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Abstract

One of the first goals of Diophantine Analysis is to decide
whether a given number is rational, algebraic or else
transcendental. Such a number may be given by its binary or
decimal expansion, by its continued fraction expansion, or by
other limit process (sum of a series, infinite product,

integrals. ..). Language theory provides sometimes convenient
tools for the study of numbers given by expansions. We survey
some of the main recent results on Diophantine problems
related with the complexity of words.
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Let g > 2 be an integer and x
a real irrational algebraic
number. The expansion in
base g of x should satisfy
some of the laws which are
valid for almost all real
numbers (for Lebesgue'’s
measure).
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First decimals of v/2 http:/ /wims.unice.fr/wims/wims.cgi The fabulous destiny of V?2

1.41421356237309504880168872420969807856967187537694807317667973
799073247846210703885038753432764157273501384623091229702492483
605585073721264412149709993583141322266592750559275579995050115
278206057147010955997160597027453459686201472851741864088919860
055232023048430871432145083976260362799525140798968725339654633
180882964062061525835239505474575028775996172983557522033753185
701135437460340849884716038689997069900481503054402779031645424
782306849293691862158057846311159666871301301561856898723723528
850026486124949771542183342042856860601468247207714358548741556 :
570696776537202264854470158588016207584749226572260020855844665 P e
214583988939443709265918003113882464681570826301005948587040031 " D Lo .
864803421048972782006410450726368813137398552561173220402450012 e Benoit Rittaud, Editions Le Pommier (2006).
277002269411275736272804957381089675040183698683684507257993647

200607629969413804756548237289971803268024744206292691248590521

810044598421505911202494413417285314781058036033710773091828693 http://www.math.univ-paris13.fr/~rittaud/RacineDeDeux
1471017111168391658172688941975871658215212822951848847 . . .

First binary digits of V2 http:/ /wims.unice fr/wims /wims cgi Computation of decimals of V2

1.011010100000100111100110011001111111001110111100110010010000
10001011001011111011000100110110011011101010100101010111110100
11111000111010110111101100000101110101000100100111011101010000
10011001110110100010111101011001000010110000011001100111001100 14000 decimals computed in 1967
10001010101001010111111001000001100000100001110101011100010100
01011000011101010001011000111111110011011111101110010000011110
11011001110010000111101110100101010000101111001000011100111000 1000000 decimals in 1971
11110110100101001111000000001001000011100110110001111011111101
00010011101101000110100100010000000101110100001110100001010101 o 1 .
11100011111010011100101001100000101100111000110000000010001101 137 - 10” decimals computed by Yasumasa Kanada and
11100001100110111101111001010101100011011110010010001000101101 Daisuke Takahashi in 1997 with Hitachi SR2201 in 7 hours
00010000100010110001010010001100000101010111100011100100010111 and 31 minutes.
10111110001001110001100111100011011010101101010001010001110001

01110110111111010011101110011001011001010100110001101000011001

10001111100111100100001001101111101010010111100010010000011111

00000110110111001011000001011101110101010100100101000001000100 e Motivation : computation of 7.
110010000010000001100101001001010100000010011100101001010 . . .

1542 computed by hand by Horace Uhler in 1951
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Expansion in base g of a real number First conjecture of Emile Borel
Let g be an integer > 2. Any real number x has an expansion

which is unic if x is irrational . , . . .
Conjecture 1 (E. Borel). Let x be an irrational algebraic real

Xx=a, g+ - taigtatagttag it number, g > 3 a positive integer and a an integer in the range
0 < a<g— 1. Then the digit a occurs at least once in the
g—ary expansion of x.
0.1 1 Corollary. e Each given sequence of digits should occur
{0,1, 87 ) infinitely often in the g—ary expansion of any real irrational
We write .

algebraic number.
(consider powers of g).
Examples : in base 10 (decimal expansion) : e For instance, Borel's Conjecture 1 with ¢ = 4 implies that

B each of the four sequences (0,0), (0,1), (1,0), (1,1) should
V2 = 1,41421356237309504880168872420 .. occur infinitely often in the binary expansion of each irrational

and in base 2 (binary expansion) : algebraic real number x.

where k is an integer > 0 and where the a; for i > —k (digits
of x in the base g expansion of x) belong to the set

X =a_k---a-1dp,a1dz " "

V2 =1,0110101000001001111001100110011111110 ...

9/62 11 /62

Complexity of the g—ary expansion of an irrational The state of the art

algebraic real number
Let g > 2 be an integer.

7

e E. Borel (1909 and 1950) : the g—ary expansion of an
algebraic irrational number should satisfy some of the laws

shared by almost all numbers (with respect to Lebesgue’s There is no explicitly known example of a triple (g, a, x),
measure). where g > 3 is an integer, a a digit in {0,...,g — 1} and x an

algebraic irrational number, for which one can claim that the

e Remark : no number satisfies all the laws which are shared 2. S i .
digit a occurs infinitely often in the g—ary expansion of x.

by all numbers outside a set of measure zero, because the
intersection of all these sets of full measure is empty !

R\ {x}=0.

e More precise statements by B. Adamczewski and
Y. Bugeaud.
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Kurt Mahler

Kurt Mahler (1903 - 1988) For any g > 2 and any n > 1,
there exist algebraic irrational

Normal numbers in base g

e A real number x is called normal in base g or g—normal if it
is simply normal in base g™ for all m > 1.

numbers x such that any

block of n digits occurs

infinitely often in the g—ary

expansion of x. Hence a real number x is normal in base g if and only if, for

any m > 1, each sequence of m digits occurs with frequency
1/g™ in its g—ary expansion.

13 /62 15 /62

Simply normal numbers in base g Normal numbers

e A real number is called normal if it is normal in any base
g > 2. Hence a real number is normal if and only if it is simply

e A real number x is called simply normal in base g if each normal in any base g > 2.

digit occurs with frequency 1/g in its g—ary expansion.
e For instance the decimal number Conjecture 2 (E. Borel). Any irrational algebraic real number

is normal.

0,123456789012345678901234567890. . .

e Almost all real numbers (for Lebesgue's measure) are
is simply normal in base 10. This number is rational : normal.

1234567890 137174210

_ _ ) e Examples of computable normal numbers have been
9999999999 1111111111

constructed (W. Sierpinski 1917, H. Lebesgue 1917, V. Becher
and S. Figueira 2002), but the known algorithms to compute
such examples are fairly complicated ( “ridiculously
exponential”, according to S. Figueira).
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Example of normal numbers

An example of a 2—normal number (Champernowne 1933,
Bailey and Crandall 2001) is the binary Champernowne
number, obtained by the concatenation of the sequence of
integers

0.1101110010111011110001001 101010111100 ...

k
=> k2% with co=k+ Y [log, ]
j=1

k>1

e 5. S. Pillai (1940), Collected papers edited by
R. Balasubramanian and R. Thangadurai, (2009 or 2010).

Further examples of normal numbers

e (Stoneham Numbers ...) : if a and g are coprime integers

> 1, then
MU m\:%‘\mz

is normal in base g.
Reference : R. Stoneham (1973), D.H. Bailey, J.M. Borwein,
R.E. Crandall and C. Pomerance (2004).

18 /62

Copeland — Erdos

0.2357111317192329313741434753596167 ...

A.H. Copeland and P. Erdés
(1946) : a normal number in
base 10 is obtained by
concatenation of the sequence
of prime numbers

B

Paul Erdos
(1913 - 1996)

19 /62

Infinite words

Let A be a finite alphabet with g elements.

o We shall consider infinite words w = a; ... a, .
A factor of length m of w is a word of the form
Akdk41 - - Akrm-1 Tor some k > 1.

e The complexity p = p,, of w is the function which counts,
for each m > 1, the number p(m) of distinct factors of w of
length m.

e Hence 1 < p(m) < g™ and the function m + p(m) is
non—decreasing.

e According to Borel's Conjecture 1, the complexity of the
sequence of digits in base g of an irrational algebraic number
should be p(m) = g™.



Sturmian words The Fibonacci word
e Define i =1, =0

Assume g = 2, say A= {0, 1}. and, for n > 3 (concatenation) : f, = f,_1f,».

e A word is periodic if and only if its complexity is bounded. Leonardo Pisano Fibonacci
(1170 - 1250)

e If the complexity p(m) a word w satisfies p(m) = p(m + 1) f; =01, f, = 010, f; = 01001, f; = 01001010,...

for one value of m, then p(m + k) = p(m) for all k >0,

hence the word is periodic. It follows that a non—periodic w The Fibonacci word

has a complexity p(m) > m + 1.
w = 0100101001001010010100100101001001 . ..

e An infinite word of minimal complexity p(m) = m+ 1 is

called Sturmian (Morse and Hedlund, 1938). is Sturmian.
e Examples of Sturmian words are given by 2—dimensional e For each m > 1, there is exactly one factor v of w of length
billiards. m such that both v0 and v1 are factors of w of length m + 1.
Sturm and Morse The Fibonacci word
0100101001001010010100100101001001 ... is
Sturmian
Jacques Charles Francois Harold Calvin Marston Morse
Sturm (1803 - 1855) (1892 - 1977)
00100
AR /!
A 0 —- 00 — 001 — 0010 — 00101

N
01 — 010 — 0100 — 01001
N
0101 — 01010
1 —- 10 — 100 — 1001 — 10010
N

101 — 1010 — 10100



Transcendence and Sturmian words Automata

e S. Ferenczi, C. Mauduit, 1997 : A number whose sequence
of digits is Sturmian is transcendental.

Combinatorial criterion : the complexity of the g—ary
expansion of every irrational algebraic number satisfies

A finite automaton consists of
e the input alphabet A, usually the set of digits
. B {0,1,2, ..., g—1};
_ﬁw_oﬂilsv —m) = +oo. o the set Q of states, a finite set of 2 or more elements, with
one element called the initial state i singled out;
e Tool : a p—adic version of the Thue-Siegel-Roth-Schmidt o the transition map Q x A — Q, which associates to every
Theorem due to Ridout (1957) state a new state depending on the current input;

e Reference : Yuri Bilu's Lecture in the Bourbaki Seminar, o the output alphabet I3, together with the output map

November 2006 : f:Q=B.
The many faces of the Subspace Theorem [after Adamczewski,

Bugeaud, Corvaja, Zannier. . ]

http://www.math.u-bordeaux.fr/~yuri/publ/subspace.pdf

25 /62 27 /62

omplexity of the g-ary expansion of an algebraic utomata : reference
Complexity of th f lgeb Automat f
number
MR
e Theorem (B. Adamczewski, Y. Bugeaud, F. Luca 2004). ._mm:-ﬂm:._ Allouche and Jeffrey Shallit e .
The binary complexity p of a real irrational algebraic number x \»:wo.Smw.a S equences - dymoﬁ Y R
satisfies Applications, Generalizations,
fmi dnn?:v N Cambridge University Press (2003).
iminf = = +00.

m—o00 m

e Corollary (Conjecture of A. Cobham, 1968). If the http ://www.cs.uwaterloo.ca/~shallit/asas.html
sequence of digits of an irrational real number x is
automatic, then x is transcendental.

26 /62 28 /62



Example : powers of 2
The sequence of binary digits of the number

M 22" = (.1101000100000001000 - - - = 0.a;a5a3

n>0
with
1 if nis a power of 2,

an = .
0 otherwise

is automatic : A =B = {0, 1}, @ = {i, a, b},
f(i)=0, f(a) =1, f(b) =0,

~
i —
—_—

(o] %
[H
Cle]%

Automatic sequences

e Let g > 2 be an integer. An infinite sequence (a,),>0 is said
to be g—automatic if a, is a finite-state function of the base g
representation of n : this means that there exists a finite
automaton starting with the g—ary expansion of n as input and
producing the term a, as output.

e A. Cobham, 1972 : Automatic sequences have a complexity

p(m) = O(m).

Automatic sequences are between periodicity and chaos. They
occur in connection with harmonic analysis, ergodic theory,
fractals, Feigenbaum cascades, quasi—crystals.

30/62

Automatic sequences and theoretical physics

J.P. Allouche and M. Mendes-France : computation of physical
constants of an Ising model in one dimension involving an
automatic distribution.

Reference : J-P. Allouche and M. Mignotte, Arithmétique et
Automates, Images des Mathématiques 1988, Courrier du
CNRS Supplément au N° 69, 5-9.

Ising model : to study phase transition in statistical

mechanics :

Reference : Raphaél Cerf, Le modéle d’Ising et la coexistence
des phases, Images des Mathématiques (2004), 47-51.

http ://www.spm.cnrs-dir.fr/actions/publications/IdM.htm

Powers of 2 (continued)

The complexity p(m) of the automatic sequence of binary
digits of the number

MU 2% =0.1101000100000001000 - - -

n>0

is at most 2m :

N =
NN
S W
~N
O O
—_

=

p(m) =



Prouhet—Thue—Morse sequence

e The automaton

1
A — A

[a] avec (i) =0, f(a)=1

produces the sequence aga;a, . .. where, for instance, ag is
f(i) =0, since 1001[/] = 100[a] = 10[a] = 1[a] = i. This is
the Prouhet—Thue—Morse sequence, where the n + 1-eme term
a, is 1 if the number of 1 in the binary expansion of n is odd,
0 if it is even.

The Prouhet-Thue-Morse number is > ., a,27".

The Baum—Sweet sequence

e The Baum—Sweet sequence. For n > 0 define a, = 1 if the
binary expansion of n contains no block of consecutive 0's of
odd length, a, = 0 otherwise : the sequence (a,),>o starts with

110110010100100110010...

e This sequence is automatic, associated with the automaton

~

O1

The Rudin-Shapiro sequence

e The Rudin—Shapiro word aaabaabaaaabbbab . ... For n > 0
define r, € {a, b} as being equal to a (respectively b) if the
number of occurrences of the pattern 11 in the binary
representation of n is even (respectively odd).

e Let o be the morphism defined from the monoid B* on the
alphabet B = {1,2,3,4} into B* by : 0(1) = 12, 0(2) = 13,
0(3) =42 and o(4) = 43. Let

u = 121312421213 . ..

be the fixed point of o begining with 1 and let ¢ be the
morphism defined from B* to {a, b}* by : ¢(1) = aa,
©(2) = ab and ¢(3) = ba, ¢(4) = bb. Then the
Rudin-Shapiro word is ¢ (u).

Paper folding sequence

If you fold a long piece of paper, always in the same direction,
and then you unfold it, you get two kind of edges, which you
encode with 0 or 1. This gives rise to a sequence

1101100111001001 ...
which satisfies
Ugp = Hu Ugpi2 = O“ Upt1 = Up

and which is produced by the automaton
~
2, [bo
~
— Lo
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The Fibonacci number is not automatic

e Cobham (1972) : the frequency of each letter in an
automatic word is a rational number.

e Consequence : the Fibonacci word
010010100100101001010. ..

is not automatic.

The frequency of the letter O (resp. of the letter 1) is 1/®
(resp. 1/®?), where & = (1 ++/5)/2 is the Golden Ratio an
irrational number.

3
o

Complexity of the expansion in base g of a real
irrational algebraic number

Theorem (B. Adamczewski, Y. Bugeaud, F. Luca 2004). The
binary complexity p of a real algebraic irrational number x
satisfies

p(m)

liminf ——= = +o0.
m—o00 m

Corollary (conjecture of A. Cobham (1968)) : If the sequence

of binary digits of a real irrational number x is automatic, then
X is a transcendental number.

38 /62

Transcendence of automatic numbers

In other terms

Theorem (B. Adamczewski, Y. Bugeaud, F. Luca, 2004 —
conjecture of A. Cobham, 1968) : The sequence of digits of a
real algebraic irrational number is not automatic.

Tool : W.M. Schmidt Subspace Theorem.

39 /62

Liouville numbers and exponent of irrationality

e An exponent of irrationality for £ € R is a number k > 2
such that there exists C > 0 with

Tlt Nm for all wmo.

q q" q

e A Liouville number is a real number with no finite exponent
of irrationality.
e Liouville’s Theorem. Any Liouville number is
transcendental.
e In the theory of dynamical systems, a Diophantine number
(or a number satisfying a Diophantine condition) is a real
number which is not Liouville.
References : M. Herman, J.C. Yoccoz.

40 /62



Irrationality measures for automatic numbers Further transcendence results on g—ary expansions

of real numbers

e B. Adamczewski and J. Cassaigne (2006) — Solution to a
Conjecture of J. Shallit (1999) : A Liouville number cannot be

generated by a finite automaton. e J-P. Allouche and L.Q. Zamboni (1998).

e For instance for the Prouhet—Thue—Morse—Mahler numbers

¢ an e R.N. Risley and L.Q. Zamboni (2000).
. =

n
n>0 g

(where a, = 0 if the sum of the binary digits in the expansion . .
of nis even, a, = 1 if this sum is odd) the exponent of e B. Adamczewski and J. Cassaigne (2003).
irrationality is < 5.

41 /62 43 /62

Independence of expansions of algebraic numbers Christol, Kamae, Mendes-France, Rauzy

The result of B. Adamczewski, Y. Bugeaud and F. Luca
implies the following statement related to the work of

G. Christol, T. Kamae, M. Mendes-France and G. Rauzy
Following Borel, the sequences of binary digits of two numbers (1980) :

like v/2 and \/3 should look like random sequences. One may
ask whether these sequences of digits behave like independent
random sequences.

B. Adamczewski and Y. Bugeaud remark that this is true for

Corollary. Let g > 2 be an integer, p be a prime number and
(uk)k>1 a sequence of integers in the range {0,...,p —1}.
The formal power series

almost all pairs of real numbers (using the Borel-Cantelli MU Xk
Lemma), they suggest that this property should hold for any 1

base g and pair of irrational numbers, unless they have -
ultimately the same sequences of digits. and the real number

MU ug

k>1

are both algebraic (over F,(X) and over Q, respectively) if
and only if they are rational.
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The Prouhet—Thue—Morse sequence

Let (a,)n>0 be the Prouhet—Thue—Morse sequence. The series
FX) =) a.X"
n>0
is algebraic over the field F,(X) :

1+ XPFP+(1+X)’F+X=0.

This produces a new proof of Mahler’s result on the
transcendence of the number

MU ag "

n>0

Further transcendence results

Consequences of Nesterenko 1996 result on the transcendence
of values of theta series at rational points.
e The number mezw

n>0

D. Duverney, K. Nishioka, K. Nishioka and I. Shiokawa 1998)

is transcendental (D. Bertrand 1997 ;

e For the word
u = 01212212221222212222212222221222 . ..

generated by 0 — 012, 1 +— 12, 2 + 2, the number

n= MU 137X is transcendental.
k>1

46 /62

Complexity of the continued fraction expansion of
an algebraic number

Similar questions arise by considering the continued fraction
expansion of a real number instead of its g—ary expansion.

e Open question —

A.Ya. Khintchin (1949) : are
the partial quotients of the
continued fraction expansion
of a non—quadratic irrational
algebraic real number
bounded ?

Aleksandr Yakovlevich
Khinchin (1894 - 1959)

Transcendence of continued fractions

e J. Liouville, 1844
e E. Maillet, 1906, O. Perron, 1929
e H. Davenport and K.F. Roth, 1955

o A. Baker, 1962

e J.L.. Davison, 1989

48 /62



Transcendence of continued fractions (continued)

o M. Queffélec, 1998 : transcendence of the
Prouhet—Thue—Morse continued fraction.

e P. Liardet and P. Stambul, 2000.

e J-P. Allouche, J.L. Davison, M Queffélec and
L.Q. Zamboni, 2001 : transcendence of Sturmian or morphic
continued fractions.

e B. Adamczewski, Y. Bugeaud, J.L. Davison, 2005 :
transcendence of the Rudin—-Shapiro and of the Baum—Sweet
continued fractions.

49 /62

Open Problems

e Give an example of a real automatic number x > 0 such
that 1/x is not automatic.

e Show that

log2 = M wml,_

n>1

is not 2-automatic.

e Show that

4 2 1 1
— o o o M\#:
=2 8n+1 8n+4 8n+5 8n+6

n>0

is not 2-automatic.

50 /62

Problems dealing with normal numbers ( T. Rivoal)

e Give an explicit example of an irrational real number which
is simply normal in base g and such that 1/x is not simply
normal in base g .

e Give an explicit example of an irrational real number which is
normal in base g and such that 1/x is not normal in base g .

e Give an explicit example of an irrational real number which
is normal and such that 1/x is not simply normal.

Other open problem

o Let (e,),>1 be an infinite sequence on {0, 1} which is not
ultimately periodic. Is—it true that one at least of the two

numbers
MU €2 ", MU e, 37"

n>1 n>1

is transcendental 7

According to Borel, the second number should be
transcendental, since it is irrational and has no digit 2 in its
base 3 expansion.



Liouville numbers

e Liouville’s Theorem. for any real algebraic number o
there exists a constant ¢ > 0 such that the set of p/q € Q
with oo — p/q| < q~¢ is finite.

e Liouville’s Theorem yields the transcendence of the value of
a series like > 27", provided that the sequence (u,),>o is
increasing and satisfies

. Upy1
lim sup —= = +o0.

n—oo t:

e For instance u, = n! satisfies this condition : hence the
number > _ 27" is transcendental.

53 /62

Thue—Siegel-Roth Theorem

Axel Thue Carl Ludwig Siegel  Klaus Friedrich
(1863 - 1922) Roth (1925 - )

oo

For any real algebraic number «, for any ¢ > 0, the set of
p/q € Q with |a — p/q| < g2~ is finite.

54 /62

Consequences of Roth's Theorem

e Roth's Theorem yields the transcendence of ) 27
under the weaker hypothesis

u
n+1 =92

lim sup
n—oo :3

e The sequence u, = [277] satisfies this condition as soon as
0 > 2. For example the number

>2

n>0

is transcendental.

Y
Transcendence of > ;272

e A stronger result follows from Ridout’s Theorem, using the
fact that the denominators 2“7 are powers of 2 : the condition

. u
limsup —= > 1

n—oo :3

suffices to imply the transcendence of the sum of the series

D027

e Since u, = 2" satisfies this condition, the transcendence of
> ps02 % follows (Kempner 1916).

e Ridout’s Theorem. for any real algebraic number «, for
any ¢ > 0, the set of p/q € Q with g = 2% and
lo — p/q| < g1 is finite.
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Consequence of Ridout's Theorem Schmidt's subspace Theorem — Several places

o Let x = 0.a1a, ... be the binary expansion of a real algebraic For x = (xo,...,Xm_1) € Z™, define

irrational number x € (0,1). For n > 0 set x| = max{|xo|, ..., |xm_1|}.

W.M. Schmidt (1970) : Let m > 2 be a positive integer, S a
finite set of places of Q containing the infinite place. For each
veSletly,,..., Ly 1, be mindependent linear forms in m
variables with algebraic coefficients in the completion of Q at
v. Let ¢ > 0. Then the set of x = (xo,...,Xm_1) € Z" such

)

l(n) =min{¢ >0; a,., # 0}.

Then /(n) = o(n)

e For the number )~ 272" the sequence of digits has that
02n) = 2", ﬂ Loy (X) -+ L1y (X)], < |x|7
ves
e Main tool of Adamczewski and Bugeaud : Schmidt’s is contained in the union of finitely many proper subspaces of
subspace Theorem. Q™.
57 /62 59 /62
Schmidt’s subspace Theorem (simplest version) Consequence : Ridout's Theorem
For x = (X0, ..., Xm_1) € Z™, define
x| = max{|xol, ..., |Xm-1]} e Ridout’s Theorem. For any real algebraic number o, for

any e > 0, the set of p/q € Q with g = 2% and

e W.M. Schmidt (1970) : For m > 2 let Lo, ..., L1 bem o — p/q| < g~< is finite.

independent linear forms in m variables with complex algebraic
coefficients. Let € > 0. Then the set

e In Schmidt's Theorem take m =2, S = {00, 2},
ho,ooﬁxouxpv = ho\.mﬁxo”xpv = Xo,

{x=(x0,- s Xm-1) €Z™; |Lo(x) - L_1(x)| < |x|™}

is contained in the union of finitely many proper subspaces of L1oo(x0, x1) = ax0 = xa, Lia(xo ) = 1.
Q™. For (x0,x1) = (g, p) with g = 2k, we have

R _ _ |Looo(X0, X1 )|o0 = @, |L1,00(x0,x1)|oc = |qov = pl,
e Example : m =2, Lo(xp,x1) = x0, L1(x0,X1) = axo — X1. Lo 2(x0, x0)]> = g, L12(x0, x0)]> = |pla < 1.

Roth’s Theorem. for any real algebraic number «, for any
€ >0, the set of p/q € Q with |a — p/q| < q=>~¢ is finite.
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Mahler's method for the transcendence of
|M3
MU:NO 2

e Mahler (1930, 1969) : the function f(z) = MN\E satisfies
n>0

f(z%) +z = f(z) for |z] < 1.
e J.H. Loxton and A.J. van der Poorten (1982-1988).

e P.G. Becker (1994) : for any given non—eventually periodic
automatic sequence u = (uy, Uy, ... ), the real number

—k
M ugg
k>1

is transcendental, provided that the integer g is sufficiently
large (in terms of u).
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More on Mahler's method

e K. Nishioka (1991) : algebraic independence measures for
the values of Mahler’s functions.

e For any integer d > 2,
>
n>0

is a S—number in the classification of transcendental numbers
due to... Mahler.

e Reference : K. Nishioka, Mahler functions and
transcendence, Lecture Notes in Math. 1631, Springer Verlag,
1996.

e Conjecture — P.G. Becker, J. Shallitt : more generally any
automatic irrational real number is a S—number.
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