DIOPHANTINE PROPERTIES OF THE PERIODS OF THE FERMAT CURVE

Michel Waldschmidt

Most of this lecture will be devoted to the investigation of the
arithmetic nature of the numbers R(a,b) for rational numbers a and
b. We consider the transcendence, algebraic independence and linear
independence of numbers related to the gamma and beta functions, as

well as some associated quantitative results.
1. Transcendence of the Values of the Beta Function

After the early result obtained by Siegel [Si] in 1931, Schneider
[Sc] proved in 1940 the following theorem.

Theorem 1.1. Let a and b be rational numbers. We assume that
a,b and a+b are nonintegral. Then the number B(a,b) is trans-

cendental.

0f course, for rational, nonintegral a,b, the number {{a,b)
vanishes if a+b is either zero or a negative integer, but is trans-
cendental if a+b is a positive integer, because of the transcendence

of the number .

Let us give some ideas of the tools which are involved in the
proof of Theorem 1.1. We may assume a=r/d, b=s/d, where r,s,d are

positive integers with
d>2, 0<r<d, 0<s<d, r+s#d, gcd(r,s,d)=1

Then the number 1

B(r/d,S/d) = It(r/d)_](]—t)(s/d)-] dt
0

appears in the periods of the differential form
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Nes = dx

on the Fermat curve xd+yd= 1. The nrs’ with r+s<d, give a basis

for the differentials of the first kind, which are defined over Q. We

r-1 s-d
X y

consider the Jacobian J(d) of the Fermat curve. Its period lattice
L relative to the chosen basis of holomorphic differentials can be
written in €9, with g=(d-1)(d-2)/2,

where one coordinate of wj, say the first one, is of the form

WS GJB(r/d,s/d) ,

and uj is an algebraic number (in the field Q(z) of d-th roots of
unity). These facts are well-known. Recent references on this subject
are [6], [K], [k-R], [L4], [Lal, [R], [we].

For the proof of Theorem 1.1, let us assume first r+s<d. It is
clearly sufficient to prove that at least one of the 2g numbers w]j,
(1<j<2g) is transcendental. Indeed, this fact will hold for any
abelian variety defined over the field Q of algebraic numbers (see
Corollary 1.3 below). We will deduce this statement from the following

general result [W2] (théoréme 5.2.1).

Main Theorem 1.2. Let G be a commutative connected algebraic

group which is defined over Q, ©:€">G(C) an analytic homomorphism,
and Upseeesl @ ‘basis of Cn, such that gp(uJ.) €G(Q), (1<j<n). We
assume that the tangent Llinear map Lie q):Cn—*TG(C) is defined over
Q. Then o(C") is contained in an algebraic subgroup of G of dimen-

ston at most n.

This Theorem 1.2 has been proved by S. Lang when G is either an
abelian variety, or a linear group variety [L1] Chap. IV 84 Th.2. More
generally, Lang's proof applies whenever the exponential map of G can
be represented by meromorphic functions of finite order (see [L1] Chap.
11l 84 Th.4 for the case n=1), and it has been proved by Serre (in
Appendix 1 of [W2]) that this assumption is always fulfilled.

We now deduce from Theorem 1.2 the following corollary, due to

Schneider [Sc].
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Corollary 1.3. Let A Dbe an abelian variety, of dimension g,

dejined over Q. We choose a basis, defined over Q, of the tangent
space at the origin TA(C) of A. Let Wys e e el be C-linearly inde-
pendent periods of the ewponential map exp,: TA(C)-+A(C) of A, and
let wij’ (1<i<g) be the coordinates of wj, (1<j<g), with respect

to the chosen basis. Then in the gXxg matrix

(w],... g ,

W e
gl --- g9
on each row there 1s at least one transcendental number.

For the proof of Corollary 1.3, we identify €9 with TA(C),
thanks to our basis, and if we are interested with the first row, say,
then we consider the analytic homomorphism €9+CxA(C) given by

zk*(z],eprz).

Hence the Main Theorem 1.2 implies Corollary 1.3, and therefore

yields the transcendence of g(r/d,s/d) for r+s<d.

Next consider the case r+s>d. Now LI is of the second kind,
and to complete the proof of Theorem 1.1, Schneider [Sc] argues as
follows. Consider again an abelian variety as in 1.3, with g periods
m],...,mg which are C-linearly independent. Let n be a differential
form of the second kind on A, which is defined over Q, and is not the
sum of a differential of the first kind and an exact differential. We
view 1 as a R-linear map from TA(C) into C. Then one at least of

the g numbers

n(wJ.) , (1€j<g)

is transcendental.

We deduce this result from Theorem 1.2 by considering the algebraic
group G, extension of A by the additive group Ga’ which is associ-
ated with n. We write TG(C)= TA(C)GBC, and we consider the analytic
homomorphism w:TA(C)—>G(C) given by w(z)==expG(z,0). From Theorem
1.2 we_deduce that the image by ¢ of Zw]-+----+2wg is not contained
in G(Q). In a projective embedding of G into some PN’ the coordi-
nates of ¢ are given by theta functions (corresponding to A) and by

a quasi-periodic function K:

K(z+w) = K(z)+n(w)
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The fact that one of w(wj) is not in G(Q) means that one of n(wj)
is not in Q. This completes the proof of Theorem 1.1 as a consequence

of the Main Theorem 1.2.

As pointed out in [B-M2] (see also [B3]), a further consequence of
Schneider's results [Sc] is the linear independence over 6 of the

three numbers

1, B(a,b), mn/B(a,b) ,

algebraic for any positivelreal numbers a, b with a, b and a+b not in Z.

Let us come back to the matrix (w],...,wg) in Corollary 1.3.
The following result is due to Lang [L1] Chap. |1l §4 Cor. of Th.3.

Corollary 1.4. With the same notations as in Corollary 1.3, on

each column of the matrix there is at least one transcendental number.

Consider, say, the first column, whose components are the coordi-
nates of w5 and apply Theorem 1.2 to the analytic homomorphism
@:C~>CxA(C) given by o(t)= (t,epr(tw])), with n=1, up = 1. We

deduce W, Eé_g.

For an abelian variety with sufficiently many endomorphisms, it is
possible to get sharper results, as shown by Lang [L2] and Masser [MI]
(cf. [W2] Chap. 6).

Corollary 1.5. With the notations of Corollary 1.3, assume A 1is
simple of C.M. type, i.e., that (End A) 8, Q is a field F of degree

2g over Q. Choose a basis of TA(C) consisting of eigenvectors for

the action of F. Then each entry wij of our matrix is a trans-

cendental number.

In connection with Theorem 1.1, it should be mentioned that the
Jacobian J(d) oF the Fermat curve xd+-yd= 1 splits into a product
of abelian varieties, each of dimension &(d)/2 (where & is the
Euler characteristic), defined over Q(Z), and with complex multiplica-

tion by Z[z] (see [K], [K-R], [R] and [Lal).

We deduce Corollary 1.5 from Theorem 1.2 in two steps. Assume
first u)”€(-),, and wi]#O for 1<i<g. Then apply Theorem 1.2 to
the analytic homomorphism zF>(z],eprz) from €9 into CxA(C); since
the action of F on the point W) gives rise to g elements C-linearly
independent (in fact to a lattice in TA(C)), we get a contradiction.

Therefore it remains to prove that no coordinate of wy, say, can
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i+1,l""’wgl do not

vanish. Then apply Theorem 1.2 to the map C9-+CxA(C) which sends =z

vanish. Assume W= eee =W =0, while w

to (z],epr(O,...,0,zi+T,...,zg)), and consider the images of the

point (1,...,1,w ..,wg]) through the action of F. Alternative

i+1,1°°
arguments for this second step are given in a lecture by D. Bertrand

(Queen's papers in Pure and Applied Math. 54 (1980), 316).

Further consequences of the Main Theorem 1.2 are described in [W2]

Chap. 3 and Chap. 5.

Later, Bertrand and Masser obtained the unexpected result that
Baker's theorem on the nonvanishing of linear forms in logarithms of
algebraic numbers can also be deduced from Theorem 1.2. They take for
G a linear algebraic group, and therefore this special case of the
Main Theorem was already known by Lang before Baker's proof in 1966!

An important consequence of this alternative approach is that it
enabled Bertrand and Masser [B-MI] to prove the elliptic analog of
Baker's theorem (only the case of complex multiplication was previously
known, due to Masser). They extended their method to certain abelian
varieties [B-M2], [B2], [B3].

By means of the method of Bertrand and Masser, M. Laurent derived
some further transcendence results on the beta function; for instance

he proved the transcendence of the number
B(1/10,3/20)/8(1/10,13/20).

It seems very likely that this method is not exhausted.
2. Diophantine Approximation

The problem of the diophantine approximation of the number R(a,b)
was investigated for the first time only in 1979, by M. Laurent [lLa],

who proved the following rather sharp estimate.

Theorem 2.1. Let a and b be rational numbers, with a, b,
a+b not in Z. Let d be a common denominator of a and b.
Define n=max(1,8(d)/2). Then there exists an effectively computable
number C>0 such that, if & <s any algebraic number of degree <D
and height <H (with H>e®),

|B(a,b) -&| > exp{-CD"T(log )"},

where T=1log H+ D logD.
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Here, the height of & is the maximum of the absolute values of

the coefficients of the minimal polynomial of & over Z.

According to a claim of Chudnovsky [Ch2], it is possible to remove
the factor (log T)n in the special case where H is sufficiently
large with respect to D. In particular, for D=1, this means
-c!

> q

- P
’B(a,b) 3

for p/q€Q, g>0, where C'>0 depends only on a and b. Similar
results are announced in [Ch2] for the numbers T(1/4) and T(1/3).

3. Algebraic Independence

The following result has been proved by G.V. Chudnovsky [chi1].

Theorem 3.1. Let ¥ be a Weierstrass elliptic function with
algebraic invariants 9y 93» let- ¢ be the corresponding Weierstrass
zeta function, w be a non-zero period of ¥, and n=tr(z+w) - g(z).
Then the two numbers

m/w, n/w
are algebraically independent.

In the case of complex multiplication, one deduces the algebraic

independence of the two numbers 7 and w.

For d=3, 4 or 6, we have ®&(d) =2, and therefore the abelian
variety J(d) splits into a product of elliptic curves of C.M. type.
These elliptic curves are y2=llx3 -b4x (for d=4) and y2=’+x3—1-|
(for d=3 or d=6). For the first one, a pair (wl,wz) of funda-
mental periods is given by (see [Co2], [B1], [M2], [wil, [w2]):

= i - dx _ 1 1 1Y _ 2 1/2
(,0] = Iu)z, (,02 =2 j———;—— = i— B(E’f) = T(]/Ll) /(8TT)
1 Vix~-hx

For the second one, a pair of fundamental periods is (do not see [Co2]

p. 79, [B1] p. 02, [M2] p. 231, neither [W2] p. 75)

. . dx 1 (11 3,..4/3
w = Jw,, W, = 2 J.———————- = B(guf) =T(1/3)°/(27 ")

1 V4x3-h ’

Therefore the two numbers T(1/4) and 7 are algebraically independent,
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and also the two numbers T(1/3) and 7 are algebraically independent.

In the higher dimensional case, for an abelian variety of dimen-

sion g defined over Q, if (wl,...,w is a basis of the lattice

Zg)
of periods, and (wij)]<i<g are the coordinates of uﬁ, (I<ij<§29)

with respect to a basis of the tangent space defined over Q, and
finally if nij are the corresponding quasi-periods, then two at least
of the hgz numbers

W, ., M.. , (1gi<g, 1< j<2g)

are algebraically independent (cf. [Ch1]l; in fact D.W. Masser--private
communication--proved that it is enough to take the nij only for
g+1 values of j). For instance two at least of the three numbers

r(1/s), r(2/5), m are algebraically independent.

For further comments on this topic, we refer to [Chl], [M3], [B-W],

and also [L3] for the conjecture of Rohrlich.
4. Linear Independence

We discussed already several problems of linear independence at
the end of the first section, arising from the work of Bertrand and
Masser. Here is a further statement, due to Masser [M3] (see his
article in [B-W]), who applied a general result of his (using Baker's
method) on quasi-periods of abelian varieties of dimension 2 to the

Jacobian of the curve y2-+x6-x==0 which is a simple factor of J(5).

Theorem 4.1. As r,s run over all positive integers, the numbers
B(r/5,s/5) span a vector space of dimension 6 over the field of

algebraic numbers.
5. Conclusion

A very recent development of the subject is '"a version of Theorem
1.2 in which the map ¢ is not necessarily normalized with respect to
the derivative, but which allows a subgroup with sufficiently many in-
dependent points over the rationals' [L1] p. 39. It turns out that the
condition of equidistribution of the linear combinations of the log
vectors of algebraic points with integer ‘coefficients, mentioned in
[L1] p. 4k, involves merely the ''generalized Dirichlet exponent'
introduced in [W2]. Therefore it is easy to check that such combinaticnrs

satisfy the equidistribution property.
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This approach involves a generalization of Schneider's method to
several variables. It gives a third way (after Baker and Bertrand-
Masser) of proving Baker's theorem, and also Masser's elliptic analog
for the C.M. case. Moreover it yields new lower bounds for linear

forms (the elliptic case has been worked out by Yu kunrui).

The main tool for Schneider's method in several variables is a
lizero estimate'' due to Masser and Wustholz, which replaces the con-
jectural Schwarz lemma of [W2]. In other circumstances, this zero
estimate plays the role of the algebraic arguments which were intro-
duced in the theory of transcendental numbers by J. Coates [Col] in

1970, and subsequently used in most papers dealing with Baker's method.

In connection with FLT, let us quote the following sentence from
[M1] 111, p. 564: "An immediate corollary, more curious than useful,
is that positive integers x,y,z satisfying Fermat's equation

P, P__P

x"+y =2z are approximately equal in the sense that if A,u are any

two of logx, logy, or logz we have

U= A+ 0(0\5)

for any €>0." Masser has pointed out to me that one can now take

u o= A-ko(logk(loglogx)c)
for C=C(g) (cf. Masser's paper in Invent. Math. 45 (1978), pp. 61-82).

For a p-adic analog of this result, see D. Bertrand and Y. Flicker,

Adeta Arith. 38 (1980), pp. 47-61.

Finally, we notice that FLT is equivalent to a statement from the
theory of irrational numbers: for rational x, 0<x<1, and integer d,
d)l/d

d>3, the number (I -x is irrational.

Transcendence methods have already been applied to this kind of
problem. For the last ten years, there has been some works by Schneider,
Bundschuh, Sprindzuk and Bombieri on the rational values of algebraic
functions, and these can be viewed as initiated by the fundamental

paper of Siegel in 1929 on integer points on curves and G-functions.
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