
Michel Waldschmidt Interpolation, January 2021

Exercices: hints, solutions, comments

Third course

1. Let s0, s1, s2 be three complex numbers. Give a necessary and sufficient condition for the following to hold.
There exist three sequences of polynomials (Λn,0(z))n≥0, (Λn,1(z))n≥0, (Λn,2(z))n≥0 such that any polynomial
f ∈ C[z] can be written in a unique way as a finite sum

f(z) =
∑
n≥0

(
f (3n)(s0)Λn,0(z) + f (3n)(s1)Λn,1(z) + f (3n)(s2)Λn,2(z)

)
.

What is the degree of Λn,j(z) ? The leading term ? Write the six polynomials

Λ0,0(z),Λ0,1(z),Λ0,2(z),Λ1,0(z),Λ1,1(z),Λ1,2(z).

1. The polynomials Λni (n ≥ 0, i = 0, 1, 2) are defined by

Λ
(3k)
ni (sj) = δnkδij , n, k ≥ 0, i, j = 0, 1, 2.

By symmetry, it suffices to deal with i = 0.
• We start with n = 0 : a necessary and sufficient condition for the existence of a polynomial
Λ00 satisfying Λ

′′′

00 = 0 and

Λ00(s0) = 1, Λ00(s1) = Λ00(s2) = 0

is s0 6= s1 and s0 6= s2. Assume from now on that s0, s1, s2 are pairwise distinct. Then there is
a unique such polynomial, it has degree 2 and is given by the Lagrange interpolation formula,
namely

Λ00(z) =
(z − s1)(z − s2)

(s0 − s1)(s0 − s2)
·

• For n ≥ 1 the polynomial Λn0 is the unique polynomial satisfying the differential equation
Λ
′′′

n0 = Λn−1,0 with the initial conditions

Λn0(s0) = Λn0(s1) = Λn0(s2) = 0.

It has degree 3n+ 2 and leading term 2
(3n+2)!z

3n+2.
• We explicit the solution for n = 1. The polynomial

L(z) =
1

60

z5

(s0 − s1)(s0 − s2)
− 1

24

(s1 + s2)z4

(s0 − s1)(s0 − s2)
+

1

6

s1s2z
3

(s0 − s1)(s0 − s2)

satisfies

L
′′′

(z) =
z2

(s0 − s1)(s0 − s2)
− (s1 + s2)z

(s0 − s1)(s0 − s2)
+

s1s2
(s0 − s1)(s0 − s2)

= Λ00(z).

Hence the unique polynomial Λ10 solution of the differential equation Λ
′′′

10 = Λ00 with the initial
conditions

Λ10(s0) = Λ10(s1) = Λ10(s2) = 0



is Λ10(z) = L(z)− (c0z
2 + c1z + c2) where c0, c1, c2 are the solutions of the system of equationsc0s

2
0 + c1s0 + c2 = L(s0),

c0s
2
1 + c1s1 + c2 = L(s1),

c0s
2
2 + c1s2 + c2 = L(s2).

2. Let s0, s1, s2 be three complex numbers. Give a necessary and sufficient condition for the following to hold.
There exist three sequences of polynomials (Mn,0(z))n≥0, (Mn,1(z))n≥0, (Mn,2(z))n≥0 such that any polynomial
f ∈ C[z] can be written in a unique way as a finite sum

f(z) =
∑
n≥0

(
f (3n)(s0)Mn,0(z) + f (3n+1)(s1)Mn,1(z) + f (3n+2)(s2)Mn,2(z)

)
.

What is the degree of Mn,j(z) ? The leading term ? Write the six polynomials

M0,0(z),M0,1(z),M0,2(z),M1,0(z),M1,1(z),M1,2(z).

2. The polynomials Mni (n ≥ 0, i = 0, 1, 2) are defined by

M
(3k+i)
ni (sj) = δnkδij , n, k ≥ 0, i, j = 0, 1, 2.

As we will see, there is no condition for the existence and unicity of such polynomials.
• We start with n = 0.
The unique polynomial M00(z) satisfying M

′′′

00 = 0 and M00(s0) = 1, M ′01(s1) = M ′′01(s2) = 0 is
the constant polynomial M00(z) = 1.
The unique polynomial M01(z) satisfying M

′′′

01 = 0 and M01(s0) = M ′′01(s2) = 0, M ′01(s1) = 1 is
M01(z) = z − s0.
The unique polynomial M02(z) satisfying M

′′′

02 = 0 and M02(s0) = M ′02(s1) = 0, M ′′02(s2) = 1 is

M02(z) =
1

2
z2 − s1z +

1

2
s0(2s1 − s0).

• Let n ≥ 1. For i = 0, 1, 2, the polynomialMni is the unique solution of the differential equation
M ′′′ni = Mn−1,i with the initial condition

Mni(s0) = M ′ni(s1) = M ′′ni(s2) = 0.

For n ≥ 0 and i = 0 the solution is given by Mn0(z) = 1
(3n)!z

3n.
The leading term of Mn1 is 1

(3n+1)!z
3n+1 and the leading term of Mn2 is 2

(3n+2)!z
3n+2.

• We explicit the solution for n = 1.
The polynomial

A(z) =
1

24
z4 − 1

6
s0z

3

satisfies
A
′′′

(z) = z − s0 = M01(z).

Hence the unique polynomialM11 solution of the differential equationM
′′′

11 = M01 with the initial
conditions

M11(s0) = M ′11(s1) = M ′′11(s2) = 0,
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is M11(z) = A(z)− (az2 + bz + c) where a, b, c are the solutions of the system of equationsas
2
0 + bs0 + c = A(s0),

2as1 + b = A′(s1),
2a = A′′(s2).

The polynomial

B(z) =
1

120
z5 − s1

24
z4 +

s0(2s1 − s0)

12
z3

satisfies
B
′′′

(z) =
1

2
z2 − s1z +

1

2
s0(2s1 − s0) = M02(z).

Hence the unique polynomialM12 solution of the differential equationM
′′′

12 = M02 with the initial
conditions

M12(s0) = M ′12(s1) = M ′′12(s2) = 0

is M12(z) = B(z)− (az2 + bz + c) where a, b, c are the solutions of the system of equationsas
2
0 + bs0 + c = B(s0),

2as1 + b = B′(s1),
2a = B′′(s2).

3. Let s0, s1, s2 be three complex numbers. Give a necessary and sufficient condition for the following to hold.
There exist three sequences of polynomials (Nn,0(z))n≥0, (Nn,1(z))n≥0, (Nn,2(z))n≥0 such that any polynomial
f ∈ C[z] can be written in a unique way as a finite sum

f(z) =
∑
n≥0

(
f (3n)(s0)Nn,0(z) + f (3n)(s1)Nn,1(z) + f (3n+1)(s2)Nn,2(z)

)
.

What is the degree of Nn,j(z) ? The leading term ? Write the six polynomials

N0,0(z), N0,1(z), N0,2(z), N1,0(z), N1,1(z), N1,2(z).

3. The polynomials Nni (n ≥ 0, i = 0, 1, 2) are defined by

N
(3k)
n0 (s0) = N

(3k)
n1 (s1) = δnk, N

(3k+1)
n2 (s2) = δnk n, k ≥ 0.

The polynomial Nn1 is deduced from Nn0 by permuting s0 and s1. So we need to deal only with
Nn0 and Nn2.
• Let n = 0. The conditions on N00(z) and N02(z) are

N00(s0) = 1, N00(s1) = N ′00(s2) = 0, N02(s0) = N02(s1) = 0, N ′02(s2) = 1.

Write
N00(z) = (z − s1)(az + b), N02(z) = c(z − s0)(z − s1),

so that N ′00(z) = a(2z−s1)+b. The conditions on the numbers a and b arise from the requirement
N00(s0) = 1 and N ′00(s2) = 0 : {

(as0 + b)(s0 − s1) = 1,
a(2s2 − s1) + b = 0,
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while the condition on c come from N ′02(s2) = 1 :

c(2s2 − s0 − s1) = 1.

A necessary and sufficient condition for the existence and unicity of a solution to this system is
s0 6= s1, s0 + s1 6= 2s2. Under this assumption, the solution is

N00(z) =
(z − s1)(z − s1 + 2s2)

(s0 − s1)(s0 + s1 − 2s2)
,

N02(z) =
(z − s0)(z − s1)

(s0 − s1)(2s2 − s0 − s1)
·

• For n ≥ 1 and i = 0, 1, 2, the polynomial Nni is the unique solution of the differential equation
N ′′′ni = Nn−1,i with the initial condition

Nni(s0) = Nni(s1) = N ′′ni(s2) = 0.

The degree of Nni is 3n+ 2, the leading coefficient of Nn0 is

2

(3n+ 2)!(s0 − s1)(s0 + s1 − 2s2)

while the leading coefficient of Nn0 is

2

(3n+ 2)!(s0 − s1)(2s2 − s0 − s1)
·

• We explicit the solution for n = 1. The polynomial N10 is computed as follows : let A(z) be a
primitive of N00. Then N10(z) = A(z)− (az2 + bz + c) where a, b, c are the solutions ofas

2
0 + bs0 + c = A(s0),

as21 + bs1 + c = A(s1),
2as2 + b = A′(s2).

In the same way, N12(z) = B(z)− (αz2 + βz + γ), where B(z) is a primitive of N02 while α, β,
γ are the solutions of αs

2
0 + βs0 + γ = B(s0),

αs21 + βs1 + γ = B(s1),
2αs2 + β = B′(s2).

Notice that both systems have the same determinant∣∣∣∣∣∣
s20 s0 1
s21 s1 1
2s2 1 0

∣∣∣∣∣∣ = (s0 − s1)(2s2 − s0 − s1).

4. On p. 11, check that if the determinant D(s) does not vanish, then rj ≤ j for all j = 0, 1, . . . ,m− 1.

4.
Let z0, z1, . . . , zm−1 be independent variables. Write z for (z0, z1, . . . , zm−1). Let K be the

field Q(z0, z1, . . . , zm−1) and D(z) be the determinant

det

(
k!

(k − rj)!
z
k−rj
j

)
0≤j,k≤m−1

∈ Q[z] ⊂ K.
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Recall a!/(a− b)! = 0 for a < b.
For j = 0, 1, . . . ,m− 1, the row vector

vj =

(
k!

(k − rj)!
z
k−rj
j

)
k=0,1,...,m−1

=

(
0, 0, . . . , 0, rj !,

(rj + 1)!

1!
zj ,

(rj + 2)!

2!
z2j , . . . ,

(m− 1)!

(m− 1− rj)!
z
m−1−rj
j

)
belongs to {0}rj × Km−rj . If rj > j for some j ∈ {0, 1, . . . ,m − 1}, then the m − j vectors
vj , vj+1, . . . , vm−1 all belong to the subspace {0}j+1 ×Km−j−1 of Km, the dimension of which
is m− j − 1 ; hence the determinant D(z) vanishes.

This amounts to say that a triangular matrix with a zero on the diagonal has a zero deter-
minant.

5. Prove the proposition p. 11.

5. Assume D(s) 6= 0. Then there exists a unique family of polynomials (Λnj(z))n≥0,0≤j≤m−1
satisfying

Λ
(mk+r`)
nj (s`) = δj`δnk, for n, k ≥ 0 and 0 ≤ j, ` ≤ m− 1.

For n ≥ 0 and 0 ≤ j ≤ m− 1 the polynomial Λnj has degree ≤ mn+m− 1.

The assumption D(s) 6= 0 means that the linear map

C[z]≤m−1 −→ Cm
L(z) 7−→

(
L(rj)(sj)

)
0≤j≤m−1

is an isomorphism of C–vector spaces, C[z]≤m−1 being the space of polynomials of degree ≤ m−1.

First proof. Assuming D(s) 6= 0, we prove by induction on n that the linear map

ψn : C[z]≤m(n+1)−1 −→ Cm(n+1)

L(z) 7−→
(
L(mk+r`)(s`)

)
0≤`≤m−1,0≤k≤n

is an isomorphism of C–vector spaces. For n = 0 this is the assumption D(s) 6= 0. Assume ψn−1
is injective for some n ≥ 1. Let L ∈ kerψn. Then L(m) ∈ kerψn−1, hence L(m) = 0, which means
that L has degree < m. From the assumption D(s) 6= 0 we conclude L = 0.

The fact that ψn is injective for all n implies that if a polynomial f ∈ C[z] satisfies f (mk+r`)(s`) =
0 for all k ≥ 0 and all ` with 0 ≤ ` ≤ m− 1, then f = 0. This shows the unicity of the solution
Λnj of the system of equations

Λ
(mk+r`)
nj (s`) = δj`δnk, for n, k ≥ 0 and 0 ≤ j, ` ≤ m− 1.

Since ψn is injective, it is an isomorphism, and hence surjective : for 0 ≤ j ≤ n− 1 there exists
a unique polynomial Λnj ∈ C[z]≤m(n+1)−1 such that Λ

(mk+r`)
nj (s`) = δj`δnk for 0 ≤ j, ` ≤ m− 1.

These conditions show that the set of polynomials Λkj for 0 ≤ k ≤ n, 0 ≤ j ≤ m− 1, is a basis
of C[z]≤m(n+1)−1 : any polynomial f ∈ C[z] of degree ≤ m(n+ 1)− 1 can be written in a unique
way

f(z) =

m−1∑
j=0

n∑
k=0

akjΛkj(z),
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and therefore the coefficients are given by akj = f (mk+rj)(sj).

Second proof. The conditions

Λ
(mk+r`)
nj (s`) = δj`δnk, for n, k ≥ 0 and 0 ≤ j, ` ≤ m− 1.

mean that any polynomial f ∈ C[z] has an expansion

f(z) =

m−1∑
j=0

∑
n≥0

f (mn+rj)(sj)Λnj(z),

where only finitely many terms on the right hand side are nonzero.
Assuming D(s) 6= 0, we first prove the unicity of such an expansion by induction on the

degree of f . The assumption D(s) 6= 0 shows that there is no nonzero polynomial of degree
< m satisfying f (mn+rj)(sj) = 0 for all (n, j) with 0 ≤ n, j ≤ m − 1. Now if f is a polynomial
satisfying f (mn+rj)(sj) = 0 for all (n, j) with n ≥ 0 and 0 ≤ j ≤ m − 1, then f (m) satisfies
the same conditions and has a degree less than the degree of f . By the induction hypothesis we
deduce f (m) = 0, which means that f has degree < m, hence f = 0. This proves the unicity.

For the existence, let us show that, under the assumption D(s) 6= 0, the recurrence relations

Λ
(m)
nj = Λn−1,j , Λ

(r`)
nj (s`) = 0 for n ≥ 1, Λ

(r`)
0j (s`) = δj` for 0 ≤ j, ` ≤ m− 1

have a unique solution given by polynomials Λnj(z), (n ≥ 0, j = 0, . . . ,m − 1), where Λnj has
degree ≤ mn+m− 1. Clearly, these polynomials will satisfy

Λ
(mk+r`)
nj (s`) = δj`δnk, for n, k ≥ 0 and 0 ≤ j, ` ≤ m− 1.

From the assumption D(s) 6= 0 we deduce that, for 0 ≤ j ≤ m−1, there is a unique polynomial
Λ0j of degree < m satisfying

Λ
(r`)
0j (s`) = δj` for 0 ≤ ` ≤ m− 1.

By induction, given n ≥ 1 and j ∈ {0, 1, . . . ,m − 1}, once we know Λn−1,j(z), we choose a
solution L of the differential equation L(m) = Λn−1,j ; using again the assumption D(s) 6= 0, we
deduce that there is a unique polynomial L̃ of degree < m satisfying L̃(r`)(s`) = L(r`)(s`) for
0 ≤ ` ≤ m− 1 ; then the solution is given by Λnj = L− L̃.

6. Poritsky’s interpolation p. 31. Prove that the condition D(s) 6= 0 means that s0, s1, . . . , sm−1 are pairwise
distinct.
Prove also that the function ∆(t) has a zero at the origin of multiplicity at least m(m− 1)/2.
N.B. The fact that the multiplicity is exactly m(m − 1)/2 follows from the fact that the coefficient of
tm(m−1)/2 in the Taylor expansion at the origin of ∆(t) is given by a product of two Vandermonde
determinants

1

1!2! · · · (m− 1)!
det


1 1 · · · 1
1 ζ · · · ζm−1

1 ζ2 · · · ζ2(m−1)

...
...

. . .
...

1 ζm−1 · · · ζ(m−1)2

det


1 1 · · · 1
s0 s1 · · · sm−1

s20 s21 · · · s2m−1

...
...

. . .
...

sm−1
0 sm−1

1 · · · sm−1
m−1

 .

But this is not so easy to prove [Macintyre 1954, §3].
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6. Poritsky interpolation is the case

r0 = r1 = · · · = rm−1 = 0.

The Vandermonde determinant

D(s) = det
(
skj
)
0≤j,k≤m−1 = det


1 s0 s20 · · · sm−10

1 s1 s21 · · · sm−11

1 s2 s22 · · · sm−12
...

...
...

. . .
...

1 sm−1 s2m−1 · · · sm−1m−1

 =
∏

0≤j<`≤m−1

(s` − sj)

does not vanish if and only if s0, s1, . . . , sm−1 are pairwise distinct.
The determinant ∆(t) is the determinant of the following matrix

ets0 ets1 ets2 · · · etsm−1

eζts0 eζts1 eζts2 · · · eζtsm−1

eζ
2ts0 eζ

2ts1 eζ
2ts2 · · · eζ

2tsm−1

...
...

...
. . .

...
eζ

m−1ts0 eζ
m−1ts1 eζ

m−1ts2 · · · eζ
m−1tsm−1

 .

The value ∆(0) at t = 0 is 0. We use the multilinearity of the determinant : the derivative (with
respect to t) is the sum of determinants where we derive the rows. The derivative of order k of
the row (

eζ
jts0 eζ

jts1 eζ
jts2 · · · eζ

jtsm−1

)
is the row (

(ζjs0)keζ
jts0 (ζjs1)keζ

jts1 (ζjs2)keζ
jts2 · · · (ζjsm−1)keζ

jtsm−1

)
which takes the value (

(ζjs0)k (ζjs1)k (ζjs2)k · · · (ζjsm−1)k
)

at t = 0.
If we derive the same number of times two rows, the corresponding determinant vanishes at

t = 0. Hence to get a nonzero derivative at 0 we need to take derivatives of order at least

0 + 1 + 2 + · · ·+ (m− 1) =
m(m− 1)

2
·

7. Letw = (wn)n≥0 be a sequence of complex numbers. Prove that the sequence of polynomials (Ωw0,w1,...,wn−1 (z))n≥0

defined by Ω∅ = 1 and

Ωw0,w1,...,wn−1 (z) =

∫ z

w0

dt1

∫ t1

w1

dt2 · · ·
∫ tn−1

wn−1

dtn

for n ≥ 1 satisfy Ωw0 (z) = z − w0 and for n ≥ 0, Ωw0,w1,w2,...,wn (w0) = 0,

Ω′w0,w1,w2,...,wn
(z) = Ωw1,w2,...,wn (z).

What are the degree and the leading term of Ωw0,w1,w2,...,wn (z) ? Check

Ω
(k)
w0,w1,w2,...,wn (wk) = δkn

7



for n ≥ 0 and k ≥ 0. Deduce that any polynomial is a finite sum

f(z) =
∑
n≥0

f (n)(wn)Ωw0,w1,w2,...,wn (z).

Check the formula for the Gontcharoff determinant p. 39.
Give a close formula for these polynomials Ωw0,w1,...,wn−1 (z) when
• wn = 0 for all n ≥ 0.
• wn = 1 for even n ≥ 0, wn = 0 for odd n ≥ 1.
• wn = n for all n ≥ 0.

7. The definition of these polynomials involving iterated integrals means that the sequence of
polynomials (Ωw0,w1,...,wn−1)n≥0 in C[z] is defined as follows : we set Ω∅ = 1, Ωw0(z) = z − w0,
and, for n ≥ 1, the polynomial Ωw0,w1,w2,...,wn

(z) is the polynomial of degree n+ 1 which is the
primitive of Ωw1,w2,...,wn

vanishing at w0.
For n ≥ 0, we write Ωn;w for Ωw0,w1,...,wn−1

, a polynomial of degree n which depends only on
the first n terms of the sequence w.

By induction we deduce that the leading term of Ωn;w is (1/n!)zn.
Starting from Ωw0(w0) and using the differential equation, we deduce by induction

Ω(k)
n;w(wk) = δkn

for n ≥ 0 and k ≥ 0. It follows that the sequence (Ωn;w)n≥0 is the unique sequence of polynomials
such that any polynomial P can be written as a finite sum

P (z) =
∑
n≥0

P (n)(wn)Ωn;w(z).

In particular, for N ≥ 0 we have

zN

N !
=

N∑
n=0

1

(N − n)!
wN−nn Ωn;w(z).

This gives an inductive formula defining ΩN ;w : for N ≥ 0,

ΩN ;w(z) =
zN

N !
−
N−1∑
n=0

1

(N − n)!
wN−nn Ωn;w(z).

We also have
Ωw0,w1,...,wn

(z) = Ω0,w1−w0,w2−w0,...,wn−w0
(z − w0).

With w0 = 0, the first polynomials are given by

2!Ω0,w1
(z) = (z − w1)2 − w2

1,

3!Ω0,w1,w2
(z) = (z − w2)3 − 3(w1 − w2)2z + w3

2,

4!Ω0,w1,w2,w3(z) = (z − w3)4 − 6(w2 − w3)2(z − w1)2

− 4(w1 − w3)3z + 6w2
1(w2 − w3)2 − w4

3.
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Let us check that these polynomials are also given by the following determinant

Ωw0,w1,...,wn−1(z) = (−1)n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
z

1!

z2

2!
· · · zn−1

(n− 1)!

zn

n!

1
w0

1!

w2
0

2!
· · · wn−10

(n− 1)!

wn0
n!

0 1
w1

1!
· · · wn−21

(n− 2)!

wn−11

(n− 1)!

0 0 1 · · · wn−32

(n− 3)!

wn−22

(n− 2)!
...

...
...

. . .
...

...
0 0 0 · · · 1

wn−1
1!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Indeed, the right hand side is a polynomial of degree n, vanishing at w0. Its derivative is obtained
by replacing the first row with its derivative, namely(

0 1
z

1!

z2

2!
· · · zn−1

(n− 1)!

)
.

The determinant that we get reduces to a similar determinant as above but with w0, w1, . . . , wn−1
replaced with w1, . . . , wn−1. Hence the sequence of determinants satisfies the differential equation
characteristic of the sequence (Ωn;w)n≥0.

• With the sequence wn = 0 for all n ≥ 0, we get Taylor polynomials

Ωn;w(z) =
zn

n!
·

• With the sequence w = (1, 0, 1, 0, . . . , 0, 1, . . . ), that is wn = 1 for even n ≥ 0, wn = 0 for odd
n ≥ 1, we recover the Whittaker polynomials

Ω2n;w(z) = Mn(z), Ω2n+1,w(z) = M ′n+1(z − 1).

• With the arithmetic progression

(a, a+ t, a+ 2t, . . . , a+ nt, . . . ),

w = (a+ nt)n≥0 with a in C and t in C \ {0}, we get the sequence of Abel polynomials

Ωn;w(z) =
1

n!
(z − a)(z − a− nt)n−1

for n ≥ 1. In particular for a = 0, t = 1, the sequence is w = (0, 1, 2, 3, . . . , n, . . . ), namely
wn = n for all n ≥ 0, this is

Ωn;w(z) =
1

n!
z(z − n)n−1

for n ≥ 1.
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