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Numbers = real or complex numbers R, C.

Natural integers : N = {0,1,2,...}.

Rational integers : Z = {0,+1,£2,...}.



Prime numbers

Numbers with exactly two divisors.
There are 25 prime numbers less than 100 :

2,3, 5,7, 11, 13, 17, 19, 23, 29, 31, 37, 41

43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

The On-Line Encyclopedia of Integer Sequences
http://oeis.org/A000040

Neil J. A. Sloane
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The fundamental Theorem of arithmetic

Any positive number is the product, in only one way, of prime
numbers.
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Prime numbers are related to multiplication, they are the
building blocs of the set of integers for the product. One
should multiply them, not add them!



The fundamental Theorem of arithmetic

Any positive number is the product, in only one way, of prime
numbers.

Prime numbers are related to multiplication, they are the
building blocs of the set of integers for the product. One
should multiply them, not add them!

But there is no law which would forbid to add prime
numbers!!



Sums of two primes

Let us list the numbers up to 30 that are sums of two prime
numbers : n = p; + po, p1 < po, n < 30.
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Sums of two primes

Let us list the numbers up to 30 that are sums of two prime
numbers : n = p; + po, p1 < po, n < 30.

A\ [2]3[5 [ 7 [11[13]17]19[23
2 (45|79 [13]15[19]21 |25
3 6|8 [10] 1416202226
5 101216182224 28
7 14 [ 18720 | 24|26 | 30
11 22 |24 [ 28730
13 26 | 30

The entries on the row with p; = 2 after the first one are odd,
all other entries are even.
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Sums of three primes

Notice that 27 is sum of three primes in 7 ways :

20=2+42+23=3+5+19=3+T7+17
=3+11+13=5+5+17T=5+11+11=7+T7+13.
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Sums of three primes

Notice that 27 is sum of three primes in 7 ways :

20=2+42+23=3+5+19=3+T7+17
=3+11+13=5+5+17T=5+11+11=7+T7+13.

The number of decompositions of an integer as a sum of three
primes is given by the sequence http://oeis.org/A068307,
namely

07 O’ 07 07 07 ]" 17 17 27 ]" 27 27 27 ]" 37 27 47 27 37 27 57 27 5’ 37 57 37 7’

3,7,2,6,3,9,2,8,4,9,4,10,2,11,3,10,4,12, 3,13, 4, 12,5, 15, . ..
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Goldbach’s Conjecture

Letter of Goldbach
to Euler, 1742 :
any integer > 6 is
sum of three

primes.
Christian Goldbach Leonhard Euler Euler : Equivalent
(1690 — 1764) (1707 - 1783) to :

any even integer > 4 is sum of two primes.



Goldbach <= Euler

(G) : any integer > 6 is sum of three primes.
(E) : any even integer > 4 is sum of two primes.



Goldbach <= Euler

(G) : any integer > 6 is sum of three primes.
(E) : any even integer > 4 is sum of two primes.

Proof :

(G)=(E)

Let m be an even number > 4. Assuming (G), m + 2 is sum of
three primes, says m + 2 = p; + po + p3. At least one of them
is even, say p3 = 2, and m = p; + po is sum of two primes.



Goldbach <= Euler

(G) : any integer > 6 is sum of three primes.
(E) : any even integer > 4 is sum of two primes.

Proof :

(G)=(E)

Let m be an even number > 4. Assuming (G), m + 2 is sum of
three primes, says m + 2 = p; + po + p3. At least one of them
is even, say p3 = 2, and m = p; + po is sum of two primes.

(E)=(G)

Let m > 6. From (E) is follows that m — 2 is sum of two
primes, m — 2 = py + pa, hence m = p; + py + 2 is sum of
three primes.



Number of decompositions of 2n into ordered sums
of two odd primes.
http://oeis.org/A002372

0,0,1,2,3,2,3,4,4,4,5,6,5,4,6,4,7,8,3,6,8,6,7, 10,8, 6,
10,6,7,12,5,10,12,4,10,12,9, 10, 14,8,9,16,9,8, 18,8,9, 14, . . .,
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Circle method

7o
Srinivasa Ramanujan G.H. Hardy J.E. Littlewood
(1887 — 1920) (1877 — 1947) (1885 — 1977)

Hardy, ICM Stockholm, 1916
Hardy and Ramanujan (1918) : partitions
Hardy and Littlewood (1920 — 1928) :
Some problems in Partitio Numerorum



Circle method

Hardy and Littlewood

Ivan Matveevich Vinogradov
(1891 — 1983)

Every sufficiently large odd
integer is the sum of at most
three primes.



Sums of primes

Theorem — |.M. Vinogradov (1937)
Every sufficiently large odd integer is sum of three primes.

Theorem — Chen Jing-Run (1966)
Every sufficiently large even integer is sum of a prime and an
integer that is either a prime or a product of two primes.

Gy

Ivan Matveevich Vinogradov Chen Jing Run
(1891 — 1983) (1933 - 1996)




Sums of primes

In the above proof of the equivalence between Goldbach and
Euler, the prime number 2 plays a central role.
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Sums of primes

In the above proof of the equivalence between Goldbach and
Euler, the prime number 2 plays a central role.

e Weak (or ternary) Goldbach Conjecture : every odd integer
> 7 is the sum of three odd primes.
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Sums of primes

In the above proof of the equivalence between Goldbach and
Euler, the prime number 2 plays a central role.

e Weak (or ternary) Goldbach Conjecture : every odd integer
> T is the sum of three odd primes.

e Terence Tao, February 4,
2012, arXiv:1201.6656 :
Every odd number greater
than 1 is the sum of at most
five primes.



http://arxiv.org/abs/1201.6656

Ternary Goldbach Problem

Theorem — Harald Helfgott (2013).

Every odd number greater than 5 can be expressed as the sum
of three primes.

Every odd number greater than 7 can be expressed as the sum
of three odd primes.

ESPERUANO Y NO CANTA, NO COCINA, NO JUEGA FUTROL

iY TIENE FANS!

Harald Helfgott
(1977- )

Earlier results due to Hardy and Littlewood (1923),
Vinogradov (1937), Deshouillers et al. (1997), and more
recently Ramaré, Kaniecki, Tao ...
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