Linear Forms in Two Logarithms and Schneider's Method.

by Mignotte, Maurice; Waldschmidt, Michel
in Mathematische Annalen
volume 231; pp. 241 - 268

0
y

Gottingen State and University Library

Terms and Conditions

The Gottingen State and University Library provides access to digitized documents strictly for
noncommercial educational, research and private purposes and makes no warranty with regard to
their use for other purposes. Some of our collections are protected by copyright. Publication and/or
broadcast in any form (including electronic) requires prior written permission from the Géttingen
State- and University Library.

Each copy of any part of this document must contain these Terms and Conditions.With the usage of
the library's online-systems to access or download a digitizied document you accept these Terms
and Conditions.

Reproductions of materials on the web site may not be made for or donated to other repositories, nor
may they be further reproduced without written permission from the Gottingen State- and University
Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper
attribution of the source.

Contact:

Niedersaechsische Staats- und Universitaetsbibliothek Goéttingen
Digitalisierungszentrum

37070 Gottingen

Germany

E-Mail: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes /
monographs in PDF for Adobe Acrobat. The PDF-version contains the table of contents as
bookmarks, which allows easy navigation in the document. For availability and pricing, please
contact:

Niedersaechsische Staats- und Universitaetsbibliothek Géttingen
Digitalisierungszentrum
37070 Gottingen

Germany
E-Mail: gdz@www.sub.uni-goettingen.de

abt Gottinger
(¥ Digitalisierungs-"""

Goéttingen State and University Library m%%;g ;zf&“f rum




Math. Ann. 231, 241—267 (1978) (© by Springer-Verlag 1978

Linear Forms in Two Logarithms
and Schneider’s Method*

Maurice Mignotte and Michel Waldschmidt

Université Louis Pasteur, Mathématiques, F-67084 Strasbourg Cedex, France
Université de Paris VI, Mathématiques, 4, Place Jussieu, F-75230 Paris-Cedex 05, France

We consider an homogeneous linear form in two logarithms of algebraic numbers
with algebraic coefficients:

Byloga, +B,loga,.

The first lower bound for such a linear form was obtained by Gel’fond (1935). Baker
generalized Gel’fond’s method to obtain a result concerning more general linear
forms. This result of Baker had such deep consequences that a lot of papers were
written on this subject (see [1]); these papers have introduced very important
improvements of the original method. But, up to now, the final descent [12], which
is an essential characteristic of Baker’s method does not enable a very precise
dependence on the degree. To obtain such an estimate, we use Schneider’s method,
which, as far as we know, was never used in this context; this means that no
derivative is involved in our proof. However we add also some of the above
mentioned ideas which were introduced in connection with Baker’s method (cf. in
particular [1]). From this point of view, our proof ressembles that of [5].

We apply our lower bound to the simultaneous approximation of numbers (like
in [5]); we give an explicit dependence on the degree in the theorem of Franklin and
Schneider.

We first state our main result (§1) and its corollaries (§§1 and 2). After some
lemmas (§ 3) we prove the theorem (§4). Finally we give the proof of the corollaries

§3)

1. The Main Results: A Lower Bound for Linear Forms

For this section, the notations are the following. We denote by f, a,, &, three non-
zero algebraic numbers of exact degrees D, D,, D, respectively. Let D be the degree
over Q of the field K =Q(p, a, %,). For j= 1,2, let loga; be any determination of the
logarithm of o »and let A; be an upper bound for the height of a;, and for exp|loga;
further define

S;=D;+LogA;.

*  Dedicated to Professor Th. Schneider
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Furthermore let B be an upper bound for the height of B and for e, and let
So=Dy+LogB.

We assume that the number
A=ploga, —loga,

is not zero.
Our main result is the following.

Theorem. Let E>e be a real number such that

. DS DS
E <min {ezr/s’ PSi/D1 gDS2ID2 o L. 2 i
D, loga,|"  D,|loga,|

where

T=4+ So +Log(D2- %_iz_)

DO 1 DZ
Then
|A|>exp{—5-108-D"'- 5.5, TZ(LogE)‘3}.
Dl D2

Remark. A weaker form of this result is the following. Let E, > 1 be a real number
such that

E,<min {eZT‘/SaAll), A2, eD Log4, LogAz},

lloga,|” “” loga,|

where
T,=LogB+LoglLogA,+LogLogA,+LogD.

Then
|A]>exp{—>5-10'°.D*(LogA,)(LogA4,) TA(LogE,) "3} .
We can always choose E, =e; then we get the inequality
|A]>exp{—5-10'°-D*-(LogA,)(LogA4,)T?},

which is very precise in terms of D ; but we get a better result in the particular case
when |loga, |, loga,| are bounded, and still a much more precise result when o, %,
are close to 1. For example the following corollary is an extension of Theorem 4 of
[10] (which corresponds to

A,=B=exp(LogA4,)"?D=1;
see remark (ii) at the end of [10]).
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Corollary 1. Let y>0; assume, for j=1 and j=2,
loga]<B™’, and B=ZA;<é”.

Then

(Log4,)(LogA4,)

Al =z C, p-—= U er 2]

| |_exp{ LogB ’

where C, is an effectively computable constant depending only on y.

From an historical point of view, the first appearance of a refined inequality
under the assumption that the o’s are close to 1 occurs in the paper [11] by Shorey.

In all our other applications the numbers [loga;| are bounded. We then obtain
the following.

Corollary 2. Let R be a positive real number ; assume [loga | S R, (j=1,2), and define

2 =D max {§_ &}

D,’D
S, S,
D 21 22
o= mm{D D}
Then
S, S S, 2
421 P2 [P0 -3
]A|>exp{ C,D D, D, (Do +Log2) (logo) },

where C, is an effectively computable constant depending only on R.

In particular, with the hypotheses of Corollary 2, namely [loga| <R, (j=1,2), we
get two very simple bounds, namely

|| Zexp{ — C,D*S35%)

and
|4 zexp{ — C;D*(LogA)* (LogB)*},

where C, and Cj depend only on R, and where
S=max{S,,S,} and A=max{4,,4,}.

2. Simultaneous Approximations

We use the same idea as in [5] to apply our Corollary 2 (§ 1) to the simultaneous
approximation of certain numbers. More precisely, we have the following result,
which gives the dependence on the degree in the theorem of Franklin Schneider.

Proposition 1. Let a,b be two complex numbers, with a+0, and let loga be any non-
zero determination of the logarithm of a. There exist effectively computable constants
C,, C,, depending only on b and loga, with the following property.
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Let 14,1,,1, be algebraic numbers of heights at most H, with H > e, and let D be
the degree over Q of the field Q(ny,n,,1,). Assume that n, is irrational. Then

lb—nol+la—n,|+la®~n,|
>exp{—C,D*(LogH)*(Log LogH) 2(Log LogH +LogD)™ !}

and

lb—nol+la—n|+|a®—n,|
>exp{— C,D3*DD+LogH)*(Log LogH +LogD)™3}.

For fixed D a better result is known, namely [5]:
exp{—C;s(LogH)* (Log LogH)},

where C depends on b, loga and D. But the present result gives an information on
the “transcendence type” of certain fields. Moreover we shall prove something
much more precise than Proposition 1, and also compute C,, C,, explicitely (see § 5

below).
It is possible to improve Proposition 1 when some of the numbers a, b, 4’ are

algebraic.

Proposition 2. Let a be a non-zero algebraic number, and b be any complex number.
Denote by loga any non-zero determination of the logarithm of o. There exist two
effectively computable constants Cg= Cg(loga, b) and Cg = Cy(loga, b) satisfying the
Jollowing property.

Let &, n be two algebraic numbers of heights at most H, with £¢ Q, H > e, and let D
be the degree over @ of Q(&,n). Then

|b—¢| + o’ —n|>exp{— CsD*(LogH)* (Log D)™ '}
and
|b—¢&|+ |o® —n|>exp{— C;D*(D+ LogH)* (LogD)3}.
Proposition 3. Let a be any non-zero complex number, with loga+0, and § be any

irrational algebraic number. There exist effectively computable constants Co,
C’(loga, B), such that, if &,n are two algebraic numbers, of heights at most H, H >e,

with D=[Q(&,7):Q], then

|a— &)+ |af —n|>exp{—C,D*(LogH)* (Log LogH + Log D)~ !}
and

la—¢&|+|af —n|>exp{—C,D*(D+LogH)?*(Log LogH + LogD)~'}.

The following consequence of Proposition 3 was suggested to us by Dale
Brownawell, who needs it for his study of pairs of polynomials R(x, y), S(x, z), which

are small at numbers o, of, o,
We are indebted to Dale Brownawell for his encouragements to finish the present work.
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Corollary. Let aeC, a+0,loga=+0, and let f§ be an algebraic irrational. Then for any
non-zero P, Qe Z[X], with

degP +degQ +LoghtP+ LoghtQ=t=t,,
we have

Logmax{|P(a)|; 1Q(a")} = —¢°.

Finally, as a further illustration of our Corollary 2 (§1), we give two
transcendence measures ; they are rather sharp, and proved here in a very simple
way.

Proposition 4. Let a,, o, be two non-zero algebraic numbers and loga,, logo, be non-
zero determinations of the logarithm of o,,a, respectively. For any irrational
algebraic number & of height at most H and degree at most D,

loga, ) 2
loga, —fl >exp{—CgD“(D+LogH)*},

where Cgq=Cg(loga,,loga,) is effectively computable.

The best known result (cf. [4]) is exp(—C, 5(6)D?S*(LogS)™ ' **), where S=D
+LogH.

Proposition 5. Let a=+0, f¢Q be two algebraic numbers, with loga#0. For any
algebraic number £ of height at most H and degree at most D,

o — &| >exp{— CoD3(D +LogH) (Log D + Log Log H)* (Log2D) %}
where Cy=Cgy(loga, f).

This result was announced in [4] (cf. Theorem 5.15 and the remark before it),
but the proof used Gelfond’s method. A slightly better result is announced in [6] by
Cudnovskii, namely

|of — &|>exp{— C,D* Log(DH) (Log(D LogH))* (Log2D)*}.
Compare also Propositions 4 and 5 with Gel’fond’s book (Theorem III, Chapter
II0).
3. Some Lemmas

For the convenience of the reader we give a complete list of the lemmas used in the
sequel, and some classical definitions.
If P=a,X*+...+a,eC[X] is a polynomial, with roots z, ..., z;, we define

d 1/2
H(P)= max |a], |[P|= ( y lajlz) and
0=jsd j=0

d
M(P)=la,| l:[1 max(1,{z}) ;

J



246 M. Mignotte and M. Waldschmidt

when o is an algebraic number, we define H(a)=H(P), ||a| = || P| and M(x)=M(P)
where PeZ[X] is the minimal polynomial of . The inequalities

H(P)S||P| <(d+1)"2-H(P)
for PeC[X] of degree <d imply
H()<|lof| S(d+1)"?H(2)

for o algebraic number of degree <d.
We begin with three well-known lemmas.

Lemma 1. If P is a polynomial over C then
M(P)Z|P|.
Proof. »This is the main result of [8].<
Lemma 2. Let P=a X+ ... +a,e Z[X] be an irreducible polynomial. If a,, ..., o, are

distinct roots of P, then the number
gy ..o

is an algebraic integer.

Proof. >See for example [4] Lemma 1.8.€
We define the length L(P) of a polynomial

Ny Ng
P=Y .Y P, X1 XkeCX,...X,]

n=0 ng=0

by

N; Ng
L(P): Z e ZOIP"I""’"“"

n =0 ng=
Lemma 3. Let ay, ...,a, be algebraic numbers of exact degree d,, ...,d, respectively.
Define D=[Q(«;,...,2,): Q]. Let PeZ[X,,...,X,] have degree at most N, in X,,
(1=h=q). If P(a,,...,a)*0, then

q
|P(a, ..,a )| Z L(P)* 2. [] Mia,)~P¥eldn,
h=1

Proof. >This is a consequence of Lemmas 1 and 2. See for example, [13] p. 30, or
look at the proof of the subsequent Lemma 4.

We now give a refined version of the so-called Siegel’s lemma. The following
lemma improves earlier results in this direction (especially [4] Lemmas 4.8 and 4.9,
and [13] Lemme 1.3.1).

Lemma 4. Let oy, ..., o, be algebraic numbers of exact degrees d,, ...,d, respectively.
Define D=[Q(a,,...,%,): Q]. Let

P jeZ[Xy,...X,], (=5isv,15jsp)
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be polynomials of degree at most N, in X, (for 1<i<v). Define
Lj= '—Zl L(Pi,j) 5 ?i,jr‘Pi,j(“p ""aq)’ (I=si=sv1gj=w.

If v>uD, then there exist rational integers x,, ..., x,, not all of which are zero, such
that

Z '}’i,jxi=0, 1gj=sw,
i=1

and

D\1/(v— D)
max |x| £2+24(V;.. V),

where
q
Vi=L; ,,H M (a5
=1

Proof. yLet o, be an embedding of K =Q(a,, ...,a,) into €. Put
X= [(")”(Vl .. V”)D)I/(v—un)] +1
where

_J1 ifa, is real,
= 2 otherwise.

Define the integers [, ...,1, by
L<m(VX+2)°) <l +1.

Notice that I7>n(V,X ). By the Dirichlet box principle, there exist rational integers
Xy, ..., X, such that

0< max |x|<X
15isy

and

Z o (i, ) x| = l/- HmaX(l loy (o)),

i=1

(see for instance Exercise 1.3a of [13]). Now, using Lemma 1, we obtain

v
NiD/d NgD/d Dy Dj—
ay 1Pl alePha T .Zla(y,.,j)x,. SqVPXPIIT <
ag 1=

where a,, is the leading coefficient of the minimal polynomial of o, and o ranges over
the different embeddings of K into €. Lemma 2 shows that the left hand side of the
previous inequality is an algebraic integer. The result follows at once.{

Notice that in terms of heights,
q
V;Sv(N; +1)..(N; ,+1)max H(P, ) hl:[l (d,+ 1)'"*H(@)N; ,/d, .
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Lemma 5. Let o be an algebraic number of degree d. Then
H(@*)£(d+1)H(x)?.

Moreover if o is an algebraic number of degree d' such that «'" =a, where h is a
positiver integer, then

o' 27 flerf -

Proof. YLet P (resp. Q) be the minimal polynomial of « (resp. %) over Z, then
Q(X?) = P(X) or P(X)P(—X). In the first case H(Q)= H(P), while H(Q) <(d + 1) H(P)?
in the second case. This proves the first assertion.

Consider now o'. Clearly,

M) M(a).

The second result follows using the trivial inequality
o) 2% M)

and Lemma 1.¢

Lemma 6 (A consequence of Hermite’s interpolation formula). Let F be a complex
Junction, analytic on |z| S R. Let S be a set of m points in the disk |z <R, R, <R. Put

Ad=min []|Z-2, &= min|zZ~2.

zeS z'eS z,z'eS
z' ¥z z'*z
Then
2R, +1\"!
|Flg, SIFlg |- +OA) AR +2" Y IF (),
' R—Rl zeS

(where |Fly= max |F(z)|).

»See Lemma 2’ of [9] and the remark below it.<

Lemma 7 (A lemma in diophantine approximation). Let 6 be a positive real number
such that k6 is not an integer for L<k<M. Let q, <q,<...=q,SM<gq,., be the
denominators of the principal convergents of 6. Then

n

H 12:01 >27"q;- - Gus1)” ! ;e_a(l‘ogq")z(zqw B L.

i=

>Itis well-known that 2gq;, , ||q,0|| > 1 (see, for example, [3] inequality (16), page
7). This proves the first inequality.
The definition of the g; shows that ¢,=F; (the i-th Fibonacci number). This

implies
gza™l,  a=(1+]/5)2.
Hence, for n=2,
o= l.q2 g, é (zqn)n— 1 § (zqn)Logqn/Loga é e3(L0gq")2 ;

these inequalities hold also for n=1. This proves the second inequality of the
lemma.{
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Corollary. Let 6 be a positive real number such that k@ is not an integer for | k<M.
Then,

Log(||0]...|M0|))= —2Log(2M-M!)—3(LogM)* + . g}‘iQM Log| k0| .

»Use the fact that |0 — p/q|>(2g*) ! if p/q is not a principal convergent of 6.
Remark. 1t is easy to replace the term Log(2M-M!) by 6(M log M).

For the following lemma, it is convenient to define the size of an algebraic
number a by

s(x)=Logmax {|&|, 1} + Logdena,

where dena is the denominator of a, and || is the maximum of the absolute values of
the conjugates of a.
We remark that

s(x)=<1+LogH(x)

and
LogH(x) Zd(s(a)+ 1).

Lemma 8. Let a4, ...,a, be algebraic numbers of size at most s, ...,s, respectively. If
by, ...,b, are rational integers such that the number

A=b,loga, +...+b,loga,
is non-zero, then

[A]>exp{—D(b,|s; +... +|b,|s, + 1)},
where D=[Q(o.,,...,a,): Q].

>We may suppose |A| <1/2. Then A¢2niZ and the number o%*...aP"—1 is non-
zero. Without loss of generality we may suppose b; 20 for 1<j<r and b; <0 for
r+1=<j=<n. Take the norm of the number

n
(@4t —a o ) T (dena)®t
j=1

since each conjugate of this number has absolute value at most
2exp(s|b; |+ ... +s,/b,0),

we obtain the lower bound
obe...obn—1]>27" P+ Lexp{—D(s,|b,| + ... +s,Ib.D)} -

The lemma follows using the inequality |e* — 1| < 2|z| which is true for |z]<1/2.

Lemma 9. Suppose that R is a polynomial with integer coefficients, degree d and height
H. Denote by a a zero of R at minimal distance fromy and let k be the order of «. Then

Iy —af* S22 *2dHY"™RR).

»This is a weak form of the corollary of Theorem 4’ of [7].€
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4. Proof of the Theorem

4.1. The Main Result
We shall first prove the following Proposition 6, and then deduce our theorem

Proposition 6. Let f§,«,,®, be three non-zero algebraic numbers of degree D,,D,,D,
respectively ; denote by D the degree of the field K =Q(f, o, a,). For j=1,2, let loga;
be a non-zero determination of the logarithm of «;, and let a; 2 1 be an upper bound for

-l;— LogM(x)) and for lloga;. Further denote by b<1 an upper bound for
.l

b— Log M(B). Furthermore define
0
G=b+Logb+2Log(D*a, +a,))+10,

Da, D
Z=min{Log % G
llogo: 1I %8 flogat,l

Da1 ; Daz}
and
U=D%a,a,G*Z73.
If o,/ is not a square in K, and if
A=ploga, —loga,
does not vanish, then
|A|>exp{—4-10°-U}.
Through Sections 4.2 up to 4.10, we assume that
0<|A|Sexp{—4-10°U},

and we shall arrive at a contradiction at the end of Section 4.10. The actual proof of
the theorem is given at Section 4.11, as an easy consequence of Proposition 6.

4.2. Notations
We consider two real numbers L, L,, and two positive integers M, M,, namely
L,=54000D%a,a,GZ"3,
L, =47DGZ" !,
M, =2[950D*Ga,Z" ],
M,=2[950D*Ga,Z~%].
The reader should observe that
DL,G <54000U
and
DL,(M,a,+M,a,)<178600U .
We note also that the inequality
M, + M, <3800DG(a, +a,)
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together with our definition of G leads to
b+Log(M,+M,)<G.

On the other hand, since
950D%Ga,Z~? 29500,

we have
M, M, 2(950)* (1 —53d55)*- U/Z
=902310U/Z.
The set

{ﬂjoa{‘a? §(josj1»j2)€ ]Nsajo +ji+j,=D—- 1ajo§Do -1,j,£D,— Lj, £D,—- 1}

is a set of generators of K=Q(f,a,,a,) over Q; we denote by

{&1 80}

a subset of it, which is a basis of K over @Q; we shall write & = Braiia? with 0
<D;—1, (i=1,2,3). Remark that

Jmax, log|é,|<Dmax{D,b,D,a,,D,a,} SU.

4.3. A Reduction
We claim that the numbers
u+vf, O=u<M,0=5v<M,)

are pairwise distinct (the letters u,v denote rational integers). Otherwise f is a
rational number b,/b,, with |b,| <M, 0<|b,| <M,, b,, b, rational integers; hence
by Lemma 8,

|byAl>exp{—2D(}b,|(1+D,a,)+|b,|(1+D,a,)+1)},
and therefore
|[4|>exp{—4D(M,D,a, + M,D,a,)}
>exp{—1520U}

contrary to our assumption.
This argument shows that in the sequel, we may suppose that either D, =2 or
b>16, hence DG =26 because otherwise the theorem holds trivially.

4.4. The Auxiliary Function

For brevity we write o} for exp(zloga,). We shall construct an auxiliary function of
the form

fle)= Z Z Ph,kzh“’iz’

O0<h<Lp O0Sk<L,
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where
D
ok = Z ph,k,lél s
=1

and p, , , are rational integers that we have to choose. For (1, v)e € x €, the number
f(u+vﬂ) is related to the number

(Pu,v= Z z ph k(u+vﬂ)ha1 0‘2
O0<h<Lo O0£k<Ly
by

f(u+vﬂ)—(pu,v= 2 Z ph,k(u+vp)h o‘1 “2 (ekM 1).
0=I<Lg O0Zk<L,
We choose p, , , in Z, not all zero, such that
@,,=0 for 0=su<M,, O0=v<M,,

with u and v odd integers.

This is equivalent to solving in Z a linear system of +M, M, equations with at
least DL, L, unknowns p, , ;, and whose coefficients belong to a number field of
degree D. These coefficients are polynomials in f§,,a,,,, namely

x o (h
z (t) uh—t_vt_ﬁz)+lo.aliu+ll.a§v+12.
t=0

We use Lemma 4 with

1+ Mils 1+ M2l
V=(Lo+1)(Li+1)(M;+My)y"M(Bo)M(ex,) ~ *Pt-M(ay) ~ #P:
<98653UD !,
Notice that py=+M M, and v=DL,L, satisfy
uD
<
y—uD <0.552.

Therefore we obtain a non trivial solution p, , ,€Z with

Logmax|p, , | <54457U-D~ L,

Notice also that
Log Y ) IpyudS54460U.

Osh<Lo 0sk<L,

4.5. Statement of the Inductive Argument
Let J be an integer with

LogL,
Log2
We shall prove that there exist rational integers

P, (0Sh<L,0=k<L27/,1Z1<D),

0=sJ=s [ +1.
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not all zero, of absolute value bounded by
exp(54457UD™ 1)
such that the numbers

) —

D
Pu,v Z Pﬁ’,i,z 1) 277 (u+vpyolal’

0gh<Lo 0§k<L12‘J(1=1

are zero for all odd integers u,v satisfying
O<u<M,, O<v<M,.

For J =0, this statement is a consequence of the construction of the auxiliary
function, with p{% ,=p, , .
For now on, we assume that the assertion is correct for some integer J, with

LogL,

0
7= [LogZ

and we manage to prove it for J+1 (we shall succeed in Section 4.9).
We define

7
()_ thkl 1>
and

f,(Z)z Z Z(J) p(J)2 Jh h kz

0<h<Lo 0sk<L,

with L =L, 277,

4.6. An Upper Bound for f(u+vp)
We prove that

[ f(u+vB)| <exp(—3825000U)

for all odd integers u,v in the range 0<u<M,, 0<v<M,.
By the inequality
le”—1|<|w|-e™ for all weC,

we have, for real u,v in the ranges 0<u<M, and O <v<M,,

Ify(u+vp)— o) < Z Z P27 (u+v|Bl)
- exp(kufloga, | +kv|10ga2|)~kv|Ale"”|’”

IIA

L,D
eSO (M, + MJBF-xp  “L

+ Mzaz)) 2M,Ly|A|

<|A4|-exp(175000U) <exp(—3825000U).

By the induction hypothesis, ¢}, =0 for all odd integers u,v in the considered
ranges.
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4.7. An Upper Bound for |fg,.
We define R, =M, +M,|B|, and we prove
| filr, Sexp{—405000U} .
For this we shall use Lemma 6, with
S={u+vf;0=u<M,,0<v<M,,u and v odd},
and
R=(m—1-L,)(L,Jloga;,)"*+R,, m=M ,M,/4=CardS,
and we write the conclusion of Lemma 6
|file, <E; +E,.
The first term on the right E| is defined by
e
We have
LogE, =Log|f;|lg—(m—1)Log((R—R,)/(2R, +1))
SU+mLog5+RL,|loga,|
—~(m—1)Log((R—R,)/(2R, +1)).

And
R-R, m—1-1L, M M,
R, m 4M, +M,|Bl)L,|loga,|
M. M
>0.996 L
= 4L,(M |loga, |+ M,lloga,|)
950 &%
=>0993-— — >0. 1
| =>0.993 188 7 >0.993(950e/188)
since
Z =<MinLog Da, .
loga|
We get
2
LogE, <54460U + L, Log RR,
R-R,
R—R,
+R1L1|10goc1|—(m—1—L0)Logm

<54460U + 59000U + DL, (M, a, + M,a,)e™%

m—1-L Log(1.085Z)
_(___—_m 0)(949.9)2(1—————2 )U

<113460U + 178600Ue ™% —0.996 x 902310(1 - 5)g_(1_0_8_5£2) U.

V4
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A tedious, but elementary, study of this function of Z gives

1.
LogE, £113460U + 178600e ™~ 224U — 898700(1 - -—9;5—)

< —406000U .
The second term E, is defined by

E,=(04) 4R, +2" ' S |f(u+vp)

u+tvpeS

where

Ad=min [] |ju—uw'—@-v)Bl; 6= min |u—u'—(@—0)p|.

wo  (u,v)*(u,v) W', v')*(u,v)
We obtain a lower bound for |4 as follows. For a certain (u, v)

1= [T lu—w)~@-0)A),

where u,v,1,v" are odd integers. This formula leads to the inequalities
12 110~ v)ﬂn[ 6] =)
M3/2+n—-1 _ Ma
Z min ( ﬂ I 2wﬁ[|) . (P{éz_g] ] 2(M,—5)/4)

~-M><2n=0 w=n
w+0
— M,
Ml 6 | DMy~ 6)/4
4 !

=( I 2

0<2n<M,

255

[for the first inequality we use the fact that, for fixed v/, there are at least M, —1
different numbers (u—u')—(v—1')B and that the distance between two of these

numbers is at least 2].

Then, the corollary of Lemma 7 and the inequalities (n/e)"< n! < (n/2)" for n26

give (with m’ :=m—3M, M:=max(M,,M,))
Log|od| zm' Log((M, —9)/2¢)—4 Log(2"/?-(M/2)!)— 6(Log(M/2))*
+3  min Log/|(rlBD)
=m' Log((M, —9)/2¢)— 3M Log(M/2)— 8D*(b+ Log M)
=m' Log((M, —9)/2e)— 6000U

[if B is not real then |f] is an algebraic number of degree at most D?, and size at most

s(B)).
If M, =z|f|M,, we obtain
Log|éd|=m Log(Rl _ 18) —6000U .

In the other case we use the formula

A=p Tl(-w)B ™~ 0=
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and proceed in the same manner as before to estimate the product [notice that
s(B~1)<2D(s(B)+1)], this gives

Log|o4] =m Log|B|+m’ Log((M, — 9)/2¢)— 6000U .

So, in both cases we have,

R M
LogléAlgmLog(Z;‘) —-2M Logz —mLogl—z RIIS —6000U
L

=mLog(R,/4e)—8900U .
Hence
LogE, <mLogl6e+ 10000U —3825000U < —410000U .
Finally, we obtain
Log| fjlg, = —405000U .

4.8. A New Set of Equations
We prove that for all integers «', v’ satisfying O<u' <M, 0<v' <M,,

e, =0.

v
272

First from the proof of Section 4.6 we deduce

L(u'-l-vlﬂ) _(p({)

3 =exp(—3825000-U).

W
22

By Section 4.7 we obtain

o |[<exp(—404000-U).
27
Now ¢ is a polynomial in B, o, a,, (o, /o;)"/%, of degree <1 in (o, /or,)"2:
7
—h 1 h
g 2§ 5 S 2 )
2’7 h keven 1
ku’ kv’ 1/2
ora 2 o
2 1 2 1 J
poar Map 4 (2)7T T T,
%2 h kodd 1
ku' — 1 kv'+ 1
QW= RUHL). (o 4 B ooy 2 Hl'az 7z A

We now use Lemma 3. We bound the length of this polynomial by
exp(54460UD ' + L, Log(M, + M)+ Ly(J +1)Log2)
<exp{54460UD ' + L, Log(2L,(M, + M,))}.
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On the other hand we use the bound

LM, LM,
+ +=p 1/2)1/2
Hﬁll D° oyl 225 cflogll 22 oy foy) 2l

<exp{L,LogB+ LY (M,a, + M,a,)+4UD '},

From Lemma 3 we conclude that either ¢!” =0 or
277

9 |2 —(108920U +2DL,G + 178600-277 + D(J + 1) L, Log2)

Log|e

2 ’7
= —400000U
since J Log2<LogL,. This lower bound does not hold, hence ¢ , =0.

272
4.9. End of the Inductive Argument

We now proceed to prove the assertion of Section 4.5 for J + 1. We use Section 4.8
for odd integers u',v'; we write ' =2u"+1, v'=20"+1:

Lo-1 LY U'+U/,B h )
2,k p‘h{ﬂ‘"( 2 ) o™ (a2 =0,
= =0

As (a,/o,)"*¢K, we obtain, by writing the considered numbers in the basis

(1, ]/ocz/oc1 ) of K(}/a,/a;) over K:

- u+vp . P
) ~—Jh g2+ Dk Qv+ Dk _
Z Z i, 22 ( 3 ) ay oy’ =0

h=0 LY
0<ks =]
and
Lo—1 ’ 'R\h
(W HUB . ”
Y > P ks 12 Jh( ) o2+ Dk 20"+ Dk )
H=0 D 2

One at least of the two sets
L(J) L(J)
{pg{’Zk-O_gh<Lo,0§k_S_ 71} ; {p;,{;kﬂ ;0Sh<Ly,0<k< 71}

has at least one non-zero element. We denote this set by
B 00sh<Ly, 05k LYY,

with LY* D <172 ; we deduce:
Lo-1 LY+ (
Z Z pﬁ’l:— 1)2—-(J+ 1)h~(u’+v’ﬂ)ha'{'koc'§k=0
k=0 k=0
for all odd integers u,v’ with 0<uw' <M,, 0<v'<M,. This proves the claim of
Section 4.5 for J + 1.
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4.10. The Contradiction
LogL,
Log2

For J, = [ ] +1, we have 27> L, hence L{" =0, and the numbers

Lo—1
o= T PR Mk up)
h=0
are zero for all odd integers u, v with
0su<M,, O0=sv<M,.

By Section 4.3, the polynomial

Lo—1

Y, Pi8X"eClX]
h=0

has at least $ M, M, zeros, and its degree is less than L,,. Since M; M, >4L,, all the
numbers

D
(J1) — J1)
Prno= Z P05
=1

are zero, and this is a contradiction.

4.11. The General Case
We now consider the linear form
A=ploga, —loga,

given by the hypotheses of our theorem (§ 1). We assume, as we may without loss of
generality, that

plogo, #0, loga,+0, loga,+loga,,

for otherwise we have A = f"loga, with " equal to 8, 1 or f+1,and o equal to o, or
o,, hence by Lemma 8§:

4] > exp{—D(s(x) + 1)}

1
H(p)+1
>exp{—4D(LogB+LogA, +LogA4,)}

LogA, LogA4
— 4. 1, =572
>exp{ 12D D, D,
LogB LogA4 L 2
( 08 +Log< 0841 o4, +LogD) (LogE)‘3}.
D, D, D,

Let h=0 be the largest integer such that both numbers
exp{2"loga,} and exp{2 "loga,}
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belong to K. The existence of such an A is straightforward ; in fact it can be proved
that (see the appendix)

h <80D*(s(xr,) +2) + D*|loga, |,

but aninteresting feature of our proofis that we shall not use any upper bound for h.
We now define a new linear form A’ =f’loga’, —loga’, by considering two cases :

Case 1. The number exp{2~"loga,} is not a square in K ; then we put

loga, =2"*loga,, loga,=2""*'loga,, p'=28.
Case 2. The number exp{2~"loga, } is a square in K ; therefore exp {2 *loga,} is
not a square in K, and we put

loga, =2"*loga, logay,=2""loga,, p'=p.

We remark that in both cases the numbers ', o}, a, are in K, that o/} is not a
square in K, and that

4]z 3147

The degree of Q(f', o}, &) is at most D, and the degree of f' is equal to D, while
the degree D', of &} (resp. D, of ;) is at least D, (resp. D,/2). Moreover, by Lemma 5,

B <eP?, oy | e H(wy), oyl S e (Hlxy)*.

We use our Proposition 6 for the linear form A’, with

Log4,. LogA4
a,=1+e (;f L a,=1+4e (;)g 2
1 2

and G=2F.
Notice that

Da, >eDLogA1 Da, > eDLogA2
llogey| = Dlloga,|” [logasl = Dylloga,|’

hence LogE<Z.
Since 1+4%¢2-22.10%<5-108, we easily deduce the desired result.

5. Proof of Corollaries and Propositions

5.1. We First Prove the Remark which Follows the Statement of the Theorem

Since our definitions of 4, 4,, B involve only lower bounds [like 4;> e, A;= H(a;),
A;zexplloga, ], we get a weaker result if we replace in our theorem the numbers

D .
logA4,, logA,, logB by D,logAd,, D,logA,, —2310gB respectively, where
Dy =max{D,,2}. Hence T is replaced by

D/
S5+ 2D0 LogB+2LogD+Log(1+LogA,)+Log(l+Log4,),
0
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and this number is at most 5T, (using Liouville inequality which enables us to
assume LogB+LogD =1+ Log2). On the other hand S, (resp. S,) is replaced by
D,+D,LogA, (resp. D,+D,LogA,), which is at most 2D LogA, (resp.
2D, LogA,). This proves the result for E, Ze, while the case 1 <E; <e is a weaker
claim.

5.2. Proof of Corollary 1
We choose E; =(DB)’, with 6 =min{%,7}. Since T, £3LogB+LogD, we get

~3pa(Logd,)(LogA,)
_4 1 10 3D4( 1 2 ,
|A|>‘°’Xp{ 3-107%0 LogB+ LogD
and we deduce the desired result with, say,

C,=5-10""max {16,773} .

5.3. Proof of Corollary 2

eq \*°
Put R, =max{e, R}, and take E =max {e, (E—) } Since
1

max{l,1+y—x}zy/x for x=1 and yz2l1,
we have

3LogE=(Logo)/LogR; .
On the other hand

S
<52
T (Do +Log2),
therefore we get the result with
C,=2-10""-(max {1, LogR})*<2-10*" -max {1,R}.

When we choose S, =S,, we obtain ¢ =(DS)"?, and

S, S, (S 2
Al> — 451 72 (F0
el -ser s (o +1) |

therefore we can take C,=32C, (since D,D,D, =D); also C;=16C,.

5.4. An Explicit Lower Bound for |b—n,|+|a—n,|+a®—n,|

Proposition 7. Let a, b be two complex numbers, with a+0, and let loga be any non
zero determination of the logarithm of a. Let ny,n,,n, be algebraic numbers of degrees
D, D,, D, respectively, and let

D=[Q(1¢,11,n,): Q].
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Let S, S%,S% be such that
So 2 Dy +logmax {H(ro). e},
Stz D, +logmax {H(n,),e},
S¥=D,+logmax {H(y,), e},

and define
S* S%
S*k=D. -1 228
m‘“{Dl’ Dz}
* *
i 92

. [S* S
0'*=Dmm{D—l, D——Z}
Then the number
E=|b—nol+la—n,|+la"—n,]|

satisfies

5> Xp{ C,, D* St .53 (SO +Log2*)2 (loga*)‘3}
:‘ e — . ¢ — e —— —_— . .
o Dl D2 DO

with

C,o=3-10""-(1 + max {|logal, |blogal})® + Log ogal’

5.5. Proof of Proposition 7

We assume, as we may without loss of generality,
la—n,/<l|al/2 and |a"—n,|<|a"/2.

Using the inequality
le?—e*|Z 3le*| |z~ zo| for |z—zg|<73,

we choose logy,, logy, in such a way that

2
lloga—logmlém-la—ml

and
2 b

Ibloga—logn,| = @ 1@l
Notice that

llogn,| < 1+|logal
and

[logn,|<1+|blogal.

Since 7, is irrational, the linear form

A=n,logn, —logn,
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vanishes only in the case logn, =log#, =0, and in this case the result holds trivially

thanks to the extra term Log

[logal
We now suppose A +0, and we apply Corollary 2:
S, S, (S, 2
421 T2 (20 . -3
]A|>exp{ C,D D, D, (Do +L0g2‘) (Logoa) },

with C,=C,(R) and
R=1+max{|logal,|blogal},
§;=R-S%,
S,=R-S%.

Therefore
T=RI*<(Z%F,

oc=Rc*=c*,

and
S% S% (S,
|A|>exp{—C R“D“'—D——-B—(—D——+Log2*> (Loga*)~ 3}
Since
bl 2
lAISamax{l—Hlogal |I|I ldl}

1
<Fex {2R+L0g|10 l}

we easily get the desired result.

5.6. Proof of Proposition 1
We use Proposition 7 with
S,=2D,LogH,
S¥=2D,LogH,
S%¥=2D,LogH,
therefore
Z*¥=c¢*=2DLogH.
Since
2LogH +Log(2D)+LogLogH <3(LogH +LogD),
we get
Z>exp{—36-C,,-D*-(LogH)*-(LogH + LogD)*
.(Log LogH + LogD)~3}.



Two Logarithms and Schneider’s Method 263

Therefore
E>exp{— C,D*(LogH)*(LogLogH) *(LogLogH +LogD)~ '}
with

C,=11-10'2(1 + max {|logal, b log“'})5+36’1‘°gll_0_lg_ﬂ'

For the second inequality we use once more Proposition 7 with
So=Dy+LogH,
S¥=D,+LogH,
S%¥=D,+LogH,
and
I*<2DLogH, o¢*=max{D,LogH}>=(DLogH)"?.
Since D, =2, we have
Do+LogH + D, Log(2D LogH)<3}/Do(D + LogH),

and we obtain
D4
Egexp{~ 72C 9 (D +LogH)*-(Log LogH + LogD)‘3}.
D0D1D2
The desired result follows from the remark that D,D, D, = D, and we conclude with

C,=72C,,.

5.7. Proof of Proposition 2
We choose first

S¥=D, +Logmax {H(a), e},
S*=2D,logH,
So=2D,LogH,
and we remark that [Q(a,n,&): Q] =<D-D,. Since
Z*<28%-DLogH
and
c*2D,
from the inequalities
2LogH +LogZ*<(2+Log2S¥)-(LogH + LogD)
and

(2+Log(28%))> <4S*
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we get
|b—¢&|+|ab—n|>exp{— Cq-D*-(Log H)(LogH + LogD)? (Log D)~ 3}
>exp{— Cq-D*(LogH)* - (LogD)™ '}
with
Cs=8D3S¥*C,,.
We prove the second inequality in the same way, with
So=D,+LogH, S*=D,+LogH,
and we use the bounds
I*<28*D? LogH
and
D,+LogH+D,LogZ*<(1+Log(28¥))(D+LogH) 1/D0

(recall that D =D, =2). Therefore

4

D
lb——é|+la”~11|>exp{~C'6~D D (D+LogH)3-(LogD)_3}
oD,

with
C,=3D3-S¥*-Cy,.

5.8. Proof of Proposition 3

We choose first
S¥=2D,LogH, where D,=deg(¢),
S3=2D,LogH, D,=deg(),
So=D,+Logmax{H(f),e},

and remark that [Q(B, 5, &): Q1< DD,
Here

2*=0*=2DLogH,
hence Proposition 7 gives
la— & +|af —n|>exp{—C,D*LogH)* (LogD+LogLogH)™ '},
with
C,=2°-C,,D3D,+ Logmax{H(p),e})*.
To obtain the second inequality, take
S¥=S%=D+LogH,
and notice that in this case

2*<D(D+ LogH)<(D LogH)?
and

c*2D+LogH>]/DLogH .
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5.9. Proof of the Corollary of Proposition 3

Assume that
max (|P(a)], [Q(@))=t™8.

Let £ be a root of P at minimal distance to a, h the multiplicity of £ and naroot of
Q at minimal distance to a’, k the multiplicity of #. We may assume k> h. Lemma 9
gives (for t=6)

|E—alSe ™, jp—a¥| eI,

and we have
max(H(&), H@i)<e', DZEt/hk.
From the second assetion of Proposition 3 we get
max(|¢ —dl, In—a’l) Zexp(—C,,t*(k Logt)™").

Contradiction for t=t¢,,.

5.10. Proof of Proposition 4
We apply again Proposition 7 with 4
S¥=D,+Logmax{H(y,),e}, i=1,2(D;=dega,),
So=D+LogH,
and we get
E>exp(— CgD*(D+LogH)?)
with
Cy=16C,,D3D3(D, +log max {H(n,), e}) (D, +log max {1 +H(y,), e})
-Log?(Log max {H(y,), H(n,),e°}).

5.11. Proof of Proposition 5
We take
So=2D,Logmax {H(f),e},
S¥=2D, Logmax {H(®), e},
S3=D+LogH
and we get
E>exp(—CyD3(D+LogH)(LogD + Log LogH)* (Log2D)™?)
with
Cy=2!°C,,D3D%(log max {H(B), e} + Log max { H(a), €})*.
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6. Appendix

Lemma A. Let y be a non-zero algebraic integer of degree at most D and which is not a
root of unity. Then there exists a conjugate y’' of y such that

[7'|>1+(30D? Log(6D))~*.
>This is the main results of [2].€

Lemma B. Let « be a non-zero algebraic number which is not a root of unity. If o= ™,
degf<d, then

m<40d*(Log6d) Log(2H(x)),

where H(a) is the height of a.

SIfais not a unit and if a=d(x) then the ideal (ax) of Q(«) is divisible by the m-th
power of some prime ideal of @Q(x). Taking the norm we get

™ < H(w)™.

and the inequality of the lemma is satisfied.
If o is a unit, thanks to Lemma 5 we may suppose f>1, and we obtain

1+(30d? Log(6d))* <|B|=|a|*™ < |2H(a)| /™.
The result follows at once.{

Lemma C. Let K be a number field of degree D over Q, and let o be a non-zero element
of K. We denote by loga any fixed non-zero determination of the logarithm of a.
Let m be a positive integer such that the number

exp {llogcx}
m
belongs to K. Then
m < 80D*(s(x) + 2) + D?|loga] .
Proof. YIf a is not a root of unity, we use Lemma 6 and we bound
(Log(6D)(Log(2H(x)) by 2D?*(s(e)+2).

Now assume that a belongs to the cyclic group of the roots of unity of K ; let {
be a generator of this group. The order n of { is an even integer satisfying n <2D?

(the degree of { is ¢(n) = V;) There exists a rational integer k such that
loga =2ink/n.

If m>0 is such that exp {;il— loga} is in K, then m divides k, hence

ll o
<% < 2% oga) ¢



Two Logarithms and Schneider’s Method 267

References

1.

10.

11.

12,

13.

Baker,A.: The theory of linear forms in logarithms; in: Transcendence theory: advances and
applications, A.Baker and D.W.Masser, eds., Ch. 1, pp. 1—27. London, New York : Academic Press
1977

. Blanksby,P.E., Montgomery,H.L.: Algebraic integers near the unit circle. Acta Arith. 18, 355—369

(1971)

. Cassels,J.W.S.: An introduction to diophantine approximation. Cambridge tracts in Math. No. 45

(1965)

. Cijsouw,P.L.: Transcendence measures. University of Amsterdam (thesis) 1972
. Cijsouw,P.L., Waldschmidt,M.: Linear forms and simultaneous approximations. Compositio

Math. 34, 173—197 (1977)

. Cudnovskii,G.V.: The Gelfond-Baker method in problems of diophantine approximation. Top.

Number Theory, Debrecen (1974), Collog. Math. Soc. Janos Bolyai 13, 19—30 (1976)

. Giiting,R.: Polynomials with multiple zeroes. Mathematik 14, 181—196 (1967)
. Mignotte,M.: An inequality about factors of polynomials. Math. of Computation 28, 1153—1157

(1974)

. Mignotte,M., Waldschmidt,M. : Approximations des valeurs de fonctions transcendantes. Koninkl.

Nederl. Akad. van Wet., Proc., Ser., A, 78 (1975), and Indag. Math. 37, 213—233 (1975)
Ramachandra,K., Shorey, T.N., Tijdeman,R.: On Grimm’s problem relating to factorisation of a
block of consecutive integers (II). J. reine angew. Math. 288, 192—201 (1976)

Shorey, T.N.: Linear forms in the logarithms of algebraic numbers with small coefficients. J. Indian
Math. Soc. 38, 271—292 (1974)

Van der Poorten, A.J., Loxton,J. H. : Multiplicative relations in number fields. Bull. Austral. Math.
Soc. 16, 83—98 (1977); corrigendum and addendum, id.,to appear

Waldschmidt, M. : Nombres transcendants. Lecture Notes in Mathematics 402. Berlin, Heidelberg,
New York: Springer 1974

Received June 8, 1977






