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BERNHARD KELLER

Abstract. We show that derived equivalences preserve the homotopy type
of the (cohomological) Hochschild complex as a B∞-algebra. More generally,

we prove that, as an object of the homotopy category of B∞-algebras, the

Hochschild complex is contravariant with respect to fully faithful derived tensor
functors. We also show that the Hochschild complexes of a Koszul algebra

and its dual are homotopy equivalent as B∞-algebras. In particular, their

Hochschild cohomologies are isomorphic as algebras, which is a recent result
by R.-O. Buchweitz [4], and as Lie algebras. Our methods also yield a derived

invariant definition of the Hochschild complex of an exact category.

1. Introduction

Let k be a field. It is a theorem of D. Happel [14] and J. Rickard [28] that if two
(associative, unital) k-algebras A and B have equivalent derived categories

DA ∼→ DB ,

then there is an isomorphism of graded algebras between their Hochschild coho-
mologies HH∗(A,A) and HH∗(B,B). More precisely, if X is a complex of A-B-
bimodules such that the total derived functor

?⊗L
A X : DA→ DB

is an equivalence, then there is a canonical algebra isomorphism fX : HH∗(B,B) ∼→
HH∗(A,A) associated with X. It was shown in [17] that fX also respects the Lie
algebra structures given by the Gerstenhaber bracket. In this article, we refine and
generalize these results: the cup product and the Lie bracket on H∗(A,A) come
from certain operations on the Hochschild complex C(A,A) itself. In fact, this
complex has many more operations, most of which do not descend to homology.
The situation is described precisely by saying that C(A,A) is a B∞-algebra in the
sense of Getzler–Jones [9, 5.2], i.e. its bar construction B(C(A,A)) is endowed with
a differential and a multiplication which, together with the canonical comultipli-
cation, make B(C(A,A)) into a differential graded bialgebra. Let us consider the
homotopy category of B∞-algebras Ho(B∞), i.e. the category obtained from the
category of B∞-algebras by formally inverting all morphisms which induce quasi-
isomorphisms in the underlying complexes. Our main result (3.2) is that in the
above situation, the morphism fX lifts to an isomorphism

ϕX : C(B,B) ∼→ C(A,A)

in the homotopy category ofB∞-algebras. This refines the known invariance results.
Moreover, we succeed in constructing a (not necessarily invertible) morphism ϕX
under weaker hypotheses: for ϕX to be defined, it suffices that the functor

?⊗L
A X : DA→ DB
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induces a fully faithful functor on the subcategory of perfect complexes, or, equiv-
alently, that the canonical morphism

A→ RHomB(X,X)

is a quasi-isomorphism (3.3). If this is the case and, moreover, the canonical mor-
phism

Bop → RHomAop(X,X)

is a quasi-isomorphism, then ϕX is invertible. This suffices to show that if A is a
Koszul algebra and A! its Koszul dual (with the natural bigrading), then we have
an isomorphism

C(A,A) ∼→ C(A!, A!)

in the homotopy category of Adams graded B∞-algebras (3.5). In particular, this
yields a new proof of R.-O. Buchweitz’ theorem [4] that the Hochschild cohomology
algebras of A and A! are isomorphic.

To prove these results, we work in the more general setting of dg categories
(section 4). This proves to be extremely convenient thanks to the fact that each
fully faithful dg functor

F : A → B
induces a restriction map

F ∗ : C(B,B)→ C(A,A)

which is compatible with the B∞-structures. Apart from this observation, our main
technical tool is (the generalization to dg categories of) the homotopy bicartesian
square (4.5)

C(T, T ) //

��

C(A,A)

��
C(B,B) // C(A,X,B)

,

where A and B are dg algebras, X is a dg A-B-bimodule,

T =

(
A X
0 B

)
the obvious dg algebra of upper triangular matrices and C(A,X,B) the canonical
complex computing

RHomAop⊗B(X,X).

The long exact sequence associated with this square was discovered by D. Hap-
pel [14] (in the case where A = k) and has been further studied and generalized
in [5], [25], [11], [6], [12], [10], [3]. Similar ideas appear in work on automorphism
groups by Guil-Asensio–Saoŕın [13].

Using this square and the functoriality of A 7→ C(A,A) with respect to fully
faithful dg functors, we construct (4.6)

ϕX : C(B,B)→ C(A,A) ,

for suitable A-B-bimodules X, as a morphism of the homotopy category Ho(B∞).
We prove its fundamental properties, notably its (partial) compatibility with tensor
products of bimodules.

The generality of the construction in section 4 makes it possible to define (sec-
tion 5) the Hochschild complex of a (small, k-linear) exact category E in the sense
of Quillen [26] in a way which is invariant under derived equivalences: We define

C(E , E) = C(Q,Q) , Q = Cb(E)/Acb(E)) ,
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where Cb(E)/Acb(E) is the quotient dg category of the dg category of bounded
complexes Cb(E) by the dg category of acyclic bounded complexes Acb(E). The
existence and uniqueness of such a quotient (in a suitable category) was proved
in [19] and [7]. The Hochschild cohomology and deformation theory of abelian
categories is being studied by T. Lowen [23]. The relation of our approach to her
work remains to be elucidated.

I thank Seokbong Seol for pointing out to that the Adams grading has to be
taken into account in Theorem 3.5.

2. B∞-algebras

Let k be a commutative ring and C a Z-graded k-module

C = ⊕p∈ZCp.

The suspension C[1] of C is the Z-graded k-module with C[1]p = Cp+1 for all
p ∈ Z. Let BC be the graded tensor k-coalgebra on the suspension C[1] of C. We
denote its comultiplication by ∆, its counit by η and its canonical augmentation
by ε. A B∞-algebra [9] [1] structure on C is the datum of a differential d and a
multiplication µ on BC such that (BC, d, µ,∆, ε, η) is a differential graded bialgebra
(it is then automatically a dg Hopf algebra).

The datum of the differential on BC translates into the datum of an A∞-algebra
structure on C (in particular, C itself carries a natural differential) while the mul-
tiplication µ corresponds to the datum of a family of morphisms

C⊗l ⊗ C⊗m → C , l,m ≥ 0 ,

satisfying a series of compatibility conditions among each other and with the A∞-
structure.

Let A be an associative unital dg k-algebra and C = C(A,A) its Hochschild
complex. It was shown by Getzler and Jones [9] that C has a canonical B∞-
algebra structure: The underlying A∞-structure on C is the canonical dg algebra
structure on C (whose homology is the Hochschild cohomology algebra) whereas the
multiplication µ corresponds to the brace operations [1], [16], [9, 5.2]. In particular,
the B∞-structure on C(A,A) determines the Gerstenhaber bracket and the cup
product on the Hochschild cohomology HH∗(A,A).

A natural explanation for the presence of the B∞-structure on the Hochschild
complex C(A,A) is provided by A∞-category theory [21] [22] [24] [20]: Let A be the
A∞-category with one object whose A∞-endomorphism algebra is A. Let Fun(A,A)
be the A∞-category of A∞-functors from A to A and let 1 be the identical A∞-
functor. Its A∞-endomorphism algebra in Fun(A,A) is naturally isomorphic to the
dg algebra C(A,A)

HomFun(A,A)(1,1) = C(A,A)

and the associative multiplication on BC(A,A) comes from the composition A∞-
bifunctor

Fun(A,A)× Fun(A,A)→ Fun(A,A).

B∞-algebras can be considered as the algebras over a certain asymmetric op-
erad (whose components are free graded k-modules of finite total rank). Therefore
[15], the category of B∞-algebras admits the structure of a Quillen model category
[27] [8] whose fibrations are the surjections and whose weak equivalences are the
quasi-isomorphisms (i.e. the morphisms of B∞-algebras C → C ′ which induce iso-
morphisms in the homology of the underlying complexes). We define the homotopy
category of B∞-algebras Ho(B∞) to be homotopy category associated with this
model category, i.e. the localization of the category of B∞-algebras with respect to
the class of quasi-isomorphisms.
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3. The invariance theorem

3.1. Notation and terminology. Let k be a commutative ring. For a dg k-
algebra A, we denote its derived category [18] by DA. By perA ⊂ DA we denote
the closure of the free A-module A under shifts, extensions and passage to di-
rect factors. The subcategory perA thus [18, 5.3] consists precisely of the perfect
(=compact=small) objects, i.e. the objects X ∈ DA such that the functor

HomDA(X, ?) : DA→ Mod k

commutes with infinite direct sums. A dg A-module P is cofibrant if, for each
surjective quasi-isomorphism of dg A-modules M → M ′, each morphism L → M ′

lifts to a morphism L → M . For example, if k is a field, each complex of vector
spaces is a cofibrant dg k-module. If k is a commutative ring, each right bounded
complex of projective k-modules is a cofibrant dg k-module. More generally, up to
homotopy equivalence, the cofibrant dg A-modules are precisely those having the
property (P) of [18, 3.1].

3.2. The main theorem. Let k be a commutative ring. Let A and B be dg alge-
bras and let X be a dg A-B-bimodule. Suppose that the dg k-modules underlying
A, B and X are cofibrant. Recall [18, 4.2] that the functor

?⊗L
A X : perA→ DB

is fully faithful iff the canonical map

HnA→ HomDB(X,X[n])

is an isomorphism for all n ∈ Z iff the canonical morphism

A→ RHomB(X,X)

is a quasi-isomorphism.

Theorem. If the functors

?⊗L
A X : perA→ DB and X⊗L

B? : per(Bop)→ D(Aop)

are fully faithful, there is a canonical isomorphism

ϕX : C(B,B)→ C(A,A)

in the homotopy category of B∞-algebras.

Corollary. If the functor
?⊗L

A X : DA→ DB
is an equivalence, there is a canonical isomorphism

ϕX : C(B,B)→ C(A,A)

in the homotopy category of B∞-algebras.

The theorem and its corollary follow from the more general theorem 4.6 below.

3.3. Functoriality. In 4.6, we will construct a morphism ϕX with suitable func-
toriality properties for a larger class of dg bimodules X: With the above notations,
assume only that the functor

?⊗L
B X : perA→ DB

is fully faithful.

Theorem. In the homotopy category of B∞-algebras, there is a canonical mor-
phism

ϕX : C(B,B)→ C(A,A)

associated with X such that
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a) ϕX only depends on the isomorphism class of X in D(Aop ⊗B),
b) if the functor

X⊗L
B? : per(Bop)→ D(Aop)

is fully faithful, then ϕX is invertible,
c) if B = A and X = A then ϕX is the identity,
d) if X = Y ⊗L

C Z for a dg algebra C which is cofibrant over k and for dg
bimodules AYC and CZB cofibrant over k and such that the functors

?⊗L
A Y : perA→ DC and ?⊗L

C Z : perC → DB

are fully faithful, then ϕX = ϕY ◦ ϕZ .

3.4. A remark on compositions. If A, B, C are dg algebras which are cofibrant
over k and AYC and CZB are dg bimodules cofibrant over k such that the functors

?⊗L
A Y : perA→ DC and ?⊗L

C Z : perC → DB

are fully faithful, it does not follow that the functor

?⊗LA X : perA→ DB , where X = Y ⊗L
C Z ,

is fully faithful. For example, let k be a field and consider A = k[x], where x is of
degree 0, B = A and C = k[ξ], where ξ is of degree 1 and ξ2 = 0, dξ = 0. Let Z be
the bimodule whose underlying complex of k[x]-modules is

(kξ′ ⊕ k)⊗ k[x]

where ξ′ is of degree −1 and

d(ξ′ ⊗ 1) = 1⊗ x , ξ.(ξ′ ⊗ 1) = 1⊗ 1.

Then the functor ?⊗L
C Z takes the free module k[ξ] to k (concentrated in degree 0)

and the trivial module k to the injective hull

E = k[x, x−1]/xk[x]

of the trivial k[x]-module k. Clearly the restriction of ? ⊗L
C Z to perC is fully

faithful. Let Y be the bimodule

E ⊗ k[ξ]

with the differential determined by

d(x−p ⊗ 1) = x−p+1 ⊗ ξ.

Then the functor ? ⊗L
A Y takes the free module A = k[x] to the trivial module k.

The restriction of ?⊗L
A Y to perA is fully faithful. The functor

?⊗LA X : perA→ DB , where X = Y ⊗L
C Z

is isomorphic to the composition of ?⊗L
C Y with ?⊗L

B Z. It takes the free module
k[x] to the injective module E. It is not fully faithful, since the endomorphism ring
of E is the power series ring k[[x]].

Note finally that both, Y and Z, satisfy the assumptions of theorem 3.3 b) so
that A = B and C do have homotopy equivalent Hochschild B∞-algebras.
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3.5. Application to Koszul algebras. In this section, we suppose that k is a
field. We consider bigraded k-modules

M = ⊕p,q∈ZMp
q .

The first index p denotes the ‘differential grading’: all differentials are of degree
(1, 0). The second index q denotes the ‘Adams grading’. For a bimodule M , we have
the differential shift M [1] and the Adams shift M〈1〉, which are defined respectively
by

(M [1])pq = Mp+1
q and (M〈1〉)pq = Mp

q+1.

If A is a differential graded algebra endowed with an additional Adams grading, then
the complex C(A,A) inherits an Adams grading compatible with its B∞-structure.

Let
A = A0 ⊕A1 . . .

be a positively Adams-graded k-algebra (concentrated in differential degree 0) such
that A0 is a separable k-algebra (i.e. A0 is a projective A0⊗Aop0 -module) and all Ap
are finitely generated as right and as left A0-modules. Suppose that in the category
of graded A-modules (with degree 0 morphisms), the A-module A0 admits a linear
projective resolution, i.e. a projective resolution

. . .→ P−p → P−p+1 → . . .→ P−1 → P0

such that P−p is generated in degree p for all p ∈ N. This means that A is a
Koszul algebra, cf. for example [2]. Let A! be the Adams graded dg algebra with
zero differential whose (p, q)-component is

Extp(A0, A0〈q〉).
Notice that by assumption, the algebra A! is concentrated in bidegrees (p,−p),
p ∈ N. R.-O. Buchweitz has shown [4] that there is an isomorphism

HH∗(A,A) ∼→ HH∗(A!, A!)

compatible with the cup product. We obtain the following stronger version of his
result:

Theorem. There is a canonical isomorphism

ϕ : C(A,A) ∼→ C(A!, A!)

in the homotopy category of Adams graded B∞–algebras. In particular, ϕ induces
an isomorphism

(3.5.1) HH∗(A,A) ∼→ HH∗(A!, A!)

compatible with the cup product and the Gerstenhaber bracket.

Proof. Let X be the Koszul complex. It is a dg A!-A-bimodule, which, as a right
dg A-module, is a projective resolution of A0. By the assumption that A0 admits
a linear resolution, the complex

RHomA(X,X〈−q〉[q])
has its homology concentrated in degree 0 for all q ∈ Z. By the definition of A!, it
follows that the canonical morphism

A!
q
∼→ Extq(A0, A0〈−q〉) ∼→ RHomA(X,X〈−q〉[q])

is a quasi-isomorphism for all q ∈ Z. Now we claim that the canonical morphism

Aopq → RHom(A!)op(X,X〈−q〉[q])
is also a quasi-isomorphism for all q ∈ Z. This results from the fact that Aop is
Koszul with Koszul dual (A!)op and Koszul complex X viewed as a dg Aop-(A!)op-
bimodule, cf. [2]. The assertion now follows from the ‘Adams graded’ variant of
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theorem 3.2. Alternatively, it follows from part b) of theorem 4.6 below applied to
the dg category A with object set Z and morphism spaces

A(i, j) = Aj−i , i, j ∈ Z ,

(concentrated in degree 0), the dg category B defined analogously using A! and the
dg A-B-bimodule X defined by

X (i, j) = Xj−i , j ∈ A, i ∈ B.
√

4. Generalization and proof of the invariance theorem

4.1. From algebras to categories. Let k be a commutative ring and A a dg
k-category. By k[A], we denote the dg algebra⊕

A,B∈A
A (A,B)

with matrix multiplication and the natural differential. This algebra does not have
a unit but for each finite family of elements ai, i ∈ I, of k[A], there is an element
e ∈ k[A] of the form

e = 1A1
⊕ · · · ⊕ 1An

for certain A1, . . . , An of A, such that eai = ai = aie for all i ∈ I. By Modlu k[A],
we denote the category of the right dg modules M over k[A] which are locally unital,
i.e. for each finite family of elements mi, i ∈ I, of M , there is an element e as above
such that me = m. By ModA, we denote the category of right dg modules over A.
Then we have a canonical equivalence

ModA → Modlu k[A]

which takes a module M to ⊕
A∈A

M(A).

Its quasi-inverse takes a locally unital dg module L to the module

Aop → Mod k , A 7→ L.1A.

This equivalence preserves quasi-isomorphisms. We define the derived category
Dk[A] to be the localization of Modlu k[A] with respect to the quasi-isomorphisms.
Thus we obtain an equivalence of derived categories

DA ∼→ Dk[A].

4.2. The Hochschild complex for categories and algebras. Keep the nota-
tions of the preceding section and assume moreover that A is cofibrant over k, i.e.
such that A (A,B) is cofibrant over k for all objects A,B of A. The Hochschild
complex of A is the product total complex C(A,A) of the double complex with
components which vanish for p < 0 and are equal to∏

A0,...,Ap

Homk(A (Ap−1, Ap)⊗ · · · ⊗ A (A0, A1),A (A0, Ap))

for p ≥ 0, where the product ranges over all sequences of p objects of A. The
differential of a p-cochain c is defined by the canonical formula. The Hochschild
complex of k[A] is given by the product total complex C(k[A], k[A]) of the double
complex with the components which vanish for p < 0 and are equal to

Homk(k[A]⊗p, k[A])

for p ≥ 0. We have an injective morphism of complexes

(4.2.1) C(A,A)→ C(k[A], k[A]).
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Let IA denote the A-A-bimodule

(A,B) 7→ A (A,B) , A,B ∈ A.

Lemma. The morphism 4.2.1 is a quasi-isomorphism of dg k-modules. Both sides
are canonically isomorphic to

RHomAop⊗A(IA, IA).

In particular, the nth homology of both sides is canonically isomorphic to

HHn (A,A) := HomD(Aop⊗A)(IA, IA[n]) , n ∈ Z.

Proof. The bar resolution of IA is the sum total complex BR(A) of the double
complex with components which vanish for p < 0 and equal⊕

A0,...,Ap

A (Ap,−)⊗A (Ap−1, Ap)⊗ · · · ⊗ A (A0, A1)⊗A (?, A0)

for p ≥ 0. The differential is given by the canonical formula. The canonical mor-
phism BR(A)→ IA is a quasi-isomorphism and BR(A) is cofibrant over Aop ⊗A.
Thus, we can compute

RHomAop⊗A(IA, IA)

as the image of BR(A) under HomAop⊗A(?, IA). Now we have an isomorphism

Hom(BR(A), IA) ∼→ C(A,A).

The category Mod(Aop ⊗A) is equivalent to Modlu(k[A]op ⊗ k[A]) and the equiv-
alence F takes IA to the bimodule k[A]. It takes BR(A) to a complex F (BR(A))
which naturally identifies with a quotient of the bar resolution BR(k[A]) of k[A].
We have a morphism of resolutions

BR(k[A])→ F (BR(A)).

The induced morphism

Homk[A]op⊗k[A](BR(k[A]), k[A])← Homk[A]op⊗k[A](F (BR(A)), k[A])

identifies with the inclusion 4.2.1. It is a quasi-isomorphism of dg k-modules because
both sides compute

RHomk[A]op⊗k[A](k[A], k[A]).
√

4.3. Functoriality of the categorical Hochschild complex. Keep the nota-
tions of the previous paragraph and let B be another dg category which is cofibrant
over k. Let F : A → B be a fully faithful dg functor. The restriction along F yields
an obvious morphism

F ∗ : C(B,B)→ C(A,A)

which is compatible with the differential and, indeed, with the structure of B∞-
algebra, as one easily checks. Compositions of fully faithful functors clearly yield
compositions of the restrictions. This functoriality property is a great advantage,
which we gain in working with categories rather than with algebras.

The morphism F ∗ has a natural interpretation in the derived category: The
restriction functor

D(Bop ⊗ B)→ D(Aop ⊗A)

admits a fully faithful left adjoint, which we still denote by F . It takes A(B, ?) ⊗
A(−, A) to B(FB, ?) ⊗ A(−, FA). If we have a Hochschild n-cochain c of B, it
corresponds to a morphism c : IB → IB[n]. Now we have a functorial isomorphism

M ⊗L
B IB

∼→M
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for each M ∈ D(Bop ⊗B), since IB is the neutral object for the monoidal structure
given by tensoring over B. Thus c gives rise to a functorial morphism Mc : M →
M [n]. In particular, we obtain

(FIA)c : FIA → FIA[n].

By the full faithfulness of F , this yields a morphism IA → IA[n]. This is the
morphism that corresponds to the Hochschild cochain F ∗c.

4.4. Bimodule morphisms. Let A and B be dg algebras which are cofibrant over
k. Let X be an A-B-bimodule which is cofibrant over k. Let C(A, X,B) be the
product total complex of the complex whose components vanish for p < 0 and equal∏

Homk(A(Al−1, Al)⊗· · ·⊗A(A0, A1)⊗X(Bm, A0)⊗B(Bm−1, Bm)⊗· · ·⊗B(B0, B1), X)

for p ≥ 0, where the inner product ranges over all objects A0, . . . , Al of A and
all objects B0, . . . , Bm of B and l + m = p. The differential is given by the same
formula as the Hochschild differential. We define a morphism of complexes

α : C(A,A)→ C(A, X,B)

by taking a cochain

c ∈ Cp(A,A)

to the map whose only non trivial components are the

A (Ap−1, Ap)⊗ . . .⊗A(A0, A1)⊗X(B0, A0)→ X(B0, Ap) , u⊗ x 7→ c(u)x.

Similarly, we define a morphism

β : C(B,B)→ C(A, X,B).

Let us interpret C(A, X,B) and the morphisms α and β in the derived categories:
One easily checks that C(A, X,B) is isomorphic to

RHomAop⊗B(X,X).

Let us suppose (without restriction of generality) that X is cofibrant over Aop⊗B.
Then XB is cofibrant over B (because A is cofibrant over k). The left action of A
on X yields morphisms

A(A,B)→ HomB(X(?, A), X(?, B)) , A,B ∈ A ,

which yield a morphism of A-A-bimodules

λ : IA → HomB(X,X) = RHomB(X,X).

This induces a morphism

λ∗ : RHomAop⊗A(IA, IA)→ RHomAop⊗A(IA,RHomB(X,X)).

The right hand side is canonically isomorphic to RHomAop⊗B(X,X). It is not hard
to check that the following diagram is commutative:

C(A,A)

α

��

∼ // RHomAop⊗A(IA, IA)

λ∗

��
C(A, X,B)

∼ // RHomAop⊗B(X,X)
∼ // RHomAop⊗A(IA,RHomB(X,X)).

It follows that α is a quasi-isomorphism if λ is an isomorphism in D(Aop ⊗A). A
similar diagram links β to ρ∗, where

ρ : IBop → RHomAop(X,X)

is given by the right action of B on X.
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4.5. Triangular matrices. We keep the notations of the previous paragraph. Let
G = G(A, X,B) be the dg category whose set of objects is the disjoint union of the
sets of objects of A and B and whose morphisms are defined by

G(A,A′) = A(A,A′) , G(B,B′) = B(B,B′) , G(B,A) = X(B,A) , G(A,B) = 0

for all objects A, A′ of A and B, B′ of B. Note that we have fully faithful functors
iA : A → G and iB : B → G.

For example, if A and B each have one object and A and B denote the endo-
morphism algebras of the unique objects of A and B, then G can be visualized
as

1

A

��
2

Xoo

B

��

and k[G] is the algebra of upper triangular matrices(
a x
0 b

)
, a ∈ A , b ∈ B , x ∈ X.

Recall that, in a triangulated category, a homotopy bicartesian square is a com-
mutative square

U //

��

V

��
W // Z

endowed with a morphism Z → U [1] such that the sequence

U // V ⊕W // Z // U [1]

is a triangle.

Lemma. The complex C(G,G) is isomorphic to the mapping cylinder on the mor-
phism [

α
β

]
: C(A,A)⊕ C(B,B)→ C(A, X,B) ,

where α and β are the morphisms defined in 4.4. Therefore we have a homotopy
bicartesian square

(4.5.1) C(G,G)
i∗A //

i∗B
��

C(A,A)

α

��
C(B,B)

β
// C(A, X,B)

in the derived category of dg k-modules. In particular, we have a long exact sequence
(4.5.2)
. . .→ HHn (G,G)→ HHn (A,A)⊕HHn (B,B)→ HomD(Aop⊗B)(X,X[n])→ . . .

The proof of the lemma is an easy computation left to the reader. We refer
to the introduction for the history of the lemma. We stress that i∗A and i∗B are
morphisms of B∞-algebras, as we have seen in 4.3, and that α and β have simple
interpretations in the derived categories, as seen in 4.4.
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4.6. The main theorem on the Hochschild complex of a dg category. We
keep the assumptions of paragraph 4.4. Assume that the functor

?⊗L
A X : perA → DB

is fully faithful. Then the morphism λ

IA → RHomB(X,X)

of paragraph 4.4 is invertible and thus the morphism α is a quasi-isomorphism.
By the bicartesian square 4.5.1, the morphism i∗B is a quasi-isomorphism. Thus it
becomes invertible in the homotopy category of B∞-algebras. We define

ϕX = i∗A ◦ (i∗B)−1.

Theorem. a) ϕX only depends on the isomorphism class of X in D(Aop⊗B).
b) If the functor

X⊗LB? : per(Bop)→ D(Aop)
is fully faithful, then ϕX is invertible. This holds in particular if

?⊗L
A X : DA → DB

is an equivalence.
c) If F : A → B is a fully faithful dg functor and the bimodule X is defined by

X(B,A) = B(B,FA) , A ∈ A , B ∈ B ,

then ϕX = F ∗ in Ho(B∞). In particular, if B = A and X = IA, then ϕX
is the identity,

d) If C is a dg category cofibrant over k and Y a dg B-C-bimodule cofibrant
over k such that the functors

?⊗L
C Y : perB → DC and ?⊗L

C Z : perA → DC

are fully faithful, where Z = X ⊗L
B Y , then ϕZ = ϕX ◦ ϕY .

Before proving the theorem, let us record the following useful consequence: Let
F : A → B be a dg functor which is not necessarily fully faithful but which induces
quasi-isomorphisms

A(A,B)→ B(FA,FB) , A,B ∈ A.

Let XF be the bimodule

(A,B) 7→ B(B,FA) , A,B ∈ A.

Then the functor

?⊗L
A XF : perA → DB

takes A(?, A) to B(?, FA). Therefore it is fully faithful (and takes perA to perB).
Hence we have a well defined morphism

ϕF := ϕXF
: C(B,B)→ C(A,A)

in Ho(B∞). Moreover, if F induces an equivalence H0A → H0B, then the associ-
ated tensor functor is and equivalence DA → DB and so ϕF is invertible.

If G : B → C is another functor inducing quasi-isomorphisms in the morphism
complexes, then clearly GF also has this property, and

XF ⊗L
B XG

∼→ XG◦F

so that we have

ϕGF = ϕF ◦ ϕG.
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Proof. Let us prove the first statement of b). We note that under the assump-
tion, the morphism β is a quasi-isomorphism. So by the homotopy bicartesian
square 4.5.1, the morphism i∗A is invertible and hence ϕX is invertible. Let us prove
the second statement of b). For a dg B-module M , denote by HomB(M,B) the dg
Bop-module

B 7→ HomB(M,B(?, B)) , B ∈ B.
Then the transposition functor

TrB = RHomB(?,B) : DB → D(Bop)op

induces an equivalence

perB ∼→ per(Bop)op.
Notice that the functor RHomB(X, ?) : DB → DA is an equivalence, since it is left
adjoint to the equivalence X⊗L

A?. For Q ∈ perB, we have natural isomorphisms

XB ⊗L
B RHomB(Q,B) ∼→ RHomB(Q,X)

∼→ RHomA(RHomB(X,Q),RHomB(X,X))
∼→ RHomA(RHomB(X,Q),A).

Here we use that Q is perfect for the first isomorphism, that RHomB(X, ?) is fully
faithful for the second, and that RHomB(X, ?) takes X(?, A) to A(?, A) for the
third. We deduce that we have a natural isomorphism

(X⊗L
B?) ◦ TrB ∼→ TrA ◦ RHomB(X, ?)

of functors perB → D(Aop)op. This shows that the functor

X⊗L
B? : per(Bop)→ D(Aop)

is fully faithful. Let us now prove d) under the additional assumption that X is
cofibrant over B and that Z = X ⊗B Y . The general case follows from a), which
we will prove later. We consider the following diagram of dg categories:

(A ← C)

''
(A ← B ← C) (B ← C)

i4
oo C

i1
oo

i3

mm

(A ← B)

OO

B
i2

oo

OO

A

OO

VV

Here, the symbol A ← B denotes G(A, X,B) and similarly for B ← C and A ← C,
which denotes G(A, X ⊗B Y, C). The symbol A ← B ← C denotes the category U
whose set of objects is the disjoint union of the objects of A, B and C and whose
only possibly non zero morphisms are given by

U(A,A′) = A(A,A′) , U(B,A) = X(B,A) , U(C,A) = Z(C,A) ,

U(B,B′) = B(B,B′) , U(C,B) = Y (C,B) , U(C,C ′) = C(C,C ′).

All arrows of the diagram denote the obvious fully faithful dg functors. The diagram
therefore yields a commutative diagram in Ho(B∞). The composition ϕX ◦ ϕY is
obtained from the arrows on the lower right rim whereas ϕZ comes from the long
skew arrows. Note that i1, i2 and i3 induce isomorphisms in Ho(B∞). We can
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conclude that ϕZ = ϕX ◦ ϕY once we show that i4 induces an isomorphism. For
this, we reinterpret U as G(A, U,B ← C), where U is the bimodule with

U(B,A) = X(B,A) and U(C,A) = Z(C,A).

The functor

?⊗L
A U : perA → D(B ← C)

equals the composition

perA
?⊗L
AX // DB iB∗ // D(B ← C)

Since both functors are fully faithful, so is ? ⊗L
A U . It follows that i4 induces an

invertible morphism in Ho(B∞) and we are done.
We deduce the last statement of c): Indeed, for X = IA, we have

ϕX = ϕX⊗L
AX

= ϕX ◦ ϕX .

Since ϕX is invertible, this implies that it is the identity. Let us now prove the first
statement of c): With notations as above, we consider the following diagram of dg
categories and fully faithful functors

(A ← B) Boo

A

OO

(A ← A)

(1,F )

ff

A

F

cc

oo

A
1

ff OO

The lower right angle yields ϕIA , which equals the identity, as we have just proved.
The upper right angle yields ϕX for the bimodule X associated with F . The
commutativity of the image of the diagram in Ho(B∞) implies that ϕX = F ∗.

Before we prove a), let us first extend F 7→ ϕF to dg functors which are not
necessarily fully faithful. Let F : A → B be a dg functor. Let XF denote the
associated bimodule defined by

XF (B,A) = B(B,FA).

Suppose that

?⊗L
A XF : perA → DB

is fully faithful. For example, this is the case if F induces a fully faithful functor
H∗A → H∗B. We have a well defined morphism

ϕF := ϕXF
: C(B,B)→ C(A,A)

in Ho(B∞). We have just proved that if F is itself fully faithful, then ϕF = F ∗.
Now suppose that G : B → C is another dg functor such that

?⊗L
B XG : perB → DC

is fully faithful. The bimodule XF is cofibrant over B and we have

XF ⊗B XG = XG◦F .

Moreover, the associated functor perA → DC is fully faithful since the functor

?⊗L
A XF : perA → DB

takes perA to perB. Therefore, it follows from the special case of c) which we have
proved that

ϕG◦F = ϕF ◦ ϕG.
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We conclude that ϕF is in particular defined and functorial in the dg functors
F : A → B which induce fully faithful functors H∗A → H∗B.

Let us now prove a). Let X be as in a) and let f : X → X ′ be a quasi-
isomorphism. Then f yields an obvious dg functor

F : G(A, X,B)→ B(A, X ′,B) ,

which is not fully faithful, in general, but which induces a fully faithful functor in
homology. Now we consider the following diagram of dg categories and dg functors:

(A X←− B)

F
��

A

66

((
B

hh

vv
(A X′←−− B)

By what we have just seen, this diagram has a well defined and commutative image
in Ho(B∞). In the image, the two left hand arrows become invertible, hence so
does ϕF . The composition of the upper arrows yields ϕX and the composition of
the lower arrows yields ϕ′X .

√

5. The Hochschild complex of an exact category

In this section, for simplicity, we will suppose that k is a field.

5.1. Exact dg categories and their quotients. We refer to [19, 2.1] for the
notion of an exact dg category. The simplest example of such a category is the dg
category of complexes over an additive category. If A is an exact dg category, it is in
particular a Frobenius category and its associated stable category A is triangulated.
The stable category is also called the associated triangulated category. If A is
the category of complexes over an additive category, the associated triangulated
category is the homotopy category.

If E is an exact category, it gives rise to two exact dg categories, namely the cat-
egory Cb(E) of bounded complexes over E and its full subcategory Acb(E) whose ob-
jects are the acyclic complexes. We will need the dg quotient category Cb(B)/Acb(E).

Let us recall how dg quotient categories are characterized in general: Let U be a
universe containing an infinite set. A category is U-small if the set of its morphisms
belongs to U.

We assume that the ground field k belongs to U. The ‘strict’ category Mb
str has

as objects the U-small exact dg categories. Its morphisms are the dg functors. The
category Mb is obtained from Mb

str by localization at the class of all dg functors
F : A → B such that F induces an equivalence in the associated triangulated
categories.

Theorem. [19] Let B be an exact dg category, A ⊂ B a full exact dg subcategory
and I : A → B the inclusion. Then there is a U-small exact dg category B/A and
a morphism

Q : B → B/A
of Mb such that QI = 0 and that for each morphism F : B → C of Mb such that
FI = 0, there is a unique morphism F : B/A → C such that F = F ◦Q.

The theorem follows by combining Theorem 4.6, Lemma 4.2 and Proposition 4.1
of [19]. A stronger statement was proved by Drinfeld in [7]. He gives a 2-universal
property of the quotient (instead of a 1-universal property as in the theorem). The
theorem shows that the dg quotient B/A is indeed a quotient in the category Mb.
In particular, it is unique and functorial in this category. Let us now show that, as
an object of Ho(B∞), the Hochschild complex of an object of Mb is well defined.
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For this, we note that, by the remark following theorem 4.6, each morphism F :
A → B ofMb

str which induces a fully faithful functor in the associated triangulated
categories yields a well defined morphism

ϕF : C(B,B)→ C(A,A)

in Ho(B∞) and ϕF is invertible if F induces an equivalence in the triangulated
categories.

Now if F : A → B is a morphism of the localizationMb inducing a fully faithful
functor in the triangulated categories, then, by construction, F is the composition of
functors inducing fully faithful functors in the triangulated categories and formal
inverses of functors inducing equivalences in the triangulated categories. By the
preceding remark, we again obtain a well-defined morphism

ϕF : C(B,B)→ C(A,A)

in Ho(B∞) and ϕF is invertible if F induces an equivalence in the triangulated
categories.

We deduce that there is a well defined functor

(Mb
i )
op → Ho(B∞) , A 7→ C(A,A)

defined on the subcategory of Mb with the same objects as Mb and whose mor-
phisms are those morphisms which induce fully faithful functors in the triangulated
categories.

5.2. The Hochschild complex of a small exact category. We keep the nota-
tions of the preceding paragraph. For a U-small k-linear exact category E , we can
now define

C(E , E) = C(Q,Q) , where Q = Cb(E)/Acb(E).

We obtain a well-defined object of Ho(B∞). If F : E → E ′ is an exact functor
between exact categories which induces a fully faithful functor in the derived cate-
gories, then F yields a well-defined morphism

F ∗ : C(E ′, E ′)→ C(E , E)

in Ho(B∞).

Theorem. If F induces an equivalence up to factors

Db(E)→ Db(E ′) ,

i.e. a fully faithful functor such that each object of Db(E ′) is a direct factor of an
object in the image, then F ∗ is an isomorphism

C(E ′, E ′) ∼→ C(E , E)

in Ho(B∞).

Proof. Let Q = Cb(E)/Acb(E) and define Q′ similarly. By the assumption, F
induces a morphism Q → Q′ in Mb which induces an equivalence up to factors in
the associated triangulated categories. It follows that the induced functor

F+ : DQ → DQ′

induces an equivalence up to factors between the subcategories of compact objects
per(Q)→ per(Q′). But then F+ has to be an equivalence. So the assertion follows
from part b) of theorem 4.6.

√
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13. Francisco Guil-Asensio and Manuel Saoŕın, On automorphism groups induced by bimodules,
Arch. Math. 76 (2001), no. 1, 12–19.

14. Dieter Happel, Hochschild cohomology of finite-dimensional algebras, Séminaire d’Algèbre
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