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Exercise 1

Let a > 2 and n > 2 be integers.

a) Assume that the number N = ¢™ —1 is prime. Show that N is a Mersenne
prime, that is @ = 2 and n is prime.

b) Assume that the number a” + 1 is prime. Show that n is a power of 2,
and that a is even. Can you deduce a = 2 from the hypotheses?

Exercise 2
Using 641 = 2% +5* = 27. 5 + 1, show that 641 divides the Fermat number
Fy=2%+1.

Exercise 3 (compare with exercise II1.4 of Weil’s book)
Let n be an integer > 1. Check that n can be written as the sum of (two or
more) consecutive integers if and only if n is not a power of 2.

Exercise 4 (exercise IV.3 of Weil’s book)

Let a, m and n be positive integers with m # n. Check that the greatest
common divisor (ged) of @™ + 1 and a®" + 1 is 1 if a is even and 2 if a is
odd. Deduce the existence of infinitely many primes.

Exercise 5 (exercise IV.5 of Weil’s book)
Check that the product of the divisors of an integer a is a”/? where D is the
number of divisors of a.

Exercise 6 (exercise V.7 of Weil’s book)
Given n > 0, any n + 1 of the first 2n integers 1,...,2n contain a pair z, y
such that y/x is a power of 2.

Exercise 7 (exercise V.3 of Weil’s book)
If n is a positive integer, then

22"t =9n? —3n +2 (mod 54).



Exercise 8 (exercise V.4 of Weil’s book)
If z, y, 2z are integers such that 2% + y* = 22, then xyz = 0 (mod 60).

Exercise 9 (exercise VI.2 of Weil’s book)
Solve the pair of congruences

br —Ty=9 (mod 12), 2z+3y =10 (mod 12);
show that the solution is unique modulo 12.

Exercise 10 (exercise VI.3 of Weil’s book)
Solve 22 + ax + b= 0 (mod 2)

Exercise 11 (exercise VI.4 of Weil’s book)
Solve 22 — 3z +3 =0 (mod 7).

Exercise 12 (exercise VI.5 of Weil’s book)
The arithmetic mean of the integers in the range [1,m — 1] prime to m is
m/2.

Exercise 13 (exercise VI.6 of Weil’s book)
When m is an odd positive integer,

I +2"4+...4+(m—-1)"=0 (mod m).

Exercise 14 (exercise VIIL.3 of Weil’s book)
If p is an odd prime divisor of a*" +1 with n > 1, show that p =1 (mod 2"1).

Exercise 15 (exercise VIII.4 of Weil’s book)

If @ and b are positive integers and a = 2°5°m with m prime to 10, then the
decimal expansion for b/a has a period ¢ where the number of decimal digits
of ¢ divides p(m). Further, if there is no period with less than m — 1 digits,
then m is prime.

Exercise 16 (exercise X.3 of Weil’s book)

For p prime and n positive integer,

I"+2"+- 4+ (p—-1)" =

0 (mod p) if p— 1 does not divide n,
—1 (mod p) if p—1 divides n.
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Solution of Ezxercise 1. From
a"—1=(a—D@ " +a" 2+ - +a*+a+]l),

it follows that a — 1 divides a™ — 1. Since a > 2 and n > 2, the divisor a — 1
of a® —1is <a™— 1. If @™ — 1 is prime then a — 1 = 1, hence a = 2.
If n = be, then a™ — 1 is divisible by a® — 1, as we see from the relation

P —l=@-)E" 2"+ P+ 1)

with x = a®. Hence if 2" — 1 is prime, then n is prime.
If n has an odd divisor d > 1, then the identity

V' 1=0b+D0 =024 b = b+ 1)

with b = @™/ shows that b+ 1 divides a™ + 1. Hence if a™ + 1 is prime, then
n has no odd divisor > 1, which means that n is a power of 2. Also a™ + 1
is odd, hence a is even.

It may happen that a™ + 1 is prime with a > 2 — for instance when « is
a power of 2 (Fermat primes), but also for other even values of a like a = 6
and n = 2. It is a famous open problem to prove that there are infinitely
many integers a such that a? + 1 is prime.

]

Solution of Ezxercise 2. Write

641 =21 + 51 =27. 5+ 1,
so that on the one hand

5-2"= -1 (mod 641),

hence
572% = (—1)* =1 (mod 641),



and on the other hand
51.2% = 232 (mod 641).

Hence
232 = —1 (mod 641).

Remark. Omne can repeat the same proof without using congruences. From
the identity
vt —1=(x—1D(z+1)(z*+1)

we deduce that for any integer z, the number z* — 1 is divisible by = + 1.
Take x = 5 - 27; it follows that z + 1 = 641 divides 522 — 1. However 641
also divides 228(2% + 5%) = 232 4 5122 hence 641 divides the difference

(232 4 512%8) — (51228 — 1) = 2% 1 1 = F;.
O

Solution of Exercise 3. Assume first that n > 3 is not a power of 2. Let
2a + 1 be an odd divisor of n with a > 1. Write n = (2a + 1)b.
If b > a then n is the sum

b-—a)+b-—a+1)+--+b-1)+b+(b+1)+ -+ (b+a)

of the 2a + 1 consecutive integers starting with b — a.
If b < a then n is the sum

(a=b+1)+(a=b+2)+--+---+(a+0)

of the 2b consecutive integers starting with a — b + 1.
Assume now n is a sum of b consecutive integers with b > 1:

b(b+1
n=a+(a+1)+--+(a+b—1)=ba+ ( )

Then
2n =b(2a+b+1)

is a product of two numbers with different parity, hence 2n has an odd divisor
and therefore n is not a power of 2. O



Solution of Ezxercise 4. Without loss of generality we assume n > m. Define
x = a®", and notice that

n
' —1==x

gn—m

-1
which is divisible by 4+ 1. Hence a®” + 1 divides a®" — 1. Therefore if a
positive integer d divides both a?” +1 and a*" +1, then it divides both a?" —1
and a®" + 1, and therefore it divides the difference which is 2. Hence d = 1
or 2. Further, a®" + 1 is even if and only if a is odd.

For n > 1, let P, be the set of prime divisors of 22" +1. The set P, is not

empty, and the sets P, for n > 1 are pairwise disjoint. Hence their union is
infinite. ]

Solution of Exercise 5. A one line proof:
2

gd = Hd Hg = Ha =aP.

dla dla dla

Remark. A side result is that if @ is not a square, then D is even.
O

Solution of Exercise 6. Let x1,...,2,11 be n 4+ 1 distinct positive integers
<2n. Fort=1,...,n+1, denote by y; the largest odd divisor of x;. Notice
that 1 < y; < nfor 1 <i < n-+ 1. By Dirichlet box principle, there exist
i # j such that y; = y;. Then z; and z; have the same largest odd divisor,
which means that x;/z; is a power of 2.

O

Solution of Exercise 7. For n = 0 both sides are equal to 2, for n = 1 to 8.
We prove the result by induction. Assume

221 =9(n—1)>-3(n—1)+2 (mod 54).
The right hand side is 9n? — 21n + 14, and
4(9n? — 21n + 14) = 36n> — 84n + 56

which is congruent to 9n? — 3n + 2, since 27n(n + 3) is a multiple of 54.
O



Solution of Exercise 8. Since 60 = 22 -3 -5, we just need to check that 4, 3
and 5 divide zyz.

If two at least of the numbers z, y, z are even, then 4 divides zyz. If only
one of them, say t, is even, then ¢? is either the sum or the difference of two
odd squares. Any square is congruent to 0, 1 or 4 modulo 8. Hence t* = 0
(mod 8), which implies ¢ = 0 (mod 4). Therefore zyz =0 (mod 4).

The squares modulo 3 are 0 and 1, hence z? is not congruent to 2 modulo
3, and therefore 22 and y? are not both congruent to 1 modulo 3: one at
least of them is 0 modulo 3, hence 3 divides xy.

Since the squares modulo 3 are 0 and 1, the same argument shows that
5 divides zy.

]

Solution of Ezercise 9. Multiply the first equation by 3, the second by 7 and
add. From 29 =5 (mod 12) and 97 = 1 (mod 12) we get 5z =1 (mod 12).
Since

bxH—-2x12=1,

the inverse of 5 modulo 12 is 5. Hence x = 5 (mod 12). Substituting yields
y =4 (mod 12).

The unicity can also be proved using the fact that the determinant of the
system

5 =7
2 3
is 29 which is prime to 12.

[

Solution of Ezxercise 10. (Compare with exercise XI1.2: If p is an odd prime
and a is prime to p, show that the congruence ax® +bx +c¢ =0 (mod p) has
two solutions, one or none according as b*> — 4ac is a quadratic residue, 0 or
a non-residue modulo p).

If a is even, the discriminant in F, is 0, and there is a unique solution
x =0 (mod 2).

If a is odd, the discriminant is not 0 (hence it is 1 in Fy). If b is even
there are two solutions (any x € Fy is a solution, xz(z 4 1) is always even), if
b is odd there is no solution: 22 4+ = + 1 is irreducible over Fs.

m



Solution of Exercise 11. In the ring F;[X] of polynomials over the finite field
Z/7Z = F7, we have

X2 —3X+3=(X+2-1=(X+1)(X +3).
The roots of this polynomial are
r=6 (mod7) and z=4 (modT7).
O

Solution of Exercise 12. We define a partition of the set of integers k in the
range [1, m—1] prime to m into two or three subsets, where one subset consists
of those integers k& which are < m/2, another subset consists of those integers
k which are > m/2, with an extra third set with a single element {m/2} if
m is congruent to 2 modulo 4. The result follows from the existence of a
bijective map k +— m — k from the first subset to the second.

O
Solution of Fxercise 13. Use the same argument as in Exercise 12 with
E"+(m—k)"=0 (modm) for 1<k<m
since m is odd.
O

Solution of Exercise 14. The property that p divides a®” + 1 is equivalent to
a*" = —1 (mod p), which means also that a has order 2""! modulo p. Hence
in this case 2"*! divides p — 1.

For n = 5, this shows that any prime divisor of 22” + 1 is congruent to 1
modulo 2% = 64. It turns out that 641 divides the Fermat number Fj (see
exercise 2). O

Solution of Exercise 15. For ¢ a positive integer, the decimal expansion of
the number

=107°+10"% 4 ...

10c —1
is periodic, with a period having ¢ decimal digits, namely ¢ — 1 zeros followed
by one 1. For 1 < r < 10— 1, the number

r
10¢ -1

7



has a periodic decimal expansion, with a period (maybe not the least one)
having ¢ decimal digits, these digits are the decimal digits of . Adding a
positive integer to a real number does not change the expansion after the
decimal point. The decimal expansion of the product of a real number = by
a power of 10 is obtained by shifting the decimal expansion of = (on the right
or on the left depending of whether it is a positive or a negative power of
10).
We claim that a number of the form

k
10¢(10¢ — 1)’

where k, ¢ and c are integers with k£ > 0 and ¢ > 0, has a decimal expansion
which is ultimately periodic with a period of length c. Indeed, using the
Euclidean division of £ by 10¢ — 1, we write

k=(10°—1)g+r with 0<r<10°—1,

hence

k 1 r
10(10° — 1) 10° (Q+ 10° — 1) ’
and our claim follows from the previous remarks.
Now we consider the decimal expansion of b/a when a and b are positive
integers and a = 2%5°m with m prime to 10. Denote by ¢ the order of the
class of 10 modulo m. Then ¢ divides ¢(m), 10° =1 (mod m) and

b
—10*TP(10° — 1) € Z.
a

Therefore b/a has a decimal expansion with a period having ¢ decimal digits.
If ¢ is the smallest period and if ¢ = m — 1, then m — 1 divides ¢(m), hence
©(m) = m — 1 and m is prime. For instance with a = m =7, a = =0,
b=1:

1/7 = 0.142857 142857 142857 14 . ..

has minimal period of length 6.
O

Solution of Exercise 16. If p — 1 divides n, then a™ = 1 (mod p) for a =
1,...,p—1, the sum has p — 1 terms all congruent to 1 modulo p, hence the
sum is congruent to —1 modulo p.



Assume p—1 does not divide n. Let ¢ be a generator of the multiplicative
group (Z/pZ)*. Since ¢ has order p — 1, the condition that p — 1 does not
divide n means (" # 1. Let d = ged(p — 1,n) and ¢ = (p — 1)/d.

We claim that the order of (™ is ¢q. Indeed, we can write n = dd. Since
¢ has order p — 1 it follows that ¢¢ has order ¢, and since ged(d,q) = 1,
(" = (¢%)? has also order q.

Therefore the sequence (1",2", ..., (p — 1)"), which is a permutation of
the sequence (1,¢",¢?",...,(®=2") is a repetition d times of the sequence
(1,¢™,¢?, ..., ¢la=m) Also (¢™)7 = 1. Hence

(¢ —1
1"+2"+'--+(p—1)":Z@":dzcjnzWZO‘
7=0 J=0
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