q,7) € {(3,3,3),(2,4,4),(2,3,6)}, we denote by C(p,q,r) the
canonical tubular algebra of type (p,q,r) given by the quiver

(o) Qp—1
o<~ @0e< ... < <o
V \\Y)
B B2 Bg—1 Bq
° ° ° . ° ° °
.<V—.<— D —
2 r—1

bound by the relation

p...000 + Bq... 0201+ V... v2v1 = 0.

Further, for A € K\ {0, 1}, denote by C(2,2,2,2, ), the canonical tubular
algebra of type (2,2,2,2) given by the quiver

a1 a2

£

agay + o1 +y2y1 =0, gy + AB2f1 + 0201 = 0.

bound by the relations

Then a tubular algebra is defined to be a tilted algebra B = End¢(T) of a
canonical tubular algebra C' of one of tubular types (2,2,2,2), (3,3,3), (2,4,4), or
(2,3,6), and with T a tilting C-module of nonnegative rank.

A tubular algebra B has the following characteristic properties:
gl.dim B = 2;
rk Ko(B) =6, 8, 9, or 10;

B is tame of polynomial growth;
The Auslander-Reiten quiver I'g of B is of the form



46 ANDRZEJ SKOWRONSKI

=l ‘ -3

P qEQ+ T Q

Let B be a tubular algebra. Then it follows from Nehring and Skowroriski [NS]
(see also Happel-Ringel [HR2]) that T(B) is a symmetric standard tame algebra
of polynomial growth and the Auslander-Reiten quiver of T(B) is of the form

W @
i

VqGQ::f 7 T - \/qGQé 1

where 79,71, ..., 7, are P;(K)-families of quasi-tubes (stable tubes with inserted
projective-injective vertices *) and 7,,¢q € Qé_l =Qn(—-1,i),1 <i<r are
P, (K)-families of stable tubes.

The following theorem proved by Biatkowski and Skowronski [BiS1] gives a
characterization of the trivial extension algebras of tubular algebras.

Theorem 4.13 (Biatkowski-Skowronski, 2003). Let A be a representation-infinite
algebra. The following statements are equivalent:
(i) A is tame, standard, weakly symmetric, with all indecomposable nonpro-
jective finite dimensional modules periodic, and singular Cartan matriz.
(ii) A is tame, standard, symmetric, with all indecomposable nonprojective

finite dimensional modules periodic, and singular Cartan matriz.
(iii) A =2 T(B) for a tubular algebra B.

We also note that by a result of [NS], for tubular algebras B and B’, we have
T(B) = T(B') <= B'=5;...5B (finite number of reflections).
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There are 4 families of nonisomorphic trivial extensions of tubular algebras
of tubular type (2,2,2,2), and 38, 85, 4953 isoclasses of the trivial extensions of
tubular types (3,3,3), (2,4,4), (2,3,6), respectively (Biatkowski).

The following problem arises naturally.

PROBLEM 7. When a finite group G acts freely on the trivial extension
T(B) of a tubular algebra B?

By general theory such a group G is cyclic (see [Sk1]).
An additional information is provided by the following theorem proved by Lenz-
ing and Skowroniski [LeSk].

Theorem 4.14 (Lenzing-Skowroniski, 2000). Let G be a finite group acting freely
on the trivial extension T(B) of a tubular algebra B of type (2,3,6). Then G = {1}.

A complete answer to the problem raised above is given by the following theo-
rem proved by Biatkowski and Skowroriski [BiS1].

Theorem 4.15 (Biatkowski-Skowronski, 2002). Let B be a tubular algebra such

that a nontrivial finite group G acts freely on T(B). Then T(B) = T(B’) for a
tubular algebra B’ given by one of the following bound quivers:

v\ j

3
(6%
o, /B ’
1

pya = ¢pof3 ta =1y, Ca=uwy

Yya = Ao g0 =np, Co=Iwf
Bi(A) Bs(N)

Ae K\ {0,1} A e K\{0,1}

nrs
.
/
N

&
w
oy
i
L

L
oo

ot

[

.
/
.\°
\f
TN
SN

oy
0
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(where a dotted line means that the sum of paths indicated by this line is zero if
it indicates exactly three parallel paths, the commutativity of paths if it indicates
exactly two parallel paths, and the zero path if it indicates only one path).

Here, B1(A), Ba(A) are tubular algebras of type (2,2,2,2), Bs, B4, Bs, Bg, Br,
Bg are tubular algebras of type (3,3,3), and By, Big, B11, Bi2, Bis are tubular
algebras of type (2,4,4).

The following characterization of the nontrivial invariant algebras of the trivial
extensions of tubular algebras of free actions of finite groups has been established
by Biatkowski and Skowronski [BiS2].

Theorem 4.16 (Biatkowski-Skowroriski, 2003). Let A be a representation-infinite
algebra. The following statements are equivalent:
(i) A is tame, standard, weakly symmetric, with all indecomposable nonprojec-
tive finite dimensional modules periodic and nonsingular Cartan matriz.
(ii) A = T(B)Y for a tubular algebra B and a nontrivial finite group G acting
freely on T(B).
(iii) A is isomorphic to one of the bound quiver algebras.

s =0y
aya = aof3 a? = oy
Bra = NBofs A5% = vo
yoy = oy ya = By
yao = XoBo o3 = ao
A1(N) = T(B1(N)™ Az(N) = T(B2 (M)
e K\ {o0,1} e K\ {o0,1}

it b o=

P P 2% = 29

Ba+dévy+e£=0 Ba+dy+e£=0 Bay =0
aB =0, & =0 aBf =0, ve=0
¥6 =0 £6=0

A3 = T(B3)%2 Ay = T(B3)%2 As 2 T(By)%4
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ol @, 0, _ ¢, R
A B g g Ul\jyaaﬂ—o
ad =B Ba = &y B Bay =0
By =0 v8 = €€ _g_’ afo =0
ﬂa2:0 ade =0 afa=0§, £y =0
a?y =0 £&vB =0 BaB =~48, do =0

Ag = T(B5)Z4 A7 = T(B4)Z2 Ag = T(Bs)z2
o I B &, ¢,
al EH’Y }/v 5 a v 4
yapB = v&y
Sa =¢ef,ve = Bo,acB =0 aBs = 58 Ba =0, 6v=0
ey6 = 0,07ey =0 Ba =0, (v£8)%2y =0 &€ =0, (79)*=¢s

Ag = T(BG)Z2

Aq & T(B7)Z2

A1 = T(Bg)Z2

7/‘ \7‘ —LBire, v
4—5>_ v o Ba = Sv6~y
&) a2 =~B, B5=0, =0 adys =0
586 = ary oy=0, ad=0, ca=0 ~yévB =0
vBa =0, BB =0 ad =60 af =0

A1z 2 T(Bg)%s

A14 2 T(B11)%s

yBa =0, o =48
B6=0,a0 =0, = oy

A1s =2 T(Bi12)%3

5

afBy =0, a? = B
3 =0,0aa=0,0a =~o

A = T(Blg)Z3

We note that all algebras presented above, except A4 for char K # 2, are
symmetric.

The following theorem proved by Biatkowski and Skowronski in [BiS3] gives a
complete description of the nonstandard symmetric algebras which are socle equiv-
alent to the standard symmetric algebras described in Theorems 4.13 and 4.16.

Theorem 4.17 (Biatkowski-Skowronski, 2004). Let A be a nonstandard symmet-

ric algebra over an algebraically closed field K. Then A is socle equivalent to a

standard representation-infinite tame symmetric algebra A with all indecomposable

nonprojective modules periodic if and only if exactly one of the following cases holds:

(i) K is of characteristic 3 and A is isomorphic to one of the bound quiver
algebras
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aC.<—;_>. QC.<—;_».

o? =~p a?y =0, Ba®=0
Bay = Ba’y By =0, ByB=0
BayB =0 By = Bay
yBay =0 o® =~p
Al A2
(ii) K is of characteristic 2 and A is isomorphic to one of the bound quiver

algebras

S - A
BRI S

_—
a*=0, va®=0, L0,
o2 =oy+a®, A% =~ro o =~8, a® =60, B6=0
ya =By, off=aoc Jﬁ;:a'yd (55);ﬁ:(? oy=0, ad =0, ca =0
yBay =0, ayfa =
As(X) ~Ba = yB5Ba Y8y =0, ByB =0, By = Bay
e K\ {0,1} Ag As
a 0 . .
.—>.—>.
aéyd =0, véyB=0 VAR LN
afBa =0, BaB =0 B B
af = advypB Bé = Bad,ac =0,ad = oy 08 =daf,ca =0,0a = vyo
Ba = 58y YBa=0,0°> =63,785 =0  afy=0,0>=p5353y=0

BB =0, A76ﬁ6:O BoB =0, As 666 =0

As
il
. g
£5
Ba+dy+e£=0
¥6 =0, & =0, aBfa=0

BapB =0, af = adys
Ag

uB =0, an =0, Ba =74y
o =np, 06 =&+ odod
dodo =0, E&v€&y =0

Ao

W also note that if A is a nonstandard algebra A;, i € {1,...,10}, then A de-
generates to a standard symmetric algebra A’ = T(B)Y, for an exceptional tubular

algebra B and a nontrivial group G acting freely on T(B) (see Biatkowski-Holm-
Skowroriski [BHS]).

Definition 4.18. A symmetric algebra of tubular type is defined to be a sym-
metric algebra A which is socle equivalent to an invariant symmetric algebra T(B)Y,
where B is a tubular algebra and G is a finite group acting freely on T(B).

Therefore, a symmetric algebra of tubular type is a symmetric algebra listed in
the above Theorems 4.13, 4.16 and 4.17.

Example 4.19. The trivial extension T(Bj) of the tubular algebra Bj of type
(3,3,3), presented in Theorem 4.15, is the bound quiver algebra KQ/J given by
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the quiver

and the ideal J is generated by the elements

ayaras — Ygfs, azarar — 2 B2, asazar — Yafa, arasas — Y6 B, Bave, Bess Be2,

Bava, Beoriavr, Byazavy, Pocs iz, Bacirais, 0 Qurya, Qrisya, 50378, Q3001 Y6.-

Then the group Z4 acts on T(Bj5) by the obvious rotation and
T(B;)™ 2= Ag = KQ/ I,

where «

Q: 1 2

gl
g

and the ideal I is generated by o® — 73, 37, Ba?, a?y.
Consider the algebra

Ay =KQ/IW, IV =(a® =8, 8y — Bay, a®, o).
Then Ag and As are selfinjective algebras of dimension 11, and we have

o Ag =2 Ay < char K # 3,
e char K =3 = As is nonstandard,
o Ag/socAg = Ao/ socAs.

Consider also the family of algebras
AW =KQ/IW, IV = (a® — 7B, By — thay, fo®, a®y), tE K.

Then we have

e AW =AM = A, forte K\ {0},
e Ag = A =1im A®)  As € GLy;(K)As.

t—0
Therefore Ag is a degeneration of Ay (As is a deformation of Ag). Moreover,
the Auslander-Reiten quivers I'4, and I'y, of Ag and As coincide and are of the
form
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Algebras of quaternion type

The following class of algebras of quaternion type has been introduced by Erd-
mann (see [E1], [E2], [E3]).

Definition 4.20. An algebra A is said to be of quaternion type if the following
conditions are satisfied:

e A is symmetric, indecomposable, tame of infinite type;

e The indecomposable nonprojective finite dimensional A-modules are 2 4-
periodic of period dividing 4;

o The Cartan matriz of A is nonsingular.

This class of algebras includes all blocks of group algebras of finite groups with
generalized quaternion defect groups. In [E1], [E2], [E3] Erdmann proved that
any algebra of quaternion type is Morita equivalent to an algebra in 12 families
of symmetric algebras defined by quivers and relations (presented in the theorem
below). Later, Holm [Hol] has classified these algebras up to derived equivalence,
and proved (applying the Geiss degeneration theorem [Ge] and the known results
on selfinjective algebras of tubular type [Sk1]) that they are in fact tame. The
problem whether all algebras listed by Erdmann are of quaternion type has been
solved recently in the paper by Erdmann and Skowronski [ES1]. Therefore, we
have the following theorem.

Theorem 4.21. Let A be a selfinjective algebra. The following statements are
equivalent:

(i) A is of quaternion type;

(ii) A is Morita equivalent to one of the bound quiver algebras
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Q" (c)
02 = (fa) =15+ c(ap)*
B* = (ap)fla

Q2A) (c):
o
[ ] - [ ]
By = (yaB)Ftya
BB = (afvy)fFap
a? = (Bya)k 1By + c(Bya)k
a?B=0
k>2,ce K

Q(2B)5(a,c):
(o=
a e—— oo n
Y
af = PBn, ny =a, By =a?
VB =n* +an*~ + cn?
CYS+1 — 07 775+1 — 0

yafl =0, 013 =0
s>4,ac K*, ce K

Q(BA)*(d):
163 )

.éry;.én;.

Bon = (By)"1p
oy = (v8)F 1y
B =dné)*"'n
YB3 = d(dm)*~to
Bond =0, nyBy =0
ks>2 de K*

(k=s=2=d#1,elsed=1)

Q*(c,d):

char K = 2

a? = (Ba)* 1B+ c(aB)”

62 — (aﬁ)k’la —i—d(aﬁ)k
(aB)F = (Ba)*, (af)fa =0
(Ba)* B =0

k>2 ¢,deK, (cd)#(0,0)

af = B, ny = ya, By = o?
B =an'"! +en'

at =0, 9t =0, va? =0
a?f=0

t>3,ace K*,ce K

t=3=a#1,t>3=>a=1)

Q(3A)5:
B )
e~ e __—"oo
vy n

BB = (Bény)*1Bén
By = (0myB)F~ony
non = (nyB8)*~1nyp
ond = (vB6n)*~1vBs
ByBd =0, ndny =0
k> 2
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Q(3B)F:
(o=
o e ____~e___—o
vy n
py=a""

af = (Bony)*=18sn
yor = (8nyB)F oy
ndn = (nyB8)* 1y
5nd = (vBon)*~1~B8

Qae)*:

Bo=0,07y=0,n0°=0
0%6=0

on—B=0""1, no= (nd)*n
06 = (6n)*=18, (B7)*1B6 =0

a?B=0, B6ns =0 (n&)tny=0

k>1,s>3 k>2 s>3
Q(?)IC)a’b’c.'

Q(3D)k’s’t: 5

A\ B 5 V ~
@ ° —>'>' ° —>77 ° € . "
A §
fy=a""!
°

v = (5nyB) Loy

af = (Bény)k=1Bon 86 = (kA" 'r
nd = ¢t my = (Ak)*IA
8¢ = (yBon)k 138 SA = ()"t
&n = (MBS s kn = (By)"1p

a23 =0, 6m5 =0 A8 = (nd)~tn, vk = (n)*16
k>1,st>3 ¥86 =0, dny=0, Akn =0
a,b,c > 1 (at most one equal 1)

We have also the following consequence of the classification of the tame sym-
metric algebras with all indecomposable nonprojective finite dimensional modules
periodic [ES2].

Theorem 4.22 (Erdmann-Skowroniski, 2006). Let A be a basic, indecomposable,
finite dimensional symmetric, tame algebra over an algebraically closed field K , with
all indecomposable nonprojective finite dimensional modules Qx-periodic. Then
(1) The Cartan matriz Cn of A is singular if and only if A is isomorphic to
the trivial extension T(B) of a tubular algebra B.
(2) If A is representation-infinite with nonsingular Cartan matriz Ca then A
has at most 4 isoclasses of simple modules.
(3) If A is representation-infinite then A has at most 10 isoclasses of simple
modules.

5. Periodicity and hypersurface singularities

The aim of this section is to present natural examples of periodic algebras
arising in commutative algebra. For basic background on the commutative algebra
considered here we refer to the books [E] and [Yo].

Let R be a commutative noetherian local ring and m the maximal ideal of R.
Denote by dim R the Krull dimension of R, that is, the length of maximal chain
of prime ideals of R.

Let M be a right R-module. A sequence x1,...,z, € mis said to be a regular
sequence on M if z; is not a zero-divisor of M/M(z1,...,x;—1), for any i €
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{1,...,n}. The maximal length of regular sequences on M is said to be depth
of M and denoted by depth(M). Then M is said to be a (maximal) Cohen-
Macaulay R-module if depth(M) = dim R. Further, R is said to be a Cohen-
Macaulay ring if Ry is a Cohen-Macaulay R-module. Moreover, the ring R is said
to be regular (nonsingular) if m is generated by a regular sequence (equivalently,
gl.dim R = dim R, by the Auslander-Buchsbaum-Serre theorem). Finally, R
is said to be an isolated singularity if R is nonregular and the localization R, is
regular (nonsingular) for any prime ideal p # m of R.

Let K be an algebraically closed field and S = K[[zo,x1,...,2y]] the formal
power series K-algebra. Then S is a commutative, complete, noetherian, regular,
local K-algebra with dim S =n+1, and m = (g, 21, ..., Z,) is the unique maximal
ideal of S. For 0 # f € m?, the quotient algebra R = S/(f) is called a hypersur-
face singularity. Then R is a commutative, complete, noetherian, local K-algebra
with dim R = n. The ideal

of o 9
70= (#55 5ry o)

of S = K|[[zg, 21, ...,xy]] is called the Jacobian ideal of f. Then it is known that
R = S/(f) is an isolated hypersurface singularity if and only if dimy S/7(f)
is finite.

It has been observed by Greuel and Kroning [GrKr] that if S = K[[zg, 21, . .., zy]],
0+# f em? and R = S/(f) is an isolated hypersurface singularity then R = S/(F)
for a polynomial F € Klxg,x1,...,Zn].

Let R be a hypersurface singularity. We denote by CM(R) the category of
finitely generated maximal Cohen-Macaulay R-modules. Then CM (R) is a Krull-
Schmidt category (unique decomposition of objects into direct sums of indecompos-
able objects). The hypersurface singularity R is called of finite Cohen-Macaulay
type (shortly, finite CM-type) if CM(R) has only a finite number of pairwise
nonisomorphic indecomposable objects.

The following important fact was proved by Auslander in [Aul].

Theorem 5.1 (Auslander, 1986). Let R be a hypersurface singularity of finite C M -
type. Then R is an isolated singularity.

Let R be an isolated hypersurface singularity. Then the category CM(R) has
the following properties:

e CM(R) is a Frobenius category (projective objects are injective), and R
is a unique indecomposable projective object.
e CM(R) admits Auslander-Reiten sequences (Auslander [Au2]).

Then I'g = Tr(CM(R)) is said to be the Aulander-Reiten quiver of R. We may
also consider the stable category CM(R) of CM(R), and the stable Aulander-

Reiten quiver I'};, = 'r(CM(R)) of R (obtainded from I'g by deleting R and the

arrows attached to R). Moreover, we have the following equivalences of functors
from CM(R) to CM(R):

o O% idem(r),
e 7r = idon(R), if dim R is even,
e T = Op, if dim R is odd.
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Let R = S/(f) be a hypersurface singularity. Denote by ¢(f) the set of all
proper ideals I of S = K[[zo,x1,...,%,]] such that f € I?. Then R is called a
simple hypersurface singularity if the set ¢(f) is finite.

The following important theorem is due to Arnold [Arnl] (see also [Arn2]).

Theorem 5.2 (Arnold, 1972). Let R be a hypersurface singularity of dimension d
over an algebraically closed field K of characteristic 0. Then the following state-
ments are equivalent:
(1) R is a simple hypersurface singularity.
(2) R is of finite deformation type.
(3) R = Kllxo,x1,.-.,24]]/( éd)), for a Dynkin graph A of type A,(n > 1),
D,(n > 4), Eg, Er, or Es, where

O = aalt il
W= ey lyadt+ad,
fé? = ay+af+ad+-+al,
R = adtaord +ad+ o+ a3,
f]éj) = aj+al+ai+-+ad

Here, the finite deformation type means that R can be deformed only into
finitely many other nonisomorphic singularities (see [Arnl] for more details).

The ring K|[zo, 21, ... ,xd]]/(f(Ad)) is called the Arnold’s simple hypersur-
face singularity of dimension d and Dynkin type A.

The following theorem proved by Buchweitz, Greuel, Schreyer [BGS] and
Knérrer [Kn2] shows importance of Arnold’s simple hypersurface singularities for
Cohen-Macaulay modules.

Theorem 5.3 (Buchweitz-Greuel-Schreyer, Knorrer, 1985-1987). Let R be a hy-
persurface singularity of dimension d over an algebraically closed field K of charac-
teristic 0. Then R is of finite Cohen-Macaulay type if and only if R is isomorphic

to Kl[xo,1,. .. ,xd]]/(f(Ad)), for some Dynkin graph A.

We will show now that the study of the categories of CM(R) for hypersurface
singularities R of finite Cohen-Macaulay type can be reduced to the dimensions 1
and 2. This is done by the Knorrer’s and Solberg’s periodicity theorems.

Let S = K[z, 21,...,2y]] and R = S/(f) be an isolated hypersurface singu-
larity. Consider the rings

S* = S[[u]] and R* = S*/(f 4 u?).
Then the Knorrer’s periodicity theorem [Kn2]| (see also [Kn1]) is as follows.

Theorem 5.4 (Knorrer, 1987). Let R be an isolated hypersurface singularity over
an algebraically closed field K of characteristic # 2. Then R is of finite Cohen-
Macaulay type if and only if R* is of finite Cohen-Macaulay type. Moreover, if R
is of finite Cohen-Macaulay type, then
(1) CM(R*) = CM(R)[Zs] skew group category, and hence T'%, is a twisted
quiver of I'y.
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(2) CM((R*)*) =2 CM(R), and hence the translation quivers Dlgeys and Ty

are isomorphic.

Let S = K[z, 21,...,2y]] and R = S/(f) be an isolated hypersurface singu-
larity. Consider the ring
R* = S[u, v]]/(f + uwv).

Then the Solberg’s periodicity theorem [So] is as follows.

Theorem 5.5 (Solberg, 1989). Let R = S/(f) be an isolated hypersurface singu-
larity over an arbitrary algebraically closed field K. Then R is of finite Cohen-
Macaulay type if and only if R* is of finite Cohen-Macaulay type. Moreover, if
R is of finite Cohen-Macaulay type, then there is an equivalence of categories
CM(R) — CM(R*), which induces an isomorphism of the stable Auslander-

Reiten quivers I'y — T'%,..

We note that, for K of characteristic # 2, the Solberg’s periodicity is equivalent
to the Knorrer’s periodicity.
Let K be an algebraically closed field of characteristic 0. Consider the special
linear group
SLo(K) = {A € Mayo(K) | det A =1}.

It is a classical result that every finite subgroup of SLy(K) is conjugate in SLa(K)
to one of the following Klein groups

C;, the cyclic group of order n, n > 1,

Dj,., the binary dihedral group of order 4n, n > 2,

T*, the binary tetrahedral group of order 24,

O%, the binary octahedral group of order 48,

T*, the binary icosahedral group of order 120.

Let G be a group of the above form. We associate to G a Dynkin graph
A = A(G) as follows:

o Ap=A(Cr1,)n > 1,

e DD, = A(D;(n_l)),n >4,
o Eg = A(T™),

.« Er = A(O"),

o Eg = A(T%).

Let G be a finite subgroup of SLa(K). Then G acts on the algebra K[[X,Y]]

as follows: for ( . Z ) € SLy(K) and f(X,Y) € K[[X,Y]],

(¢ Z)f(X,Y)f<<Z Z)1<‘§)>

= f(dX —bY,—cX + aY).
Hence, we may consider the invariant algebra
KX, Y] = {£(X,Y) € K[IX, Y]] | gf(X,Y) = f(X,Y) for all g € SLy(K) } .

The following theorem is the classical result proved by Klein in his famous book
on the icosahedron [Kle].
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Theorem 5.6 (Klein, 1884). Let K be an algebraically closed field of characteristic
0, and G a finite subgroup of SLa(K). Then

K([X,Y]]% = K, y, 2]}/ (fa)

where A = A(G) is the Dynkin graph of G, and

fa, 2 +y" 4 22
o, 22y 4yt 4+ 22
fee = @ +yt+22
fe, = 2 +ay®+ 22
f]Eg — x3+y5+22.

Hence, fa = f(i) with = xg, y = x1, 2 = 2o, and K[[X, Y]] are the Arnold’s
simple hypersurface singularities of dimension 2. We note that, for K = C, the orbit
space C2/@ is a compact Riemann surface with at most 3 singular points, and the
Dynkin graph A(G) describes the multiplicities of these singular points. We refer
also to [Len] for a connection with the representation theory of tame hereditary
algebras.

Therefore, we obtain the following result proved already by Artin-Verdier [ArVe],
and Esnault-Knorrer [EsKn].

Theorem 5.7 (Artin-Verdier, Esnault-Knorrer, 1985). Let R be a hypersurface
singularity of dimension 2 over an algebraically closed field K of characteristic 0.
Then R is of finite Cohen-Macaulay type if and only if R = K[[X,Y]]C, for a finite
subgroup G of SLa(K).

The following theorem proved by Auslander-Reiten [AR1], [AR2] describes
the Auslander-Reiten quivers of the simple hypersurface singularities of dimension
two in arbitrary characteristic.

Theorem 5.8 (Auslander-Reiten, 1986). Let R = K|[[z,y, 2]]/(fa) be an Arnold’s
simple hypersurface singularity of dimension 2 over an algebraically closed field K
of arbitrary characteristic. Then the Auslander-Reiten quiver I'r is of the form

n>1
o= e _—__——~e_— - ... T e °
(n+ 1 vertices)

A:]D)n °

n>4

i
N\,

(n + 1 vertices)
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A=Eq ﬂ
R
R I
R

and, in all cases, the Auslander-Reiten translation Tg is the identity.

Let R = K[[z,y]]/(9a), where A is a Dynkin graph, and ga = f(Al), with
T =z, Yy = x1, is of the form

ga, = z>+y"t
g, = Ty+y"
g, = 2°+y’,

gg, = 2 +xy’,
grs = 20 +y’.

Then R is called a simple plane curve singularity.
The following theorem has been proved by Dieterich and Wiedemann [DW] in
characteristic # 2 and completed by Kiyek and Steineke [KS] in characteristic 2.

Theorem 5.9 (Dieterich-Wiedemann (1986), Kiyek-Steineke (1985)). Let R =
K([z,y]]/(ga) be a simple plane curve singularity over an algebraically closed field
K of arbitrary characteristic. Then the Auslander-Reiten quiver I'g is of the form
N
A:Aim e~ e __~e0e_ - ZTe_—~ e __—
m >

(m + 1 vertices, T = Qg = identity)

A= AQm—l °

SN
7

[ ]
(m + 2 vertices, Tr = Qg = reflection at the horizontal line)

——— > e———@¢— .... S g——> ¢ ——>
PN (—— — . & _ -
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A:ng ° ° > @ — -+ >0 —>0 ——— 0
m>9 l l\\
R>< N >< ><I%1d
o — 00— 0 — ... >0 —0 —0
(A4m + 1 vertices, Tr = Qpr = reflection at the horizontal line
through R,a,b,c,d, with Tra = d, TRb = ¢, 7% = id)
A:}D)vaLl *e—— >0 —>0— ... >0—>0—>0
o | \
.H.H.—""é.%.%./
(A4m wvertices, TR = Qpr = reflection at the horizontal line
through R and a)
A — Eﬁ e ——> @ \
" >< / '
\ e ——> 0 /
(7 vertices, Tr = Qg = reflection at the horizontal line through
R, a and b)
A=K, . . . /o . o\
. . . . . .
(15 wertices, TR = Qgr = reflection at the horizontal line
through R, a and b, with Tra = b, TRb = a)
A =Eg

[ ] [ ] [ ) [ ) [ ) [ ) [ ]

[ ] [ ] ./ [ ) [ ) [ ) ./
(17 wvertices, T = Qg = reflection at the horizontal line
through R, a and b, with Tra = b, TRb = a)
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Greuel and Kroning introduced in [GrKr| the concept of finite deforma-
tion type of hypersurface singularities for algebraically closed fields of positive
characteristic and proved the theorem of the form.

Theorem 5.10 (Greuel-Kroning, 1990). Let R be a hypersurface singularity. The
following statements are equivalent:

(1) R is a simple hypersurface singularity.

(2) R is of finite deformation type.

(3) R is of finite C M -type.

We note that in characteristic # 2, 3,5, the Arnold’s simple hypersurface sin-
gularities are all simple hypersurface singularities.

The normal forms of simple hypersurface singularities of dimension 1 were
classified by Kiyek and Steineke [KS].

The normal forms of simple hypersurface singularities of dimension 2 were
classified by Artin [Artl], [Art2].

The normal forms of simple hypersurface singularities of dimensions > 3 can be
obtained from the normal forms of dimensions 1 and 2 by the Solberg’s periodicity
theorem (see [So| and [GrKr)).

The following theorem is a combination of results proved by Solberg in [So]
and Greuel and Kroning in [GrKr].

Theorem 5.11 (Solberg (1989), Greuel-Kroning (1990)). Let R be a hypersur-
face singularity of finite CM -type over an algebraically closed field K of arbitrary
characteristic. Then the Auslander-Reiten quiver I'r of R is isomorphic to the
Auslander-Reiten quiver of an Arnold’s simple hypersurface singularity of dimen-
sion 1 or 2 (simple plane curve singularity or Kleinian singularity).

Let R be a hypersurface singularity of finite C'M-type over an algebraically
closed field K of arbitrary characteristic. Then CM (R) is a Frobenius category
of finite type. Let My, Ms,..., M, be a complete set of pairwise nonisomorphic
indecomposable nonprojective objects in CM (R) and

M=M & My® - & M,.
Then the endomorphism algebra

A(R) = Ende(r) (M)

of M = M in the stable category CM(R), and called the stable Auslander
algebra of R. For a Dynkin graph A, denote

P(A) = A(K[[z,y,2]])/(fa)),

P(A)" = A(K[[z,y]])/(9a))-
The following theorem describes the basic properties of the algebras P(A) and
P(A)*.

Theorem 5.12. Let A be a Dynkin graph. The following statements hold:
(1) P(A) is a basic finite dimensional selfinjective K -algebra. Moreover, the
Nakayama permutation v of P(A) is the identity for A = Ay, D, (n even),
E7, Es, and of order 2 for A=A, (n>2), D, (n odd), Es.

(2) P(A)* is a basic finite dimensional, symmetric K -algebra.
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It follows from the above remarks, that the stable Auslander algebra A of any
hypersurface singularity R of finite C M-type of even dimension (respectively, odd
dimension) is isomorphic to P(A) (respectively, P(A)*), for some Dynkin graph A.

The algebra P(A) is called the preprojective algebra of Dynkin type A,
and was introduced by Gelfand and Ponomarev in [GePo].

The algebra P(A)* is called the twisted preprojective algebra of Dynkin
type A.

For K of characteristic # 2, we have the Morita equivalences of

P(A)* and P(A)[Z2] (skew group algebra),
P(A) and P(A)*[Zs] (skew group algebra),
for the corresponding actions of Zs on the algebras P(A) and P(A)*.

We also note that, with few exceptions, the algebras P(A) and P(A)* are of
wild representation type (see [ES1]).

We will show now that P(A) and P(A)* are periodic algebras.

Let K be an algebraically closed field. Moreover, let B be a K-category C M (R),
for an isolated hypersurface singularity R over K. Then B is a Frobenius category
with Auslander-Reiten sequences. Denote by ¢ = mod B = (B°P, Ab) the category
of finitely presented contravariant functors from the stable category B of B to the
category Ab of abelian groups.

The following theorem due to Auslander and Reiten [AR3] describes the basic
properties of the category % .

Theorem 5.13 (Auslander-Reiten). The following statements hold:
(1) € is a Frobenius abelian K -category whose projective objects are the repre-
sentable functors Homg(—, B), B objects of B.
(2) € admits Auslander-Reiten sequences.

Moreover, denote by Ng, 758, Q5 (respectively, Ng, 7%, Q%) the Nakayama,
Auslander-Reiten and syzygy functors on B (respectively, on ©). Then we have the
following two theorems proved by Auslander and Reiten in [AR3].

Theorem 5.14 (Auslander-Reiten, 1996). In the above notation, the following
statements hold:
(1) Neg(Homp(—, B)) = Homp(—, Q5" 75(B)) for any object B of B.
(2) The functors 74, Q2 Ng , NeQZ : € — € are equivalent.
(3) If the functor leTB : B — B has order s and the functor QQB : B — B has
order t, and r = lem(s, 3t), then 72, — idg.

Theorem 5.15 (Auslander-Reiten, 1996). Let € = mod CM(R) for an isolated
hypersurface singularity R over K. The following statements hold:
(1) If R has even dimension, then each indecomposable object of € is T¢-
periodic of period dividing 6.
(2) If R has odd dimension, then each indecomposable object of € is T4 -periodic
of period dividing 3.
PROOF. We have O3, — idc(p)-
(1) If dim R is even then 7p — idcar(r). Hence Qp'rtp = Qp' has order 2,
and so r =1lem(2,3-1) = 6.
(2) If dim R is odd then 75 —~ Qp. Hence lerR = idea(r), and so r =
lem(1,3-1) = 3.
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Assume that R is a hypersurface singularity over K of finite C'M-type. Then
CM (R) has only a finite number of indecomposable objects, and hence we have an
equivalence

mod CM (R) — mod A(R)

which commutes with the Auslander-Reiten translations 7 on mod CM(R) and
Tar) = DTr on A(R). Recall that 74y = Qi\(R)NA(R)- We also note that the
algebra P(A) (respectively, P(A)*) is semisimple if and only if A = A;.

Therefore, we obtain we obtain the following periodicity theorem proved by
Auslander and Reiten in [AR3].

Theorem 5.16 (Auslander-Reiten, 1996). Let A be a Dynkin graph # Ay. The
following statements hold:
(1) Tg(A) = TmodP(A)s Q?I’D(A) = N;(lA) and Q%(A) = ImodP(A) @S functors on
modP(A).
(2) T“Z’,(A)* = ImodP(a)- and Q?D(A)* = ImodP(a)- @S functors on modP(A)*.

In fact, we have the following theorem proved by Schofield [Scho] and Erdmann
and Snashall [ESn].

Theorem 5.17 (Schofield (1990), Erdmann-Snashall (1998)). Let A be a Dynkin
graph # A;. Then Q%(A)eP(A) >~ P(A) in mod P(A)°.

Moreover, we have the following recent result proved by Bialkowski, Erdmann
and Skowroriski [BES1], [BES2].

Theorem 5.18 (Biatkowski-Erdmann-Skowroniski (2006)). Let A be a Dynkin graph
# Ay. Then Q?P(A)*)CP(A)* >~ P(A)* in mod(P(A)*)e.
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