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Abstract

The behavior of a holomorphic dynamical system near a fixed
point depends on a Diophantine condition arising in the works
of Liouville, Thue, Siegel and Roth on the rational
approximation to algebraic numbers.
The Subspace Theorem of Wolfgang Schmidt is a far reaching
generalization of the Thue–Siegel–Roth Theorem ; one of its
many consequences is a result on the iterates of an
endomorphism of a vector space.
We conclude with the Skolem – Mahler – Lech Theorem.
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Edward Norton Lorenz (1917 – 2008)

In chaos theory, the butterfly e↵ect is the sensitive dependency
on initial conditions in which a small change at one place in a
deterministic nonlinear system can result in large di↵erences in
a later state. The name of the e↵ect, coined by Edward
Lorenz, is derived from the theoretical example of the
formation of a hurricane being contingent on whether or not a
distant butterfly had flapped its wings several weeks earlier.



Lorenz’s butterfly e↵ect

Two states di↵ering by imperceptible amounts may eventually
evolve into two considerably di↵erent states. If, then, there is
any error whatever in observing the present state — and in
any real system such errors seem inevitable — an acceptable
prediction of an instantaneous state in the distant future may
well be impossible. In view of the inevitable inaccuracy and
incompleteness of weather observations, precise
very-long-range forecasting seems to be nonexistent.

Lorenz’s description of the butterfly e↵ect followed in 1969.

However, recent research shows that complex systems may not
behave like systems with fewer parameters.
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Henri Poincaré (1854 – 1912)
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Carl Ludwig Siegel (1896 – 1981)



Dynamical System : iteration of a map

Consider a set X and map f : X ! X. We denote by f 2 the
composed map f � f : X ! X.

More generally, we define inductively fn : X ! X by
fn = fn�1 � f for n � 1, with f 0 being the identity.

The orbit of a point x 2 X is the sequence

(x, f(x), f 2(x), . . . )

of elements of X.
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Fixed points, periodic points

A fixed point is an element x 2 X such that f(x) = x. A fixed
point is a point, the orbit of which has one element x.

A periodic point is an element x 2 X for which there exists
n � 1 with fn(x) = x. The smallest such n is the length of
the period of x, and all such n are multiples of the period
length. The orbit

{x, f(x), . . . , fn�1(x)}

has n elements.

For instance, a fixed point is a periodic point of period length
1.
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Example 1 : endomorphism of a vector space

Take for X a finite dimensional vector space V over a field K
and for f : V ! V a linear map.

A fixed point of f is an element x 2 V such that f(x) = x. A
nonzero fixed point is nothing else than an eigenvector with
eigenvalue 1.

A periodic point of f is an element x 2 V such that there
exists n � 1 with fn(x) = x. If there exists such a x 6= 0, then
f has an eigenvalue � with �n = 1 (root of unity).

If V has dimension d and if we choose a basis of V , then to f
is associated a d⇥ d matrix A with coe�cients in K.
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Associated matrix

When f is the linear map associated with the d⇥ d matrix A,
then, for n � 1, fn is the linear map associated with the
matrix An.

To compute An, we write the matrix A as a conjugate to
either a diagonal or a Jordan matrix

A = P�1DP,

where P is a regular d⇥ d matrix. Then, for n � 0,

An = P�1DnP.
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Diagonal form

If D is diagonal with diagonal (�1, . . . ,�d), then Dn is
diagonal with diagonal (�n

1 , . . . ,�
n
d) and

An = P�1

0
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�n
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CAP.

Exercise : compute An for n � 0 and for each of the two
matrices ✓
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Camille Jordan (1838 – 1922)

If A cannot be diagonalized, it
can be put in Jordan form
with diagonal blocs like

0

BBBBB@

� 1 0 · · · 0
0 � 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · �

1

CCCCCA
.

For instance, for d = 2,

A = P�1DP with D =

✓
� 1
0 �

◆
,

and

An = P�1

✓
�n n�n�1

0 �n

◆
P.



Example 2 : holomorphic dynamic

Our second and main example of a dynamical system is with
an open set V in C and an analytic (=holomorphic) map
f : V ! V . The main goal will be to investigate the behavior
of f near a fixed point z0 2 V . So we assume f(z0) = z0.

The local behavior of the dynamics defined by f depends on
the derivative f 0(z0) of f at the fixed point.

If |f 0(z0)| < 1, then z0 is an attracting point.

If |f 0(z0)| > 1, then z0 is a repelling point.

The most interesting case is |f 0(z0)| = 1
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Conjugate holomorphic maps

We wish to mimic the situation of an endomorphism of a
vector space : in place of a regular matrix P , we introduce a
local change of coordinates. Let D be the open unit disc in C
and g : D ! D an analytic map with g(0) = 0. We say that f
and g are conjugate if there exists an analytic map h : V ! D,
with h0(z0) 6= 0, such that h(z0) = 0 and h � f = g � h.

z0 2 V f���! V 3 z0 f(z0) = z0

h

??y
??y h

0 2 D ���!
g

D 3 0 g(0) = 0
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Local behavior

Assume f : V ! V and g : D ! D are conjugate : there exists
h : D ! D, with h0(z0) 6= 0 and h � f = g � h.

From h0(z0) 6= 0, one deduces that h is unique up to a
multiplicative nonzero factor.

Further,

h � f 2 = h � f � f = g � h � f = g � g � h = g2 � h

and, by induction, h � fn = gn � h for all n � 0.
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Linearization of germs of analytic di↵eomorphisms
of one complex variable

Lemma. If f is conjugate to the homothety g(z) = �z, then
� = f 0(z0).
Hence, in this case, f is conjugate to its linear part. One says
that f is linearizable.

Proof. Take the derivative of h � f = g � h at z0 :

h0(z0)f
0(z0) = �h0(z0)

and use h0(z0) 6= 0.
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Johann Samuel König (1712 – 1757)

Define � = f 0(z0).

Theorem (Königs and
Poincaré). For |�| 62 {0, 1},
f is linearizable.

For � = 0 and z0 = 0, f has a zero of multiplicity n � 2 at 0
and is conjugate to z 7! zn (A. Böttcher).

We are interested in the case |�| = 1. It was conjectured in
1912 by E. Kasner that f is always linearizable. In 1917, G.A.
Pfei↵er produced a counterexample. In 1927, H. Cremer
proved that in the generic case, f is not linearizable.
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The case |�| = 1

Assume |�| = 1. Write � = e2i⇡✓. The real number ✓ is the
rotation number of f at z0.

In 1942, C.L. Siegel proved that if ✓ satisfies a Diophantine
condition, then f is conjugate to the rotation z 7! e2i⇡✓z.

In 1965, A.D. Brjuno relaxed Siegel’s assumption.

In 1988, J.C. Yoccoz showed that if ✓ does not satisfies
Brjuno’s condition, then the dynamic associated with

f(z) = �z + z2

has infinitely many periodic points in any neighborhood of 0,
hence, is not linearizable.
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C.L. Siegel, A.D. Brjuno, J.C. Yoccoz

Carl Ludwig Siegel Jean-Christophe Yoccoz
(1896 – 1981) (1957 — 2016)

Alexander Dmitrijewitsch Brjuno
(1940 – )

1942 1965 1988



KAM Theory

Andrey Nikolaevich Kolmogorov Jürgen Kurt Moser
Vladimir Igorevich Arnold

(1903 – 1987) (1928 – 1999)
(1937 – 2010)



Siegel’s Diophantine condition : Liouville numbers

Siegel’s Diophantine condition on the rotation number ✓ is
that a rational number p/q with a small denominator q cannot
be too good of a rational approximation of ✓.

The same condition was introduced by Liouville, who proved in
1844 that Siegel’s Diophantine condition is satisfied if ✓ is an
algebraic number.
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Liouville’s inequality (1844)

Liouville’s inequality. Let ↵
be an algebraic number of
degree d � 2. There exists
c(↵) > 0 such that, for any
p/q 2 Q with q > 0,

����↵� p

q

���� >
c(↵)

qd

Joseph Liouville
(1809 - 1882)



The Diophantine condition of Liouville and Siegel

A real number ✓ satisfies a Diophantine condition if there
exists a constant  > 0 such that

����✓ �
p

q

���� >
1

q

for all p/q 2 Q with q � 2.

A real number is a Liouville number if it does not satisfy a
Diophantine condition.
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Generic vs full measure, Baire vs Lebesgue
René Baire Henri Léon Lebesgue
(1874 – 1932) (1875 – 1941)

In dynamical systems, a property is satisfied for a generic
rotation number ✓ if it is true for all numbers in a countable
intersection of dense open sets – these sets are called G� sets
by Baire who calls meager the complement of a G� set.
The set of numbers which do not satisfy a Diophantine
condition is a generic set. For Lebesgue measure, the set of
Liouville numbers (i.e. the set of numbers which do not satisfy
a Diophantine condition) has measure zero.
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René Baire Henri Léon Lebesgue
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Mathematical genealogy
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Pierre Dugac (1926 – 2000)

Notes et documents sur la vie
et l’œuvre de René Baire.
Arch. History Exact Sci. 15
(1975/76), no. 4, 297–383.
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Wetzlarer Bier Waldschmidt Euler



Brjuno’s condition

In terms of continued fraction, the Diophantine condition (of
Liouville and Siegel) can be written

sup
n�1

log qn+1

log qn
< 1.

The condition of Brjuno is

X

n�1

log qn+1

qn
< 1.

If a number ✓ satisfies the Diophantine condition, then it
satisfies Brjuno’s condition. But there are (transcendental)
numbers which do not satisfy the Diophantine condition, but
satisfy Brjuno’s condition.
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Improvements of Liouville’s inequality

In the lower bound
����↵� p

q

���� >
c(↵)

qd

for ↵ real algebraic number of degree d � 3, the exponent d of
q in the denominator of the right hand side was replaced by 
with
• any  > (d/2) + 1 by A. Thue (1909),
• 2

p
d by C.L. Siegel in 1921,

•
p
2d by F.J. Dyson and A.O. Gel’fond in 1947,

• any  > 2 by K.F. Roth in 1955.
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Thue– Siegel– Roth Theorem

Axel Thue
(1863 – 1922)

Carl Ludwig Siegel
(1896 – 1981)

Klaus Friedrich Roth
(1925 – 2015)

For any real algebraic number ↵, for any ✏ > 0, the set of
p/q 2 Q with |↵� p/q| < q�2�✏ is finite.



Thue– Siegel– Roth Theorem

An equivalent statement is that, for any real algebraic
irrational number ↵ and for any ✏ > 0, the set of p/q 2 Q
such that

q|q↵� p| < q�✏

is finite.

The conclusion can be phrased :
the set of (p, q) 2 Z2 such that

q|q↵� p| < q�✏

is contained in the union of finitely many lines in Z2 .
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Schmidt’s Subspace Theorem (1970)

For m � 2 let L0, . . . , Lm�1

be m independent linear
forms in m variables with
algebraic coe�cients. Let
✏ > 0. Then the set

{x = (x0, . . . , xm�1) 2 Zm ;

|L0(x) · · ·Lm�1(x)|  |x|�✏}
is contained in the union of
finitely many proper
subspaces of Qm.

Wolfgang M. Schmidt
(1933 – )



Schmidt’s Subspace Theorem

W.M. Schmidt (1970) : For m � 2 let L0, . . . , Lm�1 be m
independent linear forms in m variables with algebraic
coe�cients. Let ✏ > 0. Then the set

{x = (x0, . . . , xm�1) 2 Zm ; |L0(x) · · ·Lm�1(x)|  |x|�✏}

is contained in the union of finitely many proper subspaces of
Qm.

Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = ↵x0 � x1.
Roth’s Theorem : for any real algebraic irrational number ↵, for
any ✏ > 0, the set of p/q 2 Q with q|↵q � p| < q�✏ is finite.
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Specialization arguments

The proof of Schmidt’s Subspace Theorem has an arithmetic
nature, the fact that the linear forms have algebraic
coe�cients is crucial.
The subspace Theorem does not hold without this assumption.

However, there are specializations arguments which enable one
to deduce consequences without any arithmetic assumption,
these corollaries ave valid for fields of zero characteristic in
general.
An example is the so–called Theorem of the generalized
S–unit equation.
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The generalized S–unit equation (1982)

Let K be a field of characteristic zero, let G be a finitely
generated multiplicative subgroup of the multiplicative group
K⇥ = K \ {0} and let n � 2.
Theorem (Evertse, van der Poorten, Schlickewei). The
equation

u1 + u2 + · · ·+ un = 1,

where the unknowns u1, u2, · · · , un take their values in G, for
which no nontrivial subsum

X

i2I

ui ; 6= I ⇢ {1, . . . , n}

vanishes, has only finitely many solutions.
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The generalized S–unit equation (1982)

Jan Hendrick Evertse Alf van der Poorten
Hans Peter Schlickewei



Linear recurrence sequences

Given a field K (of zero characteristic), a sequence (un)n�0 is
a linear recurrence sequence if there exist an integer d � 1 and
elements a0, a1, . . . , ad�1 of K such that, for n � 0,

un+d = ad�1un+d�1 + · · ·+ a1un+1 + a0un.

Such a sequence (un)n�0 is determined by the coe�cients
a0, a1, . . . , ad�1 and by the initial values u0, u1, . . . , ud�1.
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Exponential polynomials

If ↵1, . . . ,↵k are the distinct roots of the polynomial

Xd � ad�1X
d�1 � · · ·� a1X � a0

and s1, . . . , sk their multiplicities, then one can write

un =
kX

i=1

Ai(n)↵
n
i ,

where A1, . . . , Ak are polynomials with Ai of degree < si.

Hence, a linear recurrence sequence is given by an exponential
polynomial. Conversely, a sequence given by an exponential
polynomial is a linear recurrence sequence.
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Skolem – Mahler – Lech Theorem

The generalized S–unit Theorem yields the following :
Theorem (Skolem 1934 – Mahler 1935 – Lech 1953). Given a
linear recurrence sequence, the set of indices n � 0 such that
un = 0 is a finite union of arithmetic progressions.

Thoralf Albert Skolem Kurt Mahler Christer Lech
(1887 – 1963) (1903 – 1988)

An arithmetic progression is a set of positive integers of the
form {n0, n0 + k, n0 + 2k, . . .}. Here, we allow k = 0.



Another dynamical system

Let V be a finite dimensional vector space over a field of zero
characteristic, W a subspace of V , f : V ! V an
endomorphism (linear map) and x an element in V .

Corollary of the Skolem – Mahler – Lech Theorem. The
set of n � 0 such that fn(x) 2 W is a finite union of
arithmetic progressions.

By induction, it su�ces to consider the case where W = H is
an hyperplane of V .
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Idea of the proof

Choose a basis of V . The endomorphism f is given by a
square d⇥ d matrix A, where d is the dimension of V .
Consider the characteristic polynomial of A, say

Xd � ad�1X
d�1 � · · ·� a1X � a0.

By the Theorem of Cayley – Hamilton,

Ad = ad�1A
d�1 + · · ·+ a1A+ a0Id

where Id is the identity d⇥ d matrix.



Theorem of Cayley – Hamilton

Arthur Cayley Sir William Rowan Hamilton
(1821 – 1895) (1805 – 1865)

Hence, for n � 0,

An+d = ad�1A
n+d�1 + · · ·+ a1A

n+1 + a0A
n.

It follows that each entry a(n)ij , 1  i, j  d, satisfies a linear
recurrence sequence, the same for all i, j.
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Hyperplane membership

Let b1x1 + · · ·+ bdxd = 0 be an equation of the hyperplane H
in the selected basis of V . Let tb denote the 1⇥ d matrix
(b1, . . . , bd) (transpose of a column matrix b). Using the
notation v for the d⇥ 1 (column) matrix given by the
coordinates of an element v in V , the condition v 2 H can be
written tb v = 0.

Let x be an element in V and x the d⇥ 1 (column) matrix
given by its coordinates. The condition fn(x) 2 H can now be
written

tbAnx = 0.

The entry un of the 1⇥ 1 matrix tbAnx satisfies a linear
recurrence sequence, hence, the Skolem – Mahler – Lech
Theorem applies.
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Remark on the theorem of Skolem–Mahler–Lech

T.A. Skolem treated the case K = Q of in 1934

K. Mahler the case K = Q, the algebraic closure of Q, in 1935

The general case was settled by C. Lech in 1953.



Finite characteristic
C. Lech pointed out in 1953 that such a result may not hold if
the characteristic of K is positive : he gave as an example the
sequence un = (1 + x)n � xn � 1, a third-order linear
recurrence over the field of rational functions in one variable
over the field Fp with p elements, where un = 0 for
n 2 {1, p, p2, p3, . . .}. A substitute is provided by a result of
Harm Derksen (2007), who proved that the zero set in
characteristic p is a p–automatic sequence. Further results by
Boris Adamczewski and Jason Bell.

Harm Derksen Boris Adamczewski Jason Bell

http://www.math.uwaterloo.ca/~jpbell/


Polynomial-linear recurrence relation

A generalization of the Theorem of Skolem–Mahler–Lech has
been achieved by Jason P. Bell, Stanley Burris and Karen Yeats
who prove that the same conclusion holds if the sequence
(un)n�0 satisfies a polynomial-linear recurrence relation

un =
dX

i=1

Pi(n)un�i

where d is a positive integer and P1, . . . , Pd are polynomials
with coe�cient in the field K of zero characteristic, provided
that Pd(x) is a nonzero constant.



Algebraic maps, algebraic groups

There are also analogues of the Theorem of
Skolem–Mahler–Lech for algebraic maps on varieties (Jason
Bell).

A version of the Skolem–Mahler–Lech Theorem for any
algebraic group is due to Umberto Zannier.

Jason Bell
Umberto Zannier



Open problem

One main open problem related with Theorem of
Skolem–Mahler–Lech is that it is not e↵ective : explicit upper
bounds for the number of arithmetic progressions, depending
only on the order d of the linear recurrence sequence, are
known (W.M. Schmidt, U. Zannier), but no upper bound for
the arithmetic progressions themselves is known. A related
open problem raised by T.A. Skolem and C. Pisot is :

Given an integer linear recurrence sequence, is the
truth of the statement “xn 6= 0 for all n” decidable
in finite time ?

T. Tao, E↵ective Skolem Mahler Lech theorem. In “Structure and
Randomness : pages from year one of a mathematical blog”, American
Mathematical Society (2008), 298 pages.

http://terrytao.wordpress.com/2007/05/25/open-question-effective-skolem-mahler-lech-theorem/

http://terrytao.wordpress.com/2007/05/25/open-question-effective-skolem-mahler-lech-theorem/


Zeros of linear recurrence sequences

Jean Berstel et Maurice Mignotte. – Deux propriétés
décidables des suites récurrentes linéaires Bulletin de la
S.M.F., tome 104 (1976), p. 175-184.
http://www.numdam.org/item?id=BSMF_1976__104__175_0

Given a linear recurrence sequence with integer coe�cients ;
are there finitely or infinitely many zeroes ?

Philippe Robba. – Zéros de suites récurrentes linéaires. Groupe
de travail d’analyse ultramétrique (1977-1978) Volume : 5,
page 1-5.

L. Cerlienco, M. Mignotte, F. Piras. Suites récurrentes
linéaires. Propriétés algébriques et arithmétiques.
L’Enseignement Mathématique 33 (1987).

http://www.numdam.org/item?id=BSMF_1976__104__175_0
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de travail d’analyse ultramétrique (1977-1978) Volume : 5,
page 1-5.

L. Cerlienco, M. Mignotte, F. Piras. Suites récurrentes
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S.M.F., tome 104 (1976), p. 175-184.
http://www.numdam.org/item?id=BSMF_1976__104__175_0

Given a linear recurrence sequence with integer coe�cients ;
are there finitely or infinitely many zeroes ?
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Zeros of linear recurrence sequences

Maurice Mignotte Propriétés arithmétiques des suites
récurrentes linéaires. Besançon, 1989
http://pmb.univ-fcomte.fr/1989/Mignotte.pdf

E. Bavenco↵e and J-P. Bézivin Une famille remarquable de
suites recurrentes lineaires. – Monatshefte für Mathematik,
(1995) 120 3, 189–203

Karim Samake. – Suites récurrentes linéaires, problème
d’e↵ectivité. Inst. de Recherche Math. Avancée, 1996 - 62
pages

http://pmb.univ-fcomte.fr/1989/Mignotte.pdf
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Berstel’s sequence http://oeis.org/A007420

0, 0, 1, 2, 0, �4, 0, 16, 16, �32, �64, 64, 256, 0, �768, . . .

Jean Berstel

b0 = b1 = 0, b2 = 1,
bn+3 = 2bn+2 � 4bn+1 + 4bn
for n � 0.

Linear recurrence sequence of
order 3 with exactly 6 zeros :
n = 0, 1, 4, 6, 13, 52.

http://www-igm.univ-mlv.fr/~berstel/

http://oeis.org/A007420
http://www-igm.univ-mlv.fr/~berstel/


Ternary linear recurrences

Berstel’s sequence is a linear recurrence sequence of order 3
with 6 zeroes.

Frits Beukers

Frits Beukers (1991) : up to
trivial transformation, any
other linear recurrence of
order 3 with finitely many
zeroes has at most 5 zeros.

http://www.staff.science.uu.nl/~beuke106/


Edgard Bavenco↵e and Jean-Paul Bézivin

Let n � 2. The sequence with initial values

u0 = 1, u1 = · · · = un�1 = 0

satisfying the recurrence relation of order n with characteristic
polynomial

Xn+1 � (�2)n�1X + (�2)n

X + 2

has at least
n(n+ 1)

2
� 1

zeroes.



Edgard Bavenco↵e and Jean-Paul Bézivin

For n = 3 one obtains Berstel’s sequence which happens to
have an extra zero.

X4 + 4X � 8

X + 2
= X3 � 2X2 + 4X � 4.

Edgard Bavenco↵e Jean-Paul Bézivin



Berstel’s sequence

0, 0, 1, 2, 0, �4, 0, 16, 16, �32, �64, 64, 256, 0, �768, . . .

b0 = b1 = 0, b2 = 1, bn+3 = 2bn+2 � 4bn+1 + 4bn for n � 0.

Maurice Mignotte

The equation bm = ±bn has
exactly 21 solutions (m,n)
with m 6= n.

The equation bn = ±2r3s has
exactly 44 solutions (n, r, s).
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Workshop Diophantine approximation and dynamical systems

Two applications of diophantine
approximation to dynamical systems
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