COLLOQUIA MATHEMATICA SOCIETATIS JÁNOS BOLYAI 34. TOPICS IN CLASSICAL NUMBER THEORY BUDAPEST (HUNGARY), 1981.

A LOWER BOUND FOR THE p-ADIC RANK OF THE UNITS OF AN ALGEBRAIC NUMBER FIELD

M. WALDSCHMIDT

Let κ be a totally real Galois extension of ${\bf Q}$ with Galois group ${\it G}$. When ${\it p}$ is a prime, we denote by ${\it r}_{\it p}$ the ${\it p}$ -adic rank of the units of ${\it K}$. Leopoldt's conjecture asserts that ${\it r}_{\it p}$ =r, where ${\it r}$ =[${\it K}$: ${\bf Q}$]-1. When ${\it G}$ is abelian, this equality has been proved by J. Ax and A. Brumer. An extension of their method enabled M. EMSALEM, H.H. KISILEVSKY and D.B. WALES to prove [1]:

$$r_p \geq (\sum_{\chi} d_{\chi}) - 1,$$

where χ runs over the characters of G irreducible over \mathbf{Q}_p , and d_{χ} is the degree of χ . Their main tool is a p-adic transcendence result on the non-vanishing

of linear forms in logarithms of algebraic numbers (theorem of Baker-Brumer).

We give here another lower bound for r_p , namely

$$r_p \geq r/2$$
.

We also use a p-adic transcendence result, only now it concerns exponential functions in several variables [4]. It is worthwhile to notice that the transcendence proof, which rests on an extension of Schneider's method, enables one to give a new proof of the theorem of Baker-Brumer.

The number r_{D} is equal to the rank of a matrix

$$(\log_p \sigma \tau \varepsilon)_{\sigma \in G, \tau \in G}$$
,

where ε is a Minkowski unit such that $|\sigma \varepsilon - 1|_p < 1$ for all $\sigma \in G$. According to Dirichlet units theorem, the rank of the matrix

$$(\log|\sigma\tau\epsilon|)_{\sigma\in G, \tau\in G}$$

is equal to r. Our inequality $r_p \ge r/2$ will be a consequence of a more general result which compares the rank

numbers

, namely

only now it ariables [4].

idence proof,

method, enables

aker-Brumer.

a matrix

 $[-1]_p < 1$ for orem, the rank

11 be a conpares the rank

of a matrix $(\log_p \alpha_{ij})$ with the rank of a real matrix $(\log |\alpha_{ij}|)$.

The arrangement of this paper is as follows. In section 1 we state two lower bounds for the rank of $(\log_p \alpha_{ij})$, first in terms of the rank of $(\log |\alpha_{ij}|)$ with the natural logarithms of the modules, then in terms of the rank of $(\log \alpha_{ij})$ with complex determinations of the logarithms. In section 2 we give a corollary of these statements, and we study the situation from a conjectural point of view. In section 3 we introduce a coefficient $0^\times(A)$, where $A=(\alpha_{ij})$. In section 4 we state the main result of this paper, which gives a lower bound for the rank of $(\log_p \alpha_{ij})$ in terms of $0^\times(A)$, and we deduce from it the results of section 1. In section 5 we sketch the proof of the main result. Finally section 6 is devoted to further results on the subject.

Throughout this paper we denote by $\bar{\mathbf{Q}}$ an algebraic closure of \mathbf{Q} , \mathbf{C}_p is a completion of an algebraic closure of \mathbf{Q}_p , rk \mathbf{M} is the rank of a matrix \mathbf{M} , and deg \mathbf{P} is the (total) degree of a polynomial \mathbf{P} .

1. ON THE RANK OF MATRICES WHOSE ENTRIES ARE LOGARITHMS OF ALGEBRAIC NUMBERS.

We first give a lower bound for the p-adic rank in

terms of the rank of a real matrix (cf.[4], 2.2.p). This is precisely the result which is used for the problem of the p-adic regulator.

THEOREM 1.1. Let k be a number field, ϕ an embedding of k into \mathbf{C} , and ϕ_p an embedding of k into \mathbf{C}_p . Let α_{ij} , $(1 \le i \le d, 1 \le j \le \ell)$ be elements of k such that

$$|\varphi_p^{\alpha}|_{ij}|_p = 1, \qquad (1 \le i \le d, 1 \le j \le \ell).$$

We consider the two matrices

$$M^{O} = (\log | \varphi \alpha_{ij} |)_{1 \le i \le d, 1 \le j \le k}$$

where log is the natural logarithm, and

$$\mathbf{M}_{p} = (\log_{p} \mathbf{\phi}_{p} \mathbf{\alpha}_{ij})_{1 \leq i \leq d, 1 \leq j \leq \ell} \cdot$$

Then

$$\operatorname{rk} \; \mathsf{M}_{p} \; \geq \; \frac{1}{2} \; \operatorname{rk} \; \mathsf{M}^{\mathsf{O}} \; \; .$$

There is no inequality in the other direction: if we

2.2.p). This e problem of

 ϕ an em-ng of k ements of k

choose algebraic numbers α_{ij} with $\alpha_{ij}=1$ for $i\neq j$ and $\|\phi\alpha_{ii}\|=1$, α_{ii} not root of unity, we get $\mathrm{rk}\ M_p = \min(d,\ell), \ \mathrm{while} \ \mathrm{rk}\ M^O = O \ .$

We give now a lower bound for $\operatorname{rk} M_p$ in terms of the rank of a complex matrix $(\log \operatorname{\varphi} \alpha_{ij})$, where, for each (i,j), we choose a determination of the logarithm of $\operatorname{\varphi} \alpha_{ij}$. It is obviously necessary to make some assumption on these logarithms (take for instance all α_{ij} equal to 1). For the application to the next section, it would be sufficient to assume that

$$(\sum_{i=1}^{d} \sum_{j=1}^{k} \mathbf{z} \log \varphi \alpha_{ij}) \cap 2i\pi \mathbf{z} = 0.$$

Such a choice is possible if and only if the subgroup of $\bar{\mathbf{Q}}^{\times}$ generated by the $d\ell$ numbers α_{ij} is torsion free.

In the following result we use a slightly weaker hypothesis.

THEOREM 1.2. With the assumptions of Theorem 1.1, we choose, for $1 \le i \le d$, $1 \le j \le \ell$, a determination of the logarithm of $\varphi \alpha_{ij}$. We assume further that if $(a_1, \ldots, a_d) \in \mathbf{Z}^d$ and $(b_1, \ldots, b_\ell) \in \mathbf{Z}^\ell$ are any elements such that the number

ection: if we

$$\lambda = \sum_{i=1}^{d} \sum_{j=1}^{\ell} a_{i}b_{i} \log \varphi a_{ij}$$

belongs to $2i\pi Z$, then $\lambda=0$.

We consider the matrix

$$M = (\log \varphi \alpha_{ij})_{1 \le i \le d, 1 \le j \le \ell}.$$

Then

$$\operatorname{rk} \ \mathbf{M}_p \geq \frac{1}{2} \ \operatorname{rk} \ \mathbf{M}.$$

The same method yields other inequalities like

$$\operatorname{rk} M_{p_1} \ge \frac{1}{2} \operatorname{rk} M_{p_2}$$
 and $\operatorname{rk} M \ge \frac{1}{2} \operatorname{rk} M_{p}$.

2. THE NUMBERS $r(\Gamma)$ AND $r_p(\Gamma)$.

Let Γ be a finitely generated subgroup of $\overline{\mathbf{Q}}^{\times d}$ of rank ℓ over \mathbf{Z} . We first consider an embedding of $\overline{\mathbf{Q}}$ into \mathbf{C} , and we denote by $\exp:\mathbf{C}^d \to \mathbf{C}^{\times d}$ the exponential map:

$$\exp t = (e^{t_1}, \dots, e^{t_d}) \quad \text{for} \quad t = (t_1, \dots, t_d) \in \mathbf{c}^d.$$

We define $r(\Gamma)$ as the minimum of the numbers

$$\dim_{\mathbf{C}}(\mathbf{c}_{z_1}+\ldots+\mathbf{c}_{z_{\ell}})$$
,

as (z_1,\ldots,z_{ℓ}) runs over the ℓ -tuples of elements of \mathbf{c}^d such that $\exp z_1,\ldots,\exp z_{\ell}$ generate a subgroup of finite index of Γ . Equivalently, r(F) is the minimum of the ranks of matrices

$$(\log \gamma_{ij})_{1 \le i \le d, 1 \le j \le \ell}$$

where $\gamma_1,\ldots,\gamma_\ell$ are multiplicatively independent elements of Γ , with $\gamma_j=(\gamma_{1j},\ldots,\gamma_{dj})$, and $\log\gamma_{ij}$ is any determination of the logarithm of γ_{ij} : the minimum is taken over the γ_j and the determinations of the logarithms.

We further write $r^{O}(\Gamma)$ for the rank of any matrix

$$(\log |\gamma_{ij}|)_{1 \le i \le d}, 1 \le j \le k$$

it does not depend on the choice of $\gamma_1,\ldots,\gamma_\ell$ multiplicatively independent elements of Γ .

We will now define, for all prime numbers p outside

k M_p .

p of $\mathbf{\bar{Q}}^{\times d}$ of edding of $\mathbf{\bar{Q}}$ he exponential

 $_{1},\ldots,_{t_{d}})\in \mathbf{c}^{d}.$

a finite set, a number $r_p(\Gamma)$ in a similar way. We first choose $\gamma_1,\dots,\gamma_\ell$ multiplicatively independent in Γ . Let p be a prime; we consider an embedding of $\bar{\mathbf{Q}}$ into \mathbf{C}_p and we assume that all coordinates γ_{ij} of γ_j , for $1 \le i \le d$ and $1 \le j \le \ell$, are p-adic units. This condition on p may depend on the embedding of $\bar{\mathbf{Q}}$ into \mathbf{C}_p , but does not depend on the choice of $\gamma_1,\dots,\gamma_\ell$. Almost all p (i.e. all p but a finite number) satisfy this requirement (for all embeddings of $\bar{\mathbf{Q}}$ into \mathbf{C}_p); moreover, if the γ_{ij} are all algebraic units, then all p satisfy it. We now define $r_p(\Gamma)$ as the rank of the matrix

$$(\log_{p^{\gamma}ij})_{1 \leq i \leq d, 1 \leq j \leq \ell}$$
.

Once more this number does not depend on the choice of $\gamma_1,\ldots,\gamma_\ell$ multiplicatively independent in Γ , but it depends on Γ and on the embedding of $\overline{\mathbf{Q}}$ into \mathbf{c}_p .

From Theorems 1.1 and 1.2 we will deduce the following:

COROLLARY 2.1. We have $r_p(\Gamma) \geq \frac{1}{2} r^{O}(\Gamma)$ and $r_p(\Gamma) \geq \frac{1}{2} r(\Gamma)$. Also

$$r_{p_1}(\Gamma) \ge \frac{1}{2} r_{p_2}(\Gamma)$$
 and $r(\Gamma) \ge \frac{1}{2} r_p(\Gamma)$.

r way. We first ndent in Γ .

ng of $\bar{\mathbf{Q}}$ into j of γ_j .

This condition $\bar{\mathbf{Q}}$ into \mathbf{C}_p . \mathbf{Q} into \mathbf{C}_p .

Almost satisfy this o \mathbf{C}_p ; more, then all p ank of the

ne choice of Γ , but it into \mathbf{c}_p . ce the following:

_p(r).

PROOF OF COROLLARY 2.1. We choose $\gamma_1,\dots,\gamma_\ell$ in Γ multiplicatively independent. The inequality $r_p(\Gamma) \ge r^0(\Gamma)/2$ is a straightforward consequence of Theorem 1.1 with $\alpha_{ij} = \gamma_{ij}$. For the second inequality, we consider the subgroup of $\bar{\mathbf{Q}}^\times$ generated by the $d\ell$ numbers γ_{ij} , $(1 \le i \le d, 1 \le j \le \ell)$; let a be the order of the torsion subgroup. Next, let β_1,\dots,β_m be a basis of the (free) group generated by the $d\ell$ numbers γ_{ij}^a in $\bar{\mathbf{Q}}^\times$. Thus there exist integers $a_{ijs} \in \mathbf{Z}$, $(1 \le i \le d, 1 \le j \le \ell, 1 \le s \le m)$, which are uniquely determined, satisfying

$$\gamma_{ij}^{a} = \prod_{s=1}^{m} \beta_{s}^{a_{ijs}}, \qquad (1 \le i \le d, 1 \le j \le \ell).$$

We take any determinations of the logarithms of β_1, \dots, β_m .

Since β_1,\dots,β_m are multiplicatively independent, the numbers $\log \beta_1,\dots,\log \beta_m$, $2i\pi$ are Q-linearly independent. If we set $\alpha_{ij}=\gamma_{ij}^a$, we can define $\log \alpha_{ij}$ by

$$\log \alpha_{ij} = \sum_{s=1}^{m} \alpha_{ijs} \log \beta_{s} , \qquad (1 \le i \le d, 1 \le j \le l),$$

and we get

$$(\sum_{i=1}^{d} \sum_{j=1}^{k} \mathbf{Z} \log \alpha_{ij}) \cap 2i\pi \mathbf{Z} = 0.$$

From Theorem 1.2 we conclude

$$r_p(\Gamma) = \operatorname{rk}(\log_p \alpha_{ij}) \ge \frac{1}{2} \operatorname{rk}(\log \alpha_{ij}) \ge \frac{1}{2} r(\Gamma),$$

We now describe the situation from a conjectural point of view.

CONJECTURE 2.2. For all those p for which r_p (T) is defined, we have

$$r_p(\Gamma) = r(\Gamma) \ge r^{O}(\Gamma)$$
.

Furthermore, let $\gamma_1,\dots,\gamma_\ell$ be multiplicatively independent elements in Γ , and let $\log \gamma_{ij}$ satisfy

$$\begin{pmatrix}
d & k \\
(\sum & \sum & \mathbf{z} \log \gamma_{ij}) \cap 2i\pi \mathbf{z} = 0, \\
i=1, j=1
\end{pmatrix}$$

Then the rank of the matrix

$$M = (\log \gamma_{ij})_{1 \le i \le d}, \ 1 \le j \le k$$

is equal to $r(\Gamma)$.

 $_{i}) \geq \frac{1}{2} r(\Gamma).$

njectural

which $r_p(\Gamma)$

ively inde-

satisfy

According to this conjecture, the number $r(\Gamma)$ (resp. $r_p(\Gamma)$) does not depend on the chosen embedding of $\bar{\mathbf{Q}}$ into \mathbf{C} (resp. into \mathbf{C}_p). Of course, in general, $r^{O}(\Gamma)$ may well depend on the choice of this embedding (i.e. of the choice of the absolute values $|\gamma_{ij}|$). Also, for a given p, the fact that $r_p(\Gamma)$ is defined depends on the embedding of $\bar{\mathbf{Q}}$ into \mathbf{C}_p . But if Conjecture 2.2 holds, there is a natural definition for $r_p(\Gamma)$ for all p and all embeddings $\bar{\mathbf{Q}}\subset\mathbf{C}_p$.

From the definition of $r(\Gamma)$, it is obvious that $rk \ \underline{\mathit{M}} \geq r(\Gamma)$. Let us show that the inequality $r_p(\Gamma) \geq rk \ \underline{\mathit{M}}$ is a consequence of the following standard conjecture (which is a special case of the p-adic Schanuel's conjecture; see [4] p.127).

CONJECTURE 2.3. Let α_1,\dots,α_m be p-adic units in \mathbf{c}_p , which are algebraic over \mathbf{Q} , and multiplicatively independent. Then the numbers $\log_p \alpha_1,\dots,\log_p \alpha_m$ are algebraically independent.

We need the following lemma:

LEMMA 2.4. Let K be a field A_1, \dots, A_m be elements

 $cfK[X_1,...,X_n]$, and let $P \in K[X_1,...,X_{n+m}]$. If the polynomial

$$P(X_1,\ldots,X_n,A_1,\ldots,A_m)$$

is the zero polynomial in $K[X_1,\dots,X_n]$, then P belongs to the ideal of $K[X_1,\dots,X_{n+m}]$ generated by the m polynomials $X_{n+j}-A_j$, $(1\leq j\leq m)$.

PROOF OF LEMMA 2.4. We consider the field $L = K(X_1, \dots, X_n).$ The image of P in $L = T_1, \dots, T_m = T_m$ under the obvious map $X_{n+j} \to T_j$ belongs to the ideal generated by $T_1 \to T_1, \dots, T_m \to T_m$ This means that there exist $Q_0 \in K = X_1, \dots, X_n = T_m, \quad Q_0 \neq 0, \quad \text{and} \quad Q_1, \dots, Q_m$ in $K \in X_1, \dots, X_{n+m} = T_m$ such that

$$Q_{O}(X_{1},\ldots,X_{n})P(X_{1},\ldots,X_{n+m}) =$$

$$= \sum_{j=1}^{m} Q_{j}(x_{1}, \dots, x_{n+m})(x_{n+j} - A_{j}(x_{1}, \dots, x_{n})).$$

It is now sufficient to notice that the ideal is prime, since the quotient $\kappa[x_1,\ldots,x_{n+m}]/$ is isomorphic to $\kappa[x_1,\ldots,x_n].$

PROOF OF THE INEQUALITY $r_p(\Gamma) \ge rk$ M IN 2.2 AS A CONSEQUENCE OF 2.3. Assume that the rank r of M

f the polyno-

en P belongs:ted by the

:ld
 under the
generated by
;t

 $((X_n))$

il is prime, somorphic to

2.2 AS A of M

satisfies $r > r_p(\Gamma)$. We write all the determinants $r \times r$ out of the matrix $(\log_p \gamma_{ij})$. We get finitely many polynomials p_1, \dots, p_k in $d\ell$ indeterminates x_{ij} , $(1 \le i \le d, 1 \le j \le \ell)$, with rational coefficients, which all vanish at the point $(\log_p \gamma_{ij})$.

We select among the dl numbers $\log_p \gamma_{ij}$ a basis of the **Q**-vector space they generate, and we write this basis $\log_p \gamma_{i(s)}$, j(s), $1 \le s \le m$. Next let a_{ijs} , a, be rational integers, with a > 0, such that

$$a \log_p \gamma_{ij} = \sum_{s=1}^m a_{ijs} \log_p \gamma_{i(s),j(s)},$$

 $(1 \le i \le d, 1 \le j \le l)$,

By assumption the numbers γ_{ij} are p-adic units, and for a p-adic unit $u \in \mathbf{C}_p$ the condition $\log_p u = 0$ means that u is a root of unity. Therefore there exists a positive integer b such that

$$\gamma_{ij}^{ab} = \prod_{s=1}^{m} \gamma_{i(s),j(s)}^{a_{ijs}b}$$
 (1\leq i \leq d, 1\leq j \leq l).

Thanks to our assumption on the complex logarithms $\log\,\gamma_{i\,i} \quad \text{in 2.2, we conclude}$

$$a \log \gamma_{ij} = \sum_{s=1}^{m} a_{ijs} \log \gamma_{i(s),j(s)}$$

$$(1 \le i \le d, 1 \le j \le \ell).$$

We now use 2.3: the numbers $\log_p \gamma_{i(s),j(s)}$ are algebraically independent. From Lemma 2.4 (with $n=d\ell-m$) we see that the polynomials p_1,\ldots,p_k belong to the ideal of $\mathbb{Q}[\{x_{ij}\}_{1\leq i\leq d},1\leq j\leq k]$ generated by the $d\ell$ polynomials

$$aX_{ij} - \sum_{s=1}^{m} a_{ijs} X_{i(s),j(s)}, \quad (1 \le i \le d, 1 \le j \le \ell),$$

Therefore p_1, \ldots, p_k vanish at the complex point $(\log \gamma_{ij})$, which contradicts the assumption r=rk M.

The same proof shows that the inequality $r_p(\Gamma) \ge r^0(\Gamma)$ is a consequence of 2.3. Similarly, it is easy to deduce the inequality $r(\Gamma) \ge r_p(\Gamma)$ from the following classical conjecture:

CONJECTURE 2.5. If $\log \alpha_1, \ldots, \log \alpha_m$ are Q-line-arly independent logarithms of complex algebraic numbers, then they are algebraically independent.

Another consequence of 2.5 is $r(\Gamma) \ge r^{O}(\Gamma)$. As pointed out to me by E. Reyssat, this inequality depends on the

are algebn=dl-m) we
to the ideal
il polynomials

≦d , 1≤*j*≤ℓ).

point

1 r=rk M.

7 $r_p(\Gamma) \ge r^O(\Gamma)$ 1 sy to deduce

1 ing classical

are Q-linebraic numbers,

). As pointed pends on the

fact that the coordinates of the elements of Γ are algebraic numbers. For instance let Γ be the subgroup of $\mathbf{c}^{\times 2}$ generated by $\binom{e^{\pi}}{1}$ and $\binom{1}{e^{\pi}}$. We can define $r(\Gamma)$ and $r^{O}(\Gamma)$ as before (in spite of the fact that Γ is not included in $\mathbf{\bar{Q}}^{\times 2}$). Then $r^{O}(\Gamma)=2$, but $r(\Gamma)=1$, because $\binom{e^{2\pi}}{1}$ and $\binom{1}{e^{2\pi}}$ generate a subgroup of finite index of Γ , and

$$\det \begin{vmatrix} 2\pi & -2i\pi \\ \\ 2i\pi & 2\pi \end{vmatrix} = 0.$$

3. THE COEFFICIENT Θ^{\times} .

If the rank of the matrix $M_p = (\log_p \alpha_{ij})$ is "small", then there are "many" linear relations with coefficients in \mathbf{c}_p between, say, the rows of M_p . Our aim is to show that, in this case, and assuming the α_{ij} are algebraic, there are "many" linear relations with rational coefficients between the $d\ell$ entries $\log_p \alpha_{ij}$ of M_p . This means that there are "many" multiplicative relations between the $d\ell$ algebraic numbers α_{ij} . In order to count these relations, we introduce a coefficient 0^\times , which is the multiplicative analogue of the coefficient

0 of [4]. It will satisfy $0 \le 0^x \le \ell/d$, and "many" multiplicative relations between the α_{ij} means that 0^x is small.

NOTATION. Let G be a commutative group; we write the law of G multiplicatively. Let α_{ij} , $(1 \le i \le d,\ 1 \le j \le \ell)$ be elements of G. We write

$$A = (\alpha_{ij})_{1 \le i \le d}, 1 \le j \le \ell,$$

and we define

$$\Theta^{\times}(A) = \min \frac{\ell - \lambda}{d - \delta}$$
,

where λ and δ run over the integers, $0 \le \lambda \le \ell$, $0 \le \delta < d$, such that there exist $p_1, \ldots, p_{d-\delta}$ in \mathbf{z}^d , linearly independent, and q_1, \ldots, q_{λ} in \mathbf{z}^{ℓ} , linearly independent, with

$$p_s = (p_{s1}, \dots, p_{sd}) \in \mathbf{Z}^d$$
, $(1 \le s \le d - \delta)$

and

$$\boldsymbol{q}_t = (\boldsymbol{q}_{1t}, \dots, \boldsymbol{q}_{kt}) \in \mathbf{Z}^k, \quad (1 \leq t \leq \lambda),$$

"many" multithat 0× is

up; we write $(1 \le i \le d, 1 \le j \le l)$

satisfying

If the law of G is written additively, we write Θ instead of Θ^{\times} .

In this section we give some lower bounds for θ^{\times} .

LEMMA 3.1. Assume $G=\mathbf{C}^{\times}$. If the matrix $(\log |\alpha_{ij}|)$ is of rank d, then

 $\Theta^{\times}(A) \geq 1.$

PROOF. Using the definition of 0^{\times} , we write $0^{\times}(A)=(\ell-\lambda)/(d-\delta)$. From the relations

we deduce

Therefore there exist a regular $d \times d$ matrix P with integer entries, and a regular $\ell \times \ell$ matrix Q with

 $\leq \lambda \leq \ell$, $0 \leq \delta \leq d$, linearly rly independent,

with integer entries, such that

$$P(\log |\alpha_{ij}|)Q = \begin{pmatrix} M_1 & O \\ M_2 & M_3 \end{pmatrix}$$

where M $_3$ is a matrix with δ rows and λ columns (and M $_1$ has $d\!-\!\delta$ rows and $\ell\!-\!\lambda$ columns). Hence

$$rk(\log |\alpha_{ij}|) \leq \ell - \lambda + \delta$$
.

This completes the proof of Lemma 3.1.

The same proof works for complex logarithms, provided that the relations

$$\begin{array}{cccc}
d & & & & & & & & & \\
\mathbb{I} & & & & & & & & & & \\
\mathbb{I} & & & & & & & & & \\
\mathbf{i} = 1 & & & & & & & & \\
\mathbf{i} = 1 & & & & & & & & \\
\end{array}$$

imply

$$\sum_{i=1}^{d} \sum_{j=1}^{\ell} p_{si}q_{jt} \log \alpha_{ij} = 0.$$

Therefore we get the following result:

LEMMA 3.2. Assume $G=\mathbf{C}^{\times}$. For $1\leq i\leq d$, $1\leq j\leq \ell$, let $\log \alpha_{ij}$ be a determination of the logarithm of α_{ij} . Assume that the condition

$$\sum_{i=1}^{d} \sum_{j=1}^{k} a_{i}b_{j} \log \alpha_{ij} = 2i\pi c$$

for rational integers $a_1, \dots, a_d, b_1, \dots, b_k$ and c implies c=0.

If the matrix (log α_{ij}) is of rank d, then $\Theta^{\times}(A) \ge 1$.

Similarly, for $G=\mathbf{C}_p^{\times}$ and $|\alpha_{ij}|_p=1$, if the matrix $(\log_p \alpha_{ij})$ is of rank d, then $0^{\times}(A) \ge 1$.

REMARK. The assumption $0^{\times}(\mathtt{A}) \geq 1$ is not sufficient to ensure that the rank of $(\log |\alpha_{ij}|)$, or of $(\log \alpha_{ij})$, is equal to d. An obvious example ([4] example 7 p.113) is $\alpha_{ij} = \exp(\sqrt{p_i p_{d+j}})$, where p_1, \dots, p_{d+k} are distinct primes. In the following more subtle example, due to M. Langevin, the numbers α_{ij} are rational:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 1/5 \\ 3 & 5 & 1 \end{pmatrix}$$

and $\ell=d=3$, $\Theta^{\times}(A)=1$, $\operatorname{rk}(\log |\alpha_{ij}|)=2$. A diagonal bloc of m such matrices yields a new matrix A with $\ell=d=3m$, $\Theta^{\times}(A)=1$, and $\operatorname{rk}(\log \alpha_{ij})=2m=\frac{2}{3}d$.

The conjecture 2.2 suggests that it should be possible to describe the number $r(\Gamma)$ solely in terms of $\Gamma \subset \overline{\mathbf{Q}} \times^d$,

\ columns (and
ce

ithms, provided

 $1 \le j \le \ell$, let $hm \ of \ ^{\alpha}_{ij}.$

by algebraic means, without involving a transcendental parametrization by the exponential function.

We will see below (Section 4) that it is possible to give a lower bound for $r_p(\Gamma)$ (and also $r(\Gamma)$) in terms of 0^\times . The result does not seem best possible: for instance the "four exponentials problem" can be stated as follows: if $0^\times(A)>1/d$ and $d\geq 2$, then the rank of $(\log \alpha_{ij})$ is ≥ 2 . However, in view of Langevin's example, the complete conjectural description of the situation is not clear. If we take Schanuel's conjecture for granted, the problem is reduced to the study of the rank of a matrix $M=M_1X_1+\ldots+M_sX_s$, where M_1,\ldots,M_s have coefficients in a field K (say $K=\mathbf{Q}$), and X_1,\ldots,X_s are indeterminates over K.

4. THE MAIN RESULT.

In this section we deduce Theorem 1.1 and 1.2 from the following result (see [4], 2.1.p).

THEOREM 4.1. Let α_{ij} , $(1 \le i \le d, 1 \le j \le l)$ be elements of \mathbf{C}_p , which are algebraic over \mathbf{Q} , and satisfy $\|\alpha_{ij}\|_p = 1$. Define

 $\mathbf{M}_{p} = (\log_{p} \alpha_{ij})_{1 \leq i \leq d, 1 \leq j \leq \ell},$

unscendental

l.

s possible to

 (Γ)) in terms

ible: for

n be stated as

rank of

gevin's example,

situation is

for granted,

rank of a

have coeffi-

 \dots, X_s are

nd 1.2 from

be elements satisfy

and

$$A = (\alpha_{ij})_{1 \le i \le d, 1 \le j \le \ell} .$$

Then

$$\operatorname{rk} M_{p} \geq d \frac{\Theta^{\times}(A)}{1 + \Theta^{\times}(A)} .$$

PROOF OF THEOREM 1.1. Define $r=\text{rk } \text{\it M}^{\text{O}}$. Let $i(1),\ldots,i(r)$ be integers, with $1\leq i(1)<\ldots< i(r)\leq d$ such that the matrix

$$\widetilde{\mathbf{M}}^{O} = \log \left(\varphi \alpha_{i(s), j} \right) 1 \le s \le r, 1 \le j \le \ell$$

has rank r. By Lemma 3.1, we get, for $\tilde{\mathbf{A}}=(\alpha_{i(s),j})_{1\leq s\leq r,1\leq j\leq \ell}$

$$\Theta^{\times}(\widetilde{A}) \geq 1.$$

By Theorem 4.1 the matrix $\tilde{p}_p = (\log_p \phi_p \alpha_{i(s),j}) 1 \le s \le r, 1 \le j \le k$ satisfies

rk
$$\widetilde{M}_p \ge r/2$$
.

Since rk $M_p \ge rk \widetilde{M}_p$, Theorem 1.1 follows.

PROOF OF THEOREM 1.2. The proof is the same, using now Lemma 3.2, together with the fact that the only number of the form

$$\lambda = \sum_{s=1}^{r} \sum_{j=1}^{\ell} a_s b_j \log \varphi \alpha_i(s), j$$

with $a_s \in \mathbb{Z}$, $b_j \in \mathbb{Z}$, which belongs to $2i\pi\mathbb{Z}$, is $\lambda = 0$.

5. SCHNEIDER'S METHOD IN SEVERAL VARIABLES.

The proof of Theorem 4.1 can be divided in two parts. In the first one, we assume $\operatorname{rk} M_p < d$, and we construct a sequence of non-zero polynomials $P_S(x_1,\ldots,x_d)$, $s \ge s_0$, such that

$$P_{S}(\prod_{j=1}^{\ell} \alpha_{1j}^{h_{j}}, \dots, \prod_{j=1}^{\ell} \alpha_{dj}^{h_{j}}) = 0$$

for all $(h_1, \ldots, h_\ell) \in \mathbf{Z}^\ell$ satisfying $0 \le h_j \le s$, $(1 \le j \le \ell)$. Moreover we give an upper bound for the degree of P_s :

$$\deg P_S \leq c_1 s^{n/(d-n)},$$

where $n={\rm rk}\ {\rm M}_p$, and c_1 does not depend on s. The second part is a "zero estimate", due to D.W.MASSER

same, using the only number

[2]. It gives a lower bound for the degree of a polynomial satisfying such conditions:

$$\deg P_s \ge c_2 s^{\theta^{\times}(A)}.$$

Theorem 4.1 follows at once.

Because of the finiteness of the radius of convergence of the exponential function, it is convenient to assume $|\alpha_{ij}-1|_p < 1 \quad \text{for} \quad 1 \leq i \leq d, \ 1 \leq j \leq \ell. \quad \text{Let us show first that this involves no loss of generality.}$

Let a be a positive integer such that

$$|\log_p \alpha_{ij}|_p < p^a$$
, $(1 \le i \le d, 1 \le j \le \ell)$.

Define

$$\tilde{\alpha}_{ij} = \exp(p^a \log_p \alpha_{ij}).$$

Then

$$|\tilde{\alpha}_{ij}^{-1}|_{p} < 1$$
, $\log_{p}\tilde{\alpha}_{ij}^{-1} = p^{a}\log_{p}\alpha_{ij}$

and if we set

ve construct

in two parts.

=O.

JES.

 $(x_d), s \ge s_0,$

 $(1 \le j \le \ell)$.

ee of P_S :

ı S.

ie to D.W.MASSER

$$\widetilde{M}_{p} = (\log_{p} \widetilde{\alpha}_{ij}), \quad \text{and} \quad \widetilde{A} = (\widetilde{\alpha}_{ij}),$$

we have

$$\operatorname{rk} M_p = \operatorname{rk} \widetilde{M}_p$$
, $\Theta^{\times}(A) = \Theta^{\times}(\widetilde{A})$.

PROPOSITION 5.1. Let α_{ij} $(1 \le i \le d, 1 \le j \le l)$ be algebraic numbers in \mathbf{C}_p with $|\alpha_{ij}-1|_p < l$. Assume that the rank n of the matrix $\mathbf{M}_p = (\log_p \alpha_{ij})$ satisfies n < d. Then there exist positive integers S_0 and C_1 , and a sequence of non zero polynomials $(P_S)_{S \ge S_0}$ in $\mathbf{Z}[X_1, \ldots, X_d]$, with

$$\deg P_S \leq c_1 s^{n/(d-n)},$$

such that

$$P_{S}(\prod_{j=1}^{\ell} \alpha_{1j}^{h_{j}}, \dots, \prod_{j=1}^{\ell} \alpha_{dj}^{h_{j}}) = 0$$

for all $(h_1,\ldots,h_{\ell})\in \mathbf{Z}^{\ell}$ satisfying $0\leq h_j\leq s$, $(1\leq j\leq \ell)$. Sketch of the proof of Proposition 5.1, following [4].

We select n columns of M_p which are \mathbf{c}_p -linearly independent; let their index be $j(1),\ldots,j(n)$, with

),

 $\leq j \leq l$) be algeAssume that the isfies n < d. $nd \quad C_1$, and a

in $\mathbf{Z}[X_1, \dots, X_d]$,

 $(1 \le j \le l)$.

1, following [4].

1re \mathbf{c}_p -linearly

.,j(n), with

 $1 \leq j(1) < j(2) < \ldots < j(n) \leq d. \text{ We define, for } 1 \leq j \leq \ell,$ $y_j = (y_{j1}, \ldots, y_{jn}) \in \mathbf{c}_p^n \text{ by }$

$$\log_p \alpha_{ij} = \sum_{\nu=1}^n y_{j\nu} \log \alpha_{i,j(\nu)}, \quad (1 \le i \le d, \ 1 \le j \le \ell).$$

Now we write the unknown polynomial ${}^{p}{}_{S}$, for large S , in the following form:

$$P_S(x_1,...,x_d) = \sum_{(\lambda)} p(\lambda) x_1^{\lambda_1} ... x_d^{\lambda_d}$$
,

where $\lambda=(\lambda_1,\ldots,\lambda_d)$ runs over the elements of \mathbf{z}^d satisfying $\lambda_1 \geq 0$, $\lambda_1 + \ldots + \lambda_d \leq D$; thus $D=D_S$ will be an upper bound for the degree of P_S .

Let us consider the function

$$F_{S}(z) = \sum_{(\lambda)} p(\lambda) \prod_{i=1}^{d} \prod_{\nu=1}^{n} \alpha_{i,j(\nu)}^{\lambda_{i}z_{\nu}}$$

which is analytic for $z=(z_1,\ldots,z_n)$ in the disk $|z|_p < p^{1/(p-1)} \text{ of } \mathbf{c}_p^n \quad (\text{here } |z|_p = \max_{1 \le \nu \le n} |z_\nu|_p). \quad \text{For each } (h_1,\ldots,h_k) \in \mathbf{Z}^k, \quad \text{we have}$

$$F_{S}(h_{1}y_{1}+\ldots+h_{\ell}y_{\ell}) = \sum_{(\lambda)} p(\lambda) \prod_{i=1}^{d} \prod_{j=1}^{\lambda} \alpha_{ij}^{\lambda_{i}h_{j}}$$

$$= P_{S}(\prod_{j=1}^{\ell} \alpha_{1j}^{h_{j}}, \dots, \prod_{j=1}^{\ell} \alpha_{dj}^{h_{j}}).$$

Now the strategy is as follows.

First step. We construct P_S (i.e. the $p(\lambda) \in \mathbf{Z}$) such that many derivatives of F_S at the origin are small, namely

$$\left|\frac{1}{\tau \mid } D^{\tau} F(0)\right|_{p} \leq e^{-U} \quad \text{for} \quad \tau = (\tau_{1}, \dots, \tau_{n}),$$

$$\left|\left|\tau \mid \right| \leq C_{3} U,$$

where $\mathit{U=U}_S$ is a new parameter. Moreover we solve this system of inequalities with integers $\mathit{p}(\lambda)$, not all zero, in the range

$$-e^{C_4 U} \le p(\lambda) \le e^{C_4 U}$$
.

The number of inequalities we have to solve is about v^n , and the number of unknowns is about p^d . It turns out that such a construction is possible, using a suitable version of Siegel's lemma, provided that $v \le c_5 p^{d/n}$.

Second step. A rather simple p-adic analytic estimate shows that

$$|F_S(z)|_p \le e^{-C} 6^U$$
 for $|z|_p \le 1$.

the $p(\lambda) \in \mathbf{Z}$)
origin are small,

 $,\ldots,\tau_n)$,

we solve this
), not all zero,

we is about v^n ,

It turns out

ig a suitable $v \le c_5 v^{d/n}$,

analytic

Third step. We consider the number $F_S(h_1y_1+\ldots+h_{\ell}y_{\ell})$, for some $(h_1,\ldots,h_{\ell})\in \mathbf{Z}^{\ell}$, $0\leq h_j\leq s$. Using classical algebraic arguments ("size inequality": a non zero algebraic number cannot be too small), we show that this number is zero, which is the desired conclusion.

Now for this last step we need an upper bound of the shape $DS \leq C_7 U$, and since $U \leq C_5 D^{d/n}$ we must take $D \geq C_1 S^{n/(d-n)}$.

The second part of the proof is the zero estimate of D.W. Masser.

PROPOSITION 5.2. Let K be a field of charakteristic zero, α_{ij} (1 $\leq i \leq d$, 1 $\leq j \leq \ell$) be elements of K $^{\times}$, $A=(\alpha_{ij})$, and D,S positive integers. Assume that there exist $p(\lambda) \in K$, (for $(\lambda) = (\lambda_1, \dots, \lambda_d)$, $\lambda_i \geq 0$, $\lambda_1 + \dots + \lambda_d \leq D$), not all zero, such that

$$\sum_{\substack{(\lambda) \\ (\lambda)}} p(\lambda) \prod_{i=1}^{d} \prod_{j=1}^{k} \alpha_{ij}^{\lambda ih} j = 0$$

for all $(h_1, \ldots, h_k) \in \mathbf{Z}^k$, $0 \le h_j \le s$. Then

$$D \geq (s/a)^{\Theta^{\times}(A)}.$$

We deduce Proposition 5.2 from Theorem 2 of [2] in the following way. We first notice that the statement of Proposition 5.2 involves only finitely many elements of K, and therefore we may assume, without loss of generality, that K is finitely generated over \mathbf{Q} . If we wish, we can embed K in \mathbf{C} . Next, for $\mathbf{Z} = (\mathbf{Z}_1, \dots, \mathbf{Z}_d) \in K^{\times d}$ and $\mathbf{A} = (\mathbf{A}_1, \dots, \mathbf{A}_d) \in \mathbf{Z}^d$, we write

$$z^h = (z_1^{h_1}, \dots, z_d^{h_d}) \in \kappa^{\times d} .$$

Finally let Γ be the subgroup of $\kappa^{\mathbf{x}^d}$ generated by the ℓ elements

$$(\alpha_{1j}, \ldots, \alpha_{dj}) \in K^{\times d}, \qquad (1 \le j \le \ell).$$

For $1 \le r \le d$, define ℓ_r as the maximum rank of any subgroup Γ' of Γ such that there exists a subgroup H of \mathbf{Z}^d , of rank r, satisfying

$$\gamma^h$$
 = 1 for all $\gamma \in \Gamma'$, $h \in H$.

It is plain that

$$\Theta^{\times}(A) = \min_{1 \le r \le d} \frac{\ell - \ell_r}{r} .$$

em 2 of [2]

t the statement

many elements

out loss of

d over Q. If

or

we write

generated by the

ank of any suba subgroup H

h∈H.

Therefore, with the notations of [2],

$$\Theta^{\times}(A) = \chi(\Gamma, \mathbf{Z}^d).$$

Indeed, if $x=\mathbf{Z}x_1+\ldots+\mathbf{Z}x_d$ and $y=\mathbf{Z}y_1+\ldots+\mathbf{Z}y_k$ are two finitely generated subgroups of \mathbf{C}^n of rank d and ℓ respectively, and if

$$\alpha_{ij} = \exp(\langle x_i, y_j \rangle), \text{ and } A = (\alpha_{ij}),$$

then

$$\chi(Y,X) = \Theta^{\times}(A).$$

Thus proposition 5.2 is equivalent to Theorem 2 of [2].

In the proof of Theorem 4.1, we use Proposition 5.2 with $\kappa=\bar{\mathbf{Q}}$ (there is no need of a p-adic zero estimate).

Also it is important to notice that the hypothesis $\operatorname{rk} \underset{p}{\operatorname{M}} < d$ has been used only in the first part of the proof (Proposition 5.1), not in the zero estimate. As a consequence, the zero estimate 5.2 is sufficient for quantitative results (there is no need of a "small value lemma").

As shown in [2], the exponent $\theta^{\times}(A)$ in Proposition

5.2 is best possible. Therefore it is very likely that Proposition 5.1 is not best possible.

The proof sketched here works as well in the complex case, and gives the same lower bound: $d\theta^{\times}/(1+\theta^{\times})$ for the rank of $(\log\alpha_{ij})$, for any determinations of the logarithms. The difference between the two cases arises only if we intend to bound the rank of $(\log\alpha_{ij})$ not is terms of the multiplicative coefficient θ^{\times} of (α_{ij}) , but in terms of the additive coefficient θ of the matrix of the logarithms. In the p-adic case both coefficients obviously coincide, but in the complex case, because of $2i\pi$, we have only the inequality

$$\theta(\log \alpha_{ij}) \ge \theta^{\times}(\alpha_{ij}).$$

However the inequality

$$r \ge d\theta/(1+\theta)$$
, with $r = rk(\log \alpha_{ij})$,

$$\Theta = \Theta(\log \alpha_{ij})$$

can be deduced from the complex analogue of Theorem 4.1 (see [4], 7.2; this is the place where the technical

ikely that

n the complex $1+0^{\times}$) for ons of the ases arises α_{ij}) not is of (α_{ij}) , of the matrix coefficients because of

_j),

Theorem 4.1 echnical

lemmas 5.3 and 5.4 of [4] are needed).

6. FUTHER RESULTS.

The construction of the auxiliary function can be performed in a very general context [4]. Also the zero estimate has been extended by MASSER and WÜSTHOLZ [3] to arbitrary commutative group varieties, and they are developing their method to a very large extent. Therefore the method presented here is capable of a large generalization which I hope to develop somewhere else. As an illustration, here is the elliptic analogue to Theorem 1.2, when we replace $\bar{\mathbf{Q}}^{\times d}$ by $E(\bar{\mathbf{Q}})^d$, where E is an elliptic curve which is defined over $\bar{\mathbf{Q}}$. (Cf. [3] §8).

Let γ_{ij} , $(1 \le i \le d, \ 1 \le j \le \ell)$ be $d\ell$ points in $E(\overline{\mathbf{Q}})$. We choose any representation of the complex exponential of $E(\mathbf{C})$ (say by a Weierstrass elliptic function), and, for $1 \le i \le d$, $1 \le j \le \ell$ we choose $u_{ij} \in \mathbf{C}$ whose image by this exponential is γ_{ij} . We denote by r the rank of the matrix

 $(u_{ij})_{1 \leq i \leq d}, 1 \leq j \leq \ell$.

Let k be the field of endomorphisms of E, and L be

the kernel of our exponential, which gives an isomorphism between \mathbf{C}/L and $\mathbf{E}(\mathbf{C})$. Assume that for any $(a_1,\ldots,a_d)\in \mathbf{K}^d$ and any $(b_1,\ldots,b_k)\in \mathbf{Z}^k$, if the number

$$\lambda = \sum_{i=1}^{d} \sum_{j=1}^{a_i b_j u_{ij}}$$

belongs to L , then $\lambda=0$.

Now let p be a prime; consider a p-adic representation of the exponential map of $E(\mathbf{C}_p)$, and assume that there exists $u_{ij}^{(p)}$ in \mathbf{C}_p (in the neighbourhood of zero where the exponential is defined) whose image by this exponential is γ_{ij} . Denote by r_p the rank of the matrix

$$(u_{ij}^{(p)})_{1 \leq i \leq d}, 1 \leq j \leq \ell$$

Then

$$r_p \ge r/3$$
.

Moreover, if E has complex multiplication, then

$$r_p \geq r/2$$
.

Finally we mention the following recent works which

in isomorphism

: number

idic represenid assume that
irhood of zero
ie by this
ik of the matrix

then

: works which

are connected with this subject.

- P. Philippon gave an elliptic analogue to lemmas 5.3 and 5.4 of [4] (see the end of section 5 above).
- N. Sebti-Chaouni worked out the proof of Baker's theorem by Schneider's method in several variables (see [2] p.94). She had to improve theorem 8 of [3].
- Yu Kun Rui did the same in the elliptic case with complex multiplication, i.e. gave a new proof of Masser's theorem on linear forms of elliptic integrals, and also gave an effective lower bound.
- J.C. Moreau derived a simplified proof of the theorem of Masser and Wüstholz [3] by replacing commutative algebra by algebraic geometry.

REFERENCES

- [1] Emsalem, M., Kisilevsky, H.H. and Wales, D.B.,
 Indépendence linéaire de logarithmes p-adiques de
 nombres algébriques et rang p-adique du groupe des
 unités, En préparation.
- [2] Masser, D.W., On polynomials and exponential polynomials in several variables, *Invent. Math.*, 63 (1981), 81-95.

- [3] Masser, D.W. and Wüstholz, G., Zero estimates on group varieties, Invent. Math., 64(1981), 489-516.
- [4] Waldschmidt, M., Transcendance et exponentielles en plusieurs variables, *Invent. Math.*, 63 (1981), 97-127.

M. Waldschmidt
Institut Henri Poincaré
11, rue P. et M. Curie
75231 PARIS CEDEX 05
FRANCE