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Abstract

Emery Thomas was one of the first to solve an infinite family
of Thue equations, when he considered the forms

Fo(X,Y)=X3—(n—1)X2Y — (n+2)XY? — Y3

and the family of equations F,(x,y) =+1, n€ N, x,y € Z.
This family is associated to the family of the simplest cubic
fields Q(A) of D. Shanks, A being a root of F,(X,1).

We introduce in this family a second parameter by replacing
the roots of the minimal polynomial F,(X,1) of A by the a-th
powers of the roots and we effectively solve the family of Thue
equations that we obtain and which depends now on the two
parameters n and a.



Thue equation
Thue (1908) : there are only finitely many integer solutions of
F(x,y) = m,

when F is homogeneous irreducible form over Q of degree > 3.




Thue equation
Thue (1908) : there are only finitely many integer solutions of
Flx,y) =m,
when F is homogeneous irreducible form over Q of degree > 3.

Baker — Fel'dman Effective upper bounds for the solutions.




Gel'fond—Baker method

While Thue's method was based on the non effective
Thue-Siegel-Roth Theorem, Baker and Fel'dman followed an
effective method introduced by A.O. Gel'fond, involving lower
bounds for linear combinations of logarithms of algebraic
numbers with algebraic coefficients.




Lower bounds for linear combinations of
logarithms

A lower bound for a nonvanishing difference

by b
at-ra) —1

is essentially the same as a lower bound for a nonvanishing
number of the form

by log g + - -+ + b, log ay,

since e — 1 ~ z for z — 0.

The first nontrivial lower bounds were obtained by

A.O. Gel'fond. His estimates were effective only for n = 2 : for
n > 3, he needed to use estimates related to the
Thue-Siegel-Roth Theorem.



Explicit version of Gel'fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel'fond.
in his lower bound for
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He deduced explicit Diophantine results using the approach
introduced by A.O. Gel'fond.
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Alan Baker

In 1968, A. Baker succeeded
to extend to any n > 2 the
transcendence method used
by A.O. Gel'fond for n = 2.
As a consequence, effective
upper bounds for the solutions
of Thue's equations have
been derived.



Thue equations and the Siegel unit equation

The main idea behind the Gel'fond—Baker approach for solving
Thue equations is to exploit Siegel’s unit equation.

Assume v, ap, a3 are algebraic integers and x, y rational
integers such that

(x —a1y)(x — aay)(x — azy) = 1.
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The main idea behind the Gel'fond—Baker approach for solving
Thue equations is to exploit Siegel’s unit equation.

Assume v, ap, a3 are algebraic integers and x, y rational
integers such that

(x — a1y)(x — aoy)(x — azy) = 1.
Then the three numbers
up =X — gy, Uy = X — oy, uz = X — agy,

are units.



Thue equations and the Siegel unit equation

The main idea behind the Gel'fond—Baker approach for solving
Thue equations is to exploit Siegel’s unit equation.

Assume v, ap, a3 are algebraic integers and x, y rational
integers such that

(x — a1y)(x — aoy)(x — azy) = 1.
Then the three numbers
up =X — gy, Uy = X — oy, uz = X — agy,

are units. Eliminating x and y, one deduces Siegel’s unit
equation

Ul(OéQ — (1/3) + UQ(QC?, — O[l) + u3(a1 — 0[2) = O



Siegel’s unit equation
Write Siegel's unit equation
u(ap — az) + ua(az — a1) + uz(a; —az) =0
in the form

U1(042 - 043) 1= u3(a1 - 042)_

UQ(Oél — Oé3) U2(Oél — 043)



Siegel’s unit equation
Write Siegel's unit equation
u(an —az) + (o —ag) + us(ag —ap) =0

in the form

U1(042 - 043) 1= u3(a1 - 042)_

U2(Oél — Oé3) U2(Oél — 043)

The quotient
U1(Oéz - 043)
U2(0é1 - 043)
is the quantity
by b

al ...an"

in Gel'fond—Baker Diophantine inequality.
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E. Bombieri (1993), Y. Bugeaud and K. Gydry (1996),
Y. Bugeaud (1998). ..
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E. Bombieri (1993), Y. Bugeaud and K. Gydry (1996),

Y. Bugeaud (1998). ..

Solving Thue equations :

A. Pethé and R. Schulenberg (1987), B. de Weger (1987),
N. Tzanakis and B. de Weger (1989), Y. Bilu and G. Hanrot
(1996), (1999). . .

Solving Thue—Mahler equations :
J.H. Coates (1969), S.V. Kotov and V.G. SprindZuk (1973),
A. Bérczes—Yu Kunrui- K. Gyéry (2006). . .



Diophantine equations

A.O. Gel'fond, A. Baker, V. SprindZuk, R. Tijdeman, C.L. Stewart,
M. Mignotte, M. Bennett, P. Voutier, Y. Bugeaud, T.N. Shorey. ..
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Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a+1)X" —aY" =1.

He proved that the only solution in positive integers x, y is
x =y =1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a > 386.




Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a+1)X" —aY" =1.

He proved that the only solution in positive integers x, y is
x =y =1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a > 386.

M. Bennett (2001) proved that this is true for all a and n with
n>3and a> 1.




E. Thomas's family of Thue equations

E. Thomas in 1990 studied
the families of Thue equations
B—(n—=1Dx*y —(n+2xy? —y3 =1

Set

Fo(X,Y)=X3—(n—1X2Y — (n+2)XY? - Y.

The cubic fields Q(\) generated by a root A of F,(X,1) are
called by D. Shanks the simplest cubic fields. The roots of the
polynomial F,(X, 1) can be described via homographies of
degree 3.



D. Shanks's simplest cubic fields Q(\).

Let \ be one of the three
roots of

FuX,1)=X>—(n—=1)X>—=(n+2)X — 1.

Then Q()) is a Galois cubic
field.

Write

Fa(X,Y)=(X=XY)(X = AMY)X = X\Y)

with
/\0>0>)\1>—1>)\2.



D. Shanks's simplest cubic fields Q(\).

Let \ be one of the three
roots of

FuX,1)=X>—(n—=1)X>—=(n+2)X — 1.

Then Q()) is a Galois cubic

field.
Write
Fo(X,Y) = (X = X Y)(X = A Y)(X = X2Y)
with
/\0>0>)\1>—1>)\2.
Then ) _—
M= — and N, — 201

)\0+1 >\0



Simplest fields.

When the following polynomials are irreducible for s, t € Z,
the fields Q(w) generated by a root w of respectively

X3 —tX2 — (t+3s)X — s,

sX* — tX3 — 6sX? + tX + s,

sX® —2tX5 — (5t + 15s)X* — 20sX3 + 5tX? + (2t + 65)X + s,
are cyclic over Q of degree 3, 4 and 6 respectively.

For s = 1, they are called simplest fields by many authors.
For s > 1, |. Wakabayashi call them simplest fields.



Simplest fields.

When the following polynomials are irreducible for s, t € Z,
the fields Q(w) generated by a root w of respectively

X3 —tX2 — (t+3s)X — s,

sX* — tX3 — 6sX? + tX + s,

sX® —2tX5 — (5t + 15s)X* — 20sX3 + 5tX? + (2t + 65)X + s,
are cyclic over Q of degree 3, 4 and 6 respectively.

For s = 1, they are called simplest fields by many authors.
For s > 1, |. Wakabayashi call them simplest fields.

In each of the three cases, the roots of the polynomials can be
described via homographies of PSL,(Z) of degree 3, 4 and 6
respectively.



E. Thomas's family of Thue equations

In 1990, E. Thomas proved in some effective way that the set
of (n,x,y) € Z3 with

nZO’ max{|x|,|y|}22 and Fn(Xay)::I:]'

is finite.



E. Thomas's family of Thue equations

In 1990, E. Thomas proved in some effective way that the set
of (n,x,y) € Z3 with
n>0, max{|x|,ly|]} >2 and F,(x,y)==+1
is finite.
In his paper, he completely solved the equation F,(x,y) =1

for n > 1.365- 10" : the only solutions are (0, —1), (1,0) and
(—1,+1).



E. Thomas's family of Thue equations

In 1990, E. Thomas proved in some effective way that the set
of (n,x,y) € Z3 with

nZO’ max{|x|,|y|}22 and FH(X7y)::|:1
is finite.
In his paper, he completely solved the equation F,(x,y) =1

for n > 1.365- 10" : the only solutions are (0, —1), (1,0) and
(—1,+1).

Since Fp(—x, —y) = —Fn(x,y), the solutions to F,(x,y) = —1 are
given by (—x, —y) where (x, y) are the solutions to F,(x,y) = 1.



Exotic solutions found by E. Thomas in 1990

Fo(X,Y) = X3+ X2Y — 2XY2 — Y3
Solutions (x, y) to Fo(x,y) =1:
(_975)' (_172)' (27 _1)' (4? _9)' (574)
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Fo(X,Y) = X3+ X2Y — 2XY2 — Y3
Solutions (x, y) to Fo(x,y) =1:
(_975)' (_1a2)' (27 _1)' (47 _9)' (574)

Fi(X,Y)=X3-3XY?-VY3
Solutions (x, y) to Fi(x,y) =1:
(_37 2)' (1a _3)' (27 1)



Exotic solutions found by E. Thomas in 1990

Fo(X,Y) = X3+ X2Y — 2XY2 — Y3
Solutions (x, y) to Fo(x,y) =1
(_975)' (_1a2)' (27 _1)' (47 _9)' (574)

Fi(X,Y)=X3-3XY?-VY3
Solutions (x, y) to Fi(x,y) =1:
(_37 2)' (1a _3)' (27 1)

F3(X,Y) = X3—2X2Y —5XY? - Y3
Solutions (x, y) to F3(x,y) =1:
(_77 _2)' (_27 9)' (97 _7)



M. Mignotte's work on E. Thomas's family

In 1993, M. Mignotte completed the work of E. Thomas by
solving the problem for each n.




M. Mignotte's work on E. Thomas's family

In 1993, M. Mignotte completed the work of E. Thomas by
solving the problem for each n.

For n > 4 and for n = 2, the
only solutions to F,(x,y) =1
are (0,—1), (1,0) and
(—1,+1), while for the cases
n=0,1,3, the only nontrivial
solutions are the ones found
by E. Thomas.




E. Thomas's family of Thue equations

For the same family
FoX,Y)=X3—(n—1X2Y — (n+2)XY? - Y3,

given m # 0, M. Mignotte, A. Pethé and F. Lemmermeyer
(1996) studied the family of Diophantine equations
F.(X,Y)=m.




M. Mignotte, A. Petho and F. Lemmermeyer
(1996)

For n > 2, when x, y are rational integers verifying
0 < [Fu(xy)l < m,

then
log |y| < c(log n)(log n + log m)

with an effectively computable absolute constant c.



M. Mignotte, A. Petho and F. Lemmermeyer
(1996)

For n > 2, when x, y are rational integers verifying
0 < [Fu(x.y)l < m,

then
log |y| < c(log n)(log n + log m)

with an effectively computable absolute constant c.

One would like an upper bound for max{|x|,|y|} depending
only on m, not on n. This is still open.



M. Mignotte, A. Petho and F. Lemmermeyer

Besides, M. Mignotte, A. Peth¢ and F. Lemmermeyer found
all solutions of the Thue inequality |F,(X, Y)| <2n+ 1.



M. Mignotte, A. Petho and F. Lemmermeyer

Besides, M. Mignotte, A. Peth¢ and F. Lemmermeyer found
all solutions of the Thue inequality |F,(X, Y)| < 2n+ 1.

As a consequence, when m is a given positive integer, there
exists an integer ny depending upon m such that the inequality
|Fn(x,y)] < m, with n >0 and |y| > /m, implies n < no.



M. Mignotte, A. Petho and F. Lemmermeyer

Besides, M. Mignotte, A. Peth¢ and F. Lemmermeyer found
all solutions of the Thue inequality |F,(X, Y)| < 2n+ 1.

As a consequence, when m is a given positive integer, there
exists an integer ny depending upon m such that the inequality
|Fn(x,y)] < m, with n >0 and |y| > /m, implies n < no.

Note that for 0 < [t| < /m, (—t,t) and (t,—t) are solutions.
Therefore, the condition |y| > /m cannot be omitted.



E. Thomas's family of Thue inequations

In 1996, for the family of Thue inequations
0 < [Fu(x.y)| < m,

Chen Jian Hua has given a bound for n by using Padé’s
approximations. This bound was highly improved in 1999 by
G. Lettl, A. Pethé and P. Voutier.




Homogeneous variant of E. Thomas's family

|. Wakabayashi, using again
the approximants of Padé,
extended these results to the
families of forms, depending
upon two parameters,

sX? —tX?Y — (t +35)XY? —sY?3,

which includes the family of Thomas for s = 1 (with
t=n-—1).



May 2010, RIO de JaneII’O What were we doing on the beach of Rio?




Suggestion of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

Fo(X,Y) = X3 = (n— )XY — (n+2)XY2 — Y3,



Suggestion of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

F.(X,Y)= X3 — (n— 1)X2Y — (n+2)XY2 — Y3
Write
Fa(X,Y)= (X =X0nY)(X = A1 Y)(X = A2, Y)

where \;, are units in the totally real cubic field Q(Ao,).
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Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with
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Write
Fa(X,Y)= (X =X0nY)(X = A1 Y)(X = A2, Y)

where \;, are units in the totally real cubic field Q(Xo,). Twist
these equations by introducing a new parameter a € Z :

Fma(X? Y) = (X - )‘gny)(X - )‘iny)(X - A;ny) € Z[X> Y]



Suggestion of Claude Levesque

Consider Thomas's family of cubic Thue equations
F.(X,Y) = +£1 with

F.(X,Y) = X3 — (n— 1)X2Y —(n+ 2)XY2 — Y3
Write
Fa(X,Y)= (X =X0nY)(X = A1 Y)(X = A2, Y)

where \;, are units in the totally real cubic field Q(Xo,). Twist
these equations by introducing a new parameter a € Z :

Fma(X? Y) = (X - )\SnY)(X - )‘iny)(X - A;ny) € Z[X> Y]

Then we get a family of cubic Thue equations depending on
two parameters (n, a) :

Fna(x,y) = 1.



Thomas’s family with two parameters
Joint work with Claude Levesque

Main result (2014) : there is an effectively computable
absolute constant ¢ > 0 such that, if (x,y, n,a) are nonzero
rational integers with max{|x|,|y|} > 2 and

Fra(x,y) = %1,

then
max{n. |al, x|, ly|} < c.



Thomas’s family with two parameters
Joint work with Claude Levesque

Main result (2014) : there is an effectively computable
absolute constant ¢ > 0 such that, if (x,y, n,a) are nonzero
rational integers with max{|x|,|y|} > 2 and

Fra(x,y) = %1,

then
max{n. |al, x|, ly|} < c.

For all n > 0, trivial solutions with a > 2 :
(+1,0), (0, 1)
(£1,+1) for a =2



Exotic solutions to Fp ,(x,y) = 1 with a > 2

(n,a) (x,¥)

(0,2) | (—14,-9) (-3,-1) (—2,-1) (1,5) (3,2) (13,4)
(0,3) | (2,1)

(0,5) | (=3,-1) (19,-1)

(1,2) | (-7,-2) (-3,-1) (2,1) (7,3)

(2,2) | (=7,-1) (-2,-1)

(4,2) | (3,2)

No further solution in the range

0<n<10, 2<a<T0, —1000 < x, y < 1000.



Exotic solutions to Fp ,(x,y) = 1 with a > 2

(n,a) (x,¥)

(0,2) | (—14,-9) (-3,-1) (—2,-1) (1,5) (3,2) (13,4)
(0,3) | (2,1)

(0,5) | (=3,-1) (19,-1)

(1,2) | (-7,-2) (-3,-1) (2,1) (7,3)

(2,2) | (=7,-1) (-2,-1)

(4,2) | (3,2)

No further solution in the range

0<n<10, 2<a<T0, —1000 < x, y < 1000.

Open question : are there further solutions ?



Computer search by specialists




Further Diophantine results on the family F, 2(x, y)

Let m > 1. There exists an absolute effectively computable
constant r such that, if there exists (n, a, m, x,y) € Z° with
a # 0 verifying

0 < [Fnalx,y)l < m,

then
log max{|x|, [y[} < ru

with

(log m + |a| log |n|)(log |n|)? log log |n| for |n] > 3,
:u =
log m + | for n=0,+1, £2.



Further Diophantine results on the family F, 2(x, y)

Let m > 1. There exists an absolute effectively computable
constant r such that, if there exists (n, a, m, x,y) € Z° with
a # 0 verifying

0 < |Fna(x,y)] < m,
then

log max{|x|, [y[} < ru
with

(log m + |a| log |n|)(log |n|)? log log |n| for |n] > 3,

| logm+ for n=0,+1, £2.

For a = 1, this follows from the above mentioned result of
M. Mignotte, A. Pethé and F. Lemmermeyer.



Further Diophantine results on the family F, 2(x, y)

Let m > 1. There exists an absolute effectively computable
constant r such that, if there exists (n, a, m, x,y) € Z° with
a # 0 verifying

0 < |Fna(x,y)] < m,

with n >0, a > 1 and |y| > 2/m, then
a<ky
with
(log m + log n)(log n) loglogn for n > 3,
1+ logm forn=20,1,2.



Further Diophantine results on the family F, 2(x, y)

Let m > 1. There exists an absolute effectively computable
constant r such that, if there exists (n, a, m, x,y) € Z° with
a > 1 verifying

0 < |Fna(x,y)] < m,

with xy #0, n > 0 and a > 1, then

|
agmmax{l, (1 + log |x|) log log(n + 3), log |y, %}.



Conjecture on the family F, 5(x, y)

Assume that there exists (n,a, m, x, y) € Z°> with xy # 0 and
|a| > 2 verifying

0 <[Fnalx,y)l < m.
We conjecture the upper bound

max{log|nl, ||, log |x]log|y|} < #(1 + log m).



Conjecture on the family F, 5(x, y)

Assume that there exists (n,a, m, x, y) € Z°> with xy # 0 and
|a| > 2 verifying

0 <[Fnalx,y)l < m.
We conjecture the upper bound

max{log|nl, ||, log |x]log|y|} < #(1 + log m).

For m > 1 we cannot give an upper bound for |n|.



Conjecture on the family F, 5(x, y)

Assume that there exists (n,a, m, x, y) € Z°> with xy # 0 and
|a| > 2 verifying

0 <[Fnalx,y)l < m.
We conjecture the upper bound

max{log|nl, ||, log |x]log|y|} < #(1 + log m).

For m > 1 we cannot give an upper bound for |n|.

Since the rank of the units of Q()\o) is 2, one may expect a
more general result as follows :



Conjecture on a family £, +(x, y)

Conjecture. For s, t and n in Z, define
Fn,S,t(X? Y) = (X - )‘gn)‘in Y)(X - Ainkény)(X - )\3,7)\6” Y)

There exists an effectively computable positive absolute
constant x with the following property : If n,s. t, x,y, m are
integers satisfying

max{|x|, ’y|} 2 27 (57 t) 7£ (070) and 0 < |FN,5,t(X7y)’ S m7

then

max{log |n, |s|, |¢],log x|, log |y[} < #(1 + log m).



Sketch of proof

We want to prove the Main result : there is an effectively
computable absolute constant ¢ > 0 such that, if (x,y,n, a)
are nonzero rational integers with max{|x|, |y|} > 2 and

Fna(x,y) = £1,

then
max{|nl, |al, x|, ly[} < c.



Sketch of proof

We want to prove the Main result : there is an effectively
computable absolute constant ¢ > 0 such that, if (x,y,n, a)
are nonzero rational integers with max{|x|, |y|} > 2 and

Fna(x,y) = £1,

then
max{|nl, |al, x|, ly[} < c.

We may assume a > 2 and y > 1.



Sketch of proof

We want to prove the Main result : there is an effectively
computable absolute constant ¢ > 0 such that, if (x,y,n, a)
are nonzero rational integers with max{|x|, |y|} > 2 and

Fna(x,y) = %1,

then
max{|nl, |al, x|, ly[} < c.

We may assume a > 2 and y > 1.

To start with, we assume n sufficiently large.



Sketch of proof (continued)

Write \; for A\, (i =10,1,2) :

Fa(X,Y)= X3 — (n— 1)X2Y — (n+2)XY2 _y3
= (X = 2Y)(X = MY)(X = AY).



Sketch of proof (continued)

Write \; for A\, (i =10,1,2) :

Fa(X,Y)= X3 — (n— 1)X2Y — (n+2)XY2 _y3
= (X = 2Y)(X = MY)(X = AY).

We have
( n—+ — S)\Og n+ —,
n n
1 1
n+1 P 42
1 1
—1—— < X< —-1-




Sketch of proof (continued)

Define
’Yi:X_)\l?.y7 (1207172)

so that F, ,(x,y) = 1 becomes 77172 = +£1.



Sketch of proof (continued)

Define
vi=x—Ay, (i=0,1,2)

so that F, ,(x,y) = 1 becomes 77172 = +£1.
One 7, say 7j,, has a small absolute value, namely
ol < —
’V’O — y2)\87
the two others, say 7;,, 7, have large absolute values :

min{|vi |, [vul} > y[Aal®.



Sketch of proof (continued)

Use Ao, A2 as a basis of the group of units of Q()\) : there
exist 0 = +1 and rational integers A and B such that

/70,8 — 5>\€>\2Bu
Y. = OMAE = oNATENA,
Yoo = OMAE = 0X;ENTE.

We can prove

[
A+ 1Bl < w8 1 a).
log Ao



Sketch of proof (continued)

The Siegel equation
Vioa(Ah = AL) + Yia(A = AL) +70.a(A] — A7) =0
leads to the identity

7i1,3(>‘;?2 - A%) 1= _’Yio,a()‘?l - )‘Z)

’Yiz,a(/\?l - A%) B 71'2,3()‘;?1 - )‘%)
and the estimate
71'1,3(/\2 - /\%) 2 )
Vira(A] — A7) AR



End of the proof when n is large

We complete the proof when n is large by means of a lower
bound for a linear form in logarithms of algebraic numbers
(Baker's method).

Next we need to consider the case where n is bounded. We
have results which are valid not only for the Thue equations of
the family of Thomas. The next result completes the proof of
our main theorem.
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Twists of a given cubic Thue equation

Consider a monic irreducible cubic polynomial f(X) € Z[X]
with £(0) = 1 and write

F(X,Y)=Y}(X/Y)=(X—aY)X —eY)(X —e&Y).
For a € Z, a # 0, define
F.(X,Y)=(X-&EY)X -aY)(X - qY).

Then there exists an effectively computable constant x > 0,
depending only on f, such that, for any m > 2, any (x,y, a) in
the set

{(x,y,a) € Z* x Z | xya# 0, max{|x]|, |y|} > 2, |Fa(x,y)| < m}

satisfies
max{|x|, |y[, "} < m"



Twists of a given Thue equation

Much more general results can be proved for the twists of a
given Thue equation. In particular :

Let «v be an algebraic number of degree n > 3 and K be the
field Q(c«). When ¢ is a unit of K such that ae has degree n,
let f.(X) be the irreducible polynomial of ac and let F.(X,Y)
be its homogeneous version. Then for all but finitely many of
these units, Thue equation F.(x,y) = +1 has only the trivial
solutions x,y in Z where xy = 0.

This last result rests on Schmidt's subspace Theorem and is
not effective.



A conjecture

The goal is to obtain effective results.

Conjecture. There exists a constant k > 0, depending only
on «, such that, for any m > 2, all solutions (x,y,¢) in
Z x Z x Zy of the inequality

IF.(x,y)| < m, with xy #0 and [Q(ag): Q] > 3,

satisfy
max{|x|, |y, ")} < m".
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Twists of a given Thue equation

With Claude Levesque we obtained effective partial results in
several cases :

e Our first paper (J. Austral. Math. Soc. 2013) was dealing
with non totally real cubic fields.

e Our second one (to appear) was dealing with Thue equations
attached to a number field having at most one real embedding.
e In the third paper (MJCNT, 2013), for each (irreducible)
binary form attached to an algebraic number field, which is
not a totally real cubic field, we exhibited an infinite family of
equations twisted by units for which Baker's method provides
effective bounds for the solutions.

e In a paper to appear in JTNBXx, we deal with equations
related to infinite families of cyclic cubic fields.

e In a forthcoming paper (to appear), we go one step further
by considering twists by a power of a totally real unit.
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