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ALGEBRAIC INDEPENDENCE OF PERIODS OF

ELLIPTIC FUNCTIONS

MICHEL WALDSCHMIDT

Abstract. This text is based on notes (taken by R. Thangadurai) of
three courses given at Goa University on December 15 and 16, 2014, on
Algebraic independence of Periods of Elliptic functions, during the Win-
ter School on modular functions in one and several variables organized
by R. Balasubramanian, S. Gun, A.J. Jayanthan and W. Kohnen.

The main goal of these lectures was to discuss some of the results
obtained by G.V. Chudnovsky in the 1970’s on algebraic independence
of numbers related with elliptic functions.

1. Preliminaries - Complex Analysis

One of many references for this section is Lang’s book [11].
A complex function of one complex variable f is analytic in an open

set V ⊂ C if, for all z0 ∈ V, there exists a power series converging in a
neighborhood U of z0 such that

f(z) =
∑
n≥0

an(z − z0)n for all z ∈ U ∩ V.

An analytic function f has a zero of multiplicity k at z0 if an = 0 for all
n = 0, 1, . . . , k − 1 and ak 6= 0. Since

an =
1

n!

dnf

dzn
(z0),

this number k is the least non negative integer such that (dkf/dzk)(z0) 6= 0.
Equivalently, f has a zero of multiplicity k at z0 if there exists a function
g, analytic in a neighborhood V of z0, such that g(z0) 6= 0 and f(z) =
(z − z0)kg(z) for all z ∈ V. The set of zeroes of an analytic function f 6= 0
in a connected open subset D of C is a discrete subset of D.

A function f : C → C is said to be entire if it is analytic in the entire
complex plane C. For example, f(z) = ez is an entire function; this function
has the special property that it never vanishes. Here is Theorem 2.1 of [11,
Chap. XIII]:

Proposition 1. An entire function f has no zero in C if and only if there
exists an entire function g such that

f(z) = eg(z).

http://www.imsc.res.in/~office/conference/winterschool2014/
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Let Ω be a discrete subset of C. There exists an entire function f , the set
of zeroes of which is Ω, and these zeroes are simple. If we have one solution
f , we deduce all solutions by considering feg with g an entire function, as
shown by Proposition 1. When Ω is finite, a solution is∏

ω∈Ω

(z − ω).

If Ω is infinite, a good candidate is

(1)
∏
ω∈Ω

(
1− z

ω

)
when 0 6∈ Ω, and

z
∏

ω∈Ω\{0}

(
1− z

ω

)
when 0 ∈ Ω. This is indeed a solution when the infinite product (1) con-
verges. Recall that an infinite product∏

n≥0

un

is convergent if the set {n ≥ 0 | un = 0} is finite and if, for all sufficiently
large n0, the sequence

un0un0+1 . . . uN =
N∏

n=n0

un (N ≥ n0),

has a finite nonzero limit as N →∞. A necessary condition for convergence
is that the sequence (un)n≥0 tends to 1 as N tends to infinity. For Ω = Z,
the product

z
∏
n∈Z
n 6=0

(
1− z

n

)
is not absolutely convergent, but it becomes convergent by grouping the
factors indexed by n and −n, which yields the well known formula [11,
Chap. XIII, Example 2.4]

sin(πz) = πz
∞∏
n=1

(
1− z2

n2

)
.

In general, when Ω is a discrete set in C, in order to take care of the con-
vergence of the infinite product (1), one modifies it, without changing the
set of zeroes, by multiplying by exponential factors. Consider∏

ω∈Ω
ω 6=0

(
1− z

ω

)
egω(z)
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where the gω’s are entire functions. In order to have a convergent product,
the idea is to take for gω an approximation of

− log
(

1− z

ω

)
,

so that the factors in the infinite product(
1− z

ω

)
egω(z)

are sufficiently close to 1. Since

− log(1− u) = u+
u2

2
+ · · · for |u| < 1,

a suitable choice is of the form∏
ω∈Ω
ω 6=0

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2
+ · · ·+ zkω

kωωkω

)
,

where kω is a positive integer depending only on ω. This expression is called
Weierstrass canonical product. Sometimes, it is possible to take for kω a
constant k independent of ω. This happens in particular for entire functions
of finite order, namely the entire functions f for which

lim
R→∞

log log |f |R
logR

<∞.

When f is a complex function which is continuous in the disk |z| ≤ R, we
define

|f |R = sup
|z|≤R

|f(z)|.

By the maximum modulus principle, if f is analytic in |z| < R and contin-
uous in the disk |z| ≤ R, we have

|f |R = sup
|z|=R

|f(z)|.

Definition. Let f be an entire function and ρ > 0 a real number. We say
that f is of strict order ≤ ρ, if there exist constants C and R0 such that

|f |R ≤ exp(CRρ) for all R ≥ R0.

We say that f is of strict order ρ if f is of strict order ≤ ρ and

lim
R→∞

log log |f |R
logR

= ρ.

We want to extend the definition to meromorphic functions in C. One of the
equivalent definitions of a meromorphic function is the following. A complex
function is called meromorphic in an open set V ⊂ C if it is a quotient of
two functions which are analytic in V.

We need the following lemma.
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Lemma 1. Let g and h be two nonzero entire functions of strict order ≤ ρ.
Assume that the quotient f = g/h is an entire function. Then f has strict
order ≤ ρ.

This lemma allows us to introduce the definition:

Definition. Let f be a meromorphic function in C. We say that f is of
strict order ≤ ρ, if there exist two entire functions g and h of strict order
≤ ρ such that f = g/h.
A meromorphic function in C is of finite order if it is a quotient of two
entire functions of finite order.

Hadamard Product. Let Ω be a discrete subset of C. Let ρ > 0 be a
positive real number and k the least integer ≥ ρ. Let f be an entire function
of strict order ≤ ρ. Assume that f has zeroes precisely at points in Ω and
that these zeroes are simple. Then there exists an entire function g such
that

f(z) = eg(z)z
∏
ω∈Ω
ω 6=0

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2
+ · · ·+ zk

kωk

)
.

If g satisfies this property, then for any ` ∈ Z the function g + 2iπ` also
satisfies the same property.

Here are two examples (another one will be discussed in §2). The Hadamard
product related with the set of rational integers Z with ρ = 1 (hence k = 1)
is

sin(πz) = πz
∏
n6=0

(
1− z

n

)
ez/n.

The second example is the Hadamard product related with the set of neg-
ative integers Ω = {. . . ,−n, . . . ,−2,−1} with ρ = 1, hence k = 1. Denote
the Euler’s Gamma function by Γ and the Euler’s constant by γ:

Γ(z) =

∫ ∞
0

e−ttz · dt
t
, γ = lim

n→∞

(
1 +

1

2
+

1

3
+ · · ·+ 1

n
− log n

)
.

Then [11, Chap. XV, §2],

1

Γ(z)
= eγzz

∞∏
n=1

(
1 +

z

n

)
e−

z
n .

Definition. A lattice in C is a discrete subgroup Ω of C containing a basis
of C over R: this means that there exist ω1, ω2 ∈ C, linearly independent
over R, such that

Ω = Zω1 ⊕ Zω2.

Denote by #(Ω ∩ D(0, r)) the number of elements of Ω inside a disk of
radius r with center 0. Then the limit

lim
r→∞

1

r2
#(Ω ∩D(0, r))
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exists and is positive: it is the area of the parallelogram{
aω1 + bω2 | 0 ≤ a, b < 1

}
;

this area does not depend on the choice of the basis {ω1, ω2} of Ω as a Z–
module, and this parallelogram is a fundamental domain for the quotient
C/Ω.

Lemma 2. (Schwarz Lemma with Blaschke factors). Let 0 < r < R
be real numbers and f a complex function which is continuous in the closed
disc |z| ≤ R and analytic in the open disc |z| < R. Assume f has at least
N zeroes, counting multiplicities, in the disc |z| < r. Then

|f |r ≤
(

2rR

R2 + r2

)N
|f |R.

When r > 0 is a positive real number and f is a nonzero analytic function
in an open connected set containing the disc |z| ≤ r, we denote by Nr the
number of zeroes of f , counting multiplicities, in the disc |z| < r.

Corollary 1. Let f be a nonzero entire function of strict order ≤ ρ. Then
there exists a constant C such that

Nr ≤ Crρ for all r ≥ 1.

Combining Lemma 2 with Cauchy’s inequalities, we deduce the following
estimate.

Corollary 2. Let 0 < r < R, f an entire function and z0 ∈ C. Assume f
has at least N zeroes in the disc |z − z0| < r. Let t ≥ 0 be an integer. Then

|z0|t

t!

∣∣∣∣dtfdzt
(z0)

∣∣∣∣ ≤ ( 2rR

R2 + r2

)N
|f |R+|z0|.

2. Elliptic functions

References for this section are [11, Chap. XIV] and [37].

Definition. Let Ω be a lattice in C. The Hadamard product attached to Ω
with ρ = 2 is

σ(z) = z
∏
ω∈Ω
ω 6=0

(
1− z

ω

)
exp

(
z

ω
+

z2

2ω2

)
,

which is the Weierstrass sigma function attached to Ω.

It is an entire function of strict order 2, with a simple zero at each point
of Ω.

Definition. The Weierstrass zeta function attached to Ω is the logarithmic
derivative of the sigma function, namely

ζ(z) =
σ′(z)

σ(z)
=

1

z
+
∑
ω∈Ω
ω 6=0

(
1

z − ω
+

1

ω
+

z

ω2

)
.
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The series of the meromorphic functions in the right hand side is abso-
lutely and uniformly convergent on any compact subset of C [11, Chap. XIII,
Lemma 1.2]. Weierstrass zeta function is a meromorphic function of strict
order ≤ 2, quotient of two entire functions of strict order 2, with simple
poles at ω ∈ Ω with residue 1.

Definition. The Weierstrass elliptic function attached to Ω is the derivative
of the zeta function, namely

(2) ℘(z) = −ζ ′(z) =
1

z2
+
∑
ω∈Ω
ω 6=0

(
1

(z − ω)2
− 1

ω2

)
.

The series of the meromorphic functions in the right hand side is abso-
lutely and uniformly convergent on any compact set. For a 6∈ Ω, we have

℘(z)− ℘(a) = −σ(z + a)σ(z − a)

σ(z)2σ(a)2
,

hence ℘ is a meromorphic function of strict order ≤ 2, quotient of two entire
functions of strict order 2. It follows from the formula (2) that

(3) ℘(z + ω) = ℘(z) for all ω ∈ Ω,

that is, ℘ is a periodic function with periods ω ∈ Ω. Besides, ℘ has double
poles at ω ∈ Ω with residue 0.

As a consequence of the periodicity (3) of ℘, for ω ∈ Ω, the difference
ζ(z + ω) − ζ(z) is a constant, which is denoted η(ω). For ω ∈ Ω and
η = η(ω), we have

σ(z + ω)

σ(z)
= ± exp

(
η
(
z +

ω

2

))
.

More precisely, let {ω1, ω2} be a basis of Ω over Z, so that Ω = Zω1 ⊕ Zω2.
Let ω ∈ Ω. Write ω = aω1 + bω2 for some integers a and b. Then η(ω) =
aη1 + bη2 where η1 = η(ω1) and η2 = η(ω2). For i = 1, 2, we have

σ(z + ωi)

σ(z)
= − exp

(
ηi

(
z +

ωi
2

))
.

Near 0, the zeta function has a Laurent series expansion

ζ(z) =
1

z
−
∞∑
k=1

G2k+2(Ω)z2k+1,

where, for ` ≥ 4,

G`(Ω) =
∑
ω∈Ω
ω 6=0

ω−`.

These numbers G`(Ω) are the Eisenstein series for Ω. Note that for any
λ ∈ C×, we have

℘λΩ(λz) = λ−2℘Ω(z).
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Define

g2 = 60G4(Ω) and g3 = 140G6(Ω).

Then ℘(z) is a solution of the differential equation

℘′
2

= 4℘3 − g2℘− g3.

By selecting a suitable path from ℘(z) to ∞, we can write, for z 6∈ Ω,

z =

∫ ∞
℘(z)

dt√
4t3 − g2t− g3

·

Define ∆ = g3
2 − 27g2

3. Write

4x3 − g2x− g3 = 4(x− e1)(x− e2)(x− e3).

Since the discriminant of this polynomial is ∆ and since ∆ 6= 0, the three
roots e1, e2, e3 are distinct and one can order them so that

ei = ℘(ωi/2) for i = 1, 2 and e3 = −e1 − e2 = ℘((ω1 + ω2)/2).

One deduces

ωi = 2

∫ ∞
ei

dt√
4t3 − g2t− g3

·

The next examples involve Euler’s Beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)
=

∫ 1

0
xa−1(1− x)b−1dx.

Example 1. Consider the elliptic Weierstrass function ℘ satisfying ℘′2 =
4℘3 − 4℘. Here we have g2 = 4 and g3 = 0. Then

(4) ω1 =

∫ ∞
1

dt√
t3 − t

= B(1/4, 1/2) =
Γ(1/4)2

√
8π

= 2.6220575542 . . .

and ω2 = iω1, together with

η1 =
π

ω1
and η2 = −iη1.

Example 2. Consider the elliptic Weierstrass function ℘ satisfying ℘′2 =
4℘3 − 4. Here we have g2 = 0 and g3 = 4. Then

(5) ω1 =

∫ ∞
1

dt√
t3 − t

=
1

3
B(1/6, 1/2) =

Γ(1/3)3

24/3π
= 2.428650648 . . .

and ω2 = ρω1, where 1 + ρ+ ρ2 = 0, together with

η1 =
2π√
3ω1

and η2 = ρ2η1.

Note. An elliptic integral of the first kind is an indefinite integral∫
dx

y
,
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where x and y are related by y2 = 4x3 − g2x− g3. We can write it as∫
dt√

4t3 − g2t− g3

·

The periods of this integral are the values of the integral on closed loops,
and these values are the elements of Zω1 + Zω2.

The elliptic integral of the second kind is∫
xdx

y

which can be written ∫
tdt√

4t3 − g2t− g3

·

Setting t = ℘(z), we get∫ ∞
℘(z)

tdt√
4t3 − g2t− g3

= −ζ(z).

If γ is a closed loop and ω =
∫
γ
dx
y , then∫

γ

xdx

y
= η(ω).

The elliptic integrals of the third kind are the integrals of the form∫
dx

(x− c)y
with c ∈ C. For x0 = ℘(t0) and y0 = ℘′(t0), one has∫

y + y0

x− x0
· dx
y

= log
σ(z − t0)

σ(z)
+ zζ(t0).

The numbers

ζ(u)− η

ω
u+

2nπi

ω
(n ∈ Z)

are periods of elliptic integrals of the third kind.

3. Elliptic curves over C

Denote by P2(C) the projective plane. Let g2, g3 be complex numbers
such that the discriminant ∆ = g3

2 − 27g2
3 does not vanish. Define

E(C) =
{

(t : x : y) ∈ P2(C) | y2t = 4x3 − g2xt
2 − g3t

3
}
.

This is a non singular cubic curve. The point (0 : 0 : 1) ∈ E(C) is the point
at infinity on the curve and will be denoted by OE .

For a subfield K of C, the elliptic curve E is defined over K if g2 and g3

are in K. In this case,

E(K) =
{

(t : x : y) ∈ P2(K) | y2t = 4x3 − g2xt
2 − g3t

3
}
.
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Let ℘ be the Weierstrass elliptic function with invariants g2, g3. The map
C→ E(C) defined by

z 7→ (1 : ℘(z) : ℘′(z)) for z 6∈ Ω

ω 7→ OE for ω ∈ Ω

is a surjective map and by (3) induces a bijective map C/Ω→ E(C).

Since C/Ω is an additive group, the bijection C/Ω→ E(C) yields a struc-
ture of abelian group on E(C), with OE as neutral element. By construction,
the additive groups C/Ω and E(C) are isomorphic. These groups are also
isomorphic as topological groups.

One can check that for u, v, w ∈ C, the condition u+v+w = 0 is equivalent
to

det

 ℘(u) ℘′(u) 1
℘(v) ℘′(v) 1
℘(w) ℘′(w) 1

 = 0.

This means that three points on E(C) add to OE if and only if they are on
a straight line. From the vanishing of this determinant, one also deduces

℘(u+ v) = −℘(u)− ℘(v) +
1

4

(
℘′(u)− ℘′(v)

℘(u)− ℘(v)

)2

and

ζ(u+ v) = ζ(u) + ζ(v) +
1

2

℘′(u)− ℘′(v)

℘(u)− ℘(v)
·

Further, we have,

℘(2u) = −2℘(u) +
1

4

(
℘′′(u)

℘′(u)

)2

and

ζ(2u) = 2ζ(u) +
1

2

℘′′(u)

℘′(u)
·

By induction, one deduces that for every integer m ≥ 2, we have

℘(mu) =
Am
(
℘(u)

)
Bm
(
℘(u)

) ,
where Am and Bm are polynomials of degrees m2 and m2 − 1 respectively.

Ring of endomorphisms. We denote by End(E) the ring of endomor-
phisms of the topological group E(C), namely the maps E → E which are
continuous homomorphisms of the abelian group E(C) to itself. We use the
isomorphism between E(C) and C/Ω and we lift an endomorphism of C/Ω
to a linear map λ : z 7→ λz of C where λΩ ⊂ Ω:

C −→ C
↓ ↓

C/Ω −→ C/Ω



10 MICHEL WALDSCHMIDT

One deduces

End(E) = {λ ∈ C | λΩ ⊂ Ω} .
Since Ω is a lattice, for m ∈ Z we have mΩ ⊂ Ω, hence Z ⊆ End(E) for all E.
It turns out End(E) 6= Z if and only if τ = ω2/ω1 is a quadratic irrationality.
In this case, we say that the elliptic curve E has complex multiplication ;
then the ring End(E) is an order of the quadratic field Q(τ), that is a subring
of the ring of integers of maximal rank 2. The field Q(τ) is called the field
of endomorphisms of E.

A survey on the history of transcendence related with elliptic functions
is given in [37]. The very first result goes back to C. L. Siegel (1932). He
proved the following. Let Ω = Zω1⊕Zω2 be a lattice in C. Define τ = ω2/ω1.
Let E : y2 = 4x3 − g2x − g3 be the Weierstrass elliptic curve attached to
Ω. Then at least one of the numbers g2, g3, ω1, ω2 is transcendental. As a
consequence, if E has complex multiplication and if g2 and g3 are algebraic,
any non–zero period is a transcendental number.

Much more is known now, as we are going to see.

4. Schneider–Lang Criterion and some of its applications

Criterion of Schneider–Lang. Let K be a number field. Let f1, f2, . . . , fm
be meromorphic functions. Assume that the functions f1, f2 are of finite or-
der and are algebraically independent. Assume that the differential operator
d/dz takes the ring K[f1, f2, . . . , fm] to itself. Then the set

S = {u ∈ C | u is not pole of fj and fj(u) ∈ K for all j = 1, 2, . . . ,m}
is finite.

In this statement, it does not make a difference whether we assume the
functions f1, f2 are algebraically independent over C or over Q.

Here are some of the many consequences of the criterion of Schneider–
Lang.

Theorem 1 (Hermite-Lindemann). Let u be a nonzero complex number.
Then at least one of the two numbers u, eu is a transcendental number.

Proof. Take m = 2, f1(z) = z and f2(z) = ez. These two entire functions
are algebraically independent and of finite order. Consider the field K =
Q(u, eu). The functions f1 and f2 satisfy the differential equations f ′1 = 1
and f ′2 = f2, hence f ′j ∈ K[f1, f2] for j = 1, 2. Consider the set S =

{u ∈ C | fj(u) ∈ K for j = 1, 2}. For any integer m ∈ Z, f1(mu) = mu ∈
K and f2(mu) = emu = (eu)m ∈ K, hence mu ∈ S for all integer m ∈ Z.
Since u 6= 0, it follows that S is infinite. Therefore K is not a number field,
which proves the result. �

Theorem 2 (Gel’fond-Schneider (1934)). Let u 6= 0 and β 6∈ Q be two
complex numbers. Then at least one of the three numbers u, β, eβu is tran-
scendental.
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Proof. The two functions f1(z) = ez and f2(z) = eβz are algebraically inde-
pendent (for β 6∈ Q) and of finite order. Define K = Q(u, β, eβu). Then for
any integer m ∈ Z

f1(mu) = emu = (eu)m ∈ K
and

f2(mu) = eβmu = (eβu)m ∈ K.
From the assumption u 6= 0, it follows that the set of mu, m ∈ Z, is infinite.
Therefore, by the Schneider–Lang Criterion, K is not a number field. This
proves the result. �

Theorem 3 (Schneider (1937)). Let ℘ be the Weierstrass elliptic function
with invariants g2, g3. Let u be a complex number with u 6∈ Ω. Then at least
one of the numbers g2, g3, u, ℘(u) is transcendental.

Proof. Set m = 3 and consider the three functions f1(z) = z, f2(z) =
℘(z), f3(z) = ℘′(z). The two functions f1 and f2 are algebraically inde-
pendent and of finite order. Define K = Q(g2, u, ℘(u), ℘′(u)). Notice that
g3 ∈ K. From

f ′1 = 1, f ′2 = ℘′ = f3, f
′
3 = ℘′′ = 6℘2 − g2/2 = 6f2

2 − g2/2

we deduce that f ′j ∈ K[f1, f2, f3] for j = 1, 2, 3. The set of m ∈ Z such
that mu is not a pole of ℘ is infinite, and for each of these m we have
fj(mu) ∈ K for j = 1, 2, 3. Therefore, by the Schneider–Lang criterion, K
is not a number field. �

Corollary 3. Assume g2 and g3 are algebraic. Let ω ∈ Ω with ω 6= 0. Then
ω is transcendental.

Proof. Let ` be the least integer such that u = ω/2` 6∈ Ω. Then 2u ∈ Ω,
hence ℘′(u) = 0. Therefore ℘(u) is algebraic and by Theorem 3, it follows
that u is transcendental. �

Theorem 4 (Schneider (1937)). Let Ω and Ω∗ be two lattices, ℘ and ℘∗ be
the corresponding Weierstrass elliptic functions. Denote by g2, g3 and g∗2,
g∗3 their invariants. Assume that ℘ and ℘∗ are algebraically independent.
Let u ∈ C satisfy u 6∈ Ω and u 6∈ Ω∗. Then, at least one of the numbers g2,
g3, g∗2, g∗3, ℘(u), ℘∗(u) is transcendental.

Proof. Take f1(z) = ℘(z), f2(z) = ℘∗(z), f3(z) = ℘′(z), f4(z) = (℘∗)′(z).
By the assumption, f1 and f2 are algebraically independent and of finite
order. Define

K = Q(g2, g3, g
∗
2, g
∗
3, ℘(u), ℘∗(u), ℘′(u), (℘∗)′(u)).

Clearly f ′j ∈ K[f1, f2, f3, f4] for j = 1, 2, 3, 4. The set of m ∈ Z such that

mu 6∈ (Ω ∪ Ω∗) is infinite, and for these values of m we have fj(mu) ∈ K
for j = 1, 2, 3, 4. By the Schneider–Lang criterion, it follows that K is not a
number field. �
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Further results on the transcendence of numbers related with periods of
elliptic integrals of the third kind have been derived from the Schneider–
Lang Criterion in [31, 32]. See also [12, 13, 14].

Sketch of the proof of Schneider–Lang Criterion. By the assumption, f1 and
f2 are algebraically independent over Q. The idea is to get a contradiction
by assuming the set S is sufficiently large; so we plan to show that, if S has
too many elements, there exists a non-zero polynomial P (X,Y ) ∈ Z[X,Y ]
such that the function F (z) = P (f1(z), f2(z)) is the zero function. To start
with, we show the existence of such a P for which F has many zeroes. Then
by induction we show that F has even more zeroes than what was given by
the construction, until we reach the conclusion that F = 0.

Assume S has at least s elements u1, . . . , us, with s sufficiently large (how
large it should be can be made explicit, but here we do not address this
issue). Choose a positive integer T which is very large. Let L be the least
integer with L2 ≥ 2Ts[K : Q].

Step 1. We show that there exists a non-zero polynomial P (X,Y ) ∈
Z[X,Y ], of partial degrees less than L, such that F = P (f1, f2) has a zero
of multiplicity ≥ T at each point u1, . . . , us.

We write the expected polynomial P as

P =
L−1∑
i=0

L−1∑
j=0

aijX
iY j ,

where aij are unknowns taking their values in Z. Linear algebra shows that,
as soon as (L+1)2 > Ts[K : Q], there is a non trivial solution to the system
of sT equations in L2 unknowns with coefficients in K:

dtF

dzt
(uh) = 0 for all t, s with 0 ≤ t < T and 1 ≤ h ≤ s.

The stronger requirement L2 ≥ 2Ts[K : Q] enables one to achieve an upper
bound for the absolute values of the coefficients aij of such a P , thanks to
the so–called Thue–Siegel lemma.

Step 2. Since F is not the zero function, the set of integers T ′ such that

dtF

dzt
(uh) = 0 for all t, s with 0 ≤ t < T ′ and 1 ≤ h ≤ s

is finite; by step 1, this set contains T . Denote by T ′ the largest element in
this set. Hence there exists an h0, 1 ≤ h0 ≤ s, for which the number

γ =
dT

′
F

dzT ′ (uh0)

is not 0.

Step 3. Using Schwarz’s Lemma and Cauchy’s inequalities (Corollary 2),
we deduce an upper bound for |γ|. The choice of the parameters implies
that |γ| is very small.
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Step 4. Arithmetic arguments (Liouville’s inequality) produce a lower
bound for |γ|: it means that |γ| cannot be too small.

The conclusion (upper bound for s) follows by comparing the estimates
from steps 3 and 4.

�

Further transcendence results related with elliptic functions are known.
See for instance [29] and the surveys [33, 36, 37].

5. Linear Independence of Periods

Let Ω be a lattice for which the Weierstrass ℘ function has algebraic
invariants g2 and g3. Let (ω1, ω2) be a pair of fundamental periods and let
η1 and η2 be the associated quasi–periods of the Weierstrass zeta function.

Let Q be denote the field of all algebraic numbers. Thanks to the work
of Baker, Coates and Masser [1, 15, 37], all linear relations with algebraic
coefficients among the 6 numbers

1, ω1, ω2, η1, η2, 2iπ

are known. The dimension of the Q–vector space spanned by these numbers
is {

6 in the non CM case,
4 in the CM case.

6. Algebraic Independence of Periods

The main tool in this section is the method which was introduced by A. O.
Gel’fond in 1949 when he proved algebraic independence results for values
of the exponential function. A typical result he achieved was the algebraic

independence of 2
3√2 and 2

3√4. His method was developed by several authors
including Brownawell and Kubota [3] and then Chudnovsky, who proved the
following results (see [5, 6, 7, 8, 9, 10, 30]).

Theorem 5 (Chudnovsky (1976)). Let ℘ be a Weierstrass elliptic function
with invariants g2 and g3 and let ω1, ω2 be a pair of fundamental periods.
Denote by η1 and η2 the associated quasi–periods of the Weierstrass zeta
function. Then at least two of the numbers g2, g3, ω1, ω2, η1 and η2 are alge-
braically independent.

Sketch of the Proof. We first select parameters which will be used as upper
bounds for the partial degrees of the auxiliary polynomials and as lower
bounds for the multiplicities and the number of points that we will consider.
Step 1. We prove that there exists a non-zero polynomial P (X,Y, Z) ∈
Z[g2, g3][X,Y, Z] such that the function F (z) = P

(
z, ℘(z), ζ(z)

)
has zeroes

of high multiplicity at points of the form (ω1/2) + mω1 + nω2 for some set
of integers m and n.

The Lemma of Thue–Siegel produces an upper bound for the coefficients
of such a P .
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Step 2. Select a nonzero value γ = (dtF/dzt)(z0) of a derivative of F at a
point z0 of the form (ω1/2) +mω1 + nω2.

This is a so–called zero estimate which one proves by means of elimination
theory.

Step 3. Using Schwarz’s Lemma and Cauchy’s inequalities (Corollary 2),
we deduce an upper bound for |γ|.

Step 4. The conclusion follows from Gel’fond’s criterion (Proposition 2
below). �

We denote by H(P ) the maximum modulus of the coefficients of a poly-
nomial P ∈ C[X].

Proposition 2 (Gel’fond’s Criterion). Let θ ∈ C. Assume that there ex-
ists a sequence of polynomials QN ∈ Z[X] with QN 6= 0, degQN ≤ N ,
logH(QN ) ≤ N such that

|QN (θ)| ≤ exp(−6N2).

Then θ is algebraic and QN (θ) = 0 for all sufficiently large N .

The next result assumes that g2 and g3 are algebraic.

Theorem 6 (Chudnovsky (1976)). Let ℘ be a Weierstrass elliptic function
with period lattice Ω and with algebraic invariants g2 and g3. Let ω ∈ Ω and
η the associated quasi–period. Let u ∈ C with u 6∈ Ω be such that ℘(u) is
algebraic. Assume that u and ω are Q–linearly independent. Then the two
numbers

η

ω
, ζ(u)− η

ω
u

are algebraically independent.

Notice that for a Weierstrass elliptic function ℘, the existence of u not
pole of ℘ such that ℘(u) and ℘′(u) are algebraic implies that the invariants
g2 and g3 are algebraic.

Sketch of the Proof. We select auxiliary parameters; next, we show that
there exists a non-zero polynomial P (X,Y ) ∈ Z[η/ω][X,Y ] such that F (z) =
P (℘(z), ζ(z) − ηz/ω) has zeroes at several points of the form mu (m ∈ Z)
with high multiplicity. Since ω is a period of F , it follows that F has zeroes
at mu + nω with the same multiplicity. The rest of the proof is similar
to that of Theorem 5. The final step uses Gel’fond’s criterion (Proposition
2). �

Corollary 4. Let ℘ be an elliptic function with algebraic invariants. Let
ω be a nonzero period of ℘ and let η be the associated quasi–period of the
Weierstrass zeta function. Then the two numbers

η

ω
,
π

ω
are algebraically independent.
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Proof. We use Theorem 6 with ω = ω1, u = ω2/2 and η = η1 to deduce the
algebraic independence of the two numbers

η1

ω1
, ζ(ω2/2)− η1

ω1
ω2/2

Since

2ζ(ω2/2)− η1

ω1
ω2 = η2 −

η1

ω1
ω2,

Corollary 4 follows from Legendre’s relation:

ω2η1 − ω1η2 = 2iπ.

when the imaginary part of ω2/ω1 is positive. �

Using either Theorem 5 or Theorem 6 (via Corollary 4) one deduces:

Corollary 5. Assume g2 and g3 are algebraic. Then the transcendence
degree over Q of the field Q(ω1, ω2, η1, η2) is ≥ 2.

The following statement would contain both Theorems 5 and 6. It is a
special case of the Conjecture of André–Bertolin on 1 motives [2]:

Conjecture 1. Let u ∈ C\Ω and ω ∈ Ω be such that u and ω are Q-linearly
independent. Then the transcendence degree over Q of the field

Q
(
g2, g3, ℘(u),

η

ω
, ζ(u)− η

ω
u
)

is ≥ 2.

We study now the transcendence degree of the field Q(g2, g3, ω1, ω2, η1, η2).
In the CM case, the transcendence degree may be 2 or 3. When g2 and g3

are algebraic, according to Corollary 5, it is 2. If we start with an elliptic
curve with algebraic invariants g2, g3 and if we select a number c which is
transcendental over Q(ω, π), then for the elliptic function ℘∗ associated to
the lattice Ω∗ = cΩ, a transcendence basis of the field Q(g∗2, g

∗
3, ω

∗
1, ω

∗
2, η
∗
1, η
∗
2)

is {c, ω∗, π}, hence the transcendence degree is 3.
From Corollary 5 we deduce the next result concerning the CM case.

Choose a twelfth root ∆1/12 of the discriminant ∆ = g3
2 − 27g2

3.

Corollary 6. Assume τ = ω2/ω1 is algebraic. Then the two numbers

∆1/12ω, π

are algebraically independent.

Proof. Recall that the invariant j = j(τ) = 1728g3
2/$ofEisalgebraic.Letc=1̂/12

betheselectedtwelfthrootof$. The elliptic function ℘∗ associated to the lat-
tice Ω∗ = cΩ has algebraic invariants g∗2 = c−4g2 and g∗3 = c−6g3. By Corol-
lary 5, a transcendence basis of the field Q(ω∗1, ω

∗
2, η
∗
1, η
∗
2) is {ω∗, π}. �

In the non CM case, we know only that the transcendence degree of the
field Q(g2, g3, ω1, ω2, η1, η2) is at least 2, but we expect more, as predicted
by is the Conjecture of André–Bertolin on 1 motives [2]:
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Conjecture 2. Let ℘ be a Weierstrass elliptic function with invariants g2

and g3 and without complex multiplication. Let {ω1, ω2} be a basis of the
lattice of periods of ℘ and let η1 and η2 be the corresponding quasi–periods.
Then the transcendence degree of the field

Q(g2, g3, ω1, ω2, η1, η2)

is ≥ 4.

It would be interesting to know whether the transcendence degree is 6 for
a set of g2, g3 of full Lebesgue measure in C2.

Using the relation (4) of Example 1, one deduces that the two numbers π
and Γ(1/4) are algebraically independent. Similarly, using the relation (5) of
Example 2, one deduces that the two numbers π and Γ(1/3) are algebraically
independent.

S. Bruiltet [4] proved that Γ(1/4) and Γ(1/3) are not Liouville numbers.
G. Philibert [24] proved that under the assumptions of Theorem 6, there

exist two constant c and k such that, for any nonzero polynomial P (X,Y ) ∈
Z[X,Y ], if we set N = max{deg P, logH(P )}, we have∣∣∣P (ζ(u)− η

ω
u,
η

ω

)∣∣∣ > exp(−cNk).

In particular this measure of algebraic independence is valid for the two
numbers π and Γ(1/4), and also for the two numbers π and Γ(1/3).

We should add that further results of algebraic independence for values
of elliptic functions are known: see [16, 17, 25, 26, 27, 28, 38, 39], and also
the work of Nesterenko [18, 19, 20, 21, 22, 23, 34, 35], who uses a different
approach (modular method). These results were not discussed in this Goa
workshop.
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245 (1997), Exp. No. 824, 3, 105–140, Séminaire Bourbaki, Vol. 1996/97.
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