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LOWER BOUNDS FOR LINEAR FORMS IN LOGARITHMS

P. Philippon and M. Waldschmidt

1. Introduction

Let ay,...,a, be non-zero algebraic numbers and fy, ..., S, be al-
gebraic numbers. For 1 < j < n, let loga; be any determination of the
logarithm of ;. Assume that the number

A=Bo+ Bilogas +...+ Brloga,

does not vanish. Qur aim is to provide a new lower bound for |A|. For
a history of the subject we refer to [1]. See also [11] and [6].

Our estimates improve previously known results on this subject.

If one pays special attention to the dependence on the degree of
the algebraic numbers, it is more efficient to work with the absolute
logarithmic height. We will do that in the next sections, but here we
first give a few corollaries of our main results in terms of the usual
height: for an algebraic number «, we denote by H{a) the maximum
of the absolute values of the coefficients of the minimal polynomial of «
over Z.

Let D be a positive integer and A, A,, ..., A, be positive real
numbers satisfying

D> [Q(alv'-aamﬂOa"',ﬂn):Q]’
A; > ma.x{H(aj),e}, 1<j<n,

A =max{A;,...,4n, €%}

Theorem 1.1. Let B = max{H(B;), 0 < j < n}. Assume

A > max{exp|loga,-|,e"}, 1<j<n.
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Then
Al > e,

where
U = Cy1(n).D™? . log A; ...log A, . (log B + loglog A)

and
C]](n) S 28n+53 . n2n.

The main difference with Theorem 1.1 of [11] is that we omit a factor
loglog Ap,—; when, say, A, 2 Ap—1 2 ... 2 A; 2 " (with Ay = €® if
n = 1). The cost is a factor 4 for the constant, but also the assumption
A] Z e”.

We turn now to the so-called rational case, where 8y = 0 and
Bi, ..., Pn are rational integers. In this case we write 8; = b;, 1 <: < n.

Theorem 1.2. Let by,...,b, be rational integers such that
ol ab £ 1
Let B be a positive real number satisfying
B > max{|bi|, 1 <i<n} and B >e.
Then
ladt...abr — 1] > B~C12®

with Q@ = log A; ...log A, and Cy2 is a positive effectively computable
constant depending only on n and on the degree of Q(o,...,0,) over
Q.

Finally, here is a variant of Theorem 1.2 which is useful for instance
in the study of Diophantine equations.

Theorem 1.3. In the situation of Theorem 1.2 assume e < 4; <... <
A, < Ay, and
O<fal...alr —1<e™®

for some € > 0. Then there exists a positive effectively computable con-
stant Cy3, depending only on n, on the degree of Q(au,...,a,) over Q,
and on €, such that

B < CislogA...log A, 1oglog An.
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Moreover, if b, = 1, then
B < CizlogAy...log A, loglog A,—;.

Here is the plan of this paper. In §2 we state two results (Theorem
2.1 for the “general” case, Theorem 2.2 for the “rational” case), and we
deduce from them Theorems 1.1, 1.2 and 1.3.

Compared with previous proofs of similar results, the new feature
here is that we apply the zero estimate of [9] (the previous zero estimates,
which are referred to in [9], would not be sufficient for our purpose). The
main result of [9] is stated in a much more general context, involving
commutative algebraic groups. In §3 we state the special case which is
needed here in terms of a lower bound for the rank of certain matrices.
We need also to know that this zero estimate is not far from the best
possible one, which means that we need an upper bound for the rank
of these matrices. The proof of the zero estimate is postponed to the
appendix. Indeed, for this proof, it is convenient to use the language
of algebraic groups, and a reader who wishes to avoid this language can
do so provided he takes for granted the Proposition 3.4. The proof of
Theorem 2.1 is given in §4, and the proof of Theorem 2.2 in §5. A
discussion on the explicit values of the constants is given in §2.

2. The two main results

Apart from the explicit dependence of the constant in terms of n,
the two following statements include all previously known lower bounds
for linear forms in logarithms which have been obtained so far by Baker’s
method.

When «a is an algebraic number, we denote by h(a) the absolute
logarithmic height of a (see for instance [11)).

We consider a non-zero linear form in logarithms of algebraic num-
bers with algebraic coefficients

A=+ prloga; +...+ Bplogay,

where ay,...,a, are non-zero algebraic numbers, fy,...,3, are alge-
braic numbers, and log ay,...,loga, are any non-zero determinations
of the logarithms of a;,...,a,. Let K be a number field containing
a1y...,0n, Po,...,Pn, of degree D over Q.

Let Vi,...,V,, V, E be positive real numbers satisfying
V; 2 max{h(e;), |loge;|/D, n/D},
V = max{W,..., Vs, 1},
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and
1 < E < min{eP%i/", eDV;/|loga;l}, 1<j5<n.

Our first main result deals with the “general case”.

Theorem 2.1. Let W be a positive real number satisfying
W > max {h(8;)}.
Then
|A| > exp{—Ca1(n). D"*2. V4 ... V,.
(W + log(EDV)) . (log(ED)) . (log E)~""'}

with ;
CZl(n) S 28n+51 . n2n.

An improvement of our numerical value for C2;(n) has been ob-
tained recently by J. Blass, A. M. W. Glass, D. B. Meronk and R. P.
Steiner [2].

Our second main result deals with the so-called “rational case”.

Theorem 2.2. Assume Bp =0 and f;=b; € Z for 1 <i < n. Let B,
B,., W be positive real numbers satisfying

> ,
B> lsl;psa"f_l 151, By, > |ba|,

and
w Zmax{log[% + VB-+1]; % log E; 1},
1 n

where we assume
W<V <...< Vs
Then

|A| > exp{~Caa(n).D™*2 . V4 ...V, . W . (log(ED)) . (log E)~""},

where Caz2(n) is an effectively computable constant which depends only
on n.

If one tries to compute an explicit value for Ca3(n) just by working
out the proof in §5 below, one finds Cy;(n) < C23.n?™" for some abso-
lute constant Cy3. However, assuming that the field Q(v/a,,... va,)
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has degree 2™ over Q, Blass, Glass, Meronk and Steiner find Cy2(n) <
C%, .n" (with Cy4 < 2%%). From the final descent of [11], one deduces
Ci2(n) < CZ .n?™ for the constant Cy2 of Theorem 1.2, and one expects
that Ca2(n) < C.n?" without any assumption on Q(v/ay,...va,)
(here C35 and Cag denote effectively computable absolute constants).
However, as C.L. Stewart pointed out to the authors of [6], a further
argument is necessary in order to achieve such an estimate. Also it was
suggested by C. L. Stewart that the zero estimate of [9] could enable one
to remove the loglog A,—; as we did in Theorem 1.1.

Concerning the definition of E, it may be useful to notice that
eDV;/|loga;j| < 2P.e?PVi;

indeed, for each non-zero algebraic number a # 0, of degree < d, and
for log a # 0, we have

|loga| > 274,94,
using |e* — 1| < |z|.el*! with the Liouville inequality).
g

Proof of Theorem 1.1. We deduce Theorem 1.1 from Theorem 2.1, with
Ci1(n) € 4.C21(n). We assume that the hypotheses of Theorem 1.1
hold, and we choose

Vi =log Aj, W = max{1,log B}, E =eD.

Since

h(a) < %(log H(a) +logd)

with d = [Q(«) : Q] (cf. 11}, p. 260), we check that V; > h(a;). We use
Theorem 2.1, with the fact that A > e® and n > 1, hence

(W 4+ 1+ 2log D + loglog A)(1 + 2log D)
< 4(1 + log D)"*!(log B + loglog A).

Therefore
Ci1(n) < 4C21(n) < 287433 p2n,

Proof of Theorem 1.2. We now deduce Theorem 1.2 from Theorem
2.2. We will use the following simple lemma.

Lemma 2.3. Let t € C and r € R satisfy

0<r<1 and [¢¢=1|<r
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Then there ezists k € I such that

1
|t — 2ikm| < ot |log(1—r)|.|e* —1|.

Proof of Lemma 2.3. The principal value of the logarithm satisfies

|sup |log(1 + 2)| = |log(1 — r)|.
z|=r
From Schwarz’ lemma we get for |2| < r
1
llog(1 + 2)| < |2]. < |log(1 — 7).

We use this inequality for z = e* — 1, and we define

K= 5—:—7; . (t — log(e")).

This proves Lemma 2.3.
For the proof of Theorem 1.2, we assume, as we may without loss
of generality, A1 < A2 < ... < Ap—y < Ay (with A,y =cifn = 1).
From Lemma 2.3 we deduce that as soon as
lad. .ol —1| <1/3,

we have, for the principal value of the logarithm,

lbllogal +...+bploga, —2i7m| < g . la?‘ ...af," -1
for some x € Z. Considering the imaginary parts, we get
|€] < (nB + 1)/2.
We now choose
Vi=TlogA;, (1<j<n), V=2mn/D,
E=e¢, and W =log(DB+1).
Notice that

|logaj| < x +logla;| < 7 +log(4; +1) < g -log A;.
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We use Theorem 2.2 with n replaced by n + 1:

n
|2mri — Z b; log ajl
i=1

> exp{—Cz2(n +1). D**37" log A; .. .log An(27nn /D)W (1 + log D)}
> exp{—C3s(n, D)log A, ...log A, log B}.

Theorem 1.2 follows.

Proof of Theorem 1.3. Finally we deduce Theorem 1.3 from Theorem
2.2

1) From the assumptions of Theorem 1.3 and from Theorem 1.2 we
deduce
eB < C29(n,D).log A, ...log A, log B,

which yields
B < Ci3(n,D,¢). log Ay ...log Ap loglog An,.

2) ¥ b, = 1, we follow the proof of Theorem 1.2 above with the defi-
nition of W replaced by W = log(e + nB/V;). There is no loss of
generality to assume B > e. log A,,. Using Theorem 2.2 we obtain

exp(—eB) > |2K,7rz' - Xn: b; loga,'|

=1

> exp{—C29(n, D)log 4; ...log A, log(B/ log An)},
for some & € Z such that |k| < ((n — 1)B + 2)/2. Hence

B < Cy13(n,D,¢€). log A, ...log An loglog Ap—1.

3. On the rank of certain matrices

In this section fy, ..., Bn, £1,...,£, denote arbitrary complex num-
bers with 8, = —1. We write a; = e%,1< j < n.

The transcendence proofs will involve auxiliary functions of the form

F(zo0,21,...,2n) = P(20,€™,...,e*)

LINEAR FORMS IN LOGARITHMS 287

where P € C[Xy,...,X,].

We define derivations Dy,...,Dn_; on the ring R = C[Xo,... X,]
by setting, for 0 <: < n,

DXy = bio (Kronecker symbol),
DiX; =6i;.X;, 1<j€<n~-1,
and

DX, = B;. Xa,.
Therefore

(3/6zo)’° - (8/6z,._1)’""F(zo, ces ,zn_l,ﬂoZo +...+ ﬂ,...lz,,_l)

= Dg°...D;" 3 P(z0,€%,...,e*"1, efozot tBn1znr ).

We say that F has a zero of order > T in the direction of the
hyperplane W:
Zn = Pozo + ...+ Br-12n-1

at a point (uo,...,un) € C*+1 if
Dy ...D;" ¢ P(ug,...,u,) =0

for all non-negative integers 79,...,7p—1 With 79 +... 4+ 73 < T. This
means that the function of n variables

F(UO + 20y.00yUn—1+ Zpn—1,Un + Pozo+ ... + ﬂn_lzn_l)

has a zero order of > T at the point (0,...,0) € C™. .

We need to know whether there exists a non-zero polynomial P of
degrees say :
degx, P < L;, 0<i<n

such that F has a zero of order > T in the direction of W at all points
(8,881,...,88,), 0<s< S

for some given non-negative integers Lo, Ly, ..., L,, T, S.
By linear algebra, a sufficient condition for the existence of such a

Pis T
Lo...L, > ( :").s.
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The following easy remark will be used several times.

Remark 3.1. Assume Lo < TS, L; < T,1<:<n-1,and L, = 0.
Then there is no non-zero polynomial P of degrees < L; such that

Dy ...D;* P(s,ai,...,ap) =0

for0< i <T,(0<i<n~-1),0<s<S; (see [1], [11], [10]).
We denote by A the matrix whose entries are

n—1

2 ol 1-"1 -(nBo)™ 3'\°—f°' I')l H(/\ +AnBi)" He’\ itje

To+Ty =70
where the index of row is

(Toy-++,Tn-1,8), Wwithmo+...+ 71 <T,0<s< S,
and the index of column is

(Moy.--yAn), Wwith0< A\ <L;,0<i<n.

The existence of a non-zero polynomial P as above amounts to say-
ing that A has rank < (Lo +1)...(Ln +1).

We begin by giving upper bounds for the rank of A, and then we
will explain that these upper bounds are essentially best possible.

We need to introduce a few notations. Let r be an integer,
0<r<n,andlet \D, ... A" be linearly independent elements of Z™,
with

AP = (Ag"), AL, 1<p<r

Let us write
L£L=(W, . A",

and let ¢, , denote the set composed of all increasing sequences of r
elements from {1,...,n}; for each 8 in ¢, n, we will denote by L4 the
minor of £ whose columns are indexed by 84,...,60,. Define

_ o _r if (B1y...,B0) € CAD 4. 4+ CA,
70(£) = o0 {r+1 otherwise,

and

H(Liz1,...,@a) =(n—r)l ) |det Lo|.]] =i

8€wr,n ige
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In this paragraph we will denote by Z the ideal, associated to the matrix
L, generated by the r polynomials

n

A(j) .
HX -1 1<Sj<r

in C[X3,...,Xn). We will need an upper estimate for the maximal num-
ber of monomials in Xi,...,X, of given degrees which are linearly in-
dependent modulo the above ideal Z. The following lemma will do the
job.

Lemma 3.2. The mazimal number of monomials in X,,..., X, of de-
grees < Ly,...,L, which are linearly independent modulo I, is bounded
above by

((4v/n)""" /(n — P))H(L; Ly, . . ., La).

Proof. Put A =2Z(1/L,,0,...,0)+...+Z(0,...,0,1/L,) in R™,
C={z€R; || <1, 1<i<n},

and A' = ZA® 4 .. 4+ Z3® where 3D = AP /Ly,... 2P /L,).

is clear that two monomials X1 ... X#» and X" ... X} are congruent
modulo T as soon as u — v € A', where p = (1/Ly,...,44n/Ly) and
v = (v1/L1,...,vn/Ly). Let p be the orthogonal projection of R™ on
the orthogonal of A’ ®z R; then p(A) is a discrete subgroup of R™. If
A1) X(%) ig a basis of p(A), it follows from Lemma 3 of [3] that

det ‘MM = [K : A')2/(L;...L,)? det *LL,

where £ = (A0, 30), M = (0D X)) and X' =
(A ®zR)NA. The maximal number, say N, of monomials in
X1,...,X, of degrees < Ly, ..., L, which are linearly independent mod-
ulo T is at most [A : A’] times the number of points of p(A) in p(C).
Since p(C) is contained in the ball {z € R*~"; |z| < /n}, and since the
diameter of a fundamental parallelogram of p(A) is < /n, we get the
upper bound

N < (4v/n)" (K : A')/(det ‘MM?}) < (4y/R)" "Ly ... La(det ‘LL)}.
It remains to compare det 2L with H(L;Ly,...,Ly,). But

det ‘£L= Y (detLe)’ = ) (—M)z,
Lo, ... Lo,

0€EPs.n 8€¢r.n
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by the Cauchy-Binet formula (cf. [5], pp. 23-24). Finally

. = 2.1/2
L,.(det t££)1/2 o Ll . Ln[ Z (___M) ]1/
OGVr,

Lg, ... Ly,
| det £o|
..Ln
"2 oL

< H(L; Ly, .., La)/(n — ),

which conclude the proof of Lemma 3.2.

Remark. We could also deduce Lemma 3.2 with (4/7)"~"/(n — r)!
replaced by 4™~" using Nesterenko’s result in [8] (compare with [10]).

Lemma 3.3. For each L as above, the rank of the matriz A is at most

@) (Tjo"") .S.H(L;La,...,Ln).

(n - )l

Proof. The linear system associated to the matrix A can be written

(*) Di*o...o D P(s,e®,...,e*) =0
(To+...+Tac1 <T;0< 8 < 9),
where P stands for the general polynomial of degrees Lo,...,L,.
We will use the following remark. Let Q € C[Xi,...,X,] and
a = (ay,...,a,) € C® be such that

Q(z101,...,2pa,) =0

for all (z1,...,2,) € C" satisfying
T
[[= =1, 1<j<r

Then the function

G(z) = Q(are™,...,ane™)
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vanishes on the orthogonal V4 in C™ of CA() + ... + CA(", Therefore,
for all ¢ = ((1,-.-,(n) € Vo, we have

Zc. 5 ’G(O)

=1

which can be written

> C;X;%Q(a) =0.
i=1 :

For each ( = ((1,...,(n) € C", we define a derivation A¢; on
C[Xo, ..., Xn] by

" 0
A¢ = Z; CiX.'—a—Z_-

We denote by W, the orthogonal in C® of C(fB1,...,8s). Notice that
dimWy, = n — 1 and dim Wy /Wy NV = 09 — 1. We choose a basis
Foot1y- -y fn of WoN'Vp, we complete it as a basis f3,..., fa of Wy, and
we write

D} =Dy, D;=Ay 2<i<n.
The system (*) is clearly equivalent to

D'Tl'o...oD'"P(s,e®™,...,e*"") =0, m+...4m<T,0<s<8S.

We now consider the following linear system

(%) D'lo...oD' °P(s,z1e®,... ,z,e%") = 0,
o)
where 71 + ... + 75, < T, 0 < 3 < S, H,_lx'\ = 1 and P is as
above. Since D ,+.., D} are associated with vectors orthogonal to
oo+1

CA® 4 4 CAM, the rank of of the system (*x) is at least the rank of
(*), and we only consider the derivatives in og directions. On the other

hand we need to eliminate the z}s. Rewriting each equation of (*x) as
)

a polynomial @, , in z1,...,%, modulo the equations [}, :v:"' =1,

1 £ j < r, each condition Q, = 0 gives, thanks to Lemma 3.2, at most

((4vn)*™"/(n — T )H(L; Ly, ..., Ln)

equations. It is then clear that the rank of (**) is bounded by

((4ym)*~"/(n = r)!) (T + "°> .S.H(L;Ly,...,Ly),
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hence the Lemma 3.3.

Remark. If we choose for £ the canonical basis of C*, we find the
trivial upper bound (T:") .S for the rank of A. Notice that a basis of
W is e, ...,en-1, With eo = (1,0,...,0) and e; = (0, 6i1,- .., 6 n-1, 5i),
1<:<n-—1, henceey,...,en_1 is a basis of Wy; for this special case,
in the preceding proof if we choose f; = e;41, then D! = D;y;.

We need another upper bound for the rank of A. Let r be an integer,

0<r<n,andlet X\O ... A" be linearly independent elements of Z™.
Define £ = (A1), .. /\(")),

01(£)=0'1={r—1 if 0o = r and By = 0,

otherwise.

Define a mapping
@1 (C*)" — (¥

by
i A LN
e(u1,...,up) = [Hu ...,Hu:“ ],
=1 f=1
and put
E(S) = ¢(I(S)),
where

I(S) = {(e*,...,e"*), 0< s < S}.

Lemma 3.4. For each L as above, the rank of the matriz A is at most

(‘(*_n@__:)"!' , (T ;’1"1) . Card E(S).(Lo +1). H(L; Ly, ..., Ly).

Proof. Let V1 denote the orthogonal in C™*+1 of {0} x (CAM) 4. .+C/\(;)).
Hence dim W/W NV; = oy. For each { = ((o,...,(n) € C**!, we define
a derivation A¢ on C[Xp,...,X,] by

8 = o
AC=Com+ E Cixiﬁ-
i=1 '

Let now Dy, .,,..., D}, be derivatives associated with a basis of W N V4,
and Dj,..., DDy, derivatives associated with vectors completing the pre-
vious as a basis of W. We consider the following linear system

(**) DIII 0...0 D’ " P(zo,zle t . ,x"elln) =0,
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where 71 + ... + 7o, < T, 0<s<S H;—1 ,()=1andPisthe
general polynomla.l of degrees Lg,...,L, in Xy,...,X,. First let’s re-
mark that it is equivalent to restnct s to card E(S ) va,lues in the range
{0,...,S8}. Since D), ,,,..., D, are associated with vectors orthogo-
nal to CA®) 4 .., + CA(", the rank of the system (**) is larger than
the rank of (*). Rewriting each equation of (**) as a polynomial Q,, -

A

in zg,...,7n modulo the equations [[_,;z;* =1, 1 < j < r, each

condit1on Q,,r = 0 gives, thanks again to Lemma 3.2, at most

((4v/R)* " /(n = ) )H(L; Lu,..., L) . (Lo + 1)

equations. It is then clear that the rank of () is bounded by

(4v/m)* " [(n = 1)) (T , al) . card E(S). (Lo +1). H(L; Ly,..., Ln),

hence the Lemma 3.4.

Here is the main result of this section: the zero estimate.

Proposition 3.5. Assume that the rank of A is (Lo +1)...(Ln + 1).
Then there exzists an integer r, 0 < r < n, and there ezist A(D, ... A(")
Linearly independent in I™, such that if we set

Ty = [T/(n+1)] and S;=[S/(n+1)],
then esther
i) (T‘:‘”) .81 H(L;Ly,...,Ly) < (n+1).Lo...Ln
0
or

(ii) r > 0 and
(Tl + 01

o1

!
).Ca.rdE(Sl).H(L;Ll,...,L,,) <tV L

“n+l-r

Proof. See appendix.

We need some further simple properties of H. For the rest of this
section, we assume L; > 1, 1 < 7 < n, and we denote by a and b two
positive numbers satisfying

T2>a max L;
155<n
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TS > bL,.

Lemma 3.6. We have the following inequalities.

) T+ (=)
" - )
(i) T HELL)2 a'(lr,L)'Ll . Ln.

Proof. We have
—r)! AL
HLL)2(n—r) L, ...Ln/(lrgkaxn L))"

This completes the proof of Lemma 3.6.

Lemma 3.7. Define A = max{|{j|, 1 < j < n}, L = ma.x{|)\S’)|,
1<j<r,1<i< n} Assume 0y =r —1, Card E(S) < S and that
B1,...,Bn are algebraic numbers in a field of degree < D. Then either
the number

A=pli+...4 Bnln

vanishes or

1Al > exp{ -D [Zn: h(B;) + log(n""‘zASL")] }
j=1

Proof. Since oy =r — 1 we have 8y = 0 and
Bi=> X, 1<i<n,
J=1

for some ¢; € Q. The assumption on E(S) means that there exists s € Z,
1<s< S, such that

(@)
Ha,’-‘":l for1<j<r.

=1

Define kj €Z,1<j<r, by

3" APst; = 2mk;v/ 1.

i=1
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Hence
n T
A= Z Bil; = 2 c_,'27rkjv—-1/s
i=1 j=1
and

|A] = 271"2 c,-kj/s..

i=1

It is therefore sufficient to use Liouville inequality (e.g. Lemma 2.2 of

[11]). We have

2rlk;] < 5.3 AP 6] < ALSn.

=1

Now we compute the c; by solving the system

.
Bi =ch/\51), 1<i<n,

j=1

which gives

cj = Aj/A,

where A and Aj are certain determinants; A is a non-zero integer of ab-
solute value at most (rL)", and A; are linear combinations of fy,. .., fx
with integral coefficients of absolute values at most (rL)™"1. So

2": cikj = (2": aiﬂi) /4,

J=1 i=1

where a; are integers of absolute values at most n™*1ASL", and
n
A2 |3 ais|/as.
f=1

‘The desired estimate easily follows from Lemma 2.2 of [11].

4. Proof of Theorem 2.1

We use the notations of [11]. We first refine Proposition 3.1 of [11].

Let co, g, €1, €3, €3, ¢4 be positive real numbers satisfying the
inequalities (3.1), (3.2) and (3.3) of [11]. We also assume ¢y < 29 and
Cy S 210.
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We assume V; > n/D, and we define
E; = min{exp(¢DVi/n), min {2¢DV;|loga;|™'}},
E* = ma,x{25"+4q"+1n2"DE{‘,E{'2},
W* = max{W,n. log(2''ng’DV;}), ;1215 . log B },
Uy = 22n2¢" V' D? max{W*, V), W*V;}(log E1) ', log E1 }
and

Uz = cherchescaq®™ (g — D2 (n)) 1 D2, ...V,
W*(log E*)(log E1 )™ "7,

and

U = max{Uy,U,}.

With the assumptions of Theorem 2.1, let K = §
Qaiy,...,an,B0,---,Pn-1), and assume q is a prime number such that

Proposition 4.1.

[K(a}/q,...,a;/q) : K] =q".
Assume also f, = —1. Then

Al > e Y.

We go back to the proof in §3 of [11]. We replace V,y_, by E*. We
replace (3.7) of [11] by A

log E* < (19/2)¢n?Dlog E;.
We replace (3.10) of [11] by
PRI R, < (Er)IHLn,
and (3.14) of [11] by
3gmH? 25+ 2nH1E 6 < (L) 4 1)(E*)H/,

because C3 < 2!°, The inequality (3.17) of [11] is satisfied for 0 < t <
and |z| < gnt228ntTp2nHip G, ) of [11] or0<t<T
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Next we take Q in the interval 1 < @ < ¢33 +82p27+1 and in
(3.18) of [11] we replace gL by g328n+82p2ntl,

This means that if we set

N = q225n+8n2n+1’

then we replace L, by N in (3.10), (3.14), (3.17) and (3.18) of [11]. In
§3.4 of [11] we restrict J to the interval

0<J< [1°5N] +1.
logg

All the estimates in §3.3 of [11] will remain valid; however there are two
important modifications which we now explain: the construction of the
auxiliary function, and the contradiction.

a) Preliminaries to the proof of Proposition 4.1

In [11], we use the polynomials
AX, k) =(X +1)...(X +Ek)/k!.
Let us set Lo = (Lo + 1)(L-1 + 1). Then the polynomials

Alz+A-p, Lo+ 1%, 0€A3 <Ly, 0 X< Lo

give a basis of a space of polynomials of degree < Lo. This change of
basis gives trivial changes in the matrix which we will consider. We will
use the results of our §3 above, but now the space of polynomials we
consider is of dimension Lo (instead of Lo + 1 in our §3 above).

When L, L ,f,,, are positive integers, we are interested in the rank
of the matrix A whose entries are

! d‘r' n—1 n .
> g (—O—A(8+A—1,L—1+1)*°+‘> [TOe+2aB0)™ [T i,

T,
r6+rtl)l=1'° dZoo r=1 =1
which can be written, with the notations of [11],
Ao(s, 7).l ..oy

The index of a row is (s, ), with

7=(Toyee rTa=1)y To+ ... +Ta-1 <T, and 0<s<S, (s,9) =1,
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while the index of a column is A = (A_j, Ao, ..., An) with
0<A1<Ly,08X<Ly, and 0SN<L, 1<i<n.
We will choose L; = Li;1 <i < n-1, but we will take for f,,, the
smallest integer such that we can construct the auxiliary function. More
precisely, for each real number U < U, we define
L!, = ﬁ/clcznq""'lDSVn,

and ;
L,=[L})

Notice that in the case U = U , we find I, = L,, and also in this case

(L1 +1)(Lo+1)...(Ln—y + 1)L} > co(1 — -)(T+ ") .S (4.2)

(compare with inequality (3.6) in [11]).

Let ¢ € {0,1}, 0 < r < n, with r > 0 in case i = 1, and

= (MDY e 27 with A, A(™ linearly independent. We
set

= (L1,...,Ln_1,L})
and
L=(L,...,Lno1,Ly).
The function H(L; L) (see §3) is of the form

H(L; L*) = A(L)U + B(L).

Lemma 4.3. Assume o; =r —i. Then B(L) > 0.

Proof. Assume ‘B(L) = 0. This means detLy = 0 for all
6=(6,...,6,—1,n) With0< 6, <...< 8,1 < n:

@
YD Vo
Lo = 5
Aﬁi’_ SRV
A0
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As A, A" are linearly independent, we have AD = =20 =0
But the assumption 8, = —1 gives

Bry-..,n) & CAD 4+ CXD,

hence 0o = r + 1 if i = 0 and 0y = r if i = 1. This completes the proof
of Lemma 4.3.

Now we are going to choose U as the smallest positive number

such that there exists i € {0,1}, ro, and £° = (/\(l) /\('°)) with
0? = 0i(L0) = ro — 1o, satisfying

() S )

<Ly (Li+1)... (Lo + DIE. (44)

We do this in the following way. We define C(L) by

C(L).co. (1 - —) G0 (T+ ) . c1ang™ DSV,

(n— ro)' o;

=Ly (Li+1)...(Ln-1+1)
so that (4.4) can be written
A(L®).U +B(L%) < 0(£%).U.
We define U as the minimum of
B(L)/(C(L) - A(L))

for (i,£) running over the set of i € {0,1}, and £ = (A®,...,A(), for
which 0; = r — ¢ and C(L£) > A(L). This set is not empty; thanks to
(4.2) we can choose for £ the canonical basis of Z™, with ¢ = 0. Of course
we choose a value (ig,L£°) which gives the minimum, and we get (4.4)

with equality. Notice that, if 7o = n, then ZA(I) .+ Z)\(") 7™ and
i = 0 (this follows from the definition of H: this is the only case where

H =1). If r¢ <n, then (1 - %) L2770 > 1.

Moreover, from this choice of U, we deduce, using Lemma 4.3,

AL).U+B(L)2C(L).U ‘ (4.5)



300 LINEAR FORMS IN LOGARITHMS

for all (¢, L) with o; = r —i. This means

. (1— %) Bym)mT <T+ai).S.H(£,L”)

(n—r) o;

>0 (Li+1)... (Lao1 +1). L8, (4.6)

Let us show that L} > 1. Otherwise, the matrix A (which corre-
sponds to our choice of U) does not involve A,, and from the Remark
3.1 we deduce that its rank is Lo.(L; +1)...(Ln—y + 1). We now use
Lemmas 3.3 and 3.4 with n — 1 variables instead of n (because a,, is not
involved) to get a contradiction with (4.4).

Now we have L} > 1:
U> c1cang® DSV,

hence L > 1, and we can use Lemmas 3.3 and 3.4 (with Lo,...,L,
replaced by Lo, cybn,and Li=Lifor1<i<n-— 1) to deduce:

Lemma 4.7. The rank of the matriz A is at most

1. .
aLO(L1+1)(Ln—1+1)(Ln+1)

b) Construction of the auziliary funciion.

Lemma 4.8. In Lemma 3.2 of [11] p. 266, one may resirict A to run
over the (n+2)-tuples (A=1,...,An) with 0 < A; < Lj, (-1 < j<n-—1)
and 0 < )\, < L,.

Proof. The proof is the same as in [11], apart from the fact that we use
Lemma 4.7 in place of (3.6) of [11].

We now continue the proof as in §3.3 and §3.4 of [11]. We keep
the estimates of [11] as they stand; we do not modify the parameters T,
S,U, L_y, ..., Ln_y, but the parameter L, is replaced by L, which
may be smaller, and therefore the upper bounds in [11] §3.3 and §3.4
are valid. Also it is important to notice that L(J'H) < LY /4, hence
L(J) <qIL,.

¢) End of the proof of Proposition 4.1.

LINEAR FORMS IN LOGARITHMS 301

We write the main inductive argument (p. 268 of [11]) for

Jo = [112(%%’]. Then we need to modify the argument in §3.5 of [11],

. J ]
because we cannot claim that LS, °) vanishes.

Let us show that the numbers
An
Pror(8) =D ZP(J°)()\)£dAJ°(3,T)a;\1’...an s
(2) d=1

satisfy .
0J,r(8)=0 for0<s< ¢’°S and |r| < ¢77°T. (4.9)

This is plain if (s,q) = 1, since this is the step before the last in the
inductive argument. If ¢ divides s, this has been proved at the last step
of the induction (proof of Lemma 3.6 of [11]).

From Remark 3.1 above (or from the argument in §3.5 of [1]) we
have LS,J") > 1, hence LS.J) > ¢’ for 1 < J < Jp. We define

o],

N = [J° ~ logg

thus . 5 o > N/5nd?
g% >5n and ¢ >¢%/5ng > N/5ng.

We now use the zero estimate (Proposition 3.4 above). Define
Ty = [[¢ " T)/(n+1)], Si=[¢"S/(n+1)]

From (4.9) we deduce that there exists an integer r, 0 < r < n, and
there exist A1), ..., A(") linearly independent in Z", such that either

(Tl . %) S HGIEY, ., L) < (e 1) T (5 +1), (4.10)

(o) j=-1

orr >0 and

(Tl +¢71) ) Ca.rdE(Sl)H(AC,LgJ‘), “,L&h))

n+1 )
gn(_t*_)l H(L“’+1), (4.11)

where £ stands for (A1),..., A("),
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It is readily checked that

S (T1 +o\ _ 4 T% . §
1. > =,
a; 5 q.h(o.'—l)‘(n + 1)oitl gy

(T] +0';‘) > é T
o - 5'qu”‘.(n+1)”".a,-!

for i =0 and 7z = 1. We write

and

HLGLOY) 5, H(LEL)
Hn-—l L(Jl) _ . H?:O f’j’

where L stands for (L, ... ,Ly). Since L( > 5n,1< J < n, we have
L{M +1 < (1 +1/5n)L§ ) , hence

T () 5 17 ,(h
e o< [

j=1 ]=]

Therefore (4.10) gives

J r—o T
ir—oot)) = __ & H(L; L)< 5. (n+1)7* (n 4 1)1, HL,, (4.12)

3=0

while (4.11) gives

r—o T
¢ ——  Card E(S). H(L; L)< 3 (D ——— (”“) HL
j=1
. (4.13)
Our assumption log Ey < ¢DV; /n gives

T/L; > 3-c2n?¢®DV;/log E; > 14.n3,
while the assumption E* > EP’ gives
TS/Lo > }.cangDlog E*/log E; > 14.73.

We consider different cases depending on whether i = 0 or i = 1, and
gi=r—t+loro;=r—i.
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a) Assume (4.12) holds with g = r + 1. We get

Tr+1 r+3
Y .S.H(L; L)< — (n+1)*3nl HL
7=0
However, it is readily checked that
(n+1)nl(r+1)1 < 22333 (n — 7)), (4.14)

and we get a contradiction with lemma 3.6 (i) with a > 14n3, b > 14n3.
B) Assume (4.13) holds with o3 = r. We get

T" 2 T (n+1)H! o
- . < ~ ! .
r! H(ﬁ’L)_4 n—r+1 ] J
J=1
3r (n ) - T.

(from (4.14) with r replaced by r — 1) which contradicts Lemma 3.6 (ii)
with a > 14n3.

v) Assume (4.12) holds with g9 = r. We get

r - 7 .
2J; . L r+2 .
q x,———r! .S.H(L,L)$4.(n+l) n!. I IOL,.
J=

We use our choice of N, with the bounds

)n-—r

< 25nn2n

8v/n
1 r4+2 ' (

(22t
and Cp < 29; we get a contradiction with (4.6).

6) Assume (4.13) holds with 03 = r — 1. From Lemma 3.7 we deduce
Card E(S;) = 51, hence we get

r—1
20 T

Yoy S H(C;L)<2.(n+1)*n! l;II;,-.

Once more, we get a contradiction with (4.6).
This completes the proof of Proposition 4.1.
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d) End of the proof of Theorem 2.1.

We now deduce from Proposition 4.1 that in Proposition 3.8, p. 274
of [11] one may replace log(EDV,} ;) by log(ED), provided that Vi >
n/D.

This is clear if n < 12, because in this case we still have, with our

value of E*,

log E* < nlog(2'3¢*n). log(ED).
If n > 13, we have

log E* < n*(1 +loggq). log(ED),
and

log(2"*ng?) < (3 +log g)v/nm,
while

(3 +log g)(1 +logq) < 2¢* /(g — 1),
and this is sufficient for our estimates of [11] p. 275.

Finally, it follows that in the theorem p. 258 of [11], one may replace

log(EDV,",) by log(ED), provided that V; > n/D. This completes the
proof of Theorem 2.1.

5. Proof of Theorem 2.2

We introduce parameters cg,c1,...,cs which satisfy the following
requirements: c¢p is a sufficiently large absolute constant, and

cs > c22"(n+ )"l o > co logcs
0 ’ g Cs,
€2 2 CoCs, €3 > CoCs, C4 2> CoCs.

We could of course choose ¢; = ¢3 = ¢4, but the above notations will
enable us to use the computations already made in [11]; also, if one
wishes to provide good numerical values, it may be better to have more
freedom.

We will denote by fy,..., fs positive numbers which can be explic-
itly computed in terms of n and cy, . .., ¢5, and which satisfy the property
that cocy fi are bounded by an absolute constant independent of cjp.

Next we define
S = [caDW(log E)™],

U = cocrclescy . %'- . D™V, ...V, W (log(DE))(log E)~""1,

and
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T = [U./clcsDW],

L, =[W],

L_3 = [U/ecicaDlog(DE)(L—-1 + 1],
Lo = (L1 + 1)Lz +1).

Further, for each real number U > co, we define real numbers L‘{ yeo, L,
and integers L1,...,Ly, by

Lg- = ﬁ/clcanSVj, 1<j<n,
and . _
L;=1[r%, 1<j<n

We denote by L,,...,L, the values of Li,...,L, corresponding to
U=U.

We assume 0 < |A| < eV, and we shall eventually reach a contra-
diction.

Let us recall that
am ]
o Lo -2 k
Az ks 4,m) = —— (A% k),
where
A(z;k)=(2+1)(z+2)...(2 + k)/K!, A(z0)=1.

We introduce the functions

n—1
Az 7) = Az + Ao Loy + LAz + 5570) . [ A(aAr = beda; 77)

r=1

for0 < A; < f/,-, G =-2,-1,1,...,n), 7 = (70,...,Tn-1), and 2z € C.
Notice that the dependence in A_, A_j, A1, ..., An is hidden in the
notation A(z;T).

Our auxiliary functions will be of the form

fr(2) =3 pA(z;T)a*" .. agni,
(A
where v; = Aj — Anbj/ba, (1 < j < n), and

er(2) = Zp(»\)A(z; T)att ... ajn;
(2
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here, A stands for (A_z,A_1, A1 ..., 2,).

We need analytical and arlthmetlcal estimates on A(z;7) (cf. [11],
and [6]).

Lemma 5.1. For |2| < ¢sES and |7| < T,
|A(z;‘r)| < tU/D,

Moreover, for s € Z, 0 < s < ¢55, and ITI < T, A(s;T) is a rational
number with a denominator at most ef2U/D

Now we consider the matrix B whose entries are
A(s;T)ar? .. adne

where the index of row is

(T0y++-,Tn-1,8), Wwith|r|=7+...4mm_1<T,0<s< S,
and the index of column is

(A=2,A-1,A1,...,A0), with0< A < L.
We recall that the polynomials
(A(z+7;k),, 0<r<R-1,1<€<L

(with k > R > 0, L > 0) are linearly independent and of degrees < kL.

First step. We choose for U the smallest positive real number with the
following property:

Thereex1stz€{0 1}, reZ,0<r<n,withr >0ifi =1, and
there exist A, ... A(D linearly independent in Z™®, such that

co(4y/m )T (T+"').CardE(S).L;',.H(L;Lg,...,L*,‘,)

<LytL}.. Lk,

where £ = (A, A(')) and where we set Card E(S) = S in case
1 = 0. Note that for U we have

co(4v/n )" (T + "') . Card E(S). H(L;LY,...  L})

>Li-Lt ... b,
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with all £ and ¢ = 0, 1 and we have equality with at least one £ and
one i € {0,1}. From Lemma 3.3 or Lemma 3.4, accordingly to : = 0
or i = 1, we deduce the existence of a non-zero polynomial of degree
< Lo.[LY]...[L!] satisfying

Dy ...D" 7 P(s,a8,...,a5)=0

n—1
And from Remark 3.1 we deduce [L%] # 0 hencef}j >1forl1<j<n.

Step 2. Among the numbers oi'...ar, 0 < i; < [Q(ey) : Q),
1<j<n, iy +... +1in < D, we choose a basis {1,...,€p of the
field Q(ay,.. a,.) over Q. Then there exist rational integers pg(}),
ISdSD,0<)\ <L,,J = —2,-1,1,...,n, not all zero, bounded in
absolute value by exp(f;U/D), such that 1f we set

D
P = 3 pa(Vea,
d=1

then for all (n 4 1)-tuple (1o,...,Tn—1,3) € N**! satisfying || < T and
0 < s < §, the equation ¢,(s) = 0 holds.

Proof: We follow the proof of Lemma 3.2 of [11]. The equation ¢,(s) =0
can be written

D
Z ZPd(f\)ﬁdA(s, e, ad® = 0.

() d=1

The rank of the linear system obtained when || < T and 0 < s < §
vary is equal to the rank of B which is bounded above, thanks to Lemma
3.3 or Lemma 3.4, accordingtoi =0 or¢ =1, by

@y (717

for any £ and ¢ = 0,1 and where we set Card E(S) = S in case i = 0.
Hence by the choice of U in step 1, rank B is less than 2LoL} ... L}, /co.
We select rank B equations from the above linear system and we apply
Lemma 2.1 of [11] to this sub-system, with

d=D,
n=D(Lo+1)([L] +1)...([LL] +1),
m < 2LoLY ... L} [co,

) . Card E(S). (Lo + 1) . H(L; LE,...,LY)

and finally,
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X <exp(fsU/2D),

thanks to Lemma 5.1.

Step 3. For |z| < ¢S and |7| < T, we have

[fr(2) = ¢-(2)| < |A].7Y.

Proof: See Lemma 3.3 of [11] with J = 0.

Step 4. For s € 1,1 < s < ¢58, and |r| < T, we have either ¢,(s) =0
or

log pr(s)| > —fsU.

Proof. See part 1 of Lemma. 3.4 in [11] with J = 0.

Step 5. For |z| < ¢55 and || < T/2, we have

log £+ (2)| < —(% — f)U.

Proof : This is essentially Lemma 3.5 of [11], again with J = 0. We use
the extrapolation procedure of Baker together with Steps 2 and 3. In the
estimate which is provided by Lemma 2.3 of [11], the main term comes
from the quantity (T/2)S log(R/4r); we choose r = ¢5sS, R = Er, and
this gives the term U/2c;.

We also need an upper bound for |f-|r = sup{|f-(2)|; |2| = R};
this estimate involves

z L;Rlloga;| < ecsU/eyc,
i=1

which is less than fsU/2. We also need an upper bound for
(T/2)S1og(18r/S), and we use our assumption ¢; > ¢ log cs.

Step 6. For |1| < T/2and 0 < s < ¢55, s € Z, we have
pr(s) =0.

This is an easy consequence of the three preceding steps; see [11] Lemma
3.6 with J = 0.
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Step 7. We now reach the desired contradiction. We use Proposition 3.5.
with Ty = [T/2(n + 1)) and S; = [¢55/(n + 1)]: there exists ¢ =0 or 1,
and there exists £ such that

(T1 +0o;

g

) .Card E(S1). H(L; L)< (m+ WL Ly...La. (5.2)

We notice that, for 0 < ¢ < n, we have
(Tl + U) . S] Z (T : U) . S C5/0020(n =+ 1)0+1.
c

Notice also that T/L; > 8n® (1 < j < n) and T'S/Lo > 8n®. Therefore
Lemma 3.6 gives g =r — 1if i =0, and 07 = r if ¢ = 1. Next, Lemma
3.7 yields Card E(S1) = S; if i = 1. Now from (5.2) we deduce

cs. (T :‘7‘) S H(L; D) < co(n +1)12%(n+ 1) L3 L, ... L,

and for c5 > c2(n + 1)"+2n! 2", this gives a contradiction with the first
step (minimality of U).

Appendix: Algebraic subgroups of a torus

Let us consider an algebraic group G which is the product of the
n-th power of the multiplicative group G,, with the additive group G,.
We embed G, and G,, in the projective line P! in the natural way, that
is we identify G, with the affine line and G, with this affine line but one
point. Any algebraic subgroup G’ of G is then a quasi-projective subva-
riety of the multiprojective space P = [, P%'-). There exist notions of
multidegrees on P which we recall now.

Let V be a quasi-projective subvariety of P of dimension d and
6 = (64,...,084) an increasing sequence of {0,...,n}. There exists a
hypersurface of H:Ll P%O.-) with the following property: for each point
P of H?=1 P%,.,) outside this hypersurface, the number of points in V
whose projection is P is finite and independent of P. We denote this

number by deg, V. The characteristic function of V is then the following
homogeneous polynomial of degree d in the variables Xo,...,X,

H(V;iXo,...,Xn) = d!)_degy V. Xo, ... Xo,,
[
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where 6 runs over the set ¢4 n41 of all increasing sequences of d elements
of {0,...,n}.
We will see soon that this polynomial, which occurs in the zeros

estimate of [9], is closely related to the polynomial H introduced in §3.
Then we will establish Proposition 3.5.

First we recall that any algebraic subgroup of G = G, x G, splits
in a product Gy x G} where Gj (resp. G}) is a subgroup of G, (resp.
G2). So we consider two cases, either G = {0} and we will say that we
are in case I, or G = G, and we will say that we are in case II. In case
1 it follows from Lemma 3.4 of (9]

H(G';Xo,. .o ,Xn) = 'H(G'I;Xl, ces ,Xn),
while in case II we have, with d 4+ 1 = dim G/,

H(G'; Xo, ..., Xn) = (d+1).Xo . H(G; X1, ..., Xn).

Lemma A.l. For any connected algebraic subgroup G' of G there exisis
L=AD A withr =n—dimG' in case I and r =n+1—dim @
in case II, and \) € Z" such that

H(G'; Xo,. .., Xn) = (dimG' . X0 ) H(L; X1,...,X0),
where t = 0 tn case I and 1 = 1 in case IL

Proof : From the remark above, it is enough to prove
H(Gll;Xla' .. ,Xn) = H(E;Xl,. .. ,-Xn),

for some L. Note that n—r is always the dimension of G}. And according
to the definitions of the functions H and H it all comes down to verify
the equalities

degy G, = |det Lo |,

where § € @n_rn and & stands for the complement of 8 in ¢, n.
This is Proposition 4 of [3], we repeat the proof here for the conve-
nience of the reader. By symmetry it is enough to deal with the index
6=(r+1,...,n). Let A be the subgroup of Z" of rank r which is or-
thogonal to T . By Theorem I (p.11) of [4] we can find, as in [7], p.434,

generators A1), ... A(") of A such that /\gi) =0 for¢>j. If £ is a basis
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of A the quantity |det Lo | is invariant by a change of basis, so we have
|det Lor| = |,\gl)| ces I)\(r')|. But G| is defined in G by the equations

A@) A
X" =’HXJ' T, i=1,...,r,
i>i

so, if we fix X,41,...,Xn each non zero, the number degy G} of points
in G| over X,41,...,Xn is equal to |A£1)| e |/\$r)|, and we deduce the
equality

degy G = | det Lot|,
which establishes the lemma.

Proof of Proposition $.5. If the rank of the matrix A is strictly less than
(Lo +1)...(Ln + 1) there exists a polynomial P of degrees Lg,...,L,
which vanishes at each point (s,e®%,...,e*") for s = 0,...,S with
order at least T' with respect to the derivatives Dy, ..., Dp—;. The main
zeros estimate of [9] (Theorem 2.1) applied to this situation exhibits a
connected algebraic subgroup G’ of G satisfying

T; + dimW/W NG
dim W/W N G’

(% % %) <(n+1)Lo...Ly,

) . card(X + G')/G' “H(G'; Lo, ..., Ly)

where ¥ stands for the set {(s,e®*,...,e*"); 0 < s < 51} and W stands
for the image of the analytic subgroup

(205- -+ 2n=1) — (20,€7,..., et gPorot Fhn-1zn-1)

Let A be the subgroup of Z" of rank r which is orthogonal to Tg; and
L a basis of A. In Case [, i.e. Gy = {0}, we have dim G’ = n —r and we
compute card(X + G')/G' = Sy and dmW/W NG =rif G' C W or
=r+1ifG' € W. In Case Il (i.e. Gy = G,) we have dimG' =n+1—r
so that card(X + G')/G' = card E(S;) and dmW/W NG =r —1if
G' CWor=rif G ¢ W. Putting these calculations together with
Lemma A.1, Proposition 3.5 follows at once from (* * ).
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REDUCIBILITY OF LACUNARY POLYNOMIALS, IX

A. Schinzel

The aim of this paper is to extend the results of the papers [1] and
{4] concerning reducibility of trinomials and quadrinomials over Q to the
case where their coefficients are arbitrary algebraic numbers. We shall
use the following notation.

If K is a field, f € K[z1,...,zk] then
f % const H fee
o=1

means, besides the equality, that the polynomials f, € K[z1,...,zk] are
irreducible over K and prime to each other. Constants are considered
neither reducible nor irreducible.

Ifte=f Hf__:l z%, where f is a polynomial prime to 3z ...z} and
«; are integers, then we set

Jo=f.
A polynomial ¢ such that
Jg(=z7l .. zpt) = 2g(21,. .., 2k)

is called reciprocal. Let

8
Jé ca% const H fee.
o=1
We set
K¢ = constIl; fi°

where II, is extended over all f, that do not divide J (xf‘ . zi‘ —1) for
any integer vector [6;,...,6kx] # 0. Moreover if K = Q we set

L¢ = const I, f5°

where II; is extended over all f, that are non-reciprocal. The leading
coefficients of K¢ and L¢ are assumed equal to that of J¢. In particular,



