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Mostofthis lecture will be devoted to the investigation of the 

arithmetic nature of the numbers ß(a,b) for rational numbers a and 

b. y ú É = consider the transcendence, algebraic independence and 1 inear 

independence of numbers related to the gamma and beta functions, as 

well as some associated quantitative results. 

l. Transcendence of the Values of the Beta Function 

After the early result obtained by Siegel [Si] in 1931, Schneider 

[Scj proved in 1940 the fol lowing theorem. 

Theorem l. l. Let a and b be rational numbers. We assume that 

a, b and a + b are nonintegral. Then the number ß (a, b) is trans-

cendental. 

Of course, for rational, nonintegral a,b, the number ß(a,b) 

vanishes if a+b is either zero or a negative integer, but is trans-

cendental if a + b is a positive integer, because of the transcendence 

of the number TI. 

Let us give some ideas of the tools which are involved in the 

proof of Theorem 1.1. We may assume a=r/d, b=s/d, where r,s,d are 

positive integers with 

d > 2, 0 < r < d, 0 < s < d, r + s :f d, gcd ( r, s, d} = 1 . 

Then the number 
1 

ß(r/d,s/d) f t (r/d)-1 (1- t) (s/d)-1 dt 

0 

appears in the periods of the differential form 
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r-1 s-d 
nrs x y dx 

d d ontheFermatcurve x+y=l. The nrs'with r+s<d, giveabasis 
for the differentials of the first kind, which are defined over Q. We 

consider the Jacobian J{d) of the Fermat curve. lts period lattice 

L relative to the chosen basis of holomorphic differentials can be 

written in c9 , with g= (d-l)(d-2)/2, 

L Zw + · · · + Zw 1 2g 

where one coordinate of wj, say the first one, is of the form 

and a. is an algebraic number (in the field n E ú F = of d-th roots of 
J 

unity). Thesefactsare wel 1-known. Recent references on this subject 

are [G], [K], [K-R], [L4], [La], [R], [We]. 

For the proof of Theorem 1.1, Iet us assume first r+s<d. lt is 

clearly sufficient to prove that at least one of the 2g numbers wlj' 
E ä ú à ú O Ö F = is transeendentaL lndeed, this factwill hold for any 

abelian variety defined over the field Q of algebraic numbers (see 

Corollary 1.3 below). v/e will deduce this Statement from the following 

general result [W2] E í Ü ú ç ê ú ã É = 5.2.1). 

Main Theorem 1.2. Let G be a commutative connected aZgebraic 
group which is defined over Q, (j):Cn + G (C) an anaZytic homomorphism, 

a basis of Cn, suchthat ({)(u.)EG{Q), E ä ú à ú å F K = We 
J 

and u1, ... ,un 
asswne that the 
Q. Then (j){Cn) 

sion at most n. 

tangentlinear map Lie (j):Cn+TG(C) is defined over 

is contained in an aZgebraic subgroup of G of dimen-

This Theorem 1.2 has been proved by S. Lang when G is either an 

abe1 ian variety, or a 1 inear group variety [L1] Chap. IV §4 Th.2. More 

genera11y, Lang's proof app1 ies whenever the exponentia1 map of G can 

be represented by meromorphic functions of finite order (see [L1] Chap. 

III §4 Th.4 for the case n = 1), and it has been proved by Serre (in 

Appendix 1 of [W2]) that this assumption is a1ways fu1fi1 led. 

We now deduce from Theorem 1.2 the fo11owing coro11ary, due to 

Schneider [Sc]. 
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Corollary 1.3. Let A be an abelian variety, of dimension g, 

defined over Q. We choose a basis, defined over iL of the tangent 

space at the origin TA(C) of A. Let w1, ..• ,w9 be C-linearly inde-

pendent periods of the exponential map expA: TA(C)+A(C) of A, and 

let w .. , (l.;;;i.;;;g) be the coordinates of w., (l.;;;j.;;;g), withrespect 
I J J 

to the chosen basis. Then in the g x g matrix 

on each row there is at least one transeendental number. 

For the proof of Corollary 1.3, we identify c9 with TA(C), 

thanks to our basis, and if we are interested with the first row, say, 

then we consider the analytic homomorphism c9+CxA(C) given by 

z1+ (z 1 ,expAz). 

Hence the Main Theorem 1.2 impl ies Corollary 1 .3, and therefore 

yields the transcendence of ß(r/d,s/d) for r+s<d. 

Next consider the case r+s>d. Now nrs is of the secend kind, 

and to complete the proof of Theorem 1.1, Schneider [Sc] argues as 

follows. Consider againan abelian variety as in 1 .3, with g periods 

w1, ... ,w9 which are C-1 inearly independent. Let n 

form of the secend kind on A, which is defined over 

be a differential 

Q, and is not the 

sum of a differential of the first kind and an exact differential. We 

view n as a R-1 inear map from TA(C) into C. Then one at least of 

the g numbers 

is transcendental. 

n (w.) , 
J 

We deduce this result from Theorem 1.2 by considering the algebraic 

group G, extension of A by the additive group Ga, which is associ-

ated with n. We write TG(C) =TA(C) EDC, and we consider the analytic 

homomorphism (j):TA(C)+G(C) given by (j)(z)=expG(z,O). From Theorem 

1.2 we deduce that the image by (j) of zw1 +···+Zw9 is not contained 

in G(Ö.). ln a projective embedding of G into some f'N' the Coordi-

nates of (j) are given by theta functions (corresponding to A) and by 

a quasi-periodie function K: 

K(z + w) K(z) +n(w) 
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The fact that one of <.p(w.) i s not in G (Ö.) means that one of n (wJ.) 
- J 

is not in Q. This completes the proof of Theorem 1.1 as a consequence 

of the Main Theorem 1.2. 

As po i nted out in [B-M2] (see a 1 so [B3]), a further consequence of 

Schneider's results [Sc] is the 1 inear independence over Ö. of the 

three numbers 

1, ß(a,b), TI/ß(a,b) 

for any positive real numbers a, b with a, b and a+b not in Z. 

Let us come back to the matrix (w 1, ... ,wg) in Corollary 1.3. 

The following result is due to Lang [Ll] Chap. I I I §4 Cor. of Th.3. 

Coro11ary 1.4. With the same notations as in Corollary 1.3, on 

each column of the matrix there is at least one transeendental number. 

Consider, say, the first column, whose components are the coordi-

nates of w1, and apply Theorem 1.2 to the analytic homomorphism 

<.p:C-+txA(t) given by <.p(t)=(t,expA(tw1)), with n=l, u1 =1. We 
-g deduce w1 ú =Q • 

For an abel ian variety with sufficiently many endomorphisms, it is 

possible to get sharper results, as shown by Lang [L2] and Masser [Ml] 

(cf. [W2] Chap. 6). 

Coro11ary 1.5. With the notations of Corollary 1.3, assume A is 

simple of C.M. type, i.e., that (End A) ®z Q is a field F of degree 

2g over Q. Choose a basis of TA(t) consisting of eigenvectors for 

the action of F. 

cendental number. 

Then each entry w .• 
I J 

of our matrix is a trans-

ln connection with Theorem 1.1, it should be mentioned that the 
d d Jacobian J (d) of the Fermat curve x + y = 1 spl its into a product 

of abelian varieties, each of dimension ú E Ç F L O = (where ú = is the 

Euter characteristic), defined over Q(s), and with complex multipl ica-

tion by Z[sl (see [K], [K-R], [R] and [La]). 

We deduce Corollary 1.5 from Theorem 1.2 in two steps. Assurne 

first w11 EQ, and wi 110 for t.;:;;i,;:;;g. 

the analytic homomorphism zl+ (z 1,expAz) 

Then apply Theorem 1.2 to 

from c9 into c X A(C); since 

the action of F on the point wl gives rise to g elements t-1 inearly 

independent (in fact to a lattice in TA(C)), we get a contradiction. 

Therefore i t remains to prove that no coordinate of wl' say, can 
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vanish. 

vanish. 
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Assurne w11 = ..• =wil =0, while wi+l, 1, ... ,wgl 
Then apply Theorem 1.2 to the map ` Ö ú ` ñ ^ E ` F =

do not 

which sends z 

to (z 1,expA(O, ... ,O,zi+T'''''zg)), and consider the images of the 
point (l, ... ,l,w. 1 1 , ... ,w 1) through the action of F. Alternative 

i+ ' g 
arguments for this second step are given in a lecture by D. Bertrand 

(Queen's papers in PuPe and Applied Math. 2! (1980), 316). 

Further consequences of the Hain Theorem 1.2 are described in [W2] 

Chap. 3 and Chap. 5. 

Later, Bertrand and Hasser obtained the unexpected result that 

Baker's theorem on the nonvanishing of 1 inear forms in logarithms of 

algebraic numbers can also be deduced from Theorem 1.2. They take for 

G a linear algebraic group, and therefore this special case of the 

Hain Theorem was already known by Lang before Baker's proof in 1966! 

An important consequence of this alternative approach is that it 

enabled Bertrand and Hasser [B-Hl] to prove the ell iptic analog of 

Baker's theorem (only the case of complex multipl ication was previously 

known, due to Hasser). They extended their method to certain abel ian 

varieties [B-H2], [B2], [B3]. 

By means of the method of Bertrand and Hasser, H. Laurent derived 

some further transcendence results on the beta function; for instance 

he proved the transcendence of the number 

ß(l/10,3/20)/ß(l/10,13/20). 

lt seems very 1 ikely that this method is not exhausted. 

2. Diophantine Approximation 

The problern of the diophantine approximation of the number ß(a,b) 

was investigated for the first time only in 1979, by H. Laurent [La], 

who proved the following rather sharp estimate. 

Theorem 2.1. Let a and b be Pational numbePs, with a, b, 
a + b not in Z. Let d be a corronon denominatop of a and b. 

Define n=max(l,<ll(d)/2). Then thePe exists an effectively computable 

numbeP C > 0 such that, if E; is any algebPaic numbeP of degPee ú =D 

and height ú e = (with e ú É É F I =

whePe T= log H+ D log D. 
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Here, the height of ú = is the maximum of the absolute values of 

the coefficients of the minimal polynomial of ú = over z. 

According to a claim of Chudnovsky [Ch2], it is possible to remove 

the factor (log T)n in the special case where H is sufficiently 

large with respect to D. ln particular, for D= 1, this means 

for p/qEQ, q>O, where C' >0 depends only on a and b. Similar 

results are announced in [Ch2] for the numbers r(l/4) and r(l/3). 

3. Algebraic Independence 

The following result has been proved by G.V. Chudnovsky [Chl]. 

Theorem 3.1. Let p be a Weierstrass elliptic function with 

algebraic invariants g 2 , g 3 , let ú = be the corresponding Weierstrass 

zeta function, w be a non-zero period of l}, and n = ú =(z + w) - ú =(z). 

Then the two numbers 

TI/w, n/w 

are algebraically independent. 

ln the case of complex multiplication, one deduces the algebraic 

independence of the two numbers TI and w. 

For d = 3, 4 or 6, we have <l>(d) = 2, and therefore the abel ian 

variety J(d) spl its into a product of elliptic curves of C.M. type. 

These elliptic curves are /=4x3 -4x (for d=4) and- /=4x3 -4 

(for d=3 or d=6). Forthefirstone,apair (w1,w2) offunda-

mental periods is given by (see [Co2], [Bl], [M2], [Wl], [W2]): 

00 

2 f dx =-} s(i-.-}) = r(l/4) 2/(8TI) 112 

1 V4x3-4x 

For the secend one, a pair of fundamental periods is (do not see [Co2] 

p. 79, [Bl] p. 02, [M2] p. 231, neither [W2] p. 75) 

Therefore the two numbers f(l/4) and TI are algebraically independent, 
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and also the two numbers f(l/3) and n are algebraically independent. 

in the higher dimensional case, for an abelian variety of dimen-

sion g defined over Q, if (w1, ... ,w2g) is a basis of the lattice 

of periods, and (w .. F N ú ’ ú = are the coordinates of w., (l;;;;j;;;;2g) I J -..1-..g J _ 
with respect to a basis of the tangent space defined over Q, and 

finally if nij are the corresponding quasi-periods, then two at least 

of the 4g2 numbers 

(1;;;; i;;;; g, 1;;;; j;;;; 2g) 

are algebraically independent (cf. [Chi]; in fact D.W. Masser--private 

communication--proved that it is enough to take the nij only for 

g+l values of j). For instance two at least of the three numbers 

r(l/5), r(2/5), n are algebraically independent. 

For further comments on this topic, we refer to [Chi], [M3], [B-W], 

and also [L3] for the conjecture of Rohrlich. 

4. Linear Independence 

We discussed already several problems of 1 inear independence at 

the end of the first section, arising from the work of Bertrand and 

Masser. Here is a further statement, due to Masser [M3] (see his 

article in LB-W]), who appl ied a general result of his (using Baker's 

method) on quasi-periods of abelian varieties of dimension 2 to the 
2 6 Jacobian of the curve y +x -x=O which isasimple factor of J(5). 

Theorem 4. 1. As r,s run overallpositive integers, the numbers 

ß(r/5,s/5) span a vector space of dimension 6 over the field of 

algebraic numbers. 

5. Conclusion 

A very recent development of the subject is "a version of Theorem 

1.2 in which the map ú = is not necessarily normalized with respect to 

the derivative, but which allows a subgroup with sufficiently many in-

dependent points over the rationals" (LI] p. 39. lt turnsout that the 

condition of equidistribution of the 1 inear combinations of the log 

vectors of algebraic points with integer coefficients, mentioned in 

(LI] p. 44, involves merely the "general ized Dirichlet exponent" 

introduced in [W2]. Therefore it is easy to checkthat such Å ç ã Ä á å ~ í á Å ú ë =

satisfy the equidistribution property. 



86 

This approach involves a general ization of Schneider's method to 

several variables. lt gives a thi rd way (after Baker and Bertrand-

Masser) of proving Baker's theorem, and also Masser's elliptic analog 

for the C.M. case. Moreover it yields new lower bounds for linear 

forms (the elliptic case has been worked out by Yu Kunrui). 

The main tool for Schneider's method in several variables is a 

"zero est imate" due to Masser and ú L ˙ ë í Ü ç ä ò I = which replaces the con-

jectural Schwarz Iemma of [112], ln other ci rcumstances, this zero 

estimate plays the role of the algebraic arguments which were intro-

duced in the theory of transeendental numbers by J. Coates [Col] in 

1970, and subsequently used in most papers dealing with Baker's method. 

ln connection with FLT, Iet us quote the following sentence from 

[MI] 111, p. 564: "An immediate corollary, more curious than useful, 

is that positive integers x,y,z satisfying Fermat's equation 

xp+yP=zP are approximately equal in thesensethat if ^ I ú = are any 

two of log x, log y, or log z we have 

for any E > 0." Masser has pointed out to me that one can now take 

ú = = A + 0 ( 1 og A ( 1 og 1 og A) C) 

for C=C(g) (cf. Masser's paper in Invent. Math. 45 (1978), pp. 61-82). 

Fora p-adic analog of this result, see D. Bertrand and Y. Fl icker, 

Aeta Arith. ú =(1980), pp. 47-61. 

Finally, we notice that FLT is equivalent to a Statement from the 

theory of irrational numbers: for rational x, O<x< 1, and integer d, 

Ç ú P K = the number (1-xd)l/d is irrational. 

Transcendence methods have already been applied to this kind of 

problem. For the last ten years, there has been some works by Schneider, 

Bundschuh, Sprindzuk and Bombieri on the rational values of algebraic 

functions, and these can be viewed as initiated by the fundamental 

paper of Siegel in 1929 on integer points on curves and G-functions. 
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