Michel Waldschmaidt Interpolation, January 2021

Exercices: hints, solutions, comments

Third course

1. Let s, s1,s2 be three complex numbers. Give a necessary and sufficient condition for the following to hold.
There exist three sequences of polynomials (An,0(2))n>0, (An,1(2))n>0, (An,2(2))n>0 such that any polynomial
f € C[z] can be written in a unique way as a finite sum

F) =3 (£ (s0)An0(2) + SO (s1)An1(2) + FO (s2)An 2(2))
n>0
What is the degree of A, j(z)? The leading term ? Write the six polynomials
A0,0(2), Mo, 1(2), Ao,2(2), A1,0(2), A1,1(2), A1,2(2).

The polynomials A,; (n >0, i=0,1,2) are defined by

By symmetry, it suffices to deal with i = 0.
e We start with n = 0 : a necessary and sufficient condition for the existence of a polynomial
Ao satisfying Ay, = 0 and

Aoo(s0) =1, Ago(s1) = Ago(s2) =0

is sp # s1 and sy # So. Assume from now on that sg, s1, So are pairwise distinct. Then there is
a unique such polynomial, it has degree 2 and is given by the Lagrange interpolation formula,
namely

(z —s1)(z — s2)

AOO(Z) = (50 — 81)(50 — 82).

e For n > 1 the polynomial A, is the unique polynomial satisfying the differential equation

"

Ao = An_1 0 with the initial conditions

Ano(s0) = Ano(s1) = Apo(s2) = 0.

It has degree 3n + 2 and leading term ﬁz?’"“.

e We explicit the solution for n = 1. The polynomial

1 20 1 (s1 + s9)2* 1 518222
L(z) = — - — -
60 (so — s1)(so — s2) 24 (so —s1)(so — s2) 6 (89 — s1)(s0 — $2)
satisfies
2
L (Z) _ < o (81 + SZ)Z + 5182 _ AOO(Z)~

(s0 —s1)(s0 —s2)  (s0o—s1)(s0—s2) (S0 — 51)(50 — 2)

Hence the unique polynomial Aqq solution of the differential equation Alllé = Agp with the initial
conditions

A1o(s0) = Ao(s1) = A1o(s2) =0



is A1o(2) = L(2) — (coz® + c12 + c2) where cg, ¢1, c2 are the solutions of the system of equations

cost +c1s0+ca = L(so),
cost +c181 +ca = L(s1),
cos3 4+ c189 +ca = L(s2).

2. Let sg, s1,s2 be three complex numbers. Give a necessary and sufficient condition for the following to hold.
There exist three sequences of polynomials (Mn,0(2))n>0, (Mn,1(2))n>0, (Mn,2(2))n>0 such that any polynomial
f € C[z] can be written in a unique way as a finite sum

1) = 32 (55 (50) Mo (2) + S (51) My 1 (2) + £ (52) M o(2))

n>0
What is the degree of My, ;(z)? The leading term ? Write the six polynomials

Mo,0(2), Mo,1(2), Mo,2(z), M1,0(2), M1,1(2), M1,2(2).

The polynomials M,,; (n >0, i =0,1,2) are defined by

M (s)) = 64835, k>0, 4,5 =0,1,2.
As we will see, there is no condition for the existence and unicity of such polynomials.

o We start with n = 0.

The unique polynomial Myo(z) satisfying My, = 0 and Moo(so) = 1, M}, (s1) = MY (s3) = 0 is
the constant polynomial Myg(z) = 1.

The unique polynomial My, (z) satisfying My, = 0 and Moy (so) = M, (s2) = 0, M}, (s1) = 1 is
M01 (Z) = Z — 50- »

The unique polynomial My (z) satisfying My, = 0 and Mo2(sg) = M{,(s1) =0, M{5(s2) =1 is

1 1
Moo (z) = 5752 —s1z2+ 580(281 — 50).
e Let n > 1. For ¢ = 0,1, 2, the polynomial M, is the unique solution of the differential equation
M = M,,_1,; with the initial condition

Mni(so) = My;(s1) = Myi(s2) = 0.
3n.

For n > 0 and i = 0 the solution is given by M,o(z) = @z

3n+1 3n+2

The leading term of M,,; is mz and the leading term of M, is
e We explicit the solution for n = 1.

The polynomial

2
Bnt2) ¢

satisfies

Hence the unique polynomial M7 solution of the differential equation M fl' = My, with the initial

conditions
My (s0) = My (s1) = M7 (s2) =0,



is M11(z) = A(2) — (az® + bz + ¢) where a, b, ¢ are the solutions of the system of equations

as +bso+c = A(so),
2as; + b = A'(s1),
2a = A"(s3).

The polynomial
1 51 50(2s81 — s0)
B(s) = — 5 _ 51 4 S0(251 — S0) 3
(2) = 155% ~ 347 12
satisfies

1"

1 1
B (2) = 522 =812 + 550(251 = s0) = Moz2(2).

Hence the unique polynomial M;2 solution of the differential equation M 1/2/ = Mjs with the initial
conditions
Miz(s0) = Mis(s1) = Mi5(s2) =0

is M12(z) = B(z) — (a2® + bz + ¢) where a, b, ¢ are the solutions of the system of equations
as3 +bsg+c = B(sp),
)

2as1 +b = B'(s1),
2a = B"(s3).

3. Let sg, s1, 2 be three complex numbers. Give a necessary and sufficient condition for the following to hold.
There exist three sequences of polynomials (Np,0(2))n>0, (Nn,1(2))n>0s (Nn,2(2))n>0 such that any polynomial
f € C[z] can be written in a unique way as a finite sum

1) = 32 (FB (50) N0 (2) + O (51) N1 (2) + SO (52) N 2(2) )

n>0
What is the degree of Ny, j(z)? The leading term ? Write the six polynomials
No,0(2), No,1(2), No,2(2), N1,0(2), N1,1(2), N1,2(2).

The polynomials N,; (n >0, i =0,1,2) are defined by
NT(L%k)(So) = N,,(jk) (81) = 6nk; N,S;k+1) (82) = 5nk n, k 2 0

The polynomial N, is deduced from N,,g by permuting sy and s;. So we need to deal only with
Nn() and Nn2.
e Let n = 0. The conditions on Nyg(z) and Noa(z) are

Noo(S()) = ]., NOO(Sl) = Néo(SQ) = 0, NOQ(S()) = NOQ(Sl) = 07 N(/)Z(SQ) = ].

Write
Noo(2) = (z — s1)(az +b), Noa2(z2) =c(z — s0)(z — s1),

so that Ny (z) = a(2z—s1)+b. The conditions on the numbers a and b arise from the requirement
Noo(So) =1 and N60(82> =0:

(aso +b)(so—s1) =1,
a(2sg —s1)+b =0,



while the condition on ¢ come from Nj,(s2) =1
c(2s9 —sg—s1) = 1.
A necessary and sufficient condition for the existence and unicity of a solution to this system is

8o # 81, So + 81 # 2s82. Under this assumption, the solution is
(z = s1)(2 — 51 + 282)

Noo(z) = (so — s1)(s0 + 81 — 282),

B (z — s0)(2 — 51) )
NO?(Z) - (30 — 51)(282 — S0 — 81)

e Forn >1and i =0,1,2, the polynomial N,; is the unique solution of the differential equation

Np—1,; with the initial condition

an(SO) = an(sl) = N;{l(SQ) =0.

The degree of N,,; is 3n + 2, the leading coefficient of N, is
2

(3n + 2)!(so — s1)(s0 + 51 — 282)

while the leading coefficient of NV, is
2

(3n+2)!(so — s1)(2s2 — S0 — 51)
e We explicit the solution for n = 1. The polynomial Ng is computed as follows : let A(z) be a
primitive of Ngg. Then Nyg(2) = A(z) — (az? + bz + ¢) where a, b, ¢ are the solutions of

as3 +bsog+c = A(s0),
asi+bsi+c = A(s1),
2as9 +b = A'(s9).

In the same way, Ni2(2) = B(z2) — (az? + Bz + 7), where B(z) is a primitive of Nyy while «, 3,

~ are the solutions of
asg +Bso+7 = B(s0),
ash 4 Bs1 47 = B(sr),
2as9 + = B'(s2).

Notice that both systems have the same determinant

2 sp 1
52 51 1| = (s —51)(250 — 50 — 51).

2s9 1 0
4. On p. 11, check that if the determinant D(s) does not vanish, then r; < j for all j =0,1,...,m — 1.
Let zg,21,...,2m—1 be independent variables. Write z for (29, 21,...,2m—1). Let K be the
field Q(z0, 21, ., 2m—1) and D(z) be the determinant
k! —r;
det (,zf i € Qlz C K.
(k—r;)! 0<j,k<m—1



Recall a!/(a —b)! =0 for a < b.

For j =0,1,...,m — 1, the row vector
( k! k_Tj)
v = ——-2z,
! (k—r)!™ k=0,1,...,m—1
(r; + 1! (rj+2)! , (m —1)! m_l_,«)
=10,0,...,0,r;!, 2, Ziye . —m————z J
( / v 20 (m—1—r)1"

belongs to {0} x K™~ ", If r; > j for some j € {0,1,...,m — 1}, then the m — j vectors
Vj,Vj41,-- -5 Um—1 all belong to the subspace {0}71 x K™~J~! of K™, the dimension of which
is m — j — 1; hence the determinant D(z) vanishes.

This amounts to say that a triangular matrix with a zero on the diagonal has a zero deter-
minant.

5. Prove the proposition p. 11.

Assume D(s) # 0. Then there exists a unique family of polynomials (An;(2))n>0,0<j<m—1
satisfying
Agglk—HZ)(Sg) = 0¢0nk, forn,k>0and 0 <j,0<m-—1

Forn >0 and 0 < j <m —1 the polynomial A,; has degree < mn+m — 1.

The assumption D(s) # 0 means that the linear map
(C[Z]Sm,1 — cm™

L(z) — (L(rj)(sj))()gjgmfl
is an isomorphism of C—vector spaces, C[z]<,—1 being the space of polynomials of degree < m—1.

First proof. Assuming D(s) # 0, we prove by induction on n that the linear map

D : C[Z]Sm(n+1)71 N ) Cm(n+1)
L(z) — (L(m +Te)(5€))0§€§m71,0§k§n

is an isomorphism of C—vector spaces. For n = 0 this is the assumption D(s) # 0. Assume ¥, _1
is injective for some n > 1. Let L € ker),,. Then L™ & ker,,_1, hence L™ = 0, which means
that L has degree < m. From the assumption D(s) # 0 we conclude L = 0.

The fact that v, is injective for all n implies that if a polynomial f € C[z] satisfies f("F+7¢)(s,) =
0 for all £ > 0 and all ¢ with 0 < ¢ < m — 1, then f = 0. This shows the unicity of the solution
Apn; of the system of equations

ALk $¢) = 0p0ni, for m k>0 and 0<j,¢<m-—1.
nj J J

Since 1, is injective, it is an isomorphism, and hence surjective : for 0 < 57 < n — 1 there exists
a unique polynomial A,; € C[z]<p(n41)—1 such that A;?k+ré)(5g) = 8j¢0py for 0 < 5,0 <m —1.
These conditions show that the set of polynomials Ag; for 0 <k <n, 0 < j <m —1, is a basis
of C[z]<m(n+1)—1 : any polynomial f € C[z] of degree < m(n+ 1) —1 can be written in a unique

way
m—1

FE) =0 arihi(2),

7=0 k=0



and therefore the coefficients are given by ay; = f (mktr; )(sj).

Second proof. The conditions
Ag:;k"rm(se) =0j0nk, for mk>0 and 0<j50<m—1

mean that any polynomial f € C[z] has an expansion

F) = 33 ) () A (2),

=0 n>0

where only finitely many terms on the right hand side are nonzero.

Assuming D(s) # 0, we first prove the unicity of such an expansion by induction on the
degree of f. The assumption D(s) # 0 shows that there is no nonzero polynomial of degree
< m satisfying f(m”J“"J')(sj) =0 for all (n,7) with 0 <n,j <m — 1. Now if f is a polynomial
satisfying f(m"”J)(sj) = 0 for all (n,7) with n > 0 and 0 < j < m — 1, then f(™) satisfies
the same conditions and has a degree less than the degree of f. By the induction hypothesis we
deduce f(™) =0, which means that f has degree < m, hence f = 0. This proves the unicity.

For the existence, let us show that, under the assumption D(s) # 0, the recurrence relations

A = Apory, AU (s))=0forn>1, Ay (se) =5 for 0<j 6 <m—1
have a unique solution given by polynomials A,,;(z), (n >0, j = 0,...,m — 1), where A,; has
degree < mn + m — 1. Clearly, these polynomials will satisfy
A("-lkJr”)(Sg) =0js0nk, for n,k>0 and 0<jl<m-—1.

nj

From the assumption D(s) # 0 we deduce that, for 0 < j < m—1, there is a unique polynomial
Ag; of degree < m satisfying

AS (s¢) = bj0 for 0 < £ <m —1.

By induction, given n > 1 and j € {0,1,...,m — 1}, once we know A,,_; ;(z), we choose a
solution L of the differential equation L(™) = A, _1;; using again the assumption D(s) # 0, we
deduce that there is a unique polynomial L of degree < m satisfying L") (s;) = L) (s;) for
0 < ¢ <m —1; then the solution is given by A,; = L — L.

6. Poritsky’s interpolation p. 31. Prove that the condition D(s) # 0 means that s, s1,...,8m—1 are pairwise
distinct.

Prove also that the function A(t) has a zero at the origin of multiplicity at least m(m — 1)/2.

N.B. The fact that the multiplicity is exactly m(m — 1)/2 follows from the fact that the coefficient of
t™(m=1/2 4n the Taylor ezpansion at the origin of A(t) is giwen by a product of two Vandermonde
determinants

1 1 1 1 1 1
1 C C(m‘_l) S0 S1 Sm—1
1 1 C2 . C2 m—1 82 82 . 82
det det | 50 1 m-1
120 (m — 1)1 ¢ ¢ .
1 ¢mloLL meD? smologmmt L gmed

But this is not so easy to prove [Macintyre 1954, §3].



Poritsky interpolation is the case

7’0:7"1:...:7","171:0.
The Vandermonde determinant
2 -1
1 s 8 So .
2 m—
1 s S% Sq .
_ k _ 1 So s R LA H _ ..
D(s) = det (Sj)ogj,kgm—l = det 2 2 = (8¢ — s5)
: : : . : 0<j<l<m—1
2 m—1
1 sm—a Sm—1 " Sm—1
does not vanish if and only if sg, s1,...,Sm,_1 are pairwise distinct.

The determinant A(t) is the determinant of the following matrix

etSO etsl ets2 e etsm,fl
eStso eSts1 eSts2 - eltsm—1
eC2t50 e<2tsl eC2t52 e ecztsm,fl
eC7n71tS() ec7y"71t51 ec"L71t82 . eC7YL71t3m,—l

The value A(0) at ¢ = 0 is 0. We use the multilinearity of the determinant : the derivative (with
respect to t) is the sum of determinants where we derive the rows. The derivative of order k of
the row

(ecjtSO eCjtsl eCjtS2 . ecjtsnl—l)
is the row
((sto)kegjtso (stl)kecjtsl (Cj82>ke<jt32 . (stm—l)k‘ecjtsmril)
which takes the value
(s (Is)f (Ts2)* - (Tsmo1))

at t =0.
If we derive the same number of times two rows, the corresponding determinant vanishes at
t = 0. Hence to get a nonzero derivative at 0 we need to take derivatives of order at least
m(m —1)

0+1+2+--~+(m—1):72 :

7.Let w = (wn)p>0 be a sequence of complex numbers. Prove that the sequence of polynomials (Quwg ,wy,...,w,_1 (2))n>0

defined by Qg =1 and
z t1 th—1
Qwo,wl ..... Wy 1 (Z) = / dt1 / dta - - / dtn
wo wq Wy 1

(wo) =0,

yery Wy

{Luo,wl,wg,...,wn (Z) = le,w2,4.4,wn (z)

What are the degree and the leading term of Qw1 ,wa,...,wn (2) 7 Check



for n > 0 and k > 0. Deduce that any polynomial is a finite sum

f(z) = Z f(n) (Wn)Quwg w1 ws,... wn, (2)-
n>0
Check the formula for the Gontcharoff determinant p. 39.
Give a close formula for these polynomials Qg w1 ,...,w, 1 (z) when
e wy, =0 for all n > 0.
e w, =1 for even n > 0, w, = 0 for odd n > 1.

e wy, =n for all n > 0.

The definition of these polynomials involving iterated integrals means that the sequence of
polynomials (Quwg,wy....,w,_1)n>0 i C[2] is defined as follows : we set Qy = 1, Qy,,(2) = z — w,
and, for n > 1, the polynomial Q. 1w, ws,...w, (2) is the polynomial of degree n + 1 which is the
primitive of Q, w,,....w, vanishing at wy.

For n > 0, we write Qv for Qg w,,....w,_,, & polynomial of degree n which depends only on
the first n terms of the sequence w.

By induction we deduce that the leading term of ,,.w is (1/n!)z".

Starting from Q,,,(wo) and using the differential equation, we deduce by induction

ngz;v(wk) = 6kn

for n > 0 and k > 0. It follows that the sequence (£2,,.w)n>0 is the unique sequence of polynomials
such that any polynomial P can be written as a finite sum

P(z) = > P (w,)Qniw(2).

n>0
In particular, for N > 0 we have
N N
Z 1 N—n
ﬁ = Z mwn Qn;w(z).
n=0

This gives an inductive formula defining Qv : for N > 0,

N N-1

QN;W(Z) = % - Z ﬁwvyinﬂnw(z)

n=0
We also have
Qw01w17--~7wn (Z) = QO,w17wo,w27w0,.._,wn7wo (Z - ’LUO).

With wg = 0, the first polynomials are given by

2100 4, (2) = (2 — wl)2 — wi
3190 10y, (2) = (2 — w2)? — 3(wy — wa)?z + w3,
100 1wy wews (2) = (2 — ws)? — 6(wy — w3)?(2 — wy)?

— 4(wy — w3)32 + 6w (wy — w3)? — wj.



Let us check that these polynomials are also given by the following determinant

1 z 22 P 2"
2 (n—1)! n!
| w0 wg o wpT o uf
1! 21 (n—1)! n!
0 1 W wiT o wpT
Quowrewn— (2) = (=1)" 1! (n—2) (n—1!.
wn73 wn72
0 0 1 2 2
(n—=3)! (n—2)!
: : : . : wn._l
0 O o --- 1 T

Indeed, the right hand side is a polynomial of degree n, vanishing at wq. Its derivative is obtained
by replacing the first row with its derivative, namely

2 n—1
01 2 2 Ay
1 2 (n—1)!

The determinant that we get reduces to a similar determinant as above but with wg, w1, ..., w,_1
replaced with w1, ..., w,_1. Hence the sequence of determinants satisfies the differential equation
characteristic of the sequence (Qy;w)n>0-

e With the sequence w,, = 0 for all n > 0, we get Taylor polynomials

Z?’L
Qpiw(2) = -

e With the sequence w = (1,0,1,0,...,0,1,...), that is w, = 1 for even n > 0, w, = 0 for odd
n > 1, we recover the Whittaker polynomials

Qoniw (2) = Mn(2),  Qontrw(z) =My, (2 = 1).
e With the arithmetic progression
(a,a+t,a+2t,...,a+nt,...),
w = (a+ nt),>o with a in C and ¢ in C\ {0}, we get the sequence of Abel polynomials

Qniw(2) = %(2 —a)(z —a—nt)"!

for n > 1. In particular for a = 0, t = 1, the sequence is w = (0,1,2,3,...,n,...), namely
wy, = n for all n > 0, this is
1 _
Qpw(z) = n!z(z —n)"!
for n > 1.
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