
TIFR, Mumbai October 5–9, 2009
International conference on “Analytic Number Theory”

www.math.tifr.res.in/∼ant2009

Criteria for irrationality, linear independence,
transcendence and algebraic independence

Michel Waldschmidt
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Abstract

Most irrationality proofs rest on the following criterion :

A real number x is irrational if and only if, for any
ε > 0, there exist two rational integers p and q with
q > 0, such that

0 < |qx− p| < ε.

We survey generalisations of this criterion to linear
independence, transcendence and algebraic independence.
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Leonhard Euler (1707 – 1783)

1748 : Irrationality of the
number
e = 2.718 281 828 459 0 . . .

The number

e =
∑
n≥0

1

n!

is irrational

Continued fractions
expansions.

http://www-history.mcs.st-andrews.ac.uk/

http://www-history.mcs.st-andrews.ac.uk/history/Mathematicians/Euler.html


Joseph Fourier (1768 - 1830)

Proof of Euler’s 1748 result
on the irrationality of the
number e by truncating the
series

e =
∑
n≥0

1

n!
·

Course of analysis at the École Polytechnique Paris, 1815.



Frits Beukers (2008) : irrationality of e−1

N !e−1 =
N∑
n=0

(−1)nN !

n!
+

∑
m≥N+1

(−1)mN !

m!
·

Take for N a large odd
integer and set

AN =
N∑
n=0

(−1)nN !

n!
·

Then AN ∈ Z and

AN < N !e−1 < AN +
1

N + 1
·

Hence e−1 is irrational.



Irrationality proof

Let ϑ ∈ Q, say ϑ = a/b. Then for any p/q ∈ Q with p/q 6= ϑ
we have

|qϑ− p| ≥ 1

b
·

Proof : |qa− pb| ≥ 1.

Consequence. Let ϑ ∈ R. Assume that for any ε > 0, there
exists p/q ∈ Q with

0 < |qϑ− p| < ε.

Then ϑ is irrational.
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Irrationality of ζ(3), following Apéry (1978)

There exist two sequences of rational numbers (an)n≥0 and
(bn)n≥0, such that an ∈ Z and d3

nbn ∈ Z for all n ≥ 0, with

lim
n→∞

|2anζ(3)− bn|1/n = (
√

2− 1)4,

where dn is the lcm of 1, 2, . . . , n.

We have dn = en+o(n) and e3(
√

2− 1)4 < 1.

Set qn = d3
nbn, pn = 2d3

nan, so that

0 < |qnζ(3)− pn| < εn with εn → 0.
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Infinitely many odd zeta are irrational

Tanguy Rivoal (2000)

Let ε > 0. For any sufficiently
large odd integer a, the
dimension of the Q–vector
space spanned by the numbers
1, ζ(3), ζ(5), · · · , ζ(a) is at
least

1− ε
1 + log 2

log a.
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Criterion : necessary and sufficient condition
We saw that any ϑ ∈ R for which there exists a sequence
(pn/qn)n≥0 of rational numbers with

0 < |qnϑ− pn| < εn with εn → 0

is irrational.
Conversely, given ϑ ∈ R \Q, there exists a sequence
(pn/qn)n≥0 with

0 < |qnϑ− pn| < εn and εn → 0.

More precisely, given ϑ ∈ R, for each real number Q > 1,
there exists p/q ∈ Q with

|qϑ− p| ≤ 1

Q
and 0 < q < Q.

Hence, for ϑ 6∈ Q, there exists a sequence (pn/qn)n≥0 with

0 < |qnϑ− pn| <
1

qn
and qn →∞.
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Gustave Lejeune–Dirichlet (1805 - 1859)

G. Dirichlet

1842 : Box (pigeonhole)
principle
A map f : E → F with
CardE > CardF is not
injective.
A map f : E → F with
CardE < CardF is not
surjective.



Pigeonhole Principle

More holes than pigeons More pigeons than holes



Existence of rational approximations
For any ϑ ∈ R and any real number Q > 1, there exists
p/q ∈ Q with

|qϑ− p| ≤ 1

Q

and 0 < q < Q.

Proof. For simplicity assume Q ∈ Z. Take

E =
{

0, {ϑ}, {2ϑ}, . . . , {(Q− 1)ϑ}, 1
}
⊂ [0, 1],

where {x} denotes the fractional part of x, F is the partition[
0,

1

Q

)
,

[
1

Q
,
2

Q

)
, . . . ,

[
Q− 2

Q
,
Q− 1

Q

)
,

[
Q− 1

Q
,1

]
,

of [0, 1], so that

CardE = Q+ 1 > Q = CardF,

and f : E → F maps x ∈ E to I ∈ F with I 3 x.
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Hermann Minkowski (1864 - 1909)

H. Minkowski

1896 : Geometry of numbers.
The set
C = {(u, v) ∈ R2 ; |v| ≤ Q,

|vϑ− u| ≤ 1/Q}
is convex, symmetric,
compact, with volume 4.
Hence C ∩ Z2 6= {(0, 0)}.



Adolf Hurwitz (1859 - 1919)

A. Hurwitz

1891
For any ϑ ∈ R \Q, there
exists a sequence (pn/qn)n≥0

of rational numbers with

0 < |qnϑ− pn| <
1√
5qn

and qn →∞.
Methods : Continued
fractions, Farey sections.

Best possible for the Golden ratio

1 +
√

5

2
= 1.618 033 988 749 9 . . .



Irrationality criterion
Let ϑ be a real number. The following conditions are
equivalent.
(i) ϑ is irrational.
(ii) For any ε > 0, there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1, there exists an integer q in
the interval 1 ≤ q < Q and there exists an integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

qQ
·

(iv) There exist infinitely many p/q ∈ Q satisfying∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·



Irrationality criterion (continued)

Let ϑ be a real number. The following conditions are
equivalent.
(i) ϑ is irrational.
(ii)’ For any ε > 0, there exist two linearly independent linear
forms

L0(X0, X1) = a0X0 + b0X1 and L1(X0, X1) = a1X0 + b1X1,

with rational integer coefficients, such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.



Proof of (ii) ⇐⇒ (ii)’
(ii) For any ε > 0, there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(ii)’ For any ε > 0, there exist two linearly independent linear
forms L0, L1 in ZX0 + ZX1 such that

max
{
|L0(1, ϑ)| , |L1(1, ϑ)|

}
< ε.

Proof of (ii)’ =⇒ (ii)
Since L0, L1 are linearly independent, one at least of them
does not vanish at (1, ϑ). Write it pX0 − qX1.
Proof of (ii) =⇒ (ii’)
Using (ii), set L0(X0, X1) = pX0 − qX1, and use (ii) again
with ε replaced by |qϑ− p|.
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Irrationality of at least one number
Let ϑ1, . . . , ϑm be real numbers. The following conditions are
equivalent
(i) One at least of ϑ1, . . . , ϑm is irrational.
(ii) For any ε > 0, there exist p1, . . . , pm, q in Z with q > 0
such that

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < ε

q
·

(iii) For any ε > 0, there exist m+ 1 linearly independent
linear forms L0, . . . , Lm with coefficients in Z in m+ 1
variables X0, . . . , Xm, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε.

(iv) For any real number Q > 1, there exists (p1, . . . , pm, q) in
Zm+1 such that 1 ≤ q ≤ Q and

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ ≤ 1

qQ1/m
·

(v) There is an infinite set of q ∈ Z, q > 0, for which there
there exist p1, . . . , pm in Z satisfying

0 < max
1≤i≤m

∣∣∣∣ϑi − pi
q

∣∣∣∣ < 1

q1+1/m
·



Linear independence

Irrationality of ϑ : means that 1, ϑ are linearly independent
over Q.

Irrationality of at least one of ϑ1, . . . , ϑm : means
(ϑ1, . . . , ϑm) 6∈ Qm. Also : means that the dimension of the
Q–vector space spanned by 1, ϑ1, . . . , ϑm is ≥ 2.

Linear independence of 1, ϑ1, . . . , ϑm over Q : means that for
any hyperplane H : a0z0 + · · ·+ amzm = 0 of Rm+1 rational
over Q (i.e. ai ∈ Q), the point (1, ϑ1, . . . , ϑm) does not
belong to H.

Transcendence of ϑ : means that 1, ϑ, ϑ2, . . . , ϑn . . . are
linearly independent over Q.
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Charles Hermite (1822 - 1901)

Charles Hermite

1873 : Hermite’s method for
proving linear independence.
Let ϑ1, . . . , ϑm be real
numbers and a0, a1, . . . , am
rational integers, not all of
which are 0. The goal is to
prove that the number

L = a0 + a1ϑ1 + · · ·+ amϑm

is not 0.

Hermite’s idea is to approximate simultaneously ϑ1, . . . , ϑm by
rational numbers p1/q, . . . , pm/q with the same denominator
q > 0.



L = a0 + a1ϑ1 + · · · + amϑm

Let q, p1, . . . , pm be rational integers with q > 0. For
1 ≤ k ≤ m, set

εk = qϑk − pk.

Then qL = M +R with

M = a0q + a1p1 + · · ·+ ampm ∈ Z

and
R = a1ε1 + · · ·+ amεm ∈ R.

If M 6= 0 and |R| < 1 we deduce L 6= 0.



Zero estimate

Main difficulty : to check M 6= 0.

We wish to find a simultaneous rational approximation
(q, p1, . . . , pm) to (ϑ1, . . . , ϑm) outside the hyperplane
a0z0 + a1z1 + · · ·+ amzm = 0 of Qm+1.

This needs to be checked for all hyperplanes.

Solution : to construct not only one tuple u = (q, p1, . . . , pm)
in Zm+1 \ {0}, but m+ 1 such tuples which are linearly
independent.

This yields m+ 1 pairs (Mk, Rk), k = 0, . . . ,m in place of a
single pair (M,R), and from (a0, . . . , am) 6= 0 one deduces
that one at least of M0, . . . ,Mm is not 0.
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Rational approximations

(following Michel Laurent)

Let (ϑ1, . . . , ϑm) ∈ Rm.
Then the following conditions are equivalent.
(i) The numbers 1, ϑ1, . . . , ϑm are linearly independent over Q.
(ii) For any ε > 0, there exist m+ 1 linearly independent
elements u0,u1, . . . ,um in Zm+1, say

ui = (qi, p1i, . . . , pmi) (0 ≤ i ≤ m)

with qi > 0, such that

max
1≤k≤m

∣∣∣∣ϑk − pki
qi

∣∣∣∣ ≤ ε

qi
(0 ≤ i ≤ m).



Hermite – Lindemann Theorem

Hermite (1873) :
transcendence of e.

Lindemann (1882) :
transcendence of π.

Hermite – Lindemann Theorem
For any non–zero complex number z, at least one of the two
numbers z, ez is transcendental.

Corollaries : transcendence of logα and eβ for α and β
non–zero algebraic numbers with logα 6= 0.
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non–zero algebraic numbers with logα 6= 0.



Lindemann – Weierstraß Theorem

Let β1, . . . , βn be algebraic numbers which are linearly
independent over Q. Then the numbers eβ1 , . . . , eβn are
algebraically independent over Q.

Equivalent to :
Let α1, . . . , αm be distinct algebraic numbers. Then the
numbers eα1 , . . . , eαm are linearly independent over Q.
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Carl Ludwig Siegel (1896 - 1981)

Siegel’s method for proving linear independence.
Let ϑ1, . . . , ϑm be complex numbers.

C.L. Siegel

1929 :
Assume that, for any ε > 0,
there exists m+ 1 linearly
independent linear forms
L0, . . . , Lm, with coefficients
in Z, such that

max
0≤k≤m

|Lk(1, ϑ1, . . . , ϑm)| < ε

Hm−1

where H = max0≤k≤mH(Lk).

Then 1, ϑ1, . . . , ϑm are linearly independent over Q.



Linear independence, following Siegel (1929)

Height of a linear form : H(L) = max |coefficients of L|.
Example : m = 1 (irrationality criterion). A real number ϑ is
irrational if and only, for any ε > 0, if there exists two linearly
independent linear forms L0(X0, X1) and L1(X0, X1) in
ZX0 + ZX1 such that |Li(1, ϑ)| < ε.

Sketch of proof of Siegel’s criterion. Assume 1, ϑ1, . . . , ϑm are
linearly dependent over Q. Let L ∈ ZX0 + · · ·+ ZXm be a
non–zero linear form vanishing at (1, ϑ1, . . . , ϑm). Among
L0, . . . , Lm, select m linear forms, say L1, . . . , Lm, which
constitute with L a complete system of linearly independent
forms in m+ 1 variables. The determinant ∆ of L,L1, . . . , Lm
is a non–zero integer, hence its absolute value is ≥ 1. Inverting
the matrix, write ∆ as a linear combination with integer
coefficients of the Li(1, ϑ1, . . . , ϑm) (1 ≤ i ≤ m) and estimate
the coefficients.
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Criterion of Yu. V. Nesterenko

Let ϑ1, . . . , ϑm be complex numbers.

Yu.V.Nesterenko (1985)

Let α and β be two positive
numbers satisfying
α > β(m− 1). Assume there
is a sequence (Ln)n≥0 of
linear forms in
ZX0 + ZX1 + . . .+ ZXm of
height ≤ eβn such that

|Ln(1, ϑ1, . . . , ϑm)| = e−αn+o(n).

Then 1, ϑ1, . . . , ϑm are linearly independent over Q.

Example : m = 1 – irrationality criterion.



Simplified proof of Nesterenko’s Theorem

Francesco Amoroso Pierre Colmez

Refinements : Raffaele Marcovecchio, Pierre Bel.



Irrationality measure for log 2 : history

∣∣∣∣log 2− p

q

∣∣∣∣ > 1

qµ

Hermite–Lindemann, Mahler, Baker, Gel’fond, Feldman,. . . :
transcendence measures
G. Rhin 1987 µ(log 2) < 4.07
E.A. Rukhadze 1987 µ(log 2) < 3.89
R. Marcovecchio 2008 µ(log 2) < 3.57



Recent developments

Stéphane Fischler and Wadim Zudilin, A refinement of
Nesterenko’s linear independence criterion with applications to
zeta values. Preprint MPIM 2009-35.

http://www.mpim-bonn.mpg.de/preprints/send?bid=4020


Recent developments

Stéphane Fischler and Tanguy Rivoal, Irrationality exponent
and rational approximations with prescribed growth.
Trans. Amer. Math. Soc. , to appear.

http://www.math.u-psud.fr/~fischler/eddzero.pdf


J. Liouville (1809 – 1882)

Liouville’s inequalities

easiest : integers
a ∈ Z, a 6= 0 ⇒ |a| ≥ 1.

rational numbers :
r = a/b ∈ Q, r 6= 0 ⇒
|r| ≥ 1/b.

algebraic numbers :
α ∈ Q, α 6= 0 ⇒
|α| ≥ 1

H(α) + 1
· 1844

Existence of transcendental
numbers



Criteria for transcendence and algebraic

independence

A complex number ϑ is transcendental if and only if
1, ϑ, ϑ2, . . . , ϑn . . . are linearly independent (over Q).

Complex numbers ϑ1, . . . , ϑm are algebraically independent if
and only if the numbers ϑi11 · · ·ϑimm , ((i1, . . . , im) ∈ Zm

≥0 are
linearly independent.

Hence, criteria for linear independence yield criteria for
transcendence and for algebraic independence.

Furthermore, criteria for transcendence are special case
(m = 1) of criteria for algebraic independence.
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Transcendence and Diophantine approximation by

algebraic numbers

Recall : Criterion for irrationality. A real number ϑ is
irrational if and only if there is a sequence of good rational
approximations (pn/qn)n≥0 with pn/qn 6= ϑ.

Generalization for fixed degree : given a positive integer d, a
complex number ϑ is not algebraic of degree ≤ d if and only
if there is a sequence of good algebraic approximations
(αn)n≥0 with αn algebraic of degree ≤ d and αn 6= ϑ.

Durand’s criterion for transcendence (1974) : a complex
number ϑ is transcendental if and only if there is a sequence
of good algebraic approximations (αn)n≥0 with αn algebraic
and αn 6= ϑ.



Transcendence and Diophantine approximation by

algebraic numbers

Recall : Criterion for irrationality. A real number ϑ is
irrational if and only if there is a sequence of good rational
approximations (pn/qn)n≥0 with pn/qn 6= ϑ.

Generalization for fixed degree : given a positive integer d, a
complex number ϑ is not algebraic of degree ≤ d if and only
if there is a sequence of good algebraic approximations
(αn)n≥0 with αn algebraic of degree ≤ d and αn 6= ϑ.

Durand’s criterion for transcendence (1974) : a complex
number ϑ is transcendental if and only if there is a sequence
of good algebraic approximations (αn)n≥0 with αn algebraic
and αn 6= ϑ.



Transcendence and Diophantine approximation by

algebraic numbers

Recall : Criterion for irrationality. A real number ϑ is
irrational if and only if there is a sequence of good rational
approximations (pn/qn)n≥0 with pn/qn 6= ϑ.

Generalization for fixed degree : given a positive integer d, a
complex number ϑ is not algebraic of degree ≤ d if and only
if there is a sequence of good algebraic approximations
(αn)n≥0 with αn algebraic of degree ≤ d and αn 6= ϑ.

Durand’s criterion for transcendence (1974) : a complex
number ϑ is transcendental if and only if there is a sequence
of good algebraic approximations (αn)n≥0 with αn algebraic
and αn 6= ϑ.



Alain Durand (1949–1986)

Cinquante Ans de Polynômes
– Fifty Years of Polynomials
Lecture Notes in
Mathematics, Springer Verlag
1415 (1990).

Proceedings of a Conference held in honour of Alain Durand
at the Institut Henri Poincaré Paris, France, May 26–27, 1988



Transcendence and Diophantine approximation by

polynomials

A complex number ϑ is transcendental if and only if there is a
sequence (Pn)n≥0 of polynomials in Z[X] such that |Pn(ϑ)| is
non–zero and small, in terms of the degree dn and the height
(maximum of the absolute values of the coefficients) of Pn.

Existence of a sequence : Dirichlet’s box principle. Given
ϑ ∈ C, there exists P ∈ Z[X] \ {0} such that |Pn(ϑ)| is
small. If ϑ is transcendental, then |Pn(ϑ)| is non–zero.

Lower bound : Liouville’s inequality. If ϑ is algebraic and
|Pn(ϑ)| is non–zero, then |Pn(ϑ)| cannot be two small.
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Aleksandr Osipovich Gelfond (1906 - 1968)
Dirichlet : Given ϑ ∈ R, d > 0 and H > 0, there exists a
non–zero polynomial P ∈ Z[X] of degree ≤ d and height ≤ H
such that |P (ϑ)| ≤ c(ϑ)dH−d.

For some specific ϑ, d,H,
much smaller values for
|P (ϑ)| can be reached.

Of course, this happens when
ϑ is algebraic of degree ≤ d,
but also for instance when ϑ is
a Liouville number and d = 1.

Fundamental result by Gel’fond : If there is a “regular”
sequence of Pn such that |Pn(ϑ)| is quite small, then ϑ is
algebraic and all Pn(ϑ) vanish.



Algebraic independence method of Gel’fond

A.O. Gel’fond (1948)

The two numbers 2
3√2 and

2
3√4 are algebraically

independent.
More generally, if α is an
algebraic number, α 6= 0,
α 6= 1 and if β is a algebraic
number of degree d ≥ 3, then
two at least of the numbers

αβ, αβ
2

, . . . , αβ
d−1

are algebraically independent.



Gel’fond’s transcendence criterion (1949)

Simple form : Given a complex number ϑ, if there exists a
sequence (Pn)n≥1 of non–zero polynomials in Z[X], with Pn
of degree ≤ n and height ≤ en, such that

|Pn(ϑ)| ≤ e−6n2

for all n ≥ 1, then ϑ is algebraic and Pn(ϑ) = 0 for all n ≥ 1.



Rob Tijdeman and Dale Brownawell

70’s : Simplification et extensions due to R. Tijdeman,
W.D. Brownawell,. . .

http://www.wiskundemeisjes.nl/20080830/ridder-tijdeman/

http://www.wiskundemeisjes.nl/20080830/ridder-tijdeman/


Gel’fond’s transcendence criterion

First extension : Replace the
upper bound for the degree by
dn, the upper bound for the
height by ehn , and the upper
bound for |Pn(ϑ)| by e−νn .

Assumptions on the sequences (dn)n≥1, (hn)n≥1 and (νn)n≥1 :

dn ≤ dn+1 ≤ κdn, dn ≤ hn ≤ hn+1 ≤ κhn,

with some constant κ ≥ 1 independent of n, and ( main
assumption)

νn/dnhn →∞.
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Transcendence criterion with multiplicities
With derivatives : Given a complex number ϑ, assume that
there exists a sequence (Pn)n≥1 of non–zero polynomials in
Z[X], with Pn of degree ≤ dn and height ≤ ehn , such that

max
{∣∣P (j)

n (ϑ)
∣∣ ; 0 ≤ j < tn

}
≤ e−νn

for all n ≥ 1. Assume νntn/dnhn →∞. Then ϑ is algebraic.

Due to M. Laurent and D. Roy (1999), applications to
algebraic independence with interpolation determinants.
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Criterion with several points

Goal : Given a sequence of complex numbers (ϑi)i≥1, assume
that there exists a sequence (Pn)n≥1 of non–zero polynomials
in Z[X], with Pn of degree ≤ dn and height ≤ ehn , such that

max
{∣∣P (j)

n (ϑi)
∣∣ ; 0 ≤ j < tn, 1 ≤ i ≤ sn

}
≤ e−νn

for all n ≥ 1. Assume νntnsn/dnhn →∞.
We wish to deduce that the numbers ϑi are algebraic.

D. Roy : Not true in general, but true in some special cases
with a structure on the sequence (ϑi)i≥1.
Combines the elimination arguments used for criteria of
algebraic independence and for zero estimates.
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Schanuel’s Conjecture

Let x1, . . . , xn be Q-linearly
independent complex
numbers.
Then at least n of the 2n
numbers
x1, . . . , xn, e

x1 , . . . , exn

are algebraically independent.

In other terms, the conclusion is

tr degQQ
(
x1, . . . , xn, e

x1 , . . . , exn
)
≥ n.



Dale Brownawell and Stephen Schanuel



How could we attack Schanuel’s Conjecture ?

Let x1, . . . , xn be Q–linearly independent complex numbers.
Following the transcendence methods of Hermite, Gel’fond,
Schneider. . ., one may start by introducing an auxiliary
function

F (z) = P (z, ez)

where P ∈ Z[X0, X1] is a non–zero polynomial. One considers
the derivatives of F

F (k) =

(
d

dz

)k
F

at the points
m1x1 + · · ·+mnxn

for various values of (m1, . . . ,mn) ∈ Zn.
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The derivation

Let D denote the derivation

D =
∂

∂X0

+X1
∂

∂X1

over the ring C[X0, X1], so that for P ∈ C[X0, X1] the
derivatives of the function

F (z) = P (z, ez)

are given by (
d

dz

)k
F = (DkP )(z, ez).
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Auxiliary function

Recall that x1, . . . , xn are Q–linearly independent complex
numbers. Let α1, . . . , αn be non–zero complex numbers.
The transcendence machinery produces a sequence (PN)N≥0

of polynomials with integer coefficients satisfying∣∣∣∣∣(DkPN)(
n∑
j=1

mjxj,
n∏
j=1

α
mj

j

)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . ,mn with k ≤ N s0 and
max{m1, . . . ,mn} ≤ N s1 .
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of polynomials with integer coefficients satisfying∣∣∣∣∣(DkPN)(
n∑
j=1

mjxj,
n∏
j=1

α
mj

j

)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . ,mn with k ≤ N s0 and
max{m1, . . . ,mn} ≤ N s1 .



Roy’s approach to Schanuel’s Conjecture (1999)

Following D. Roy, one may expect that the existence of a
sequence (PN)N≥0 producing sufficiently many such equations
will yield the conclusion :

tr degQQ
(
x1, . . . , xn, α1, . . . , αn

)
≥ n.

New conjecture equivalent to
Schanuel’s one, in the spirit of
known transcendence criteria
by Gel’fond (1949),
Chudnovsky, Philippon,
Nesterenko, Laurent. . .

D. Roy. An arithmetic criterion for the values of the
exponential function. Acta Arith., 97 N◦ 2 (2001), 183–194.
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