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From rational numbers to real numbers Some notions

N = {0, 1, 2, 3, . . .}

Z = {0,±1,±2,±3, . . .}

Q = {a/b, a 2 Z, b > 0}. a/b = c/d , ad = bc.

R : Cauchy limits
Cauchy’s criterion for convergence of a sequence (un)n�0 :

|un � um| < ✏ for n � m � N(✏).
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Convergent sequences, convergent series Some notions
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Infinite products, integrals Some notions
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Another example : continued fraction Some notions
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Infinitesimal analysis

(di↵erential and integral calculus) Math tools

Isaac Newton
(1642 – 1727)

Gottfried Wilhelm Leibniz
(1646 – 1716)



Kerala School of Astronomy and Mathematics

14th – 16th Century : Madhava of Sangamagrama

Madhava
(1340 – 1425)

Parameshvara
(1380 – 1450)

,

Neelakanta Somayaji
(1444 – 1544)

,

Jyeshtadeva, Achyuta Pisharati, Melpathur, Achyuta Panikkar

Narayana Bhattathiri (1559–1632).



Gregory series for ⇡ Math tools

James Gregory
(1638 – 1675)
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Real analysis Math tools

Continuous fonctions R ! R.

Cn functions R ! R (n-times continuously derivable)
1  n  1

Analytic functions :
a0 + a1(x� x0) + a2(x� x0)2 + · · ·+ an(x� x0)n + · · ·
Taylor series : an = (1/n!)f (n)(x0).

There exist C1 functions which are not analytic : for instance
F (x) = e�1/x2

with F (0) = 0.
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From real numbers to complex numbers Some notions

The polynomial X2 + 1 has no real root.

Given a field K and an irreducible polynomial f 2 K[X],
algebra allows us to construct a field K(↵) containing K in
which f has a root ↵, and K(↵) is nothing else than the set
of a0 + a1↵+ · · ·+ an↵n with a0, a1, . . . , an in K (values at ↵
of a polynomial in K[X]).

What is remarkable is that it su�ces to add a root i of X2 + 1
to get a field C = R(i) in which any non constant polynomial
has a root.
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Complex analysis Math tools

Two points of view :
• Cauchy, holomorphic functions of a complex variable
• Weierstrass : analytic functions of a complex variable.
They are the same !

Augustin Cauchy
(1789 – 1857)

Karl Weierstrass
(1815 – 1897)
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Cauchy – Riemann equations Math tools

Augustin Cauchy
(1789 – 1857)

Bernhard Riemann
(1826 – 1866)

A function f : C ! C, f(x+ iy) = u(x, y) + iv(x, y), is
holomorphic (derivable with respect to the complex variable z)
if and only if

@

@x
u =

@

@y
v and

@

@y
u = � @

@x
v.



Di↵erential operators (Fluid dynamics) Math tools

Laplacian :

� =
@2

@x2
+

@2

@y2

Given a vector field ~F = (F x, F y, F z),
Gradient :

r = (@/@x, @/@y, @/@z).

Divergence :

r · ~F = @F x/@x+ @F y/@y + @F z/@z.

Curl :

r^ ~F =

0

@
@F z/@y � @F y/@z
@F x/@z � @F z/@x
@F y/@x� @F x/@y

1

A .
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Maxwell theory of electromagnetism Math tools

James Maxwell
(1831 – 1879)



Fourier analysis Math tools

An entire function C ! C is a sum of a Taylor seriesP
n�0 anz

n which is convergent for all z 2 C.

If an entire function f : C ! C is periodic of period !, namely
f(z + !) = f(z), then there exists an entire function
g : C ! C such that f(z) = g(e2i⇡z/!).

Joseph Fourier
(1768 – 1830)

Hence f has an expansion as
a Fourier series

f(z) =
X

n�0

ane
2i⇡nz/!.



Wavelets Math tools

One can take other bases than the sequence e2i⇡nz/!, n � 0.
This yields to the theory of wavelets.

Yves Meyer
Abel Prize 2017



Trigonometric series Math tools

1X

n=0

(An cos(nx) + Bn sin(nx)).

eit = cos t+ i sin t.

eint = cos(nt) + i sin(nt) = (cos t+ i sin t)n.

cos(nt) = T n(cos t), sin(nt) = (sin t)Un�1(cos t).

T 0
n(t) = nUn�1(t).
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Chebyshev polynomials of the first kind Math tools

cos(nt) = T n(cos t).

T 0(X) = 1. T 1(X) = X.

cos(2t) = 2 cos2 t� 1, T 2(X) = 2X2 � 1.

cos(3t) = 4 cos3 t� 3 cos t, T 3(X) = 4X3 � 3X.

T 4(X) = 8X4 � 8X2 + 1, T 5(X) = 16X5 � 20X3 + 5X.
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Chebyshev polynomials of the first kind Math tools

T n

✓
z + z�1

2

◆
=

zn + z�n

2
·

Proof By analytic continuation, it su�ces to check the
formula for |z| = 1.
z = eit = cos t+ i sin t,
z�1 = e�it = cos t� i sin t,
z + z�1 = 2 cos t,
zn + z�n = 2 cos(nt) = 2T n(cos t). ⇤

The map z 7! (z + z�1)/2 is a 2 to 1 map from the circle
|z| = 1 to the real interval [�1, 1].
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Chebyshev polynomials of the first and second kind

First kind : T n(x)

T n(X)2 � (X2 � 1)Un�1(X)2 = 1.

Second kind : Un(x)

sin(nt) = (sin t)Un�1(cos t), T 0
n(t) = nUn�1(t).

T n(X) + Un�1(X)
p
X2 � 1 = (X +

p
X2 � 1)n.

Pell – Abel equation :
Given a monic polynomial D(X) over a field k of
characteristic 6= 2 of non zero discriminant and even degree
2g + 2, consider the equation P (X)2 �D(X)Q(X)2 = 1,
where the unknown P and Q are in k[X].
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Pell – Abel equation Math tools

Niels Henrik Abel
(1802 – 1829)

1826, integration in ‘finite
terms’ of hyperelliptic
di↵erentials.

David Masser

Torsion points on
families of simple
abelian surfaces
and Pell’s equation
over polynomial
rings.

Umberto Zannier

J. Eur. Math. Soc. (JEMS) 17 (2015), no. 9, 2379–2416.



Properties of Chebyshev polynomials Math tools

If n is even, then T n(X) is an even function of X :
T n(�X) = T n(X),
T n is a polynomial in X2.

If n is odd, then T n(X) is an odd function of X :
T n(�X) = �T n(X),
T n is X times a polynomial in X2

T n(0) = 0 is n is odd, T n(0) = (�1)n/2 if n is even.

T n(1) = 1, T n(�1) = (�1)n.
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Explicit formula for Chebyshev polynomials Math tools

2�n+1T n(X) = Xn +
bn/2cX

k=1

(�1)k
n

k

✓
n� k � 1

k � 1

◆
Xn�2k.

Raphael M. Robinson
1911 – 1995

R.M. Robinson, Intervals
containing infinitely many sets
of conjugate algebraic integers
Studies in Mathematical
Analysis and related topics
Essays in honor of George
Pólya, Stanford 1962, 305 –
215.

Quoted by Serre, Bourbaki Seminar (March 2018).



Properties of Chebyshev polynomials Math tools

For n � 1, the leading coe�cient of T n is 2n�1. Hence
2�n+1T n(X) is a monic polynomial of degree n.

The roots of T n(X) are

cos

✓
2k � 1

2n
⇡

◆
, k = 1, 2, . . . , n.

They all lie in the real interval [�1, 1].



Properties of Chebyshev polynomials Math tools

For n � 1, the leading coe�cient of T n is 2n�1. Hence
2�n+1T n(X) is a monic polynomial of degree n.

The roots of T n(X) are

cos

✓
2k � 1

2n
⇡

◆
, k = 1, 2, . . . , n.

They all lie in the real interval [�1, 1].



Properties of Chebyshev polynomials Math tools

For n � 1, the leading coe�cient of T n is 2n�1. Hence
2�n+1T n(X) is a monic polynomial of degree n.

The roots of T n(X) are

cos

✓
2k � 1

2n
⇡

◆
, k = 1, 2, . . . , n.

They all lie in the real interval [�1, 1].



Extremal values of Chebyshev polynomials on

[�1, 1] Math tools

The roots of Un(X) are

cos

✓
k

n+ 1
⇡

◆
, k = 1, 2, . . . , n.

The extremal values of T n on [�1, 1] are all equal to ±1, they
are attained at the points cos

�
k
n⇡

�
, k = 0, 1, 2, . . . , n.
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Fundamental property of Chebyshev polynomials

Define cn = minP kPk where kPk = sup�1x1 |P (x)| and
the minimum is over the set of monic polynomials with real
coe�cients of degree n.
Then

cn = 2�n+1.

The Chebyshev polynomial T n is the polynomial in Z[X] of
degree n, with the largest possible leading coe�cient, among
the polynomials P 2 Z[X] of degree n such that

kPk  1.

Also, 2�n+1T n is the monic polynomial in Q[X] of degree n
with the smallest kPk.
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Chebyshev di↵erential equations Math tools

First kind :
(1� x2)y00 � xy0 + n2y = 0.

Second kind :

(1� x2)y00 � 3xy0 + n(n+ 2)y = 0.

(Sturm – Liouville di↵erential equations).

Hypergeometric functions :

T n(x) =2 F 1(�n, n;
1

2
;
1

2
(1� x)).
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Chebyshev polynomials Math tools

Chebyshev polynomials were first presented in :
Chebyshev, P. L. (1854). ”Théorie des mécanismes connus
sous le nom de parallélogrammes”.
Mémoires des Savants étrangers présentés à l’Académie de
Saint-Pétersbourg. 7 : 539–586.
Oeuvres I, 111–143.
https://en.wikipedia.org/wiki/Chebyshev_polynomials

https://en.wikipedia.org/wiki/Chebyshev_polynomials


Jean-Pierre Serre Bourbaki Seminar March 2018

Problème (important pour les constructeurs de locomotives) :
comment utiliser certains quadrangles articulés (les
mécanismes de Chebyshev) pour transformer aussi bien que
possible un mouvement circulaire en un mouvement rectiligne,
et inversement ? C’est en essayant d’optimiser le “aussi bien
que possible” que Chebyshev a été conduit aux polynômes qui
portent son nom, ainsi qu’à l’équation
P (x)2 �D(x)Q(x)2 = c. Le lecteur curieux trouvera sur
internet des reproductions (avec vidéo) de certains de ces
mécanismes.

http://www.bourbaki.ens.fr/TEXTES/1146.pdf

http://www.bourbaki.ens.fr/TEXTES/1146.pdf


Jean-Pierre Serre Math tools

Jean-Pierre Serre

Jean–Pierre Serre.
Distribution asymptotique des
valeurs propres des
endomorphismes de Frobenius
[d’après Abel, Chebyshev,
Robinson,...]

Séminaire Bourbaki, Mars 2018, 70e année, 2017–2018, no
1146.



Pafnouty Lvovich Tchebychev Math tools

Pafnouty Chebyshev
(1821 – 1894)

https://en.wikipedia.org/wiki/Pafnuty_Chebyshev
https://www.britannica.com/biography/Pafnuty-Lvovich-Chebyshev
http://www-history.mcs.st-andrews.ac.uk/Biographies/Chebyshev.html

https://en.wikipedia.org/wiki/Pafnuty_Chebyshev
https://www.britannica.com/biography/Pafnuty-Lvovich-Chebyshev
http://www-history.mcs.st-andrews.ac.uk/Biographies/Chebyshev.html


Chebyshev and prime numbers Math tools

Bertrand’s Postulate (1845) :
between n and 2n there is a
prime number.

Proved by Chebyshev in 1850.

Joseph Bertrand
(1822 – 1900)

The number ⇡(x) of primes  x satisfies

c1x(log x)
�1  ⇡(x)  c2x(log x)

�1.

If ⇡(x)(log x)/x has a limit, then this limit is 1.



Chebyshev bias Math tools

Denote by ⇡(x; 4, 1) the number of prime numbers congruent
to 1 modulo 4 and by ⇡(x; 4, 3) the number of prime numbers
congruent to 3 modulo 4. Asymptotically, both of them are
1
2x(log x)

�1. However for x < 26 833 we always have
⇡(x; 4, 1) � ⇡(x; 4, 3) with equality only for x = 5, 17, 41 and
461.
Assuming Riemann’s hypothesis, the inequality
⇡(x; q, a) > ⇡(x; q, b) occurs more often than the opposite
when a is a square modulo q and b is not.

Lettre de M. le Professeur Tchébychev à M. Fuss sur un nouveaux
théorème relatif aux nombres premiers contenus dans les formes
4n+ 1 et 4n+ 3, Bull. Classe Phys. Acad. Imp. Sci. St.
Petersburg, 11 (1853), 208.



Mechanisms by Chebyshev http://en.tcheb.ru/

© 2009—2018 MATHEMATICAL ETUDES FUND.
COMMERCIAL USE PROHIBITED.

Plantigrade machine Sorting mechanism Arithmometer. First model Mechanism for transforming
rotation into translational motion Paddling mechanism Four-bar reversing approximate

circle-tracing mechanism Wheelchair

Six-bar reversing mechanism Paradoxical mechanism
Mechanism providing two driven

link oscillations per crank
revolution

Mechanism for transforming
oscillation into rotation Bicycle Arithmometer. Second model

with the multiplying attachment Long-dwell mechanism

One-dwell mechanism Two-dwell mechanism Multiple-bar two-dwell
mechanism Plantigrade machine (in metal) Reversing and dwell mechanism Nonsymmetric circle guiding

mechanism with a dwell Balance

Centrifugal governor Steam engine Gear set Epicyclic gear of arithmometer Slider-crank mechanism
of the steam engine

Mechanism with a variable
lever travel Press mechanism

Lever-screw curvature
measuring device Adjustable arc curve ruler Parallelogram Stool Four-bar approximate

straight line mechanism

http://en.tcheb.ru/

http://en.tcheb.ru/


Images des mathématiques Chebyshev mechanisms

Etienne Ghys

La tribune des mathématiciens

Les mécanismes de
Tchebychev

un site remarquable
(http ://tcheb.ru)
Le 27 août 2011 - Ecrit par
Étienne Ghys

http://images.math.cnrs.fr/+Les-mecanismes-de-Tchebychev+
http://fr.etudes.ru/fr/

http://images.math.cnrs.fr/+Les-mecanismes-de-Tchebychev+
http://fr.etudes.ru/fr/


Mechanism for transforming rotation into

translation motion Chebyshev mechanisms

http://en.tcheb.ru/10

http://en.tcheb.ru/10
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http://en.tcheb.ru/10

http://en.tcheb.ru/10
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http://en.tcheb.ru/10

http://en.tcheb.ru/10


Mechanism for transforming rotation into

translation motion 3 Chebyshev mechanisms

http://en.tcheb.ru/10

http://en.tcheb.ru/10


Connecting rod Chebyshev mechanisms

Evidence for the connecting rod appears in the late 3rd century
Hierapolis sawmill in Roman Asia (modern Turkey). It also
appears in two 6th century Byzantine-era saw mills excavated
at Ephesus, Asia Minor (modern Turkey) and Gerasa, Roman
Syria. The crank and connecting rod mechanism of these
Roman-era watermills converted the rotary motion of the
waterwheel into the linear movement of the saw blades.
Sometime between 1174 and 1206 in the Artuqid State
(Turkey), the Arab inventor and engineer Al-Jazari described a
machine which incorporated the connecting rod with a
crankshaft to pump water as part of a water-raising machine,
though the device was complex.

https://en.wikipedia.org/wiki/Connecting_rod

https://en.wikipedia.org/wiki/Connecting_rod


Connecting rod Chebyshev mechanisms

In Renaissance Italy, the earliest evidence of a (albeit
mechanically misunderstood) compound crank and
connecting-rod is found in the sketch books of Taccola. A
sound understanding of the motion involved is displayed by the
painter Pisanello (d. 1455) who showed a piston-pump driven
by a water-wheel and operated by two simple cranks and two
connecting-rods.
By the 16th century, evidence of cranks and connecting rods
in the technological treatises and artwork of Renaissance
Europe becomes abundant ; Agostino Ramelli’s The Diverse
and Artifactitious Machines of 1588 alone depicts eighteen
examples, a number which rises in the Theatrum Machinarum
Novum by Georg Andreas Böckler to 45 di↵erent machines.

https://en.wikipedia.org/wiki/Connecting_rod

https://en.wikipedia.org/wiki/Connecting_rod


Steam engines Chebyshev mechanisms

Steam engines Beam engine, with twin connecting rods
(almost vertical) between the horizontal beam and the
flywheel cranks
The first steam engines, Newcomen’s atmospheric engine, was
single-acting : its piston only did work in one direction and so
these used a chain rather than a connecting rod. Their output
rocked back and forth, rather than rotating continuously.
Steam engines after this are usually double-acting : their
internal pressure works on each side of the piston in turn. This
requires a seal around the piston rod and so the hinge between
the piston and connecting rod is placed outside the cylinder, in
a large sliding bearing block called a crosshead.

https://en.wikipedia.org/wiki/Connecting_rod

https://en.wikipedia.org/wiki/Connecting_rod


Connecting rod (bielle) Chebyshev mechanisms

https://en.wikipedia.org/wiki/Connecting_rod

https://en.wikipedia.org/wiki/Connecting_rod


Connecting rod (bielle) Chebyshev mechanisms

https://commons.wikimedia.org/wiki/File:
4-Stroke-Engine.gif

https://commons.wikimedia.org/wiki/File:4-Stroke-Engine.gif
https://commons.wikimedia.org/wiki/File:4-Stroke-Engine.gif


Plantigrade Machine Chebyshev mechanisms
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http://en.tcheb.ru/1
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Plantigrade Machine 2 Chebyshev mechanisms

http://en.tcheb.ru/1

http://en.tcheb.ru/1


Plantigrade Machine 3 Chebyshev mechanisms

http://en.tcheb.ru/1

http://en.tcheb.ru/1


Plantigrade Machine 4 Chebyshev mechanisms

http://en.tcheb.ru/1

http://en.tcheb.ru/1


Wheelchair Chebyshev mechanisms

http://en.tcheb.ru/4

http://en.tcheb.ru/4


A related open problem : Bracing rectangular

frameworks Chebyshev mechanisms

How many non intersecting
connected unit rods in the
plane are su�cient for making
rigid a square ?
Is 23 optimal ?

Jean-Paul Delahaye, Pour la Science, N� 490, Août 2018.

Martin Gardner’s Sixth Book of Mathematical Diversions from
Scientific American, University of Chicago Press, 1971.



Allowing intersections : 19 unit rods are su�cient

Suppose we have a collection
of unit rods in the plane that
can only be joined at their
endpoints. With 3 rods we
can make an equilateral
triangle. A rigid square can be
made using a total of 19 rods.

https://www2.stetson.edu/~efriedma/mathmagic/0100.html

https://www2.stetson.edu/~efriedma/mathmagic/0100.html


Chebyshev polynomials are orthogonal polynomials

1

⇡

Z 1

�1

T n(x)Tm(x)
dxp
1� x2

=

8
>><

>>:

0 if n 6= m

1 if n = m � 1
1

2
if n = m = 0.

1

⇡

Z 1

�1

Un(x)Um(x)
p
1� x2 dx =

(
0 if n 6= m

1 if n = m.
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Orthogonal polynomials

Charles Hermite
(1822 – 1901)

Edmond Laguerre
(1834 – 1886)

Carl Jacobi
(1804 – 1851)

Leopold Gegenbauer
(1849 – 1903)

Adrien-Marie Legendre
(1752 – 1833)



E.T. Whittaker and G.N. Watson :

A course of Modern Analysis Orthogonal polynomials

p.224 : Murphy, Camb. Phil.
Soc. Trans. iv (1833) 353 – 408
and v (1835) 113 – 148, 315 –
394.
First systematic study of
continuous real orthogonal
functions

Z

a

b

Pm(x)Pn(x)dx = 0

for m 6= n.

p.311 Murphy’s expression of Legendre polynomials as
hypergeometric functions : Murphy, Electricity, 1833.



Robert Murphy Orthogonal polynomials

In 1830 Murphy was commissioned to write a book on the
mathematical theory of electricity, for the use of students at
Cambridge. Elementary Principles of Electricity, Heat, and
Molecular Actions, part i. On Electricity (Cambridge) was
published in 1833 (Deighton, 145 pages).

Robert Murphy
(1806 – 1843)

https://en.wikipedia.org/wiki/Robert_Murphy_(mathematician)

https://en.wikipedia.org/wiki/Robert_Murphy_(mathematician)


Special polynomials Orthogonal polynomials

Dickson polynomials
Fibonacci polynomials, Lucas polynomials, Pell polynomials,
Pell – Lucas polynomials, Fermat polynomials polynomials,
Fermat – Lucas polynomials, Morgan – Voyce polynomials,
Vieta polynomials, Vieta – Lucas polynomials.
Cyclotomic polynomials.

Cyclotomic Dickson polynomials.
Representation of integers by special families of polynomials.
Diophantine equations.
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