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Győry 75

July 10-11, 2015

E↵ective upper bounds for the solutions

of a family of Thue equations involving

powers of units of the simplest cubic fields.

Michel Waldschmidt

Joint work with Claude Levesque.

The pdf file of this talk can be downloaded at URL
http://www.imj-prg.fr/~michel.waldschmidt/

http://gyory75.math.unideb.hu/sites/default/files/Gyory75_programme.pdf
http://www.imj-prg.fr/~michel.waldschmidt/


Boldog születésnapot, Kálmán !



Abstract

Emery Thomas was one of the first to solve an infinite family
of Thue equations, when he considered the forms

Fn(X ,Y ) = X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3

and the family of equations Fn(x , y) = ±1, n 2 N, x , y 2 Z.
This family is associated to the family of the simplest cubic
fields Q(�) of D. Shanks, � being a root of Fn(X , 1).
We introduce in this family a second parameter by replacing
the roots of the minimal polynomial Fn(X , 1) of � by the a-th
powers of the roots and we e↵ectively solve the family of Thue
equations that we obtain and which depends now on the two
parameters n and a.



Thue equation

Thue (1908) : there are only finitely many integer solutions of

F (x , y) = m,

when F is homogeneous irreducible form over Q of degree � 3.

Baker – Fel’dman E↵ective upper bounds for the solutions.
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Gel’fond–Baker method

While Thue’s method was based on the non e↵ective
Thue–Siegel–Roth Theorem, Baker and Fel’dman followed an
e↵ective method introduced by A.O. Gel’fond, involving lower

bounds for linear combinations of logarithms of algebraic

numbers with algebraic coe�cients.



Lower bounds for linear combinations of

logarithms

A lower bound for a nonvanishing di↵erence

↵b
1

1

· · ·↵bn
n � 1

is essentially the same as a lower bound for a nonvanishing
number of the form

b

1

log↵
1

+ · · ·+ bn log↵n,

since e

z � 1 ⇠ z for z ! 0.
The first nontrivial lower bounds were obtained by
A.O. Gel’fond. His estimates were e↵ective only for n = 2 : for
n � 3, he needed to use estimates related to the
Thue–Siegel–Roth Theorem.



Explicit version of Gel’fond’s estimates

A. Schinzel (1968) computed
explicitly the constants
introduced by A.O. Gel’fond.
in his lower bound for

��↵b
1

1

↵b
2

2

� 1
�� .

He deduced explicit Diophantine results using the approach
introduced by A.O. Gel’fond.



Alan Baker

In 1968, A. Baker succeeded
to extend to any n � 2 the
transcendence method used
by A.O. Gel’fond for n = 2.
As a consequence, e↵ective
upper bounds for the solutions
of Thue’s equations have
been derived.



Thue equations and the Siegel unit equation

The main idea behind the Gel’fond–Baker approach for solving
Thue equations is to exploit Siegel’s unit equation.
Assume ↵

1

,↵
2

,↵
3

are algebraic integers and x , y rational
integers such that

(x � ↵
1

y)(x � ↵
2

y)(x � ↵
3

y) = 1.

Then the three numbers

u
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= x � ↵
1

y , u

2
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2

y , u

3

= x � ↵
3

y ,

are units. Eliminating x and y , one deduces Siegel’s unit
equation

u
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Siegel’s unit equation

Write Siegel’s unit equation

u

1

(↵
2

� ↵
3

) + u

2

(↵
3

� ↵
1

) + u

3

(↵
1

� ↵
2

) = 0

in the form

u

1

(↵
2

� ↵
3

)

u

2

(↵
1

� ↵
3

)
� 1 =

u

3

(↵
1

� ↵
2

)

u

2

(↵
1

� ↵
3

)
·

The quotient
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is the quantity
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n

in Gel’fond–Baker Diophantine inequality.
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Work on Baker’s method :

A. Baker (1968), N.I. Fel’dman (1971), V.G. Sprindz̆uk and
H.M. Stark (1973), K. Győry and Z.Z. Papp (1983),
E. Bombieri (1993), Y. Bugeaud and K. Győry (1996),
Y. Bugeaud (1998). . .

Solving Thue equations :
A. Pethő and R. Schulenberg (1987), B. de Weger (1987),
N. Tzanakis and B. de Weger (1989), Y. Bilu and G. Hanrot
(1996), (1999). . .

Solving Thue–Mahler equations :
J.H. Coates (1969), S.V. Kotov and V.G. Sprindz̆uk (1973),
A. Bérczes–Yu Kunrui– K. Győry (2006). . .
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Diophantine equations

A.O. Gel’fond, A. Baker, V. Sprindz̆uk, R. Tijdeman, C.L. Stewart,

M. Mignotte, M. Bennett, P. Voutier, Y. Bugeaud, T.N. Shorey. . .
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Kálmán Győry and his School

K. Győry A. Pethő I. Gaál,

Á. Pintér L. Hajdu A. Bérczes



Families of Thue equations
The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a + 1)X n � aY

n = 1.

He proved that the only solution in positive integers x , y is
x = y = 1 for n prime and a su�ciently large in terms of n.
For n = 3 this equation has only this solution for a � 386.

M. Bennett (2001) proved that this is true for all a and n with
n � 3 and a � 1.
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E. Thomas’s family of Thue equations

E. Thomas in 1990 studied
the families of Thue equations
x

3 � (n � 1)x2y � (n + 2)xy 2 � y

3 = 1

Set

Fn(X ,Y ) = X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3.

The cubic fields Q(�) generated by a root � of Fn(X , 1) are
called by D. Shanks the simplest cubic fields. The roots of the
polynomial Fn(X , 1) can be described via homographies of
degree 3.



D. Shanks’s simplest cubic fields Q(�).

Let � be one of the three
roots of

Fn(X , 1) = X

3 � (n � 1)X 2 � (n + 2)X � 1.

Then Q(�) is a Galois cubic
field.

Write

Fn(X ,Y ) = (X � �
0
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1

Y )(X � �
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Simplest fields.

When the following polynomials are irreducible for s, t 2 Z,
the fields Q(!) generated by a root ! of respectively

8
><

>:

sX

3 � tX

2 � (t + 3s)X � s,

sX

4 � tX

3 � 6sX 2 + tX + s,

sX

6 � 2tX 5 � (5t + 15s)X 4 � 20sX 3 + 5tX 2 + (2t + 6s)X + s,

are cyclic over Q of degree 3, 4 and 6 respectively.
For s = 1, they are called simplest fields by many authors.
For s � 1, I. Wakabayashi call them simplest fields.

In each of the three cases, the roots of the polynomials can be
described via homographies of PSL

2

(Z) of degree 3, 4 and 6
respectively.
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E. Thomas’s family of Thue equations

In 1990, E. Thomas proved in some e↵ective way that the set
of (n, x , y) 2 Z3 with

n � 0, max{|x |, |y |} � 2 and Fn(x , y) = ±1

is finite.

In his paper, he completely solved the equation Fn(x , y) = 1
for n � 1.365 · 107 : the only solutions are (0,�1), (1, 0) and
(�1,+1).

Since Fn(�x ,�y) = �Fn(x , y), the solutions to Fn(x , y) = �1 are
given by (�x ,�y) where (x , y) are the solutions to Fn(x , y) = 1.
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Exotic solutions found by E. Thomas in 1990

F

0

(X ,Y ) = X

3 + X

2

Y � 2XY 2 � Y

3

Solutions (x , y) to F

0

(x , y) = 1 :
(�9, 5), (�1, 2), (2,�1), (4,�9), (5, 4)

F

1

(X ,Y ) = X

3 � 3XY 2 � Y

3

Solutions (x , y) to F

1

(x , y) = 1 :
(�3, 2), (1,�3), (2, 1)

F

3

(X ,Y ) = X

3 � 2X 2

Y � 5XY 2 � Y

3

Solutions (x , y) to F

3

(x , y) = 1 :
(�7,�2), (�2, 9), (9,�7)
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M. Mignotte’s work on E. Thomas’s family

In 1993, M. Mignotte completed the work of E. Thomas by
solving the problem for each n.

For n � 4 and for n = 2, the
only solutions to Fn(x , y) = 1
are (0,�1), (1, 0) and
(�1,+1), while for the cases
n = 0, 1, 3, the only nontrivial
solutions are the ones found
by E. Thomas.
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E. Thomas’s family of Thue equations

For the same family

Fn(X ,Y ) = X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3,

given m 6= 0, M. Mignotte, A. Pethő and F. Lemmermeyer
(1996) studied the family of Diophantine equations
Fn(X ,Y ) = m.



M. Mignotte, A. Pethő and F. Lemmermeyer

(1996)

For n � 2, when x , y are rational integers verifying

0 < |Fn(x , y)|  m,

then
log |y |  c(log n)(log n + logm)

with an e↵ectively computable absolute constant c .

One would like an upper bound for max{|x |, |y |} depending
only on m, not on n. This is still open.
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M. Mignotte, A. Pethő and F. Lemmermeyer

Besides, M. Mignotte, A. Pethő and F. Lemmermeyer found
all solutions of the Thue inequality |Fn(X ,Y )|  2n + 1.

As a consequence, when m is a given positive integer, there
exists an integer n

0

depending upon m such that the inequality
|Fn(x , y)|  m, with n � 0 and |y | > 3

p
m, implies n  n

0

.

Note that for 0 < |t|  3

p
m, (�t, t) and (t,�t) are solutions.

Therefore, the condition |y | > 3

p
m cannot be omitted.
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E. Thomas’s family of Thue inequations

In 1996, for the family of Thue inequations

0 < |Fn(x , y)|  m,

Chen Jian Hua has given a bound for n by using Padé’s
approximations. This bound was highly improved in 1999 by
G. Lettl, A. Pethő and P. Voutier.



Homogeneous variant of E. Thomas’s family

I. Wakabayashi, using again
the approximants of Padé,
extended these results to the
families of forms, depending
upon two parameters,

sX

3 � tX

2

Y � (t + 3s)XY 2 � sY

3,

which includes the family of Thomas for s = 1 (with
t = n � 1).



May 2010, Rio de Janeiro What were we doing on the beach of Rio ?



Suggestion of Claude Levesque
Consider Thomas’s family of cubic Thue equations
Fn(X ,Y ) = ±1 with

Fn(X ,Y ) = X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3.

Write

Fn(X ,Y ) = (X � �
0nY )(X � �

1nY )(X � �
2nY )

where �in are units in the totally real cubic field Q(�
0n). Twist

these equations by introducing a new parameter a 2 Z :

Fn,a(X ,Y ) = (X � �a
0nY )(X � �a

1nY )(X � �a
2nY ) 2 Z[X ,Y ].

Then we get a family of cubic Thue equations depending on
two parameters (n, a) :

Fn,a(x , y) = ±1.
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Fn(X ,Y ) = (X � �
0nY )(X � �

1nY )(X � �
2nY )

where �in are units in the totally real cubic field Q(�
0n). Twist

these equations by introducing a new parameter a 2 Z :

Fn,a(X ,Y ) = (X � �a
0nY )(X � �a

1nY )(X � �a
2nY ) 2 Z[X ,Y ].

Then we get a family of cubic Thue equations depending on
two parameters (n, a) :

Fn,a(x , y) = ±1.



Thomas’s family with two parameters

Joint work with Claude Levesque

Main result (2014) : there is an e↵ectively computable

absolute constant c > 0 such that, if (x , y , n, a) are nonzero

rational integers with max{|x |, |y |} � 2 and

Fn,a(x , y) = ±1,

then

max{|n|, |a|, |x |, |y |}  c .

For all n � 0, trivial solutions with a � 2 :
(±1, 0), (0,±1)
(±1,±1) for a = 2
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Exotic solutions to F

n,a(x , y) = 1 with a � 2

(n, a) (x , y)

(0, 2) (�14,�9) (�3,�1) (�2,�1) (1, 5) (3, 2) (13, 4)

(0, 3) (2, 1)

(0, 5) (�3,�1) (19,�1)

(1, 2) (�7,�2) (�3,�1) (2, 1) (7, 3)

(2, 2) (�7,�1) (�2,�1)

(4, 2) (3, 2)

No further solution in the range

0  n  10, 2  a  70, �1000  x , y  1000.

Open question : are there further solutions ?
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Computer search by specialists



Further Diophantine results on the family F
n,a(x , y)

Let m � 1. There exists an absolute e↵ectively computable
constant  such that, if there exists (n, a,m, x , y) 2 Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)|  m,

then
logmax{|x |, |y |}  µ

with

µ =

(
(logm + |a| log |n|)(log |n|)2 log log |n| for |n| � 3,

logm + |a| for n = 0,±1,±2.

For a = 1, this follows from the above mentioned result of

M. Mignotte, A. Pethő and F. Lemmermeyer.
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Further Diophantine results on the family F
n,a(x , y)

Let m � 1. There exists an absolute e↵ectively computable
constant  such that, if there exists (n, a,m, x , y) 2 Z5 with
a 6= 0 verifying

0 < |Fn,a(x , y)|  m,

with n � 0, a � 1 and |y | � 2 3

p
m, then

a  µ0

with

µ0 =

8
<

:
(logm + log n)(log n) log log n for n � 3,

1 + logm for n = 0, 1, 2.



Further Diophantine results on the family F
n,a(x , y)

Let m � 1. There exists an absolute e↵ectively computable
constant  such that, if there exists (n, a,m, x , y) 2 Z5 with
a � 1 verifying

0 < |Fn,a(x , y)|  m,

with xy 6= 0, n � 0 and a � 1, then

a  max

⇢
1, (1 + log |x |) log log(n + 3), log |y |, logm

log(n + 2)

�
.



Conjecture on the family F
n,a(x , y)

Assume that there exists (n, a,m, x , y) 2 Z5 with xy 6= 0 and
|a| � 2 verifying

0 < |Fn,a(x , y)|  m.

We conjecture the upper bound

max{log |n|, |a|, log |x |, log |y |}  (1 + logm).

For m > 1 we cannot give an upper bound for |n|.

Since the rank of the units of Q(�
0

) is 2, one may expect a
more general result as follows :
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Conjecture on a family F
n,s,t(x , y)

Conjecture. For s, t and n in Z, define

Fn,s,t(X ,Y ) = (X � �s
0n�

t
1nY )(X � �s

1n�
t
2nY )(X � �s

2n�
t
0nY ).

There exists an e↵ectively computable positive absolute
constant  with the following property : If n, s, t, x , y ,m are
integers satisfying

max{|x |, |y |} � 2, (s, t) 6= (0, 0) and 0 < |Fn,s,t(x , y)|  m,

then

max{log |n|, |s|, |t|, log |x |, log |y |}  (1 + logm).



Sketch of proof

We want to prove the Main result : there is an e↵ectively

computable absolute constant c > 0 such that, if (x , y , n, a)
are nonzero rational integers with max{|x |, |y |} � 2 and

Fn,a(x , y) = ±1,

then

max{|n|, |a|, |x |, |y |}  c .

We may assume a � 2 and y � 1.

To start with, we assume n su�ciently large.
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Sketch of proof (continued)

Write �i for �in, (i = 0, 1, 2) :

Fn(X ,Y )= X

3 � (n � 1)X 2

Y � (n + 2)XY 2 � Y

3

= (X � �
0

Y )(X � �
1

Y )(X � �
2

Y ).

We have
8
>>>>><

>>>>>:

n +
1

n

 �
0

 n +
2

n

,

� 1

n + 1
 �

1

 � 1

n + 2
,

�1� 1

n

 �
2

 �1� 1

n + 1
·



Sketch of proof (continued)
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n
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 �1� 1

n + 1
·



Sketch of proof (continued)

Define
�i = x � �a

i y , (i = 0, 1, 2)

so that Fn,a(x , y) = ±1 becomes �
0

�
1

�
2

= ±1.

One �i , say �i
0

, has a small absolute value, namely

|�i
0

|  m

y

2�a
0

,

the two others, say �i
1

, �i
2

, have large absolute values :

min{|�i
1

|, |�i
2

|} > y |�
2

|a.
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Sketch of proof (continued)

Use �
0

,�
2

as a basis of the group of units of Q(�
0

) : there
exist � = ±1 and rational integers A and B such that

8
>><

>>:

�
0,a = ��A

0

�B
2

,

�
1,a = ��A

1

�B
0

= ���A+B
0

��A
2

,

�
2,a = ��A

2

�B
1

= ���B
0

�A�B
2

.

We can prove

|A|+ |B |  

✓
log y

log �
0

+ a

◆
.



Sketch of proof (continued)

The Siegel equation

�i
0

,a(�
a
i
1

� �a
i
2

) + �i
1

,a(�
a
i
2

� �a
i
0

) + �i
2

,a(�
a
i
0

� �a
i
1

) = 0

leads to the identity

�i
1

,a(�a
i
2

� �a
i
0

)

�i
2

,a(�a
i
1

� �a
i
0

)
� 1 = �

�i
0

,a(�a
i
1

� �a
i
2

)

�i
2

,a(�a
i
1

� �a
i
0

)

and the estimate

0 <

����
�i

1

,a(�a
i
2

� �a
i
0

)

�i
2

,a(�a
i
1

� �a
i
0

)
� 1

���� 
2

y

3�a
0

·



End of the proof when n is large

We complete the proof when n is large by means of a lower
bound for a linear form in logarithms of algebraic numbers
(Baker’s method).

Next we need to consider the case where n is bounded. We
have results which are valid not only for the Thue equations of
the family of Thomas. The next result completes the proof of
our main theorem.



Twists of a given cubic Thue equation
Consider a monic irreducible cubic polynomial f (X ) 2 Z[X ]
with f (0) = ±1 and write

F (X ,Y ) = Y

3

f (X/Y ) = (X � ✏
1

Y )(X � ✏
2

Y )(X � ✏
3

Y ).

For a 2 Z, a 6= 0, define

Fa(X ,Y ) = (X � ✏a
1

Y )(X � ✏a
2

Y )(X � ✏a
3

Y ).

Then there exists an e↵ectively computable constant  > 0,
depending only on f , such that, for any m � 2, any (x , y , a) in
the set

�
(x , y , a) 2 Z2 ⇥ Z | xya 6= 0, max{|x |, |y |} � 2, |Fa(x , y)|  m

 

satisfies

max
�
|x |, |y |, e |a|

 
 m

.
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Twists of a given Thue equation

Much more general results can be proved for the twists of a
given Thue equation. In particular :

Let ↵ be an algebraic number of degree n � 3 and K be the

field Q(↵). When " is a unit of K such that ↵" has degree n,

let f"(X ) be the irreducible polynomial of ↵" and let F"(X ,Y )
be its homogeneous version. Then for all but finitely many of

these units, Thue equation F"(x , y) = ±1 has only the trivial

solutions x , y in Z where xy = 0.

This last result rests on Schmidt’s subspace Theorem and is
not e↵ective.



A conjecture

The goal is to obtain e↵ective results.

Conjecture. There exists a constant  > 0, depending only

on ↵, such that, for any m � 2, all solutions (x , y , ") in
Z⇥ Z⇥ Z⇥

K of the inequality

|F"(x , y)|  m, with xy 6= 0 and [Q(↵") : Q] � 3,

satisfy

max{|x |, |y |, eh(↵")}  m

.



Twists of a given Thue equation

With Claude Levesque we obtained e↵ective partial results in
several cases :
• Our first paper (J. Austral. Math. Soc. 2013) was dealing
with non totally real cubic fields.
• Our second one (to appear) was dealing with Thue equations
attached to a number field having at most one real embedding.
• In the third paper (MJCNT, 2013), for each (irreducible)
binary form attached to an algebraic number field, which is
not a totally real cubic field, we exhibited an infinite family of
equations twisted by units for which Baker’s method provides
e↵ective bounds for the solutions.
• In a paper to appear in JTNBx, we deal with equations
related to infinite families of cyclic cubic fields.
• In a forthcoming paper (to appear), we go one step further
by considering twists by a power of a totally real unit.
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