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A LOWER BQUND FOR THE p=-ADIC RANK OF THE UNITS OF AN
ALGEBRAIC NUMBER FIERLD

M. WALDSCHMIDT

Let k& Dbe a totally real Galois extension of Q
with Galois group &. When p 1is a prime, we denote by
o the p-adic rank of the units of &. Leopoldt's
conjecture asserts that rp:r, where r=[k:Q1~1l. When
G 1s abelian, this equality has been proved by J. AX
and A. Brumer. An extension of their methed enabled M.

EMSALEM, H.H. KISILEVSXKY and D.B. WALES o prove [13:

r =4y -1
o _ZX '
X
where y runs over the characters of ¢ irreducible
over Qp ¢ and dX ig the degree of . Their main tool

is a p-adic transcendence result on the non-vanishing
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of linear forms in logarithms of algebraic numbers

(theorem of Baker-Brumer).

We give here another lower bound for T, namely
= rf2.
T, f

We also use a p-adic transcendence result, only now it

concerns exponential functions in several variahles [413.

It is worthwhile to notice that the transcendence procf,

which rests on an extension of Schneider’s method, enables

one to give a new proof of the theorem of Baker-Brumer.
The number rp ig egual to the rank of a matrix

r

<1ngGTE}GGG,TEG
where € is a Minkowski unit such that !oe—llp<1 for
all o€g. According to Dirichlet units theorem, the rank

of the matrix

(lOg|OT€l)gEG,T6G

is egual to r. Our ineguality rPZriz will be a con-

sequence of a more general result which compares the rank



wuambers

r hamely

only now it
airiables [413.
1dence proof,
nethod, enables
iker-Brumer.

a matrix

:~1| <1 for-
P

srem, the rank

L1 be a con-

sares the rank

of a matrix (logpaij) with the rank of a real matrix

(loglaijl).

The arrangement of this paper is aslfpllows. In sec-
tion 1 we state two lower bounds for the rank of (lngmij),
first in terms of the rank of (logluijl) with the
natural logarithms of the modules, then in terms of the
rank of (log uij) with complex determinations of the
logarithms. In section 2 we gilve a corollary of these
statements, and we study the situation from a conjectural
point of view. In section 3 we introduce a coefficient
6% (a), where A:(aij). In secticn 4 we state the main
result of this paper, which gives a lower bound for the
rank of (logpaij) in terms of 8*(a), and we deduce
from it the results of section 1. In section 5 we sketch
the proof of the main result. Finally section 6 is de-
voted to further results on the subject.

Throughout this paper we denote by Q@ an algebraic
closure of Q, Cp is a completion of an algebraic
closure of Qp , Tk » is the rank of a matrix M,

anéd deg ¢ is the (total) degree of a polynomial PF.

1. ON THE RANK OF MATRICES WHOSE ENTRIES ARE LOGARITHMS

OF ALGEBRAIC NUMBERS.

We first give a lower bound for the p-adic rank in
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terms of the rank of a real matrix (cf.C43, 2.2.p). This
is precisely the result which is used for the proklem of

the p-adic regulator.

THEOREM 1.1. Let k be a number field, 9 an em-
bedding of k inte €, and @p an embedding of k

into Cp. Let aij . (lsi<d, 1<£j=1) be elements of Xk
such that

We consider the two matrices

o _
uoo= (loglow 1) scq 12524

where 109 is the natural logarithm, and

= 3
My o= (dogpe o) 1cica, 15550

Then

There is no ineguality in the other direction: if we




2.2.p)s This

& problem of

¢ an em-
ng of k

ements of k

action: if we

choose algebraic numbers as with aij=l for i#j

and imaiilﬁl, oy not root of unity, we get
rk Mp = min{d, ¢), while rk MO =0,

We give now a lower bound for rk i in terms of the
rank of a complex matrix (log @uij), where, for each
(i,7), we choose a determination of the logarithm of
AFFE It is obviously necessary to make some assumption
on these logarithms (take for instance all o equal to
1). For the application to the next secticn, it would be
sufficient to assume that
2

d
(L T

Z iog eu, . N2iwZ = C.
i=1 j=1 +J

Such a choice is possible if and only if the subgroup of

Q% generated by the 4d& numbers oy is torsion free.

In the following result we use a slightly weaker

hypothesis.

THEOREM 1.2. with the assumptions of Theorem 1.1,
we choose, for 1=<isd, 1<£j<i, a determinmation of the
logarithm of maij. We assume further that if
(bl'°"'b£)EZ£ are any elements such

Qzl,..e,ad)ezd and

that the number
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a
A= L Y oa.b. log go.
i=1 je1 * 7 +

belongs to 2inZ, then A=0.

We consider the matrix

Then

rk ¥ = L vk m.
P 2
The same method yields other inequalities like

rk ¥ .
b

o=

rk M b % rk M and rk M 2

2. THE NUMBERS =r(I') AND rp(F).

et I be a finitely generated subgroup of 6Xd of

rank ¢ over 2. We first consider an embedding of Q

into €, and we denote by exp:cd -~ ¢x?%  the exponential

map:




a5 like

p of @x% of
edding of @Q

he exponential

d
l,...,td)EC .

We define r{T) as the minimum of the numbers

dlmC(Cz F . .+CZ£) r

1
as (zl,...,zz) runs over the g-tuples of elements of

¢? such that EXp Zyse-- CXP 2z, generate a subgroup of
finite index of T, Bguivalently, =r(F) is the minimum

of the ranks of matrices

(3o v; )1<i<a, 15528

where Yqs...,Y, are multiplicatively independent ele-
ments of T with L C P L) and 1lo .., is

’ YJ Ylj' ,Ydj ' g YlJ
any determination of the logarithm of i :  the minimum
is taken over the Y and +the determinations of the

logarithms.

we further write ro(r) for the rank of any matrix

it does not depend on the choice of YyeerreYy malti-
plicatively independent elements of T.

We will now define, for all prime numbers p outside
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a finite set, a number rp(F) in a similar way. We first

choocse Yyeeera¥y multiplicatively independent in 1.

Let p be a prime; we consider an embedding of Q into
Cp and we assume that all coordinates Y5 of Yy

for 1<i<d and 1<j<g2, are p-adic units. This condi-
tion on p may depend on the embedding of @ into cp ,
but does not depend on the choice of Yqrerea¥ye Almost |
all p (i.e. all p bhut a finite number) satisfy this
requirement (for all embeddings of Q@ into Cp); more-
over, if the Y;3 are all algebraic units, then all p

satisfy it. We now define rp(F} as the rank of the

matrix

(109,v;571c1<a, 15520

Once more this. number does not depend on the choice of
YyreserY, multiplicatively independent in T, but it
depends on T and on the embedding of ¢ into Cp

#rom Theorems 1.1 and 1.2 we will deduce the following:

ro(r) and

[N ]

CORQLLARY 2.1. wWe have rp(F) =
r (1) 2§ r(0),
P

Also

pof -

r (T =

r (r) and r(l) z i, (T>.
pq 2°p

Py




r way. We first

ndent in T.

ng of Q into
. of .

5 YJJ

. This condi=-
0 into ¢,

r

ce Y Almost
satisfy this

o C }); more-

P

, then all p

ank of the

1e choice of
r, but it

into € .
B

e the following:

7Y and

-~ ().
p

PROOF OF COROLLARY 2.1. We choose yys-..,y, in T

multiplicatively independent. The ineguality
;pUﬁzfoﬂﬂ/z isa straightforward consequence of Theoreml,l

with STHCTR For the second inequality, we consider

the subgroup of 0% generated by the dg¢ numbers Yij’
(l=i<d, 1<7<1); let &a be the order of the torsion sub-
group. Next, let Bl,...,sm be a basis of the (free}

group generated by the 4¢ numbers ij in Q*. Thus
there exist integers aijsEZ' (1<i<g, 1<j<8, 1lZs=m),

which are uniguely determined, satisfying

We take any determinations of the logarithms cof Bl"'”ﬁm'
Since Bl""’sm are multiplicatively indepen-

dent, the numbers log Bl,...,log Bm , 2ix are Q-

linearly independent. If we set dijzyjj ; we can define

log % by

Il
neis
R
fomi
o}
g
w
5]
Lan)
[
A
]
A
=5
l_l
IA
L)
A
=
et

log aij

and we get
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d &
(z . Z log o,

L)N2inZ = O.
i=1 §=1 +J

From Theorem 1.2 we conclude
r (7) = rk(log_ a,. ) 2 1 rk(log o, ) 2 z r(r}.
p p iji’ T~ 2 ii’ T 2

We now Gescribe the situation from a conjectural

point of view.

CONJECTURE 2.2. For all those p for which rp(T}

is defined, we have

I

£ (r) = r(r) 2 2200
P
Furthermore, let YyreeerYy be multiplicatively inde-
pendent elements in T, and let log T satisfy
2

Y z log vy, .)N2itZz = O.
1 j=1 +J

(

i

(LN E~N

Then the rank of the matrix

o= (109 ¥;:)1<5¢q, 1<i<




r(Ty.

],
N[

nijectural

which r (T)
p

ively inde-

satisfy

is equal to r(l).

" According to this conjecture, the number r(r) (resp.
rp(F)) does not depend on the chosen embedding of Q
into € (fesp. into cp). Of course, in geheral, rO(r)
may well depend on the choice of this embedding (i.e. of
the choice of the absolute values Iyiji}. Also, for a
given p, the fact that rp(r) is defined depends on
the embedding of @ into ¢ . But if Conjecture 2.2
holds, there is a natural definition for rp(F) for all
p and all embeddings 5Ccp.

From the definition of =r{(Ir), it is obvious that
rk Mzr(r). Let us show thét the inequality rp(T)zrk M
is a consequence of the following standard conjecture
{which is a special case of the p-adic Schanuel’s con-

jecture; see [4]1 p.l127).

CONJECTURE 2.3. rLet Gpreee be p-adic¢ units in

c
b

independent. Then the numbers logpul,..,,logpum are

, which are algebraic over @, and multiplicatively

algebraically independent.
We need the following lemma:

LEMMA 2.4, Let K be a field Al,...,Am be elements
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CfKEXl""’Xn}’ and let PEKEXl,...,Xn+m]. If the polyno-

mial

Hxl,...,xn, Al,...,Am)

is the zero polynomial in KEXl,...,Xn], then P Dbelongs

to the ideal of K[Xl,...,xn+m3 generated by ?he

; - <i<
m polynomials Xt Aj’ (lsi<m).

PROOF OF LEMMA 2.4. We consider the field

L=K(X1“,.,Xﬁ),The image of P in L[Tl,q..,Tm] under the

obvious map Xn+j+Tj belongs to the ideal generated by

Tl"Al""’T -4 . 'This means that there exist
m m

Qoextxl’*"’xnj’ QO¢O, and Qrress Q) in
KEXl,...,Xn+m], such that

QO(Xl,-.-,Xn)P(Xl,-..,Xn+m) =

m
= jzl Qj(Xl,...,Xn+m)(Xn+j-Aj(Xl,..-,Xn))-
Tt is now sufficient to notice that the ideal is prime,
gince the guotient K[Xl,...,Xn+m]/ is isomorphic to
K[Xl,- e ’Xn].

PROOF OF THE INEQUALITY IP(F)Zrk M IN 2,2 AS A

CONSEQUENCE OF 2.3. Assume that the rank =z of &




'f the polyno-

wen P belongs

ted by the

114
under the
jenerated by

Hed

..,xn)).

1l is prime,

somorphic to

2.2 AS A

satisfies r>rp(r). We write all the determinants rxr
out of the matrix (longij)' We get finitely many poly-
nomlals PpreesiPy in 4d& indeterminates Xis0 (1=<i<d,
1<4<4), with rational coefficients, which all vanigh at
the peoint (lngyij).
We select among the df2 numbers logpyij a basis

of the @Q-vector space they generate, and we write this
basis logpy. 1€s€m. Next let a.. , a, be

i(s), Fis)' ijs
rational integers, with a>0, such that

m
2 lngY" = E iis 1ngYi(s),j(s)’

By assumption the numbers Yis are p-adic units, and

for a2 p-adic unit uECp the condition 1ngu=0 means
that u is a root of unity. Therefore there exists a

positive integer b» such that

ab
Y., o=

a., .
13 2 (lgisd, 1<5<8).

1 Yi(e),1(s)

=]

s

Thanks to our assumption on the complex logarithms

log Ti4 in 2.2, we conclude
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m
a 1og v, = E aijs log Yi(s),i(s)

We now use 2.3: the numbers logpy are algeb-

i(e),5(s)
raically independent. From Lemma 2.4 (with n=di-m) we
see that the polynomials Ppres-1Py belong to the ideal

of QrL{x..}

ij 1<i<d,lsjst’ generated by the d# polynomials

ax;; - % s xi(s)’j(s), (lsisd, 1lsi<i).
s=1
Therefore Ppresseby vanish at the complex point
(log Yij)’ which contradicts the assumption r=rk w,
The same proof shows that the inequality rp(r}aro(r)
is a consequence of 2.3, S8imilarly, it is easy to deduce

the inequality r(r)zrp(y) from the following classical

conjecture:

CONJECTURE 2.5. If log ml,...,log @ are Q-line~
arly independent logarithms of complex algebraic numbers,

then they are algebraically independent.

Another conseguehce of 2.5 is £(mze2(r). s pointed

out to me by E. Reyssat, this ineguality depends on the



are algeb-
n=di-m) we
to the ideal

14 polynomials
4, 1<7=).

point

1 r=rk M.

ror (2P
P

15y to deduce

ng classical

are Q-line-

:braice numbers,

). As pointed

sends on the

fact that the coordinates of the elements of [ are

algebraic numbers. For instance let I be the subgroup
T
of €x? generated by (%_) and (J%). We can define
o :
r{(Ir') and 2(r) as before (in spite of the fact that

I' ig not included in 6*2). Then rO(F)=2, but r(r)=1i,
2%

because (el ) and ( éﬁ) generate a subgroup of finite
e
index of ', and
21 ~2i1
det = O.

2it 2

3. THE COEFFICIENT &%,

If the rank of the matrix Mp:(lOQPaij) ig "small",
then there are "mamy" linear relations with coefficients
in cp between, say, the rows of M our aim is to
show that, in this case, and assuming the @,y are
algebraic, there are "many" linear relations with rational
coefficients between the 4% entries logpaij of Mp.
This means that there are "many" multiplicative relations
between the d& algebraic nimbers aij' In order to

count these relations, we introduce a coefficient 8%,

which is the multiplicative analogue of the ccefficient

- 1631 -




@ of C41. It will satisfy 0sg6%*<ifd, and "many"” multi-
plicative relations between the dij means that ©* 1is

smali.

NOTATION. Let ¢ be a commutative group; we write
the law of ¢ multiplicatively. Let aij’ (1lgisd, 1<3i=8)

be elements of &. We write
A= (a,..)

ij l=i<d, l<i<g !

and we define

where A and & run over the integers, 0=isi, 026<d,

"such that there exist Ppecr+1P s in Zd, linearly
independent, and gprees1dy in Zl, linearly independent,
with
d
ezr, (1<g<d-¢§)

(psl""’psd



"many" multi-

that &% 1is

up; we write

748

AZ8, 0=6<d,
linearly

rly independent,

satisfying

d £ p_.q.
o o StTIt e, (1<s<d-6, 1l<t<h).

i=1 j=1 7

If the law of ¢ is written additively, we write ©

instead of 8%,

In this section we give some lower bounds for 0%.

LEMMA 3.1. Assume G=C*. If the matrix (logiaijl)

is of rank d, then
*(a) = 1.

PROOF. Using the definition of 6%, we write

Ex(a)=0(3-2)/(d-8). From the relations

d 2 P .q.
t
I n a2t = 1,

i=1 j=1 17
we deduce

d '8
.g.,. logla,.l = G.
izl jEl Psifye 10910551

Therefore there exist a regular dxd matrix P with

‘integer entries, and a regular fx{ matrix @ with
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with integer entries, such that

My 0]

P(loglaijE}Q =

M M

2 3

where M3 is a matrix with 6 rows and 2

My has d-& rows and #-) columns). Hence

LA tE .

<
rk(loglaijl) <

This completes the proof of Lemma 3.1.

columns {and

The same proof works for complex logarithms, provided
that the relations
d L P _.q.
S S P ARE |
i=1 j=1 *J
imply
d %
n L p_.g., loga,, = 0.
i=1 =1 si jt ij
Therefore we get the following result:
LEMMA 3.2. Assume G=C¥. For 1£i<d, 1£j2%, Iet
ilog 5 he a determination of the logarithm of aij'

Assume that the condition




-
L
i

N
“
i

v columns (and

ce

ithms, provided

d 2
Y ¥ a.b, loga,, = 2itc
i=1 j=1 * 7 +d
for rational integers al,.-..ad, bl,...,b2 and ¢
implies c¢=0Q.
If the matrix (log uij) is of rank d, then

ex{arzl.

Similarly, for G=C; and luijﬁp=l, if the matrix
(logp aij) is of rank 4, then 8%(ajzl,

REMARK. The assumption ©%(a)zl is not sufficlent
to ensure that the rank of (loglaiji), or of (log uijh
is equal te d. An cobvicus example (L41 example 7 p.113)
is a; = exp(inpd+j), where pg,e-erPg . are distinct
primes. In the following more subtle example, due to M.

Langevin, the numbers o5 are rational:

1 2 3
a=]2 1 1/5
3 5 1

and &=d=3, @*(a)=l, rk(log%mijl)=2. & diagonal bloc

of m such matrices yields a new matrix A with &=d=3m,

ex(a)=1, and rk(log a_,):zmzzd.
i3 3
The conjecture 2.2 suggests that it should bhe possible

to describe the number r(I) solely in terms of rcaxd,

- 1635 -




by algebraic means, without involving a transcendentai
parametrization by the exponential function.

We will see below (Section 4) that it is pessible to
give a lqwer_bound for rp(r) (and also r(I')) in terms
of ©%. The result does not seem best possible: for
instance the "four exponentials problem" can be stated as
follows: 1f 6%(a)>l/d and dz2, +then the rank of
(log aij) is =2. However, in view of Langevin's example,
the complete conjectural description of the situation is
not clear. If we take Schanuel’s conjecture for granted,
the problem is reduced to the study of the rank of a
matrix M=M1Xl+...+MSXS, where Ml,‘..,MS have coeffi-

cients in a field x (say x=Q), and X;,...,X  are

indeterminates over K.

4. THE MATIN RESULT.

In this section we deduce Theorem 1.1 and 1.2 from

the following result (see (41, 2.1.p).

THEQREM 4.1. rLet ¢ (1<i=d, 1£j<8) be elements

of Cp, which are algebraic over Q, and satisfy
la. .| =1. Define

M, = (109 0, 01524, 12552 '




mmscendental

L,
.8 possible to
A{T3) in térms
iible: for
n be stated as
. rank of
gevin’s example,
situation is
for granted,
rank of a
have coeffi-

ves s X are
S

nd 1.2 from

be elements

satisfy

and
A = (o, ). ,
ijl=isd,l=si<g
Then
gx{a)
> —_
rk Mp z d 1+6%(ay
PROOF OF THEOREM 1.l. Define r=xrk MO. Let

i(1}, eosrilr)beintegers, with 1<i(l1l)<...<i(z)<d such that

the matrix

¥~ = logloa i)

i(s),7 "1l<g<r,l=j=<z

has rank r. By Lemma 3.1, we get, for

A=(0,00y, ) 1<s<r, Lsj<e
0x(a) = 1.

By Theorem 4.1 the matrix Mp:Flngwpdi(s),j)lsSSr,lSjSQ

satisfies

rk ¥ = r/2.
P

" Since rk Merk EP' Theorem 1.1 follows.
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PROOF OF THEOREM 1.2. The proof is the same, using 1
now Lemma 3.2, together with the fact that the only number
of the form

r £

VT sél jEl aghy 109 905 45,5

with aSEZ, bja, which belongs to 2inZ, is A=0.

5. SCHNEIDER'S METHOD IN SEVERAL VARIABLES.

The proof of Theorem 4.1 can be divided in two parts.
In the first one, we assume rk Mp<d, and we construct
a sequence of non-zerc polynomials Ps(xl,...,xd), SZSO,
such that

n, % h,
-‘f,...,H a 1)y =0
i Y =1

for all (hl,...,hﬁ)ez“ satisfying Osh.<s, (1<jse).

Moreover we give an upper bound for the degree of ps:

d-
deg P, < ClSn/( n)r

where n=rk Mp, and cq does not depend on s.

The second part is a "zero estimate", due to D.W.MASSER




same, using

che only number

LES.

in two parts.
e construct

..,xd), szso,

(1<5<0).

ee of p :
s

[

le to D.W.MASSER

[2]1. It gives a lower bound for the degree of a polynomial

satisfying such conditions:

6% (a)
deg_PS.z CyS .

Theorem 4.1 follows at once,

Because of the finiteness of the radius of convergence
of the exponential function, it is convenient to assume
iaij—llp<l .for 1<igd, 1l<£jsi. Let us show f£irst that
this involves no loss of generality.

Let a be a positive integer such that

a

i <<
1logpaijlp <p (l<igd, l=j=<1).

Define

-~ _ a
o5 = exp(p 1ngaij).

Then

=1l <1 log a.. = p2log a..
la |p ’ gpotl] p ngClJa

and if we set
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LN

Il
—
Q
~—
~

¥ = (log a..), and
p p 17

we have
-rk ¥ = rk M P p*¥(a) = 0%(a)
. p P
PROPOSITION 5.1. Let uij (l<i<gd, 1<j54) bhe alge-
braic numbers in ©C with |a..-1l <1. Aassume that the
P 17 P

rank n of the matrix M =(log o,.) satisfies n<d.
p p i3
Then there exist positive integers SO and Cl' and a

sequence of non zero polynomials (PS)SZSO in Z[Xl,ue,xdl

with

mnf(d-n)
deg Py < Cls P

such that

% hj
'g adj) = 0

for all (hl,...,hﬁ)ezg satisfying OShjSS, (1<),

Sketch of the proof of Proposition 5.1, following [41.

We select n columns of Mp which are Cp-linearly

independent; let their index be $(1Y,+ve.43fn), with



1€ (L)< (23, .. <j(n)=d. We define, for 1£j=8&,

Yo

— n
Yy (yjl,...,yjn)ecP by

n
= <1< <
logpaij Ei Yy log O oS! {l=i<d, 1l5jisi).

N ite i P

<j<e) be alge- ow we write the unknown polynomial P, fer large S5,
in t f owi ms:

Assume that the in the following for

isfies n<d. % N
1 d
P (X ]-ov;X ) = Z p()\)X e n o X 7
S
nd Cys and a 1 d ) 1 d
in z[Xl;egs,ch], a
%.) runs over the elements Of z

G
where A=(Al,..., 3

satisfying Aizo, A1+...+AdSD; thus D=D will be an

upper bound for the degree of P

Let us consider the function

which is analytic for z=(zl,...,zn) in the disk

iz <p1j(p-l)of c” (here lzl_= max lz | ). For each
<5, (A=i=), p B P 1gvsn p
. [
1, following [41, (hl""'hﬁ)ez , we have
. ? d 3 ALh

c - . g

we € linearly : Fs(hlgl+...+h£y2) = % pCxy - @m 1 ai; J
(n) i=1 j=1

.,j(n); Wlth
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Now the strategy is as follows.
First step. We construct P (i.e. the p(Al€Z)
such that many derivatives of Fg at the origin are small,
namely
1 -U

=7 DTF(o)|p < e for T = (Tyreeert )y

Nl < CyU,

where UsU, is a new parameter. Moreover we solve this.
system ©0f inequalities with integers p(x), not all zero,

in the range

The number of inequalities we have to solve is about u”,

and the number of unknowns is about Dd. It turns out

that such a construction is possible, using a suitable

dfn

version of Siegel’s lemma, provided that UsC.D

5
Second step. A rather simple- p-adic analytic

estimate shows that




the p(A)EZ)

origin are small,

ooyt )1

we solve this

y, not all zero,

7€ is about Un,
It turns out

1y a suitable

dln
<
U._C5D .

analytic

vhird step. We consider the number Fs(hlgl+...+b£yl),

for some (hl{...,hl)ezg, -OShjSS. Using classical alge-
braic arguments ("size inequality": & non zero algebraic
number cannot be too small), we show that this number is
zero, which is the desired conclusion.

Now for this last step we need an upper bound of the

d/n

shape DSSC7U, and since USC_D we must take

5
Daclsn/(d—n).

The second part of the proof is the zero estimate of

D.W. Masser.

PROPOSITION 5.2. Let Kk be a field of charakteristic

zero, o, (lsi=d, 1<j=2) be elements of K¥, a=la. .),
ij . ij

and D,S positive integers. Assume that there exist

pla)ek, (for{il=(i ..,Ad), Aize, Al+...+kdsp), not

it

all zero, such that

d £ ALk,
S op(x) n o1 et d =0
() i=l =1 *7

for all (hl,..q,hﬂ}ezl, Oihjés. Then

b =z (s/d)@X(A).
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We deduce Propesition 5.2 from Thecorem 2 of [21

in the following way. We first notice that the statement
of Proposition 5.2 involves only finitely many elements
of &, and therefore we may assume, without loss of
generality, that x 1is finitely generated over Q. If

we wish, we can embed k in €. Next, for

xd d

z:(zl,...,zd)EK and h:(hl,ee.,hd)ez , we write

h
_ )t ST
Z = zl r:-olzd -

Finally let T be the subgroup cf de generated by the
£ elements '

d

(o ,...,o:dj)EKx ; (I=7=2).

17
For 1lsr<d, define L. as the maximum rank of any sub-
group T’ of T such that there exists a subgroup ¥

of Zd, of rank r, satisfying

vy =1 for all y&r’ , hEH.

It is plain that

E—ﬂr
B%(a) = min .
lLErsd




am 2 of [21]

£ the statement
many elements

>ut loss of

i over Q. If

or

e write

generated by the

ank of any sub-

a subgroup H

h<H.

Therefore, with the notations of [21,

4y,

e*(a) = x(r, Z

Indeed, if X=le+...+2xd and Y=Zgl+...+zgZ are
two finitely generated subgroups of ¢? of rank 4 and
% respectively, and if

uij = exp((xi,yj>), and a = (uij),

then

ylv,x) = 0%(a).

Thus proposition 5.2 is equivalent to Theorem 2 of L23.

Tn the proof of Theorem 4.1, we use Proposition 5.2
with k=Q (there is no need of a p-adic zero estimate).

Also it is important to notice that the hypothesis
rk Mp<d has been used only in the first part of the
proof (Proposition 5.1}, not in the zerc estimate. As a
consequence; the zero estimate 5.2 is sufficient for
guantitative results (there is no need of a "small value
lemma" ).

As shown in [23, the exponent ©%*(a} in Proposition
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5.2 is best possible. Therefore it is very likely that

Proposition 5.1 is not best possible.

The proocf sketched here works as well in the complex
case, and 'gives the same lower bound: dox/(1+ex) for
the rank of {(log aij)' for any determinations of the
logarithms. The difference between the two cases arises
only if we intend to bound the rank of {log aij) not is
terms of the multiplicative coefficient e*% of (uij),
but in terms of the additive coefficient & of the matrix
of the logarithms. In the p-adic case both coefficients

obviously coincide, but in the complex case, because of

2in, we have only the inequality

0{locg a,,) = %(a . ).
ij 17

However the inequality

o]
v

dej{i+p), with r = rk(log aij)'

o
i

6(log aij)

can be deduced from the complex analogue of Theorem 4.1 /

(see [43, 7.2; this is the place where the technical



.1kely that

n the complex
1+e%) for
.ons of the
ases ariées
"o, ,) not is
17 .
o .
f (aij),
of the matrix

coefficients.

because of

)y

Theorem 4.1

echnical

lemmas 5.3 and 5.4 of [43 are needed}.

6. FUTHER RESULTS.

The construction of the auxiliary function can be
performed in a very general context [41. Also the zero
estimate has been extended by MASSER and WUSTHOLZ [31 to
arbitrary commutative group varieties, and they are devel-
oping-their method to a very large extent. Therefore the
method presented here is capable of a large generalization
which I hope to develop somewhere else. As an illustration,
here is the elliptic analogue to Theorem 1.2, when we
replace 0*% by =(3)9, where E is an elliptic curve
which is defined over Q. (Cf. C31 §8).

Let v, » (1<i<d, 1<j<2) be df points in =£(Q).
We choose any representation of the complex exponential
of E(C) (say by a Welerstrass elliptic function), and,
for 1<£i<d, 1l£j£i we choCse uijEC whose image by this
exponential is Yige We denote by r thg rank of the
matrix

( )

Uij’l<i<a, 1s35a

Let k be the field of endomorphisms of E, and L be
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the kernel of our exponential, which gives an isomorphism
between C/L and E(C). Assume that for any

@]J.!.ﬁd)efj and any (bl,---,bl)EZE, if the number

belongs to L ', then Ai=0.

Now let p be a prime; consider a p-adic represen-
tation of the exponential map of E(Cp), and assume that
there exists uiﬁ) in Cp (in the neighbourhood of zero

where the exponential is defined) whose image by this

exponential is Yy Dencte by rp the rank of the matrix

{(p)

;5 Vi<ica, 1<j<s °

Then

= 3.
rp rf

Mocreover, if E has complex multiplication, then

=z rl2,
rp /

Finally we mention the following recent works which




i isomorphism

ny

+ number

idic represen-—
Ld.assume that
irhood of zerco
re by this

ik of the matrix

then

. works which

are connected with this subject.

- P. Philippon gave an elliptic analogue to lemmas
5.3 and 5.4 of 41 (see the end of section 5 above).

- N. Sebtifchaouni worked out the préof of Baker's
theorem by Schneider’s method in several variables {see
[2] p.94). She had to improve theorem 8 of [31.

- Yu Kun Rui did the same in the elliptic case with
complex multiplication, i.e. gave a new proof of Masser’s
theorem on linear forms of elliptic integrals, and alsc
gave an effective lower bound.

- J.C. Moreau derived a simplified proof of the theorem

of Masser and Wiistholz [3] by replacing commutative algebra

by algebraic gecmetry.
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