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Schanuel’s Conjecture:
algebraic independence of transcendental numbers

Michel Waldschmidt

Abstract. Schanuel’s conjecture asserts that given linearly indepen-
dent complex numbers x1, ..., xn, there are at least n algebraically
independent numbers among the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn .

This simple statement has many remarkable consequences; we explain

some of them. We also present the state of the art on this topic.

1 The origin of Schanuel’s Conjecture

To prove that a constant arising from analysis is irrational is most often a
difficult task. It was only in 1873 that C. Hermite succeeded to prove the
transcendence of e = 2.718 281 . . . and it took 9 more years before F. Lin-
demann obtained the transcendence of π = 3.141 592 . . . , thereby giving a
final negative solution to the Greek problem of squaring the circle. This
method produces the so–called Hermite–Lindemann Theorem, which states
that for any nonzero complex number z, one at least of the two numbers z,
ez is transcendental.

To prove algebraic independence of transcendental numbers is much harder
and few results are known. The earliest one is the Lindemann–Weierstrass
Theorem, which states that for Q–linearly independent algebraic numbers
β1, . . . , βn, the numbers eβ1 , . . . , eβn are algebraically independent. This is
one of the very few statements on algebraic independence of numbers related
with the exponential function. Even the quest of a conjectural general state-
ment has been a challenge for many years. A.O. Gel’fond made an attempt in
a one page note in the Comptes-Rendus de l’Académie des Sciences de Paris
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in 1934 (see the appendix), just after he solved the 7th problem of Hilbert
on the transcendence of αβ, a problem which was solved by Th Schneider, at
the same time, with a different but similar method.

Fourteen years later, A.O. Gel’fond was able to prove a very special case
of the first theorem of his note, when he proved that the two numbers 2

3√2

and 2
3√4 are algebraically independent. This proof is a master piece, which

paved the way for a number of later developments (see §2). To find “the
right” conjectural statement took 15 more years, until S. Schanuel had a
remarkable insight:

Schanuel’s Conjecture. Let x1, ..., xn be Q–linearly independent complex
numbers. Then, among the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn ,

there are at least n algebraically independent numbers.
This statement was proposed by S. Schanuel during a course given by

S. Lang at Columbia in the 60’s. The reference is Lang’s book Introduction
to transcendental numbers, Addison-Wesley 1966.

2 Related results

A version of Schanuel’s conjecture for power series over C has been proved by
J. Ax in 1968 using differential algebra. In his talk at ICM 1970 in Nice Tran-
scendence and differential algebraic geometry, Ax describes his contribution
in a general setting, where he also quotes Brun’s Theorem on the integrals of
the three body problem. The stronger version for power series over the field
of algebraic numbers is due to R. Coleman (1980), who combined the ideas
of Ax with p–adic analysis and the C̆ebotarev density Theorem.

A former student of Schanuel, W.D. Brownawell, obtained an elliptic
analog of Ax’s Theorem in a joint work with K. Kubota.

More recently, deep connections between Schanuel’s Conjecture and model
theory have been investigated by E. Hrushovski, B. Zilber, J. Kirby, A. Mac-
intyre, D.E. Marker, G. Terzo, A.J. Wilkie, D. Bertrand and others.

Under the assumption of Schanuel’s Conjecture, “most often”, the tran-
scendence degree is 2n. Indeed, the set of tuples (x1, . . . , xn) in Cn such that
the 2n numbers

x1, . . . , xn, e
x1 , . . . , exn
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are algebraically independent is a Gδ set (countable intersection of dense
open sets) in Baire’s classification (a generic set for dynamical systems) and
has full Lebesgue measure. However, this result is not very significant, since
it is true for any transcendental function in place of the exponential function.

The transcendence degree can also be as small as n, for instance, when
the xi are algebraic (Lindemann–Weierstrass Theorem), or when the exi are
algebraic (algebraic independence of logarithms of algebraic numbers — see
§3) and also when, for each i, either xi or exi is algebraic, like in the first
statement of Gel’fond’s 1934 note.

With K. Senthil Kumar and R. Thangadurai, we recently proved that
given two integers m and n with 1 ≤ m ≤ n, there exist uncountably many
tuples (x1, . . . , xn) in Rn such that x1, . . . , xn and ex1 , . . . , exn are all Liouville
numbers and the transcendence degree of the field

Q(x1, . . . , xn, e
x1 , . . . , exn)

is n+m. Whether such a result holds in case m = 0 is unclear: for instance
(with n = 1) we do not even know whether there are Liouville numbers x
such that ex is also a Liouville number and the two numbers x and ex are
algebraically dependent.

For n = 1, Schanuel’s Conjecture is nothing else than the Hermite–
Lindemann Theorem (see §1).

For n = 2, Schanuel’s Conjecture is not yet known:

Schanuel’s Conjecture for n = 2: If x1, x2 are Q–linearly independent
complex numbers, then among the 4 numbers x1, x2, e

x1 , ex2, at least two are
algebraically independent.

A few consequences are the following open problems:

• With x1 = 1, x2 = iπ: the number e and π are algebraically indepen-
dent.

• With x1 = 1, x2 = e: the number e and ee are algebraically independent.

• With x1 = log 2, x2 = (log 2)2: the number log 2 and 2log 2 are alge-
braically independent.

• With x1 = log 2, x2 = log 3: the number log 2 and log 3 are algebraically
independent.
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Among many mathematicians who contributed to prove partial results
in the direction of Schanuel’s Conjecture are Ch. Hermite, F. Lindemann,
C.L. Siegel, A.O. Gel’fond, Th. Schneider, A. Baker, S. Lang, W.D. Brow-
nawell, D.W. Masser, D. Bertrand, G.V. Chudnovsky, P. Philippon, G. Diaz,
G. Wüstholz, Yu.V. Nesterenko, D. Roy. . .

An important step, already mentioned in §1, is due to A.O. Gel’fond
who proved in 1948 that the two numbers 2

3√2 and 2
3√4 are algebraically

independent. More generally, he proved that if α is an algebraic number,
α 6= 0, logα 6= 0 and if β is an algebraic number of degree d ≥ 3, then two
at least of the numbers

αβ, αβ
2

, . . . , αβ
d−1

are algebraically independent. Recall that αβ = exp(β logα).
The deep method devised by Gel’fond was extended by G.V. Chudnovsky

(1978). One of the most remarkable results by Chudnovsky states that π and
Γ(1/4) = 3.625 609 . . . are algebraically independent. Also π and Γ(1/3) =
2.678 938 . . . are algebraically independent. Until then, the transcendence
of Γ(1/4) and Γ(1/3) was not known. The next important step is due to
Yu.V.Nesterenko (1996) who proved the algebraic independence of Γ(1/4),
π = 3.141 592 and eπ = 23.140 692 . . . Until then, the algebraic independence
of π and eπ was not yet known. Nesterenko’s proof uses modular functions.

The number eπ conceals mysteries.

Open problem: prove that the number eπ is not a Liouville number: there
exists a positive absolute constant κ such that for any p/q ∈ Q with q ≥ 2,∣∣∣∣eπ − p

q

∣∣∣∣ > 1

qκ
·

An other open problem, consequence of Schanuel’s Conjecture, is the al-
gebraic independence of the three numbers e, π and eπ. More generally,
according to Schanuel’s Conjecture, the following numbers are algebraically
independent (none of them is known to be irrational!):

e+ π, eπ, πe, eπ
2

, ee, ee
2

, . . . , ee
e

, . . . , ππ, ππ
2

, . . . ππ
π

. . .

log π, log(log 2), π log 2, (log 2)(log 3), 2log 2, (log 2)log 3 . . .

The proof is an easy exercise using Schanuel’s Conjecture. The list of similar
exercises is endless, some recent papers pursue this direction with no new
idea. A less trivial result has been proved in a joint paper in 2008 by J. Bober,
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C. Cheng, B. Dietel, M. Herblot, Jingjing Huang, H. Krieger, D. Marques,
J. Mason, M. Mereb and R. Wilson. Define E0 = Q. Inductively, for n ≥ 1,
define En as the algebraic closure of the field generated over En−1 by the
numbers exp(x) = ex, where x ranges over En−1. Let E be the union of En,
n ≥ 0. In a similar way, define L0 = Q. Inductively, for n ≥ 1, define Ln
as the algebraic closure of the field generated over Ln−1 by the numbers y,
where y ranges over the set of complex numbers such that ey ∈ Ln−1. Let
L be the union of Ln, n ≥ 0. Then Schanuel’s Conjecture implies that the
fields E and L are linearly disjoint over Q. As a consequence, π does not
belong to E, a statement proposed by S. Lang.

3 Algebraic independence of logarithms of al-

gebraic numbers

Denote by L the set of complex numbers λ for which eλ is algebraic. This
set L is the Q–subspace of C of all logarithms of nonzero algebraic numbers:

L = {logα | α ∈ Q
×}.

Arguably, the most important special case of Schanuel’s Conjecture is:

Conjecture (Algebraic independence of logarithms of algebraic numbers).
Let λ1, . . . , λn be Q-linearly independent elements in L. Then the numbers
λ1, . . . , λn are algebraically independent over Q.

The homogeneous version is often sufficient for applications:

Conjecture (Homogeneous algebraic independence of logarithms of alge-
braic numbers). Let λ1, . . . , λn be Q-linearly independent elements in L. Let
P ∈ Q[X1, . . . , Xn] be a homogeneous nonzero polynomial. Then

P (λ1, . . . , λn) 6= 0.

In 1968, A. Baker proved that if λ1, . . . , λn are Q–linearly independent
logarithms of algebraic numbers, then the numbers 1, λ1, . . . , λn are linearly
independent over the field Q of algebraic numbers.

Baker’s Theorem is a special case of Schanuel’s Conjecture: while Schanuel’s
Conjecture deals with algebraic independence (over Q or over Q, it is the
same), Baker’s Theorem deals with linear independence over Q.
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An open problem is to prove that the transcendence degree over Q of the
field Q(L) generated by all the logarithms of nonzero algebraic numbers is at
least 2. However, even if the answer is not yet known, this does not mean that
nothing is known: partial results have been proved, in particular by D. Roy,
thanks to a reformulation of the problem. Instead of taking logarithms of
algebraic numbers and looking for the algebraic independence relations, he
fixes a polynomial and looks at the points, with coordinates logarithms of
algebraic numbers, on the corresponding hypersurface. One easily checks
that the homogeneous conjecture on algebraic independence of logarithms of
algebraic numbers is equivalent to:

Conjecture (D. Roy). For any algebraic subvariety X of Cn defined over
the field Q of algebraic numbers, the set X∩Ln is the union of the sets V∩Ln,
where V ranges over the set of vector subspaces of Cn which are contained in
X.

Special cases of this statement have been proved by D. Roy and S. Fis-
chler.

Even the nonexistence of quadratic relations among logarithms of alge-
braic numbers is not proved. For instance, Schanuel’s Conjecture implies
that a relation like

logα1 logα2 = logα3

among nonzero logarithms of algebraic numbers is not possible. A special
case would be the transcendence of the number eπ

2
– it is not yet proved that

this number is irrational.
A special case of the nonexistence of nontrivial homogeneous quadratic

relations between logarithms of algebraic numbers is the four exponentials
conjecture, which occurs in some works on highly composite numbers by
S. Ramanujan, L. Alaoglu and P. Erdős. A very special case, which is open
yet, is to prove that if t is a real number such that 2t and 3t are integers,
then t is an integer.

The homogeneous conjecture of algebraic independence of logarithms of
algebraic numbers can be stated in an equivalent way as saying that, under
suitable assumptions, the determinant of a square matrix having entries in L
does not vanish. To deduce such a statement from Schanuel’s Conjecture is
easy, the converse relies on the fact, proved by D. Roy, that any polynomial
in variables X1, . . . , Xn is the determinant of a matrix having entries which
are linear forms in 1, X1, . . . , Xn.
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4 Further consequences of Schanuel’s Con-

jecture

In 1979, P. Bundschuh investigated the transcendence of numbers of the form∑
n≥1

A(n)

B(n)
,

where A/B ∈ Q(X) with degB ≥ degA+2. As an example, he noticed that

∞∑
n=0

1

n2 + 1
=

1

2
+
π

2
· e

π + e−π

eπ − e−π
= 2.076 674 047 4 . . .

while
∞∑
n=0

1

n2 − 1
=

3

4

(telescoping series).
From the Theorem of Nesterenko it follows that the number

∞∑
n=2

1

ns − 1

is transcendental over Q for s = 4. The transcendence of this number for
even integers s ≥ 4 would follow as a consequence of Schanuel’s Conjecture.
The example A(X)/B(X) = 1/X3 shows that it will be hard to achieve a
very general result, since :

ζ(3) =
∑
n≥1

1

n3
,

an irrational number not yet known to be transcendental. Such series of
values of rational fractions were studied later by S.D. Adhikari, R. Tijdeman,
T.N. Shorey, R. Murty, C. Weatherby and others.

An important recent development is due to the work of R. Murty and sev-
eral of his collaborators, including K. Murty, N. Saradha, S. Gun, P. Rath,
C. Weatherby. . . They use Schanuel’s conjecture to study not only the
arithmetic nature of numbers like Euler’s constant, Catalan’s Constant, val-
ues of Euler Gamma function, the digamma function and Barnes’s multiple
Gamma function, but also the non vanishing of L–series at critical points.
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5 Roy’s program towards Schanuel’s Conjec-

ture

In the Journées Arithmétiques in Roma 1999, D. Roy revealed his ambitious
program to prove Schanuel’s Conjecture. So far, this is the only approach
which is known toward a proof of Schanuel’s Conjecture. D. Roy introduces
a new conjecture of his own, which bears some similarity with known criteria
of algebraic independence and he proves that his new conjecture is equivalent
to Schanuel’s Conjecture. Both sides of the proof of equivalence are difficult
and involve a clever use of the transcendence machinerie.

Let D denote the derivation

D =
∂

∂X0

+X1
∂

∂X1

over the ring C[X0, X1]. The height of a polynomial P ∈ C[X0, X1] is defined
as the maximum of the absolute values of its coefficients.

Roy’s Conjecture. Let k be a positive integer, y1, . . . , yk complex numbers
which are linearly independent over Q, α1, . . . , αk non-zero complex numbers
and s0, s1, t0, t1, u positive real numbers satisfying

max{1, t0, 2t1} < min{s0, 2s1}

and

max{s0, s1 + t1} < u <
1

2
(1 + t0 + t1).

Assume that, for any sufficiently large positive integer N , there exists a non-
zero polynomial PN ∈ Z[X0, X1] with partial degree ≤ N t0 in X0, partial
degree ≤ N t1 in X1 and height ≤ eN which satisfies∣∣∣∣∣(DkPN)(

k∑
j=1

mjyj,
k∏
j=1

α
mj
j

)∣∣∣∣∣ ≤ exp(−Nu)

for any non-negative integers k, m1, . . . ,mk with k ≤ N s0 and max{m1, . . . ,mk} ≤
N s1. Then

tr degQ(y1, . . . , yk, α1, . . . , αk) ≥ k.

8



D. Roy already obtained partial results for the groups Ga and Gm; re-
cently he reached the first result for Ga ×Gm, so far only when the subset
is reduced to a single point.

Roy’s Conjecture depends on parameters s0, s1, t0, t1, u in a certain range.
He proved that if his conjecture is true for one choice of values of these
parameters in the given range, then Schanuel’s Conjecture is true and that
conversely, if Schanuel’s Conjecture is true, then his conjecture is true for
all choices of parameters in the same range. Recently, Nguyen Ngoc Ai Van
extended the range of these parameters.

6 Ubiquity of Schanuel’s Conjecture

Schanuel’s Conjecture occurs in many different places; most often only the
special case of homogeneous algebraic independence of logarithms of alge-
braic numbers is required. Some regulators are determinant of matrices with
entries logarithms of algebraic numbers; the fact that they do not vanish
means that some algebraic relation between these logarithms is not possi-
ble. An example, involving the p–adic analog of Schanuel’s Conjecture, is
Leopoldt’s Conjecture on the p–adic rank of the units of an algebraic num-
ber field. The nondegenerescence of heights is also sometimes a consequence
of Schanuel’s Conjecture, as shown by D. Bertrand. Some special cases of a
conjecture of B. Mazur on the density of rational points on algebraic varieties
can be deduced from Schanuel’s Conjecture. Other applications are related
with questions on algebraic tori in the works of D. Prasad and of G. Prasad.

Another far-reaching topic is the connection between Schanuel’s Conjec-
ture and other conjectures on transcendental number theory, including the
Conjecture of A. Grothendieck on the periods of abelian varieties, the con-
jecture due to Y. André on motives and the Conjecture of M. Kontsevich
and D. Zagier on periods.
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Appendix:
Comptes rendus hebdomadaires des séances de l’Académie des sciences,
Gauthier-Villars (Paris) 199 (1934), p. 259. http://gallica.bnf.fr/

Séance du 23 juillet 1934

Arithmétique. — Sur quelques résultats nouveaux dans la théorie des
nombres transcendants. Note de M. A. Gelfond, présentée par M. Hadamard.

J’ai démontré (1) que le nombre ωr, où ω 6= 0, 1 est un nombre algébrique
et r un nombre algébrique irrationnel, doit être transcendant.

Par une généralisation de la méthode qui sert pour la démonstration du
théorème énoncé, j’ai démontré les résultats plus généraux suivants:
I. Théorème. — Soient P (x1, x2, . . . , xn, y1, . . . , ym) un polynôme à coeffi-
cients entiers rationnels et α1, α2, . . . , αn, β1, . . . , βm des nombres algébriques,
βi 6= 0, 1.
L’égalité

P (eα1 , eα2 , . . . , eαn , ln β1, . . . , ln βm) = 0

est impossible; les nombres, α1, α2, . . . , αn, et aussi les nombres ln β1, . . . , ln βm
sont linéairement indépendants dans le corps des nombres rationnels.

Ce théorème contient, comme cas particuliers, le théorème de Hermite et
Lindemann, la résolution complète du problème de Hilbert, la transcendance
des nombres eω1eω2 (où ω1 et ω2 sont des nombres algébriques), le théorème
sur la transcendance relative des nombres e et π.
II. Théorème. — Les nombres

eω1eω2e
...
ωn−1e

ωn

et α
α
α...

αm
3

2
1 ,

où ω1 6= 0, ω2, . . . , ωn et α1 6= 0, 1, α2 6= 0, 1, α3 6= 0, α4, . . . , αm sont des
nombres algébriques, sont des nombres transcendants et entre les nombres
de cette forme n’existent pas de relations algébriques, à coefficients entiers
rationnels (non triviales).

La démonstration de ces résultats et de quelques autres résultats sur les
nombres transcendants sera donnée dans un autre Recueil.

1Sur le septième problème de D. Hilbert (C.R. de l’Acad. des Sciences de l’U.R.S.S., 2,
I, 1er avril 1934, et Bull. de l’Acad. des Sciences de l’U.R.S.S., 7e série, 4, 1934, p. 623).
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