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ON THE TRANSCENDENCE METHODS OF GELFOND
AND SCHNEIDER IN SEVERAL VARIABLES

M. Waldschmidt

1. Introduction

The methods we consider here were introduced by Gelfond and
Schneider in their solutions of Hilbert’s seventh problem on the tran-
scendence of af (for algebraic « and f#). Gelfond’s proof [5] involved
the two functions e* and €%, with their derivatives, at the multiples of
log a, while Schneider’s proof [12] involved the two functions z and a*,
evaluated at the points Z 4 Z.8 (without derivatives).

Both methods have been extensively developed later. In his Bour-
baki lecture [2], D. Bertrand pointed out a similarity between two of
the most recent results which have been obtained, one by the method of
Gelfond - Baker [16], and the other by Schneider’s method [15].

The purpose of this paper is to prove a theorem which contains the

two above-mentioned results, by combining the methods of Gelfond and
Schneider.

Here is a corollary of our main result. Let G be a commutative
algebraic group of dimension d > 1 which is defined over the field of
algebraic numbers. We denote by T5(C) the tangent space of G at the
origin, and by expg : T¢(C) — G(C) the exponential map of the Lie
group G(C). Let do (resp. d;) be the dimension of the maximal unipotent
(resp. multiplicative) factor of G, so that G = G% x G31 x G,, where
G is of dimension d; =d — dy — d;.

Theorem 1.1 Let V be a hyperplane of Tg(C), W a subspace of V of
dimension t > 0 over C,and Y = Zy, +... + Ly, a finitely generated
subgroup of V of rank m over Z. Assume that W is defined over Q in
TG(C), and that T =expgY is contained in G(Q). Assume further

m > (dy +2dy). (d -1 - t). (1.2)
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Then V contains a non-zero algebraic Lie sub-algebra of Tg(C) which is
defined over Q.

The arrangement of this paper is as follows. In §2 we give a refine-
ment of the six exponentials theorem. In §3 we derive further corollaries
from Theorem 1.1. In §4 we state our main theorem, and in §5 we show
that it contains Theorem 1.1. The proof of the main theorem is given in
§7, using an auxiliary function which is constructed in §6.

The main part of this work was done at the Institute for Advanced
Study of Princeton, in the fall 1985. The author is grateful to E.
Bombieri. He wishes also to thank K. and R. Murty who gave him
the opportunity to lecture on this subject at Montreal early 1986.

§2. A refinement of the six exponentials theorem.

a) A strong version of the siz ezponentials theorem

A well-known open problem is to prove that if ¢ is a real number
such that 2¢ and 3t are both rational integers, then t is rational. More

generally, the four ezponentials conjecture [1], (6], [11], [13] states that

if 71, 2o are Q-linearly independent complex numbers, and y1, Y2 are
Q-linearly independent complex numbers, then one at least of the four
numbers

™V i=12; j=1,2
is transcendental.

The best known result in this direction is the so-called siz ezpo-
nentials theorem (1], [6], [11]: if =1, z2 (resp. y1, ¥, ys3) are Q-linearly
independent complex numbers, then one at least of the six numbers

e, i=1,2 5=1,2,3

is transcendental.

We refine this result in the following way.

Corollary 2.1 Let z,, 2 be two complez numbers which are Q-linearly y

independent, and let y1, y2, ys be three complez numbers which are Q-
linearly independent. Further let a;j,i=1,2; j = 1,2, 3, be siz algebraic
numbers. Assume that the siz numbers

exp(ziyj - O!,‘j), i=1,2 .7 = 152’3,
are algebraic. Then

TiYj = aij fori=1,2and j =1,2,3.
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If one takes for granted that Q-linearly independent logarithms
of a.lgebr’a,xc n}xmbers are algebraically independent (a weak form of
Schanuel’s conjecture), then it is sufficient to consider in corollary 2.1 two

nun.1bers Y1, y2 instead of three (a strong form of the four exponentials
conjecture).

We first deduce Corollary 2.1 from Theorem 1.1, then we give some
consequences.

b) Proof of Corollary 2.1

We choose G = G2 x G2,, which means d = 4. dp = 2. d; =
dy = 0. We identify TG(aC) wi;;nh C* by » G0 y dy = 2,

expg(u1, uz,us, ug) = (uy,uz, e, e%) € C? x (C*)?,
and we consider the hyperplane V of C* of equation
za(us + u1) = z1(ug + uy).
This hyperplane is the image of the linear map of C3 into C*:
(21,22,23) — (21,22,%123 — 21, Ta23 — 22).
It contains the points

i = (auj, @zj, 21y; — @1, T2y;j — azj), J=12,3.
We take
Y =2m +1In; +In;.
We have m = rkz Y = 3, because a relation
him + hang + hans =0

with rational integers hq, hy, h3 implies

hiair + heaie + haays = 0, 1 =1,2,

and .
hiyr + hayz + hsys = 0,
which gives hy = hy = hy = 0.
If the six numbers

6‘1' =exp(z.'y,' = aij)v i= L2 ] =1,2,3,
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are all algebraic, then
expg 15 € G(Q), i=1,23.
Finally, we put
W = C(1,0,-1,0) + C(0,1,0,-1).

This is a vector space of dimension ¢t = 2, which is defined over Q in C*,
and which is contained in V.

We use Theorem 1.1: the inequality
m > (dy +2d2) (d—1—1)

is satisfied; therefore V contains a non-zero Q-Lie sub-algebra Tu(C) of
Te(C). Since G is linear, V contains such a Ty (C) of dimension 1.

The assumption that z;, z; are Q-linearly independent means that
V does not contain a non-zero element of the form (0,0,a;,a2) with
rational a;, a;. Hence V contains a non-zero element (71,72,0,0) with
algebraic 71, 72. Therefore 7122 = 7221, and the number v = z2/z; is
algebraic and irrational.

Define
log 6i; = Tiy; — aij i=1,2; =1,2,3.
Then
vlogéij —log b2; = azj — yauj, j=1,23.

Since 7 is irrational, we deduce from Baker’s theorem (see Corollary 3.3
below):
log 6;; = 0, logé;; =0, and oz = Y;

for j = 1,2,3, which is the desired conclusion

¢) Some consequences of the strong siz ezponentials theorem.

The next result can be referred to as the five ezponentials theorem.

Corollary 2.2 Let z1, 22 be two Q-linearly independent complez num-
bers, and y1, y2 be also two Q-linearly independent complez numbers.
Further let n be a non-zero algebraic number. Then one at least of the

five numbers -
AL LIt L et etV eM*2/n

is transcendental.
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Remark. Here is the strong five ezponentials conjecture: under the
hypt?theses of Corollary 2.2, if 11, @12, @21, @22, B are algebraic numbers,
and if the five numbers exp(z;y;—ai;), i = 1,2; j = 1,2, and exp(nZ2—f)
are all algebraic then o

ZiY; = Q5 t=1,2; j=1,2, and nz; = fz;.

. This is clea,rl}_' a weaker statement than the strong four exponentials
conjecture, but still it contains non trivial open problems; for instance,

if log a, log b, logc are non-zero logarithms of algebraic numbers, is it
true that ,

(log a).(log b) # log c?
(Choose 1 = 1, z3 = loga, y1 = 1+ logh, yp = logh, a;; =5 =1,

a1z = a2 = az = =0).

Proof of Corollary 2.2 Apply Corollary 2.1 with

Ys =7n/T1, @i =02 = a1 = a3 = az3 =0, ay3 =1.

If the two numbers
"= et and vo = e*1v2

are algebraic, then the theorem of Hermite-Lindemann (which is the case

n = 1 of Corollary 3.3) implies that n, 1 .
independent. ) imp at 77, logv; and logvy; are Q-linearly

Let us give a few special cases of Corollary 2.2.

(2.2.3) Let oy, az, 8 be non-zero algebraic numbers, with log a;,

log @z Q-linearly independent. Let ¢t € C, t # 0. Then one at least of
the numbers

t _t Bt
Qy, Qg e?
is transcendental, and also one at least of the numbers
t ot t
oy, ay, ePlt,

is transcendental.

(2.2.4) Let a and J be non-zero algebrai i
gebraic numbers with 1
and let ¢ € C be irrational. Then one at least of e 70

]
a' ot ef,
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and one at least of

t? t
at,a ,eﬂ/

is transcendental. If, further, 8t/ log « is irrational, then one at least of

2 t?
at, ot e?
is transcendental.

(2.2.5). Let a;,az,v,n be non-zero algebraic numbers with log a;,
log a; Q-linearly independent and log~y # 0. Then one at least of

1 log v
a;l OS’Y,a;I g ,

t one of
and at leas n/logy _n/log~y
ay y &g

is transcendental. .
For instance, if o and B are non-zero algebraic numbers with

loga # 0 and log 8 # 0, then the numbers

al°8 8 and (088’

are not both algebraic. In this result, only the case a = f was known,
as a consequence of some results on algebraic independence [4].

§3. Further corollaries to Theorem 1.1

We first consider the case t = d — 1 (Gelfond’s method), next t.he
case t = 0 (Schneider’s method), and finally we give an example with
t=1.

a) Gelfond’s method

If, in Theorem 1.1, the hyperplane V itself is defined over Q, then
one can choose W =V, t = d — 1, and the assumption on m reduces' to
m > 0, which means Y # 0. One deduces the following corollary, which
is Wiistholz’s result announced in [16] (see [2] Th. 4).

Corollary 3.1 Let G be a commautative algebraic group defined over Q,
and let u € TG(C) be such that expgu € G(Q). ;l‘hen the am.a.lle.?t
subspace of Tg(C) defined over Q 'uihich contains u is an algebraic Lie
sub-algebra of Tg(C), defined over Q.
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Proof. (See [2] p. 36-37). Let Wy be the smallest subspace of Tg(C)
defined over Q which contains u. We want an algebraic subgroup H
of G, defined over Q, such that Wy = Ty, (C). If W, = Tg(C) (resp.
Wo = 0), take Hy = G (resp. Hyp = 0). Otherwise choose any hyperplane
W of Tg(C) defined over @, which contains Wj. By Theorem 1.1, there
exists an algebraic subgroup H of G, of positive dimension, such that
Tu(C) C W. Let Hw be the largest connected algebraic subgroup of G,
defined over Q, for which

Ty, CW.

By Theorem 1.1 on G/Hw, we deduce that u belongs to THw (C).
Finally, we define Hy as the intersection of Hy, when W runs over
the hyperplanes of Tg(C), defined over @, which contain W,. We get
Tx,(C) C Wo, hence Ty, = Wy. This proves Corollary 3.1.

Let us remark that our proof of Corollary 3.1 does not use Baker’s
method: we do not perform an extrapolation involving the Schwarz
lemma on the one-dimensional complex line C.u in Tg(C); also we do
not need to introduce in our proof suitable division points of u, even if
expg u is of finite order in G(Q) (compare with [2] p. 37). However, if
one looks for effective estimates, one gets sharper results in the situation
of Corollary 3.1 than in the general case of Theorem 1.1 if one combines
the present approach with Baker’s extrapolation procedure (see {10]).

b) Schneider’s method

If we have no arithmetic assumption on V, we can always choose
W =0, which means ¢t = 0, and the hypothesis on m = rkzY is

m > (dy +2d;)(d - 1).

The corresponding statement for the multiplicative case (d =d,)is given
in {2]. Here is an example involving a power of an elliptic curve (d = d).
Let p be a Weierstrass elliptic function with algebraic invariants g2,
g3:
P = 4p* — gap — gs.
A complex number u is an algebraic point of p if either u is a pole of p

or else p(u) is an algebraic number. Let k be the field of endomorphisms
of the corresponding elliptic curve.

Corollary 3.2, Let u;j,1<i<n,1<j<¢ be algebraic points of p,
withn>1and &> r;h.n(n + 1). Further, let t,,...,t, be complez
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numbers. Assume that for 1 < j < £, the point
n
i=1
is an algebraic point of p.
a) If the £ points
(ulja"',unj)’ 1< <¢,

in C* are k-linearly independent, then the numbers 1,11,...,1n are k-
linearly independent.

b) If the €n numbers
Uij, 13’Sn,151$e,
are k-linearly independent, then t1,...,ts are all in k.

Proof.

(a) Let E be the elliptic curve in P, whose exponential map is given by
expg(z) = (1’ p(2), pl(z))'

Consider the algebraic group G = E™*! of dimension d = d; = n + 1.
We identify Tg(C) with C**! by

expg(21 - Zn+1) = (€XPE 21, - -, €XPE Znt1):
Let V be the hyperplane zn41 = t121 + ... + tnzn. Let
n
Unt1,j = Zti’uij, 1<5 <Y,
i=1

and 1 .
yj=(u1j,...,un+1,j)€C"+ , 1<j<L

We denote by o the ring of endomorphisms of E, and by Y the o-module
generated by y1,...,ye. Plainly we have

YCcV and rkzY =¢€.[k:Q}
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From Theorem 1.1 we deduce that V contains a non-zero Q algebraic Lie
sub-algebra of Tg(C). Since G = E™*!, V contains such a Q-Lie sub-
algebra of dimension 1, hence there exists (1,...,ba+1) € k™! such
that 0 # (b1,...,bn+1) € V. This proves (a).

(b) There is no loss of generality in assuming that the k-vector space
k+kty + ...+ kt, is generated by 1, ¢y, ..., t,. Assumer > 1. Write

’
t.'=b,'o+z:b,'ptp, r<i<n
p=1
where b;,, 0 < p <, are in k. Define
n
u:,j=upj+ Zbipuij’ 1<p<r 1Zj<4,
t=r+1

and apply (a) with n replaced by r to get a contradiction. Hence r = 0
andti €kforl <:<n.

c) Baker’s theorem.

We will deduce from Theorem 1.1 the following result of Baker [1]
Chap. 2.

Corollary 3.3. Let ay,...,a, be non-zero algebraic numbers such that
logay,...,log a, are linearly independent over Q. Then the numbers
1,logay,...,loga, are linearly independent over Q.

Of course Corollary 3.3 is a special case of Corollary 3.1 (see [16],
[2]): we take G = G, x G,, and

u = (1,logay,...,loga,) € C x C*;
if there is a non-trivial relation
Bo+Pilogas +...+ Brloga, =0,
then Corollary 3.1 shows that the hyperplane
Bozo+P1z1+ ...+ Pnzn=0
contains the smallest Q algebraic Lie sub-algebra of Tg(C) which con-

tains u, hence the point (log a3, . ..,loga,) in C™ belongs to a hyperplane
which is defined over Q.
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We give another proof of Corollary 3.3, which is more close to
Schneider’s method (see [14] §8.3.b, [7], [17]).

a) We first use Schneider’s method to prove that logay,...,logans are
Q-linearly independent. Assume

logay = f1logay + ...+ Br-1log an—1,

where fi,...,B8a—1 are algebraic (and not all rational). Consider the
algebraic group G = G~ ! x G, of dimension d = d; = n, and the
hyperplane V' of equation

2z, = z1logay + ...+ Zn—1log an_y
in C*~! x C. Further, let
Y = {(hl + hnﬂl, see ,hn—l + hnﬂn—l,hl logal +...+ hnlogan);
(h1,y...,hn) € Z"}.

Therefore Y is of rank n and is contained in V. From Theorem 1.1 with

+ = 0 we deduce that V contains a non-zero element (71,... ,:y,,_l,O)
where 71, ... ,7n—1 are algebraic. This contradicts the assumption that
logai,...,log an_1 are linearly independent over Q.

b) We now start from a relation
logan = fo + B1logay + ...+ Ba—1logan-1,

where 1, logaa,...,logan—1 are Q-linearly independent. We take G =
G" X G, and V is the hyperplane

zn = Pozo + 21 logai1 + ...+ zpn-1 log a1,
while
Y= {(hn, hi+hpfr..., hn_1 + hnfBn-1, hilogay +... + hylog an);
(hl,...,hn) € Zn}

We now take
W = C(1,0,...,0,1) C C" xC,

and we use Theorem 1.1 withd=n+1,do=n,dy =1, ¢t =1, m,= n.
We find in V a non-zero element (¥o,71,- - - » Yn—1,0), where the +’s are
algebraic. Therefore

Bovo + mlogar + ...+ Yn-1logan-1 =0.
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From the initial assumption we deduce 73 = ... = -1 = 0, hence
Bo = 0, which is what we wanted.

Remark. This new proof of Baker’s theorem can be refined into an ef-
fective lower bound for linear forms in logarithms (see [15] §6.d; compare
with [1] Chap. 2). The estimate we get by this method is the same as can
be achieved by Gelfond’s method alone. As mentioned above, it means
that it is weaker than the estimates which arise by combining Gelfond’s
and Baker’s method. It would be interesting to deduce Baker’s estimates
from Schneider’s method.

§4. The main result.

a) The statement.

In Theorem 1.1, we assumed that V was a hyperplane of Tg(C). In
some cases (e.g. [15]), it is interesting to deal with a subspace of Tg(C)
of any dimension n < d, and instead of the assumption

m > (dy +2dy)(d — 1 — 1),

we require only

m > (dl + 2d2)

n—t
d—

Let us consider again an algebraic group G = G% x G¥ x Gy, defined
over Q, of dimension d = dy + d; +dz > 1. Let

1ro:G——+G:°and7r1:G——>Gf,}

be the corresponding projections. Here we do not assume that dy and
d, are maximal.

Theorem 4.1 Let V be a subspace of Tg(C) of dimension n < d, W
a subspace of V, and Y a finitely generated subgroup of V. Assume

that W is defined over Q, and that I = expg Y is contained in G(Q).
Finally, define

k =rkz(Y N Kerexpg).

Then there exists a connected algebraic subgroup G' of G, defined over
Q, with G' # G, satisfying the following properties. Define

§ = dimG/G', 8o = dim G /o (G"),
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61 =d1me,§/7r1(G'), 62=6-—5o—61,
A =rkzl/T NG, r = dim W/W 0 T/ (C).

Then § > T and
(A + 61 +268)(d - n) < (6 —7)(dy +2d2 - K)..

The conclusion holds trivially with G' = 0 if the inequality

n—t

5 (4.2)

m>(d1+2d2—n).

is not satisfied. On the other hand, if this inequality (4.2) holds, then
dimG' > 0.

The special case t = d — 1 of Theorem 1.1 (see Corollary 3.1) read-
ily follows from Theorem 4.1: when W is a hyperplane of Tg(C), the
condition § > T means W D Tgr(C), and the assumption m > 0 gives
dimG' > 0.

The proof of Theorem 4.1 is given in §7 below. We will deduce The-
orem 1.1 from Theorem 4.1 in §5. Now we give some further corollaries
to Theorem 4.1.

b) Schneider’s method

Here, we use only the case t = 0 of Theorem 4.1. Let us recall (cf.
[14]) that

. rkzY/YNE
WY, V) =iy~ VIE

where E runs over the set of vector subspaces of V with E # V.

Corollary 4.3 With the assumptions of Theorem 4.1, if expgV s
Zarisks dense in G(C), then

w(Y,V) < (dy +2dz — k)/(d —n).
In the case dimV = 1, the conclusion is simply
m< (d1 + 2d; — K)/(d - n),

which is equivalent to the results of [14] Chap. 4.

We will deduce Corollary 4.3 from Theorem 4.1 in section e below.
We first deduce some consequence from Corollary 4.3.
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c) Algebraic points on the graph of an enalytic homomorphism.

Let us denote by G' a commutative algebraic group defined over Q,
by ¥ : C® — G'(C) an analytic homomorphism, and by Y a subgroup
of Q" such that ¥(Y) C G'(Q). We write

e Al 1
= e = {1 if G' is linear,
p=rG) 2 otherwise.

Corollary 4.4 Assume that dim G’ > 1, and that G' does not contain a
non-zero unipotent linear subgroup. If ¥ is not constant, then

w, Q") < p.

We deduce Corollary 4.4 by applying Corollary 4.3 to G = G x G",
where G is the Zariski closure of ¥(C") in G'(C), withd > n+1,d = d,,
do =n.

A special case of Corollary 4.4 was already given in [14] Prop. 8.1.2.
Here is a consequence of Corollary 4.4.

Corollary 4.5 Let L be the mazimal (connected) unipotent linear alge-

braic subgroup of G. Then the image of ¥(Q )N G'(Q) in G'/L has a
finite rank < pn.

Proof. We proceei by induction on n. Assume y;,...,Ypn41 are in 6",
with ¥(y;) € G'(Q), 1 < j < pn + 1, and that their images in G'/L are
Q-linearly independent. Let Y = Zy; + ... + Zy,n41. From Corollary

4.4 we deduce u(Y, Q") < p. Let W be a subspace of C", defined over
Q, such that

rk2Y N W > 1+ pdimc W,

and W # C™. The restriction of ¥ to W gives a contradiction with the
induction hypothesis.

Thanks to Corollary 4.4, we can prove the following result, which
was announced in [15] (6.7).

Corollary 4.8 If rkzY > pn + 1, then there ezists y € Y, y # 0, such
that the homomorphism t — W(yt) of C into G'(C) is rational.

This result was proved already in [14] Th. 8.1.1 under the assump-
tion Y C R™, and in (14} Th. 6.3.2 under the assumption that G’ is an
extension by a linear group of an abelian variety which is isogeneous to
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a product of simple abelian varieties of C.M. type. We could also deduce
Corollary 4.6 from Corollary 3.1 following [14] Chap. 6.

Proof of Corollary 4.6. Assume first u(Y,C") > p. Then Corollary 4.4
shows that ¥(C™) is contained in the maximal unipotent linear subgroup
of G', hence ¥ is rational. The general case follows from the arguments
of [14] p. 150.

d) The coefficient p}(T,G).

Let us introduce the following Dirichlet exponent: let K be a sub-
field of C, G be a commutative algebraic group of dimension d>243, Ta
finitely generated subgroup of G(K), and

1ro:G——>Gg°, 7r1:G—+Gf,:

two surjective morphisms, with do > 0, d; 2 0. Further, we set d; =
d — dy — d;. Therefore G = Gﬁ° X Gf,} x G2, where dim Gy = d;. We
define

W(T,G) = min (A + 6 +262)/8,

where G' runs over the set of algebraic subgroups of G, defined over K,
with G’ # G, and

§ =dimG/G’, 6 = dimG% [m(G"),
6, = dim G /7 (G"), b2 = 6 — 6o — &1,
A =rkzl/TNG".
It should be noted that p*(T', G) depends not only on I and G, but also

on K, mp and my. If G' is any algebraic subgroup of G, G' # G, we define
w(T/T N G',G/G") by choosing

. ' d' d
7 1 G — Gg°, m : G' — Gy,

with 6 = dimG% /m(G') and 6, = dimG% /m(G') so that we get
commutative diagrams:

G 2 Gdo
G/G % 64/m(G)

and
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” d
G LN G}
n

G/G' — 61/m(G)

Also we define (' N G',G') by choosing the restrictions G' —» o(G")
and G' — m1(G") with 7(G') & Go—% and 7 (G') = G¥~4 where
2 means isogeneous to. "

By taking G' = 0, we see that

#,(F, ) < £+ d1d+ 2d, ,
where £ = rankzT.
e) Proof of Corollary 4.9
The conclusion of Theorem 4.1 is
? d1 + 2d2 — K
p(T,G) < —a_na (4.7)

If u¥ (T, G) = (€ + di + 2d;)/d, then (4.7) gives

f+n<d1+2d2—n
n = d—n '

and Corollary 4.3 follows. Otherwise, we write

W(T,G) = (A + 61 +265)/6

for some algebraic subgroup G' of G, G' # @, of dimensiond — 6 > 0
Clearly we have .

pT/TNG,G/G) = (A + 6 + 26)/6.
We define

E=VNnTg, V’=V/E, Y'=Y/YﬂE,
n' =dimV’, m' =rkzY’, k' =rkz(Y' N kerexpg /g );
therefore
p(Y, V) <m'/n'.
Further, let
P' = expala' yl = P/I" N G'.
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We notice that m' = A + «'. We apply (4.7) to I'":
(6 —n" W I',G/G') < 6 +26; — &'

Hence
m'6 < (A +&")6 < n'(A+ 8 +262).

We conclude that

3

! A+ 6, 426, dy +2d; — K
= [} = d—n

p(T,V) <

S

§5. Proof of Theorem 1.1

In this section we deduce Theorem 1.1 (with a slight refinement)
from Theorem 4.1. We first introduce a generalization of the coefficient
pt of §4. Next we prove an auxiliary lemma concerning some problem
which arises with the periods of the exponential map, and finally we
complete the proof of Theorem 1.1

a) The coefficient u}(T',G,W).

Let K be a subfield of C, G be commutative connected algebraic
group of dimension d, g : G — G% and 71 : G — G4 two surjective
morphisms of algebraic groups, d; =d—do —dy, I' a finitely generated
subgroup of G(K), and W a subspace of Tg(C), distinct from Ta(C).

We define A+ 61 426

¢ ol
[J(I‘,G,W)—Hg’n §—1T1 ’

where G' runs over the set of connected algebraic subgroups of G which

are defined over K, with G' # G and § > 7, and where

§ =dimG/G, 6o = dim G /7o (G"),
61 =d1me,}/1r1(G'), 52=5—60—61,
A=rkzI/TNG, r = dime W/W N Tg.

Remarks

(1) Since 7 = dim(Te + W)/Tg', we have § — 7 = dimTg/(Tar + W), |

and therefore the condition 7 = § is equivalent to Tg» + W = Tg. In any

} satisfies:
case u* sati ¢4 ds +2d,

1
WG, W) s 2,
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where £ = rkzI" and t = dim¢c W.

(2) The coefficient u! depends not only on G, I' and W, but also on

the choice of mp and 7. For G’ connected algebraic subgroup of G, we
define

(/NG G/G ,W/WnTe), ifG #G,
and

BTnG,G,WnTg), if G' #0,
with the same conventions as in §4.c.

We need the following generalization of Lemma 1.3.1 of [14] and
Lemma 3.2 of [15].

Lemma 5.1 Assume

£+ dy + 2d,

1
(T, G, W) < 13

Then there exists an algebraic subgroup G' of G, which is defined over
K, of dimension d' > 1, such that either W D Tg/, or

! i’ J
WHTNG, G WnTe)= Lt at2dh  £+dit2d,

d -t d—t °
where
t' =dimWnTg, dy = dimm (G"),
dy = dim mo(G"), ' =rkzI'NG',
and
dy=d —dy - dy.

Proof. Assume that W does not contain a non-zero K-algebraic Lie sub-

algebra of Tg(C). We will prove the desired conclusion by induction on
d. fd=1 thent =0 and

#(T,G,0) = £+ dy + 2d,.

Assume Lemma 5.1 holds for all proper algebraic subgroups of G. By
the definition of u!, there exists an algebraic subgroup G° of G such that

#H(T,G, W) = (A° + 6] +263)/(8° — 7°),
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where
6° = dimG/G°, 8 = dimGz°/7ro(G°),
&7 =dimG‘,f:/7r1(G°), 6§=6°—-63—6;’,
2 =rkzl/TNG°, r° = dime W/W N Tge.
We define
d° = dimG°, ° = dim 7o (G°),
d$ = dimm(G°), S =d° —dj —dj,
t°* =dimW nNTge, 2° =rkzI’' N G°.
Hence

P +d°=d, §&+di=d;, =012
N+ =4, P+ =t

The assumption that W does not contain Tge gives d° > t°, and the
hypothesis

uH(T,G, W) < (£+dr +2d3)/(d — t)

is equivalent to

e 4+dS+2d5  £+d +2d;
de —t° d—t
If 10 L] (-]
pHTNG°,G°, W N Tge) = (£ +di +2d3)/(d° —t°),

then the lemma is proved with G' = G°. Otherwise we can use the
induction hypothesis, since d®° < d. We deduce that there exists an §

algebraic subgroup G' of G° such that

O 4dy+2dy £+ +2d3

p‘(FﬁG',G’,WﬂTGI)= d — ¢ de —t° ’

with
d, = dimm;(G'), (:=0,1)
d =dim G, d’2=d'—d{,—d'1.
t' =dimW N7Tg, 2 =rkz2'NG'.

This completes the proof of Lemma 5.1.
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b) Another auziliary lemma.

Let G be a commutative algebraic group over C of dimension d =
do + dy + dz > 1, as before. Further let Y = Zy; + ... + Zy,, be a

finitely generated subgroup of Tg(C), and G’ an algebraic subgroup of
G. Define

I' = expgy, Y'=YnNnTe, I =expgY'.

Of course we have I C I' N G', but the rank of I' N G’ may be larger
than the rank of IV, because of the periods of expg.

Let us define 2 = Kerexpg, and

k=rkz¥ NQ, k' =rkzY' N Q.

Lemma 5.2. We have
rkzl' 2 rkaT'NG' — (dy + 2d; — &) + d} + 2d, — &',

where, as before,

d =dim@, dy = dimmo(G'),
dy = dimm(G'), dy=d —dy—d|.

Proof Let Q' be the kernel of the exponential map of G/G' in Tg /Gr =

Tg/Tg. We first remark that G/G’ is a product of Gl ch—% by
an algebraic group of dimension d; — dj, hence

rkzQ < (dy + 2d,) — (d} + 2d5).
By considering the surjective map
Y)Y - T/I'nG'
given by expg /g, we find
rkzY —rkzY’' < rkaT — rkal' NG’ + rkz Y.
From

rkzY =rkzl +«

and
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rsz’ = ‘I‘kzr' + K

we easily deduce Lemma 5.2.

c) An upper bound for ut.

We now come back to the arithmetic case where G is defined over
Q. We can state Theorem 4.1 in the following way.

Corollary 5.3 With the assumptions of Theorem 4.1,

p(T,G,W) < (di +2d; — £)/(d —n).

d) Proof of Theorem 1.1

We proceed by induction on d, the case d =1 being trivial. We
assume that the hypotheses of Theorem 1.1 are satisfied, apart from
(1.2) which we replace by the weaker assumption '

m > (dy + 2dz — k)(d — 1 —t), (5.4)

with & = rkz(Y NKerexpg) = £ —m.
From (5.4) we have

s
i

£+dy +2dy > (d—t)(di + 2d3 — k). (5.5) ‘;;

We assume that the conclusion of Theorem 1.1 does not hold, and }
we will deduce a contradiction. ‘

By Corollary 5.3 (with n = d — 1) and assumption (5.5) we have

£+ dy +2d;

p(,G,W) <dy+2d; —k < )

Using Lemma 5.1 with the assumption that V' (hence W) does not con-
tain a non-zero Q-Lie sub-algebra of Tg(C), we find an algebraic sub- §
group G' of G, of dimension d' > 1, such that &

e4+d, +2d,  L+d +2d;
d—t d—t

B CNnG,GWnTg)= (5.6) §

From Lemma 5.2 we deduce that [' = expgY’, with Y’ =Y N Tg, §
satisfies :

(I, G WnTa) 2 pN NG, G, WNTg )~ (di +2d3— k) +d) +2d, — ',
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From (5.5) and (5.6) we get
wI, G\ WNTe) > dy +2d; — &'

Corollary 5.3 shows that V N Tg is not a hyperplane of Tg/, hence
V D Tg', which is the desired contradiction.

§6. The auxiliary function

The proof of Theorem 4.1 involves a refinement of Proposition 2.4 of
(15}, which we now give. We consider as before an algebraic group G =
G0 x G x G, over Q, of dimension d = dy +d; + dz, & vector subspace
V of Tg(C) of dimension n < d, a subspace W of V, of dimension ¢t > 0,
which is defined over Q in Tg(C), and a finitely generated subgroup
Y =12y, +... 4+ Zym of V of rank m such that I' = expg Y is contained
in G(Q). For each integer S > 1 we write

Y(S) = {hlyl +... +hmym : (hl,...,hm) € Zm,
0<h; <S5, 1<j<m},
and
['(S) = expg Y(5).
Next, let x satisfy

0 <k <rkzV NKerexpg .

Finally, we choose a basis ¢;,. .., e; of W, defined over Q, and we denote
by ¥ : Ct — G(C) the t-parameters subgroup defined by

C'= W C Te(C)Z8G(C).

Given an embedding of G, into a projective space P, and a polynomial
P in dy + dy + N + 1 unknowns, which is homogeneous in the last N +1
unknowns, we say that P vanishes at a point v in G(C) with multiplicity
T along W if the function z — P(¥(z) + v) has a zero of order T at
the point z = 0 in C* (see [9] and [10]).

We choose two real numbers a > 1 and b > 1.

Proposition 8.1 There ezist an embedding of G, in @ projective space
PN over Q, and a constant C > 0, satisfying the following properties.
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For each integer S > 2, define T, Do, Dy, D3, A as functions of S
N A" = . 5B (log §)P

and

T(log S)* = Do(log S)* = D1 S = D,5* = A.

There exists a sequence (Ps)s>s, of polynomials in the ring,
—Q—[Xf,...,Xgo, X1, X5, XZ,..., X%,

where Pg
~is of degree < Dy in the variables X7,..., X3,
—is of degree < Dy in the variables X{,...,X} ,
—is homogeneous of degree < Dy in the variables X3,..., X%,
—vanishes at all the points of T'(S) with multiplicity > T along W,
—but does not vanish everywhere on G(C).

This result is proved in [15] Proposition 2.4 in the case W = 0 and
b = 1. The estimates for the derivatives are provided by Lemma 7 of D.
Bertrand in Appendix 1 of [14] (compare with [3] and [10]).

§7. Philippon’s zero estimate.

We quote here a special case of the main result of [8] (see also [9])
which will enable us to complete the proof of Theorem 4.1.

Let K be a subfield of C, G = G% x G4t x G; a commutative con-
nected algebraic group over K, ' =Zv; +...+ Zvn, a finitely generated
subgroup of G(K), and W a subspace of T(C) defined over K. We fix
an embedding of G into a projective space P, defined over K.

Proposition 7.1 There ezists a positive constant c with the following
property. Let T, Dy, D1, D3, S be positive numbers, with Dy < Do and
D; < Dy. Assume that there ezists a hypersurface of Rg,4+4, X PN, of
degrees < Dy, Dy, D,, which does not contain G, but vanishes along W
with order > T + 1 at each point of T'(S5).

Then there ezists a connected algebraic subgroup G' of G, defined
over K, such that if we set

§ =dimG/G, 8o = dim G% /mo(G"),
51 =dime,}/‘n'1(G'), 62 =6—50-—51,
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A=rkzl'/TN G, 7 = dime W/W N Tg,

then § > 1 and
T™S* < Do D8 D52 (7.2)

Given our choice of parameters in Section 6, the inequality (7.2) yields
§H+h+20a(log §)blo—ab < cAST, (7.3)

Therefore

(A + 61 4 268)(d—n) < (6 —7)(d1 + 2d2 — k).

It remains to check that § > 7. But if § = 7, then \ + é; + 26; = 0,
hence A = §; = 63 =0 and § = § > 1; then (7.3) gives a contradiction
if we choose, say, a =1 and b > t.

This completes the proof of Theorem 4.1.
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A NEW APPROACH TO BAKER’S THEOREM
ON LINEAR FORMS IN LOGARITHMS III

G. Wiistholz

1. Introduction

1.1 We fix nonzero algebraic numbers a3, ..., a, and algebraic numbers
B1, ..., Bn not all zero and consider the linear form

L(z1y..y20) = Prz1 4+ ... + Br2n.

Let the canonical heights of a3, ..., a, be bounded by A4, ..., 4, >
4 and the heights of the 8y, ..., B by B > 4; then Baker in
a famous series of papers obtained the remarkable result that if
A= L(logai,...,loga,) #0, A; <...< A, and

Q=logA;...logA, =Q'log A,

we have

log |A| > —(16nd)?°°" (log(BR)) Qlog ', (1.1.1)

where d denotes the degree of the field generated by o, ..., a, and S,
..+, Bn over the rationals. Furthermore Baker obtained

log |A| > —(16nd)?°*"(log B)Q log ', (1.1.2)

if all the B’s are rational integers. This substantial improvement of
(1.1.1) has a lot of important consequences. For a detailed account see

[1].

1.2 No substantial improvement of (1.1.1) or (1.1.2) has been made up
to now. Looking at Baker’s proof of (1.1.1) and (1.1.2), one can divide
it into two parts: the constructive and the deconstructive part. Baker’s
method for the deconstructive part is the so-called Kummer theory, a
very ingenious and sophisticated tool. If one studies the constructive



