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Abstract

The main tool for solving Diophantine equations is to study
Diophantine approximation. In this talk we explain the
meaning of these words, the connection between the two
topics, and we survey some of the main results and some of
the main conjectures.



Diophantus of Alexandria (250 ±50)



Rational approximation

The set of rational numbers is dense in the set of real
numbers :
For any x in R and any ε > 0, there exists p/q ∈ Q such that∣∣∣∣x − p

q

∣∣∣∣ < ε.

Numerical approximation : starting from the rational numbers,
compute the maximal number of digits of x with the minimum
of operations.

Rational approximation : given x and ε, find p/q with q
minimal such that |x − p/q| < ε.
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History of rational approximation theory

Diophantine approximation is the study of the approximation
of a real or complex number by rational or algebraic numbers.

It has its early sources in astronomy, with the study of
movement of the celestials bodies, and in the computations of
π.
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Computation of π

Rhind Papyrus : 25/34 = 3.1604 . . .

Baudhāyana (Sulvasūtras) : 3, 088

Suryaprajnapati (Jaina mathematician) :
√

10 = 3.162 . . .

Archimedes : 3.1418

Chan Hong Wang Fan, Liu Hui, Zu Chongzhi (Tsu
Ch’ung-Chih) : 355/113 = 3.1415929 . . .

Aryabhat.̄ıya, Āryabhat.a I : 3, 1416 (suggests π 6∈ Q)

Bhāskara I : suggests a negative solution to the problem of
squaring the circle.

Bhāskarācārya (Bhāskara II) : 3927/1250 = 3, 1416 . . .

Madhava (1380–1420) : series, 11 exact decimals
3.14159265359 (Viète 1579 : 9 decimals only).
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Bhāskarācārya (Bhāskara II) : 3927/1250 = 3, 1416 . . .

Madhava (1380–1420) : series, 11 exact decimals
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Diophantine approximation in the real life

Small divisors and dynamical systems (H. Poincaré)
Periods of Saturn orbits (Cassini divisions)
Stability of the solar system
Resonance in astronomy
Engrenages
Quasi-cristals
Acoustic of concert halls
Calendars : bissextile years



Number Theory in Science and communication

M.R. Schroeder.
Number theory in science
and communication :
with applications in
cryptography, physics, digital
information, computing and
self similarity
Springer series in information
sciences 7 1986.
4th ed. (2006) 367 p.



Further applications of Diophantine Approximation

Hua Loo Keng, Wang Yuan
Application of number theory to numerical analysis
Springer Verlag 1981

Equidistribution modulo 1, discrepancy, numerical integration,
interpolation, approximate solutions to integral and differential
equations.



Special case of Hermite–Lindemann Theorem

If a and b are positive rational numbers, then eb 6= a.

Hermite (1873) Lindemann (1882)



Mahler’s problem (1967)

For a and b positive integers,

|eb − a| > a−c?

Stronger conjecture :

|eb − a| > b−c?



Mahler’s problem (1967)

K. Mahler (1953, 1967), M. Mignotte (1974), F. Wielonsky
(1997) :

|eb − a| > b−20b

Joint work with Yu.V. Nesterenko (1996) for a and b rational
numbers, refinement by S. Khemira (2005).

Define H(p/q) = max{|p|, q). Then for a and b in Q with
b 6= 0,

|eb − a| ≥ exp{−1, 3 · 105(log A)(log B)}

where A = max{H(a), A0}, B = max{H(b), 2}.
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Exact rounding of the elementary functions

Applications in theoretical computer science :
Muller, J-M. ; Tisserand, A. –
Towards exact rounding of the elementary functions. Alefeld,
Goetz (ed.) et al.,
Scientific computing and validated numerics.
Proceedings of the international symposium on scientific
computing, computer arithmetic and validated numerics SCAN-95,
Wuppertal, Germany, September 26-29, 1995.

Berlin : Akademie Verlag. Math. Res. 90, 59-71 (1996).



Applications in theoretical computer science

Computer Arithmetic
—

Arénaire project
http://www.ens-lyon.fr/LIP/Arenaire/

Validated scientific computing
Arithmetic. reliability, accuracy, and speed
Improvement of the available arithmetic on computers,
processors, dedicated or embedded chips
Getting more accurate results or getting them more quickly
Power consumption, reliability of numerical software.



Rational Diophantine approximation

• For computing a number with a sharp accuracy, one wishes
to get many decimals (or binary digits) with a small number of
operations (products, say).
• For Diophantine questions, the cost is measured by the
denominator q : one investigates how well ξ can be
approximated in terms of q.
• A rational number has a single good approximation , itself !
Indeed if ξ = a/b is a given rational number, then for any
p/q ∈ Q distinct from ξ,∣∣∣∣ξ − p

q

∣∣∣∣ ≥ c

q

where c = 1/b. Proof : |bq − ap| ≥ 1.
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Rational approximation to real numbers

Result : for any x ∈ R and any q ≥ 1, there exists p ∈ Z with
|qx − p| ≤ 1/2.
Proof : take for p the nearest integer to qx .

This inequality ∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

2q

is best possible when qx is half an integer. We want to
investigate stronger estimates : hence we need to exclude
rational numbers.
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Rational approximation to rational numbers

A rational number has an excellent rational approximation :
itself !
But there is no other good approximation : if x is rational,
there exists a constant c = c(x) > 0 such that, for any
p/q ∈ Q with p/q 6= x , ∣∣∣∣x − p

q

∣∣∣∣ ≥ c

q
·

Proof : Write x = a/b and set c = 1/b : since aq − bp is a
nonzero integer, it has absolute value at least 1, and∣∣∣∣x − p

q

∣∣∣∣ =
|aq − bp|

bq
≥ 1

bq
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Criterion for irrationality

Consequence. Let ϑ ∈ R. Assume that for any ε > 0, there
exists p/q ∈ Q with

0 < |qϑ− p| < ε.

Then ϑ is irrational.



Rational approximation to irrational real numbers

Any irrational real number x has much better rational
approximations than those of order 1/q, namely there exist
approximations of order 1/q2 (hence p will always be the
nearest integer to qx).

For any x ∈ R \Q, there exists infinitely many p/q with∣∣∣∣x − p

q

∣∣∣∣ ≤ 1

q2
·
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Pigeonhole Principle

More holes than pigeons More pigeons than holes



Gustave Lejeune–Dirichlet (1805–1859)

G. Dirichlet

1842 : Box (pigeonhole)
principle
A map f : E → F with
CardE > CardF is not
injective.
A map f : E → F with
CardE < CardF is not
surjective.



Existence of rational approximations

For any ϑ ∈ R and any real number Q > 1, there exists
p/q ∈ Q with

|qϑ− p| ≤ 1

Q

and 0 < q < Q.

Proof. For simplicity assume Q ∈ Z. Take for E the set
{0, 1, . . . ,Q − 1,Q} and for F the partition[

0,
1

Q

)
,

[
1

Q
,

2

Q

)
, . . . ,

[
Q − 2

Q
,
Q − 1

Q

)
,

[
Q − 1

Q
,1

]
,

of [0, 1], so that CardE = Q + 1 > Q = CardF .
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Existence of rational approximations

Next define f : E → F so that, for 1 ≤ q < Q, the interval
I = f (q) contains the fractional part {qϑ} of qϑ, while f (Q)
is the interval [(Q − 1)/Q, 1].

Since f is not injective, there exists q1 < q2 with
f (q1) = f (q2). Let q = q2 − q1 and I = f (q1) = f (q2).

Then we have 0 < q < Q (the case q1 = 0, q2 = Q is ruled
out).

Since {q1ϑ} and {q2ϑ} belong to the same subinterval I ∈ F ,
there exists p ∈ Z with

|qϑ− p| ≤ 1

Q
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Hermann Minkowski (1864-1909)

H. Minkowski

1896 : Geometry of numbers.
Let ϑ ∈ R. The set
C = {(u, v) ∈ R2 ; |v | ≤ Q,

|vϑ− u| ≤ 1/Q}
is convex, symmetric,
compact, with volume 4.
Hence C ∩ Z2 6= {(0, 0)}.



Adolf Hurwitz (1859–1919)

A. Hurwitz

1891
For any ϑ ∈ R \Q, there
exists a sequence (pn/qn)n≥0
of rational numbers with

0 < |qnϑ− pn| <
1√
5qn

and qn →∞.
Methods : Continued
fractions, Farey sections.

Best possible for the Golden ratio

1 +
√

5

2
= 1.618 033 988 749 9 . . .



Irrationality criterion
Let ϑ be a real number. The following conditions are
equivalent.
(i) ϑ is irrational.
(ii) For any ε > 0, there exists p/q ∈ Q such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < ε

q
·

(iii) For any real number Q > 1, there exists an integer q in
the interval 1 ≤ q < Q and there exists an integer p such that

0 <

∣∣∣∣ϑ− p

q

∣∣∣∣ < 1

qQ
·

(iv) There exist infinitely many p/q ∈ Q satisfying∣∣∣∣ϑ− p

q

∣∣∣∣ < 1√
5q2
·



Criteria for linear and algebraic independence

Linear independence :
Yu.V. Nesterenko, S. Fischler and W. Zudilin, A. Chantanasiri.

Algebraic independence : A.O. Gel’fond, G.V. Chudnovski,
P. Philippon, Yu.V. Nesterenko.



Liouville’s inequality

Liouville’s inequality. Let α
be an algebraic number of
degree d ≥ 2. There exists
c(α) > 0 such that, for any
p/q ∈ Q with q > 0,∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

Joseph Liouville, 1844



Improvements of Liouville’s inequality

In the lower bound ∣∣∣∣α− p

q

∣∣∣∣ > c(α)

qd

for α real algebraic number of degree d ≥ 3, the exponent d
of q in the denominator of the right hand side was replaced by
κ with
• any κ > (d/2) + 1 by A. Thue (1909),
• 2
√

d by C.L. Siegel in 1921,
•
√

2d by F.J. Dyson and A.O. Gel’fond in 1947,
• any κ > 2 by K.F. Roth in 1955.



Thue– Siegel– Roth Theorem

Axel Thue
(1863 - 1922)

Carl Ludwig Siegel
(1896 - 1981)

Klaus Friedrich
Roth (1925 – )

For any real algebraic number α, for any ε > 0, the set of
p/q ∈ Q with |α− p/q| < q−2−ε is finite.



Thue– Siegel– Roth Theorem

An equivalent statement is that, for any real algebraic
irrational number α and for any ε > 0, there exists q0 > 0
such that, for p/q ∈ Q with q ≥ q0, we have

|α− p/q| > q−2−ε.



Schmidt’s Subspace Theorem (1970)

For m ≥ 2 let L0, . . . , Lm−1 be
m independent linear forms in
m variables with algebraic
coefficients. Let ε > 0. Then
the set

{x = (x0, . . . , xm−1) ∈ Zm ;

|L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of
finitely many proper
subspaces of Qm.

W.M. Schmidt



Schmidt’s Subspace Theorem

W.M. Schmidt (1970) : For m ≥ 2 let L0, . . . , Lm−1 be m
independent linear forms in m variables with algebraic
coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of
Qm.

Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.

Roth’s Theorem : for any real algebraic irrational number α, for

any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.



Schmidt’s Subspace Theorem

W.M. Schmidt (1970) : For m ≥ 2 let L0, . . . , Lm−1 be m
independent linear forms in m variables with algebraic
coefficients. Let ε > 0. Then the set

{x = (x0, . . . , xm−1) ∈ Zm ; |L0(x) · · · Lm−1(x)| ≤ |x|−ε}

is contained in the union of finitely many proper subspaces of
Qm.

Example : m = 2, L0(x0, x1) = x0, L1(x0, x1) = αx0 − x1.

Roth’s Theorem : for any real algebraic irrational number α, for

any ε > 0, the set of p/q ∈ Q with |α− p/q| < q−2−ε is finite.



An exponential Diophantine equation

The only solutions of the equation

2a + 3b = 5c

where the unknowns a, b, c are nonnegative integers are
(a, b, c) = (1, 1, 1), (2, 0, 1), (4, 2, 2) :

2 + 3 = 5, 4 + 1 = 5, 16 + 9 = 25.



S–unit equations – rational case
Let S = {p1, . . . , ps} be a finite set of prime numbers. Then
the equation

u1 + u2 = u3,

where the unknowns u1, u2, u3 are relatively prime integers
divisible only by the prime numbers in S , has only finitely
many solutions.

Notice that for any prime number p, the equation

u1 + u2 + u3 = u4

has infinitely many solutions in rational integers u1, u2, u3

divisible only by p and gcd(u1, u2, u3, u4) = 1 : for instance

pa + (−pa) + 1 = 1.
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A consequence of Schmidt’s Subspace Theorem

Let S = {p1, . . . , ps} be a finite set of prime numbers and let
n ≥ 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the unknowns u1, u2, · · · , un are rational numbers with
numerators and denominators divisible only by the prime
numbers in S for which no nontrivial subsum∑

i∈I

ui ∅ 6= I ⊂ {1, . . . , n}

vanishes, has only finitely many solutions.



Finitely generated subgroup of Q× = Q \ {0}
If S = {p1, . . . , ps} be a finite set of prime numbers, the set of
rational numbers with numerators and denominators divisible
only by the prime numbers in S is a finitely generated
subgroup of Q×.

Indeed it is generated by −1, p1, . . . , ps , 1/p1, . . . , 1/ps .

Conversely, if G is a finitely generated subgroup of Q×, then
there exists a finite set S = {p1, . . . , ps} of prime numbers
such that G is contained the set of rational numbers with
numerators and denominators divisible only by the prime
numbers in S .

Indeed, if g1, . . . , gt is a set of generators of G , then the set of
prime divisors of the numerators and denominators of the gi is
a solution.
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The generalized S–unit equation

Let K be a field of characteristic zero, let G be a finitely
multiplicative subgroup of the multiplicative group
K× = K \ {0} and let n ≥ 2. Then the equation

u1 + u2 + · · ·+ un = 1,

where the unknowns u1, u2, · · · , un are in G for which no
nontrivial subsum∑

i∈I

ui ∅ 6= I ⊂ {1, . . . , n}

vanishes, has only finitely many solutions.



Diophantine equations

A Diophantine equation is an equation of the form

f (x1, . . . , xn) = 0

where f (X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn] is a given polynomial and
the variables X1, . . . ,Xn take their values x1, . . . , xn in Zn

(integer points) or in Qn (rational points).

We will mainly consider integral points.
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Pierre de Fermat (1601–1665)
Fermat’s Last Theorem.



Historical survey
Pierre de Fermat (1601 - 1665)

Leonhard Euler (1707 - 1783)

Joseph Louis Lagrange (1736 - 1813)

XIXth Century : Hurwitz, Poincaré

Joseph Louis Lagrange Henri Poincaré
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Historical survey
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Leonhard Euler (1707 - 1783)

Joseph Louis Lagrange (1736 - 1813)

XIXth Century : Hurwitz, Poincaré

Joseph Louis Lagrange Henri Poincaré



Ramanujan – Nagell Equation

Srinivasa Ramanujan (1887 – 1920)
Trygve Nagell (1895 – 1988)



Ramanujan – Nagell Equation

x2 + 7 = 2n

12 + 7 = 23 = 8
32 + 7 = 24 = 16
52 + 7 = 25 = 32

112 + 7 = 27 = 128
1812 + 7 = 215 = 32 768
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x2 + D = 2n

Nagell (1948) : for D = 7, no further solution

Apéry (1960) : for D > 0, D 6= 7, the equation x2 + D = 2n

has at most 2 solutions.

Examples with 2 solutions :

D = 23 : 32 + 23 = 32, 452 + 23 = 211 = 2 048

D = 2`+1 − 1, ` ≥ 3 : (2` − 1)2 + 2`+1 − 1 = 22`
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Nagell (1948) : for D = 7, no further solution

Apéry (1960) : for D > 0, D 6= 7, the equation x2 + D = 2n

has at most 2 solutions.

Examples with 2 solutions :

D = 23 : 32 + 23 = 32, 452 + 23 = 211 = 2 048
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x2 + D = 2n

Beukers (1980) : at most one solution otherwise.

M. Bennett (1995) : considers the case D < 0.



Hilbert’s 8th Problem

August 8, 1900

David Hilbert (1862 - 1943)

Second International Congress
of Mathematicians in Paris.

Twin primes,

Goldbach’s Conjecture,

Riemann Hypothesis



Hilbert’s 10th problem

D. Hilbert (1900) — Problem : to give an algorithm in order
to decide whether a diophantine equation has an integer
solution or not.

If we do not succeed in solving a mathematical problem, the reason
frequently consists in our failure to recognize the more general
standpoint from which the problem before us appears only as a
single link in a chain of related problems. After finding this
standpoint, not only is this problem frequently more accessible to
our investigation, but at the same time we come into possession of
a method which is applicable also to related problems.
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Negative solution to Hilbert’s 10th problem

J. Robinson (1952)

J. Robinson, M. Davis, H. Putnam (1961)

Yu. Matijasevic (1970) – Fibonacci sequence

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144 . . .

F1 = 1, F2 = 1, Fn = Fn−1 + Fn−2.

The relation b = Fa between two integers a and b is a
diophantine relation with exponential growth.

Remark : the analog for rational points of Hilbert’s 10th
problem is not yet solved :
to give an algorithm in order to decide whether a diophantine
equation has a rational solution or not.
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Historical survey
Thue (1908) : there are only finitely many integer solutions of

F (x , y) = m,

when F is homogeneous irreducible form over Q of degree ≥ 3.

Mordell’s Conjecture (1922) : rational points

Siegel’s Theorem (1929) : integral points

Faltings’s Theorem(1983) : finiteness of rational points on an
algebraic curve of genus ≥ 2 over a number field.

Andrew Wiles (1993) : proof of Fermat’s last Theorem

an + bn = cn (n ≥ 3)

G. Rémond (2000) : explicit upper bound for the number of
solutions in Faltings’s Theorem.
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Serge Lang (1927–2005)

Thus we behold the grand
unification of algebraic
geometry, analysis and PDE,
Diophantine approximation,
Nevanlinna theory and
classical Diophantine
problems about rational and
integral points.

Serge Lang Number Theory III, Diophantine Geometry,
Russian encyclopaedia of Springer Verlag, 1991.
(=Survey of Diophantine Geometry, 1997) :



Paul Vojta

Paul Vojta,
Diophantine Approximations
and Value Distribution
Theory,
Lecture Notes in Mathematics
1239, Springer Verlag, 1987,

http://en.wikipedia.org/wiki/Paul_Vojta


Thue equation and Diophantine approximation

Liouville’s estimate for the rational Diophantine approximation
of 3
√

2 : ∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

9q3

for sufficiently large q.

Mike Bennett (1997) : for any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

4 q2.5
·
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Mike Bennett

http://www.math.ubc.ca/∼bennett/

For any p/q ∈ Q,∣∣∣∣ 3
√

2− p

q

∣∣∣∣ > 1

4 q2.5
·

For any (x , y) ∈ Z2 with
x > 0,

|x3 − 2y 3| ≥
√

x .

http://www.math.ubc.ca/~bennett/


Connection between Diophantine approximation

and Diophantine equations

Let κ satisfy 0 < κ ≤ 3.
The following conditions are equivalent :
(i) There exists c1 > 0 such that∣∣∣∣ 3

√
2− p

q

∣∣∣∣ > c1
qκ

for any p/q ∈ Q.
(ii) There exists c2 > 0 such that

|x3 − 2y 3| > c2 x3−κ

for any (x , y) ∈ Z2 having x > 0.



Thue’s equation and approximation

Let f ∈ Z[X ] be an irreducible polynomial of degree d and let
F (X ,Y ) = Y d f (X/Y ) be the associated homogeneous binary
form of degree d . Then the following two assertions are
equivalent :
(i) For any integer k 6= 0, the set of (x , y) ∈ Z2 verifying

F (x , y) = k

is finite.
(ii) For any real number κ > 0 and for any root α ∈ C of f ,
the set of rational numbers p/q verifying∣∣∣∣α− p

q

∣∣∣∣ ≤ κ

qd

is finite.



Thue equation

Condition

(i) For any integer k 6= 0, the set of (x , y) ∈ Z2

verifying
F (x , y) = k

is finite.

can also be phrased by stating that for any positive integer k ,
the set of (x , y) ∈ Z2 verifying

0 < |F (x , y)| ≤ k

is finite.



Number fields, ring of integers

We denote by K a number field (subfield of C which is a finite
dimensional vector space over Q – equivalently K = Q(α)
where α is an algebraic number), by ZK the ring of integers of
K (elements of K having an irreducible monic polynomial with
integer coefficients).

For instance when K = Q(i) we have ZK = Z[i ]. More
generally, for K = Q(ζ) where ζ is a root of unity, we have
ZK = Z[ζ].

But for Φ = (1 +
√

5)/2, the field K = Q(Φ) is the same as
Q(
√

5) and we have ZK = Z[Φ].
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Number fields, units

When K is a number field, Z×K denotes the group of units
(invertible elements) of the ring ZK .

An algebraic unit is an algebraic number which is a root of a
monic polynomial in Z[X ] with constant term ±1.
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Thue equation

For any number field K , for any non–zero element k in K and
for any elements α1, . . . , αn in K with Card{α1, . . . , αn} ≥ 3,
the Thue equation

(X − α1Y ) · · · (X − αnY ) = k

has but a finite number of solutions (x , y) ∈ ZK × ZK .



Siegel’s unit equation

For any number field K and for any elements a1 and a2 in K
with a1a2 6= 0, the Siegel equation

a1E1 + a2E2 = 1

has but a finite number of solutions (ε1, ε2) ∈ Z×K × Z×K .



Thue–Mahler equations
Let F ∈ Z[X ,Y ] be a homogeneous polynomial with rational
integer coefficients having at least 3 non proportional linear
factors over the field of algebraic numbers. Let m ∈ Z, m 6= 0.

Let p1, . . . , ps be prime
numbers. Then the
Diophantine equation

F (X ,Y ) = mpZ1
1 . . . pZs

s

has only finitely many
solutions
(x , y , z1, . . . , zs) ∈ Z2+s with
zj ≥ 0 for j = 1, . . . , s, xy 6= 0
and gcd(xy , p1 · · · ps) = 1.



S–integers, S–units

Let K be a number field and S be a finite set of places of K
containing the infinite places. The ring OS of S-integers of K
is defined by

OS = {x ∈ K | |x |v ≤ 1 for each v 6∈ S}.

The group O×S of S-units of K is the group of units of OS ,
namely

O×S = {x ∈ K | |x |v = 1 for each v 6∈ S}.



Two special cases

• For S the set of infinite places of K , OS is the ring ZK of
integers of K and O×S is the group Z×K of units of K .

• For K = Q, S = {∞, p1, . . . , ps}, with s ≥ 0

OS = {a/b ∈ Q | b = pz1
1 · · · pzs

s with z1, . . . , zs in Z, zj ≥ 0 }

and
O×S = {pt1

1 · · · pts
s with t1, . . . , ts in Z}.

Hence

OS = {a/b ∈ Q | a ∈ Z, b ∈ Z ∩ O×S }
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Thue–Mahler equations over a number field

We will consider the Thue–Mahler equations

F (X ,Y ) = E ,

where the two unknowns X ,Y take respectively values x , y in
the ring of S–integers of K while the unknown E takes its
values ε in the group of S–units of K .

If (x , y , ε) is a solution, namely

F (x , y) = ε,

and if d denotes the degree of F , then, for all η ∈ O×S , the
triple (ηx , ηy , ηdε) is also a solution :

F (ηx , ηy) = ηdε.
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Equivalence classes

Definition. Two solutions (x , y , ε) and (x ′, y ′, ε′) in O2
S ×O×S

of the equation F (X ,Y ) = E are said to be equivalent modulo
O×S if the points of P1(K ) with projective coordinates (x : y)
and (x ′ : y ′) are the same.

In other terms, two solutions (x , y , ε) and (x ′, y ′, ε′) are
equivalent if there exists η ∈ O×S such that

x ′ = ηx , y ′ = ηy , ε′ = ηdε

where d is the degree of F .
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Thue–Mahler equations (continued)

For any finite set S of places of K containing all the
archimedean places, for every m ∈ K× and for any binary
homogeneous form F (X ,Y ) with the property that the
polynomial F (X , 1) ∈ K [X ] has at least three linear factors
involving three distinct roots in K , the Thue-Mahler equation

F (X ,Y ) = mE

has but a finite number of classes of solutions
(x , y , ε) ∈ O2

S ×O×S
(namely : the set of solutions (x , y , ε) ∈ O2

S ×O×S can be
written as the union of a finite number of equivalence classes
modulo O×S ).



Thue–Mahler equations (continued)

For any finite set S of places of K containing all the
archimedean places, for every m ∈ K× and for any binary
homogeneous form F (X ,Y ) with the property that the
polynomial F (X , 1) ∈ K [X ] has at least three linear factors
involving three distinct roots in K , the Thue-Mahler equation

F (X ,Y ) = mE

has but a finite number of classes of solutions
(x , y , ε) ∈ O2

S ×O×S
(namely : the set of solutions (x , y , ε) ∈ O2

S ×O×S can be
written as the union of a finite number of equivalence classes
modulo O×S ).



A “special” case

For any finite set S of places of K containing all the
archimedean places, the Thue-Mahler equation

XY (X − Y ) = E

has but a finite number of classes of solutions
(x , y , ε) ∈ O2

S ×O×S .

Fact : this special case is equivalent to the general case !
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Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Siegel S–unit equation

For any finite set S of places of K containing all the
archimedean places, the S–unit equation

E1 + E2 = 1

has but a finite number of solutions (ε1, ε2) in O×S ×O
×
S .

Fact : this statement is also equivalent to the finiteness of the
number of classes of solutions of the Thue–Mahler equation
XY (X − Y ) = E .

X = E0, Y = E2, X − Y = E1,

E1 + E2 = E0, E0E1E2 = E .



Families of Thue equations

The first families of Thue equations having only trivial
solutions were introduced by A. Thue himself.

(a + 1)X n − aY n = 1.

He proved that the only solution in positive integers x , y is
x = y = 1 for n prime and a sufficiently large in terms of n.
For n = 3 this equation has only this solution for a ≥ 386.

M. Bennett (2001) proved that this is true for all a and n with
n ≥ 3 and a ≥ 1.
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Families of Thue equations (continued)
E. Thomas in 1990 studied the families of equations
Fa(X ,Y ) = 1 associated with D. Shanks’ simplest cubic fields
(cf. John Friedlander’s lecture), viz.

Fa(X ,Y ) = X 3 − (a − 1)X 2Y − (a + 2)XY 2 − Y 3.

According to E. Thomas (1990) and M. Mignotte (1993), for
a ≥ 4 the only solutions are (0,−1), (1, 0) and (−1,+1),
while for the cases a = 0, 1, 3, there exist some nontrivial
solutions, too, which are given explicitly by Thomas.

For the same form Fa(X ,Y ), all solutions of the Thue
inequality |Fa(X ,Y )| ≤ 2a + 1 have been found by
M. Mignote A. Pethő and F. Lemmermeyer (1996).

The family of Thue’s equations attached to some quintic fields
by E. Lehmer do not seem to have been investigated from this
point of view so far.
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Families of Thue equations (continued)

E. Lee and M. Mignotte with N. Tzanakis studied in 1991 and
1992 the family of cubic Thue equations

X 3 − aX 2Y − (a + 1)XY 2 − Y 3 = 1.

The left hand side is X (X + Y )(X − (a + 1)Y )− Y 3.

For a ≥ 3.33 · 1023, there are only the solutions (1, 0), (0,−1),
(1,−1), (−a − 1,−1), (1,−a).

In 2000, M. Mignotte could prove the same result for all a ≥ 3.
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Families of Thue equations (continued)

I. Wakabayashi proved in 2003 that for a ≥ 1.35 · 1014, the
equation

X 3 − a2XY 2 + Y 3 = 1

has exactly the five solutions (0, 1), (1, 0), (1, a2), (±a, 1).

A. Togbé considered the family of equations

X 3 − (n3 − 2n2 + 3n − 3)X 2Y − n2XY 2 − Y 3 = ±1

in 2004. For n ≥ 1, the only solutions are (±1, 0) and (0,±1).



Families of Thue equations (continued)

I. Wakabayashi proved in 2003 that for a ≥ 1.35 · 1014, the
equation

X 3 − a2XY 2 + Y 3 = 1

has exactly the five solutions (0, 1), (1, 0), (1, a2), (±a, 1).
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Families of Thue equations (continued)

I. Wakabayashi in 2002 used Padé approximation for solving
the Diophantine inequality

|X 3 + aXY 2 + bY 3| ≤ a + |b|+ 1

for arbitrary b and a ≥ 360b4 as well as for b ∈ {1, 2} and
a ≥ 1.



Families of Thue equations (continued)

E. Thomas considered some families of Diophantine equations

X 3 − bX 2Y + cXY 2 − Y 3 = 1

for restricted values of b and c .

Family of quartic equations :

X 4 − aX 3Y − X 2Y 2 + aXY 3 + Y 4 = ±1

(A. Pethő 1991 , M. Mignotte, A. Pethő and R. Roth, 1996).
The left hand side is X (X − Y )(X + Y )(X − aY ) + Y 4.
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Families of Thue equations (continued)

Further work on equations of degrees up to 8 by J.H. Chen,
I. Gaál, C. Heuberger, B. Jadrijević, G. Lettl, C. Levesque,
M. Mignotte, A. Pethő, R. Roth, R. Tichy, E. Thomas,
A. Togbé, P. Voutier, I. Wakabayashi, P. Yuan, V. Ziegler. . .



Families of Thue equations (continued)

Split families of E. Thomas (1993) :

n∏
i=1

(X − pi(a)Y )− Y n = ±1,

where p1, . . . , pn are polynomials in Z[a].

Surveys by I. Wakabayashi (2002) and C. Heuberger (2005).
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New families of Diophantine equations
So far, a rather small number of families of Thue curves having
only trivial integral points have been exhibited. In a joint work
with Claude Levesque, for each number field K of degree at
least three and for each finite set S of places of K containing
the infinite places, we produce families of curves related to the
units of the number field, having only trivial S–integral points.



Families of Thue equations

Let K be a number field and d = [K : Q] its degree. For each
ε ∈ Z×K for which Q(ε) = K , let fε(X ) ∈ Z[X ] be the
irreducible polynomial of ε over Q.

Set Fε(X ,Y ) = Y d fε(X/Y ). Hence Fε(X ,Y ) ∈ Z[X ,Y ] is an
irreducible binary form of degree d with integer coefficients.

A special case of the main result of a joint work with Claude
Levesque is the following :

Theorem
Let K be a number field and let m ∈ Z, m 6= 0. Then the set{

(x , y , ε) ∈ Z2 × Z×K | xy 6= 0, Q(ε) = K , Fε(x , y) = m
}

is finite.
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Effective results
In some cases, for instance when the number field K has at
most one real embedding, we are able to produce an effective
result.

Recall that ε ∈ Z×K , fε(X ) is the irreducible polynomial of ε
and

Fε(X ,Y ) = Y d fε(X/Y ).

Theorem
Under these assumptions, there exists a constant κ > 0,
depending only on K , such that, for any m ≥ 2, any (x , y , ε)
in the set{

(x , y , ε) ∈ Z2 × Z×K | xy 6= 0, Q(ε) = K , |Fε(x , y)| ≤ m
}

satisfies
max

{
(|x |, |y |, eh(ε))

}
≤ mκ.
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Sketch of proof

Let σ1, . . . , σd be the complex embeddings from the number
field K into C, where d = [K : Q]. . Any ε ∈ Z×K with
Q(ε) = K is root of the irreducible polynomial

fε(X ) =
(
X − σ1(ε)

)
· · ·
(
X − σd(ε)

)
∈ Z[X ].

Let m ≥ 1. The goal is tho prove that there are only finitely
many (x , y , ε) ∈ Z× Z× Z×K with xy > 1 and Q(ε) = K
satisfying (

x − σ1(ε)y
)
· · ·
(
x − σd(ε)y

)
= m.
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Sketch of proof (continued)

For j = 1, . . . , d , define βj = x − εjy , so that

β1 · · · βd = m.

Hence βj is product of an element, which belongs to a finite
set depending on K and m only, with a unit. Eliminate x and
y among the three equations

β1 = x − ε1y , β2 = x − ε2y , β3 = x − ε3y .

We get

ε1β2 − ε1β3 + ε2β3 − ε2β1 + ε3β1 − ε3β2 = 0.
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Effectivity

The equation

ε1β2 − ε1β3 + ε2β3 − ε2β1 + ε3β1 − ε3β2 = 0

is a S–unit equation. Schmidt’s subspace Theorem states that
there are only finitely many solutions with non–vanishing
subsums of the left hand side.
One needs to check what happens when a subsum in the left
hand side vanishes.
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Baker’s method involving linear forms in

logarithms

One main concern is that Schmidt’s subspace Theorem (as
well as the Theorem of Thue– Siegel– Roth) is non–effective :
upper bounds for the number of solutions can be derived, but
no upper bound for the solutions themselves.
Only the case of a S–unit equation

ε1 + ε2 + ε3 = 0

can be solved effectively by means of Baker’s method.

Work of A.O. Gel’fond, A. Baker, K. Győry, M. Mignotte,
R. Tijdeman, M. Bennett, P. Voutier, Y. Bugeaud,
T.N. Shorey, S. Laishram.
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